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ABSTRACT

In this paper, we introduce a natural variation of the problem of computing all bichro-
matic intersections between two sets of segments. Given two sets R and B of n points in
the plane defining two sets of segments, say red and blue, we present an O(n2) time and
space algorithm for solving the problem of reporting the set of segments of each color
intersected by segments of the other color. We also prove that this problem is 3-Sum
hard and provide some illustrative examples of several point configurations.

Keywords: Red-blue points; bichromatic segment intersection; discrimination and
separation.

1. Introduction

Geometric intersection problems have been widely studied motivated by a number

of applications, such as geometric packing and covering, solid modeling and colli-

sion detection. Mount15 lists several of these problems and also different techniques

∗Partially supported by project MTM2008-05866-C03-01.
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used to design intersection algorithms. Among them, highlights the segment inter-

section problem: report the intersections of n line segments in the plane. Bentley

and Ottmann5 provided an algorithm for reporting all k intersecting pairs of n

line segments in O((k+n) logn) time and O(n) space. Chazelle and Edelsbrunner7

presented an O(k + n logn) time algorithm which is optimal with respect to the

running time but uses O(k + n) space. This was improved by Balaban3 achieving

the same running time but using only O(n) space.

Many variations of the segment intersection problem have been investigated but

the most widely studied has been the bichromatic segment intersection problem:

given two sets of segments, say red and blue, whose total size is n, report all the

intersections between red segments and blue segments. These red-blue intersections

are called bichromatic intersections. The case where there are no monochromatic

intersections, i.e., intersections between segments having the same color, can be

viewed as a special case of the general segment intersection problem. Thus, many

authors worked on the variation where monochromatic intersections exist which is

considered to be a more difficult problem. Agarwal2 and Chazelle6 showed that the

k-bichromatic intersections can be reported in O(k + n4/3 logO(1) n) time using a

partitioning technique called cuttings (see also Ref. 15). See Refs. 4, 9 and 13 for

more information about this topic.

In this paper, we present a new variation of the bichromatic segment intersection

problem in the case where monochromatic intersections exist. Instead of reporting

all bichromatic intersections between two sets of colored segments, we are given two

sets of colored points defining two sets of colored segments, and study the problem

of reporting the set of segments of each color intersected by segments of the other

color. More concretely,

Problem. Let R and B be two distinct sets of red and blue points in the plane. A

line segment defined by two red points is a red segment, and that defined by two

blue points is a blue segment. Let Sb be the set of blue segments that intersect at

least one red segment, and let Sr be the set of red segments crossed by at least one

blue segment. Report Sb and Sr.

Our main motivation to introduce this problem is to detect which segments are

conflict -free, in the sense that no bichromatic intersection is generated by using

them. In fact, to avoid intersections is one of the main difficulties in many geomet-

ric problems associated to red and blue segments. Sometimes it is not so important

how many bichromatic intersections a given segment can have, but if in a configu-

ration one single (forbidden) intersection is reported, then the whole configuration

is considered to be not valid.

From another point of view, our problem can also be seen as a discrimina-

tion/separation problem of red and blue points, where the discrimination criterion

is the existence of a witness (say a red segment given by two red points) which

discretizes/separates some pairs of blue points, or in other words we want to obtain

disjoint classes of blue points not interfered or being affected by pairs of red points.
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Finally, it is worth to mention that our problem is also related to the prob-

lem of intersection searching. See Cheng and Janardan,8 where space-efficient al-

gorithms are presented for some geometric intersection searching problems such as

ray-shooting, segment intersection searching, and triangle stabbing.

Let nr and nb be the sizes of the point sets R and B, respectively. Let S = R∪B

and n = nr + nb. By simplicity of arguments, we assume that the points are in

general position, i.e., no three of them are collinear. Let sb = |Sb| denote the size of

Sb. Analogously, sr = |Sr| is the size of Sr. Let Sep(S) = (Sb, Sr). Figure 1 shows

two point configurations with the values sb and sr. Note that sb = 0 if and only if

sr = 0. We shall assume that n ≥ 3 since otherwise the problem is trivial.a

(a) (b)

Fig. 1. (a) sb = 9 and sr = 2, (b) sb = 3 and sr = 3.

Outline of the paper. In Section 2, we present an O(n2) time and space algorithm

for computing Sep(S). Section 3 is devoted to show the 3-Sum hardness of our

problem. We also analyze the difference between computing Sep(S) and detecting

the existence of at least one bichromatic intersection. Finally, since all the possible

values of sb and sr are not achieved, in Section 4, we provide some results for

illustrating their valid ranges.

2. Computing Sep(S)

In this section we present an efficient O(n2) time algorithm for computing

Sep(S) = (Sb, Sr), that is, for reporting the set of segments of each color inter-

sected by segments of the other color. This problem is equivalent to the problem of

reporting the complementary set, i.e., the set of segments of each color that are not

intersected by segments of the other color, which is reported by giving the subsets

of endpoints of these segments. Additionally, we also can compute the pair (sb, sr).

We distinguish cases in order to report the set Sb according to the location of the

endpoints of the blue segments regarding the convex hull of R, denoted by CH(R).

Similarly for Sr.

Let G = (V (G), E(G)) be the geometric graph such that V (G) = B and E(G) is

the set of blue segments intersecting no red segment, i.e., E(G) is the complement

aIn all the figures in this paper, red points are illustrated as solid red points, and blue points are
depicted as hollow blue points.
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of Sb with respect to the set of all possible edges in G. Let Be and Bi denote,

respectively, the subsets of blue points that are exterior and interior to CH(R). Note

that either set may be empty. Thus, G is the union of two disjoint graphs (both

not connected in general): the exterior graph, denoted by Ge = (V (Ge), E(Ge)),

with V (Ge) = Be; and the interior graph, denoted by Gi = (V (Gi), E(Gi)) with

V (Gi) = Bi.

Lemma 1. Gi is the union of disjoint complete graphs.

Proof. Let H be the complete geometric graph defined by the red points. Since the

edges of Gi are not intersected by red segments, then every connected component

of Gi is contained in one of the faces of the line-segment arrangement H ′ defined
by the edges of H . Hence Gi is the union of disjoint graphs, and its components are

complete graphs since the faces of H ′ are convex regions.

Let P be a convex polygon, let Q be a set of exterior points to P , and p, q ∈ Q.

Clearly, the segment pq intersects P if and only if pq intersects a side of P . Thus,

pq intersects P if and only if there exist two vertices u, v of P such that pq and uv

intersect.

Consider now a caliper of P which is defined by two parallel supporting lines

of P on antipodal vertices of P . The direction of the caliper is the direction of its

parallel lines. See Ref. 17 for standard techniques using rotating calipers over a

convex polygon.

Lemma 2. Let Q be a set of exterior points to a convex polygon P , and p, q ∈ Q.

The segment pq intersects P if and only if there exists a caliper of P through two

vertices u, v of P that contains the points p and q, and uv and pq intersect.

Proof. It suffices to consider the caliper of P with direction given by the direction

of the line through p and q (see Fig. 2(a)).

Lemma 3. Let Q be a set of n exterior points to an n-sided convex polygon P . To

decide whether any of the segments with endpoints in Q intersects P can be done in

O(n log n) time and O(n) space. Moreover, knowing the rotational ordering of the

points of Q with respect to P , to decide whether any of the segments with endpoints

in Q intersects P takes Θ(n) time and space.

Proof. First, we obtain the rotational ordering of the points of Q with respect to P

as follows: For each point p ∈ Q, compute the two directed tangents (or supporting

lines) from p to P . These lines are called either right or left directed tangents

depending on which half-plane P lies in. Then, sort the left directed tangents of all

the points of Q by increasing slope starting from the horizontal slope. Analogously,

sort the right directed tangents of all the points of Q. This process can be done in

O(n log n) time and O(n) space. Finally, in extra O(n) time, merge the two sorted

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
42

1-
43

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

01
/2

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 5, 2013 9:55 WSPC/Guidelines S0218195912500100

Reporting Bichromatic Segment Intersections from Point Sets 425

lists of directed tangents (left and right) into an ordered list which is called the

rotational ordering of the points of Q with respect to P .

Now, we consider a horizontal caliper of P , and compute the points of Q inside

it. By using the rotational ordering, we know which is the next point of Q entering

or going out of the caliper as we rotate it a complete round over P (see Fig. 2(b)).

Thus, the updates (insertions or deletions) of points inside the caliper can be done

in constant time per point.

According to Lemma 2, it is clear that given a segment pq with p, q ∈ Q, we can

decide whether pq intersects the n-sided convex polygon P in O(n logn) time and

O(n) space by rotating the caliper a complete round around P . It is also clear that

if we know the rotational ordering above, then the decision can be done in Θ(n)

time and space.

u

v

p

q

(a) (b)

Fig. 2. (a) A caliper of P through two vertices u, v of P with direction given by the direction of
the line through p and q, (b) a rotating caliper.

Lemma 1 says that Gi is the union of disjoint complete graphs and therefore,

Sb = E(Ge) ∪E(Gi) ∪ {uv : u ∈ V (Gi), v ∈ V (Ge)},

where E(Ge) (resp. E(Gi)) denotes the set of edges of the complement graph of Ge

(resp. Gi). We shall use Lemma 3 and an incremental procedure described below

to compute the sets E(Ge) and E(Gi) in O(n2) time.

2.1. Splitting CH(R) into convex regions

A key tool for computing E(Gi) in O(n2) time is the next procedure which provides

a partition of CH(R) into convex regions, each one is either empty or contains only

blue endpoints whose segments are not intersected by red segments. This parti-

tion of CH(R) is generated in an incremental way, and has to be stored in some

data structure such that we can update a constant number of new convex regions

generated at each stage.

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
42

1-
43

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

01
/2

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 5, 2013 9:55 WSPC/Guidelines S0218195912500100

426 C. Cortés et al.

Let V (Gi) = {b1, . . . , bm} be the set of blue interior points to CH(R), in the

order given in the input. Consider the equivalence relation: bj ∼ bk if and only the

blue segment bjbk crosses no red segment. In this case, we say that bj and bk are

related. As initial stage, take the blue point b1, and let C1(b1) := CH(R). At stage

k, k ≤ m, we will introduce the blue point bk. Now, consider the current convex

regions at stage k− 1 with 2 ≤ k− 1 ≤ m. The convex regions can be of two types:

(1) Convex regions that contain all the blue points (at least one) bs of V (Gi) with

1 ≤ s ≤ k−1 so that all are related among them. Each such region is associated

with one of those blue points, say bj , as its representative, and it is denoted by

type Ck−1(bj).

(2) Convex regions that contain no blue point bs of V (Gi) with 1 ≤ s ≤ k − 1,

denoted by type Ck−1(∅).

At stage k, the next blue point bk is located into a convex region of type Ck−1(bj)

or Ck−1(∅)
b which is split into at most four new convex regions as follows. We

distinguish three cases:

Case 1. bk ∈ Ck−1(∅): update Ck−1(∅) := Ck(bk). Note that only the type of the

region has changed (see Fig. 3, stages 4 and 5, where b5 ∈ C2
4 (∅) and so the transition

from stage 4 to 5 only requires updating C2
4 (∅) = C5(b5)).

Case 2. bk ∈ Ck−1(bj) and bk ∼ bj : update Ck−1(bj) := Ck(bj). Observe that

bk ∈ Ck(bj) (see Fig. 3, stages 2 and 3, where b3 ∈ C2(b1) which is updated as

C3(b1)).

Case 3. bk ∈ Ck−1(bj) and the blue segment bkbj is crossed by at least one red

segment: consider a red segment sjk intersecting bjbk and the line ℓjk containing

the segment sjk. Assume first that the segment sjk is strictly contained in Ck−1(bj),

that is, its two red endpoints are located in the interior of Ck−1(bj). Thus, ℓjk
intersects Ck−1(bj) in two edges since the points are in general position. Join the

endpoints of sjk with the endpoints of those edges. Therefore Ck−1(bj) is split into

four convex regions (see Fig. 3, stage 2):

(a) Ck(bk) which might contain blue points bs with s ∈ {k + 1, . . . ,m} but there

are no blue points bs with s ∈ {1, . . . , k − 1}.

(b) Ck(bj) containing the blue points bs with s ∈ {1, . . . , k − 1} so that bs ∼ bj .

(c) Two regions of type Ck(∅) not containing the blue points b1, . . . , bk.

bFormally, the convex regions of type Ck−1(∅) should be denoted as C1
k−1

(∅, {t, h}) and

C2
k−1

(∅, {t, h}) indicating the current stage k− 1, the blue points bt, bh which generate those con-
vex regions at some moment of the process, and also distinguishing the at most two regions that
can be generated by bt, bh. Nevertheless, for simplicity of notation we shall use either C1

k−1
(∅) and

C2
k−1

(∅) (only distinguishing the two possible convex regions generated at stage k−1) or Ck−1(∅)
(only specifying the region type).
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The remaining convex regions are updated obtaining more convex regions of

type Ck(∅) = Ck−1(∅) not containing the blue points b1, . . . , bk, and convex regions

of type Ck−1(bs) are updated as Ck(bs) with s ∈ {1, . . . , k − 1} and bs ≁ bj (see

Fig. 3). Note that in this case the blue points bs, bk and bj are located in different

convex regions, i.e., the blue segments given by these points are intersected by red

segments.

Suppose now that the segment sjk is contained in Ck−1(bj) and one or both

of its endpoints belong to Ck−1(bj). We then proceed as above splitting Ck−1(bj)

into two or three convex regions respectively, missing at most the two classes of

type Ck(∅) (see Fig. 3, stages 3 and 4, where C3(b2) is split into the convex regions

C4(b2) and C4(b4)).

b1

b2

b3

b4

C4(b1)

C1
4(∅)

C4(b2)

C4(b4)
s12

C2
4(∅)

s24

b1

b2

b3

C3(b1)

C1
3(∅)

C3(b2)
s12

C2
3(∅)

b1

b2

C2(b1)

C1
2(∅)

C2(b2)
s12

C2
2(∅)

b1

C1(b1)

Initial stage Stage 2 Stage 3

Stage 4

b1

b2

b3
b5

b4

C5(b1)

C1
5(∅)

C5(b2)

C5(b4)
s12

C5(b5)

s24

Stage 5

Fig. 3. An instance of convex regions created up to stage 5.

Finally, assume that the segment sjk is not contained in Ck−1(bj), i.e., at least

one endpoint of sjk is located in a different convex region (see Fig. 4). Since Ck−1(bj)

is the convex region to be split we proceed analogously but considering, by using an

artificial point (point q in Fig. 4), the part of the segment contained in the convex

region to be split. Such point will not be taken into account in the next steps and

will make no change in the time complexity of the next algorithm.

Note that the partition of CH(R) obtained by this incremental procedure (with

insertions only) is a planar subdivision with linear complexity, where the cells are

convex regions. The problem of the dynamic planar point location with insertions

and deletions has been widely studied.16 Nevertheless, in our problem we have to

update the planar subdivision in an incremental way by splitting a convex region

into at most four new convex regions inserting at most five new edges in each stage.

Thus, we can use the linear-space data structure from Arge et al.1 which in the
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s13

q

b3

b1

b2

Fig. 4. The endpoints of s13 are located in different convex regions.

incremental case supports queries and edge insertions in O(log n) time. Since in the

construction of our planar subdivision the number of edge insertions and queries is

O(n) we can establish the following result.

Theorem 1. Computing the planar subdivision formed by the convex regions par-

titioning CH(R) can be done in O(n log n) time and O(n) space.

2.2. The O(n2) algorithm

As mentioned earlier, Lemma 3 and the procedure described in Subsection 2.1 are

the key tools to design the following algorithm for reporting the sets of segments of

each color intersected by segments of the other color.

Procedure: RED-BLUE-INTERSECTED-SEGMENTS

Input: S = B ∪R, |B| = |R| = n

Output: Sep(S) = (Sb, Sr) and (sb, sr)

(1) Compute V (Ge) and V (Gi) in O(n log n) time by determining the blue points

which are exterior and interior to CH(R), respectively.

(2) “Computation of E(Ge)”:

(a) In O(n log n) time compute both the clockwise and counterclockwise rota-

tional orders of the blue points of V (Ge) with respect to CH(R).

(b) Compute the set E(Ge) of blue segments with endpoints in V (Ge) intersect-

ing CH(R) by using a rotating caliper over CH(R). The time complexity

of this step is O(|E(Ge)| + n logn), i.e., depends on the cardinality of its

output which is at most O(n2).

(3) “Computation of E(Gi)”: Let V (Gi) = {b1, . . . , bm} and C1(b1) := CH(R).

(a) In O(mn) = O(n2) time construct the dual arrangement A of lines from

the points of R ∪ V (Gi).

(b) For k = 2, . . . ,m do

(i) In O(log n) time compute the current convex region where bk is

contained.

(ii) If bk is contained in Ck−1(∅) then update Ck−1(∅) := Ck(bk) in O(1)

time. Else “bk is contained in Ck−1(bj), j < k” proceed as follows:
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(A) InO(n) time do the following: (1) use the arrangementA to obtain

the clockwise rotational order of the red points with respect to the

point bk (bk is a line in the dual arrangement A; we traverse this

line, in the order given by A, discovering the order in which dual

red lines cross it, thereby obtaining the clockwise rotational order

of the red points with respect to bk.), (2) analogously, use the

arrangement A to obtain the clockwise rotational order of the

red points with respect to the point bj, (3) merge both clockwise

rotational orders to compute the clockwise rotational order of the

red points with respect to the blue segment bkbj.

(B) Using Lemma 3, in O(n) time determine whether there exists a

red segment sjk intersecting the blue segment bjbk.

(C) If answer is the affirmative then split the convex region Ck−1(bj)

using the procedure described in Subsection 2.1. Else “bk ∼ bj”

then update Ck−1(bj) := Ck(bj) in O(1) time.

(iii) In O(1) time add bk to the set of blue points in its definitive convex

region.

(c) Compute E(Gi) from the disjoint subsets of blue points contained in the

non-empty convex regions.

(4) In O(n2) time compute the set Sb = E(Ge) ∪ E(Gi) ∪ {uv : u ∈ V (Gi),

v ∈ V (Ge)} and the value sb.

(5) Proceed analogously to compute the set Sr and the value sr.

Note that Step 3(b) of the above described algorithm uses O(mn + m logn +

n logn) = O(n2) time. Observe in particular that the rotational orderings taken

from the dual arrangement A lets us apply Lemma 3, and Theorem 1 says that the

total amortized time complexity of Step 3 is O(n log n). Therefore, the overall time

complexity of Step 3 is O(n2). Thus, we have shown the following result.

Theorem 2. Sep(S) = (Sb, Sr) and (sb, sr) can be computed in O(n2) time and

space.

3. Hardness

In this section, we show that computing sb and sr is a 3-Sum hard problem which

implies the 3-Sum hardness of the problem of reporting Sep(S). The class of 3-

Sum hard problems was introduced by Gajentaan and Overmars10 where they list

a number of problems for which they prove that they are at least as hard as the

so-called base problem: Given a set S of n integers, does there exist three elements

of S that sum up to zero? The best known algorithm for the base problem takes

Θ(n2) time.

For the reduction, we shall use the following 3-Sum hard problem10: Given a

set of n points with integer coordinates on three horizontal lines y = 0, y = 1 and
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y = 2, determine whether there exists a non-horizontal line containing three of the

points.

For simplicity of notation, it can be assumed that the number of points on each

line is the same and so we shall consider a set of 3n points. Moreover, the points

on each line shall be identified with its x-coordinate.

Theorem 3. Computing sb and sr is 3-Sum hard.

Proof. We are given a set of 3n points with integer coordinates on three horizontal

lines y = 0, y = 1 and y = 2, denoted A, C and D, respectively. First, we transform

each point c ∈ C into two points c − 1
4 , c +

1
4 , called the transformed points of c.

Now, all the points on A and D are colored red while all the 2n points on C are

colored blue. So far, a set of 4n red and blue points has been obtained.

We next add a set of n − 1 red points, say Ω = {(ri, 1 + ε) | i = 1, . . . ,

n− 1}. Figure 5 shows that there is exactly one of these points located between the

transformed points of ci, ci+1 ∈ C for i = 1, . . . , n−1, that is, ci+
1
4 < ri < ci+1−

1
4 ,

more concretely we take ri = (ci + ci+1)/2. Moreover, they are located at distance

ε > 0 to the line C. Thus, a set of 5n− 1 red and blue points has been obtained.

A

C

D

c1 c2 c3 c4 c5

(r1, 1 + ε) (r2, 1 + ε) (r3, 1 + ε) (r4, 1 + ε)

Fig. 5. The set of 5n − 1 red and blue points and a non-horizontal line through points on A, C
and D (color online).

Now, we shall guarantee that there exists a value of ε such that no blue segment

with endpoints c− 1
4 , c+

1
4 is intersected by a red segment with at least one endpoint

in Ω. As it will be shown below, this fact is the key for reducing our problem to the

3-Sum hard problem specified above.

Let us call the blue segment with endpoints c − 1
4 , c +

1
4 the segment of c.

Obviously, the red segments with either both endpoints in Ω or one endpoint in D

and the other in Ω intersect no segment of a point c ∈ C. So the conditions over

ε, to guarantee that no segment of c ∈ C is intersected, will be imposed by the red

segments with one endpoint in A and the other in Ω.

Let a1, an and c1, cn be the first and last points on A and C, respectively, in

the left-right order. Let p = c1 + 1 and q = cn − 1 (these two points have integer
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coordinates). Figure 6 shows an easy construction to obtain the two small triangles

T1, T2. It can be easily checked that the distance to the line C of any point on the

intersection region of the overlapping of T1 and T2 gives an adequate value for ε.

A

C

D

a1 an

c1 +
1
4

p− 1
4

cn −
1
4

q + 1
4

T1 T2

Fig. 6. Construction for obtaining an adequate value for ε.

We now prove that there exists a line containing three points a ∈ A, c ∈ C and

d ∈ D if and only if sb > 2n(n− 1).

Note first that the 2n(2n−1)
2 − n blue segments with endpoints ci ±

1
4 , cj ±

1
4

for ci 6= cj are intersected by a red segment (e.g., a1ri+1). Hence sb ≥ 2n(2n−1)
2 −

n = 2n(n− 1). Therefore the result holds whenever at least one segment of a point

c ∈ C is intersected. Clearly, if there is a line going through a ∈ A, c ∈ C and

d ∈ D, then the blue segment with endpoints c − 1
4 , c +

1
4 is crossed by the red

segment given by a, d, and so sb > 2n(n− 1) (see Fig. 5). It remains to prove the

reverse.

Suppose that sb > 2n(n− 1). This implies that all the blue segments are inter-

sected but at most n−1 of them. Hence, there is at least one segment with endpoints

c − 1
4 , c +

1
4 which is crossed by a red segment with endpoints, say a, d. Assume

that the bichromatic intersection occurs at the point c + δ for δ ∈ (− 1
4 ,

1
4 ) and so

a + d = 2(c+ δ). Since a, c and d are integer numbers then δ = 0 and a+ d = 2c.

This proves that there is a line going through the points a ∈ A, c ∈ C and d ∈ D.

Corollary 1. Computing Sep(S) is 3-Sum hard.

We have provided an algorithm for computing Sep(S) in O(n2) time and space,

and proved that the problem is 3-Sum hard. This prompts the question of which is

the difference between computing the exact values of sb and sr and detecting the

existence of at least one bichromatic intersection.

Proposition 1. In O(n log n) time it can be determined whether Sep(S) is empty,

that is, sb = sr = 0.

Proof. Deciding whether R and B are linearly separable can be done in O(n)

time.14 If so, then sb = sr = 0. If R and B are not linearly separable, then their
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respective boundaries of the convex hulls CH(R) and CH(B) either intersect or

form nested polygons. We proceed as follows: In O(n logn) time, compute the

boundaries of CH(R) and CH(B), and check whether they intersect. If they do

then sb ≥ 1 and sr ≥ 1. Otherwise, they are nested polygons. Assume, for instance,

that CH(R) ⊂ CH(B). To decide which blue points are inside CH(R) can be done

in O(n log n) time. If there are blue points interior and exterior to CH(R) then

sb ≥ 1 and sr ≥ 1. Otherwise, all the blue points are exterior to CH(R) and, by

Lemma 3, we can decide in O(n log n) time whether any of the segments they define

intersects CH(R). Analogously if CH(B) ⊂ CH(R).

Remark 1. We conjecture (open problem) that the decision problem of determin-

ing whether there is at least one bichromatic intersection has a lower bound of

Ω(n logn). Given the O(n logn) upper bound on the emptiness problem of Proposi-

tion 3.3 and the widely held conjecture of a lower bound of Ω(n2) for any 3-Sum-hard

problem, it follows that there is a considerable gap in the computational complexi-

ties of the emptiness and counting problems for Sep(S).

4. The Range of Values of sb and sr

In this section, we first prove that not all the possible values are achieved by the

pair (sb, sr). Then, some results are provided for illustration of the behavior of

these two numbers. For simplicity, we assume that both point sets R and B have

the same number of points, say n, since the techniques used in the proofs do not

differ significantly when considering a different number of points.

Proposition 2. If sb ≥ 1 then n ≤ sb + sr ≤ n(n− 1), and both bounds are tight.

Proof. Since sb ≥ 1 then there is a red segment pq intersecting a blue segment uv.

Consider the supporting half-lines from p and q to uv. Figure 7(a) shows that these

half-lines starting from either u or v together with the segment uv split the plane

into four regions (not bounded, open and disjoint) denoted by I, II, III and IV.

Clearly, if the n red points are located in regions I and II then there are at least

n− 1 red segments crossed by uv. This gives n ≤ sb + sr. Suppose then that there

is at least one red point r ∈ R − {p, q} in region III (analogously if r is in region

IV). Let T be the triangle defined by p, q and r. Each blue point b ∈ B − {u, v} is

either interior or exterior to T and so it is an endpoint of at least one intersected

blue segment, either bu or bv. This easily implies that n ≤ sb + sr.

Obviously, the upper bound of sb+sr is attained when all the blue segments are

intersected by red segments and vice versa, i.e., sb+sr =
n(n−1)

2 + n(n−1)
2 = n(n−1).

Figures 7(b) and 7(c) show that both bounds are tight.

We say that a monochromatic simple polygon P is a dividing simple polygon if

there are at least two points of the other color, one interior and one exterior to P .

Note that a dividing simple polygon splits the point set of the other color into two
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(a) (b)

u v

p

q

III

I

II

IV

p

q

u v

(c)

Fig. 7. (a) Regions I, II, III and IV defined by the segments uv and pq, (b) a point configuration
where all the segments are intersected, (c) a point configuration where sb + sr = n.

subsets that can be viewed as the vertex set of a bipartite graph with edges the

segments intersected by the polygon. Thus, the following result is straightforward.

Proposition 3. If there exists a red dividing simple polygon then sr ≥ 1 and

sb ≥ n− 1. Analogously, if there exists a blue dividing simple polygon then sb ≥ 1

and sr ≥ n− 1.

Proposition 4. If 1 ≤ sb ≤ n− 2 then the following statements hold.

(i) CH(R) contains no blue point.

(ii) sr ≥ n− 1, and this bound is tight.

(iii) The value of sr is the number of edges of a complete k-partite graph with n

vertices and 2 ≤ k ≤
(s2

b
+sb+2)
2 .

(iv) If the red points are located in t ≥ 2 different regions of the arrangement defined

by the lines containing the blue segments, then sr ≥ (t− 1)(n− t
2 ).

Proof. By Proposition 3, to prove statement (i), it suffices to assume on the con-

trary that all the blue points are located inside CH(R). Since sb ≥ 1 then there is

at least one blue segment uv intersecting a red segment pq. Join p and q to at most

two vertices of CH(R) (depending on whether either p or q is a vertex of CH(R))

leaving u inside this red dividing simple polygon and v outside or vice versa. By

Proposition 3 it follows that sb ≥ n− 1 which is a contradiction.

Statement (ii) is shown assuming that either CH(R) and CH(B) intersect or

they are nested polygons, since CH(R) contains no blue point (Fig. 8). Then, there

is a blue segment uv intersecting two segments of CH(R), say p1q1 and p2q2, which

easily implies that there exists a blue dividing simple polygon (Fig. 8). By Propo-

sition 3 we have sr ≥ n− 1. Figure 8(b) shows that this bound is tight.

To prove statement (iii), consider the arrangement defined by all the lines going

through any two endpoints of the sb intersected blue segments (Fig. 9). The number

of regions (both bounded and unbounded) of the plane defined by this arrangement

is
(s2

b
+sb+2)
2 . Let k be the number of such regions containing at least one red point

(see Fig. 9). Since sb ≥ 1 then 2 ≤ k ≤ (s2
b
+sb+2)
2 . Moreover, every red segment
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(a) (b)

q1

p2p1

q2

p1

q1

q2

Fig. 8. (a) CH(R) and CH(B) are nested polygons, (b) the boundaries of CH(R) and CH(B)
intersect.

whose endpoints are in different regions intersects at least one blue segment since

CH(R) contains no blue point. Hence the result follows. As a consequence, arises

statement (iv). In this case, the value sr is the number of edges of a complete t-

partite graph. This number is minimized when t − 1 parts contain a single vertex

and so sr ≥ (t−1)(t−2)
2 + (n− t+ 1)(t− 1).

Fig. 9. Arrangement defined by all the lines through two endpoints of the blue segments intersected
by red segments, and k = 4.

Proposition 5. If sb = 1 then n − 1 ≤ sr ≤ n2

4 , and both bounds are tight.

Moreover, if sb = n(n−1)
2 then ⌈ (−1+

√
8n−7)

2 ⌉ ≤ sr ≤ n(n−1)
2 , and both bounds are

tight.

Proof. Suppose first that sb = 1. Then there is exactly one blue segment uv inter-

secting a red segment pq. By Proposition 3, it is easy to see that all the red points

have to be distributed in regions I and II (both shown in Fig. 7(a)), say m1 and

m2 = n − m1, respectively. A bipartite graph is obtained by considering the red

points as the vertices and the m1m2 red segments as the edges. Since m1+m2 = n,

it follows that m1m2 ≤ n2

4 (the exact value n2

4 is attained for m1 = m2 = n
2 ) and

sr = n− 1 if and only if m1 = 1. Hence n− 1 ≤ sr ≤ n2

4 and both bounds are tight.
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Suppose now that sb = n(n−1)
2 . Obviously, sr ≤ n(n−1)

2 and so it suffices

to check the lower bound. Proceeding as in the proof of Proposition 4, consider

the arrangement defined by all the lines going through any two endpoints of the

sr intersected red segments. Since all the blue segments are crossed, then there

is at most one blue point in each region defined by the arrangement. Hence,

n ≤ k ≤
s2
r
+sr+2
2 where k denotes the number of regions containing at least one

blue point. This implies the result. Figures 7(b) and 10 show that both bounds are

tight.

Fig. 10. A point configuration where sb = ⌈−1+
√

8n−7

2
⌉ = 3.

Relating sb and sr with combinatorial depths

An interesting issue to be considered is the connection between the numbers sb, sr
and the most usual combinatorial depths for point sets studied in the literature: the

convex depth,11 the simplicial depth12 and the Tukey depth.18 We first recall their

definitions.

The convex depth of a point q with respect to a finite set of points P ⊂ R
2,

denoted by dcP(q), is defined recursively as follows: If q ∈ CH(P) then dcP(q) = 1,

else

dcP(q) = dcP\CH(P)(q) + 1.

The simplicial depth of q with respect to P is the number of simplices generated

by points in P that contain q. Finally, the Tukey depth or halfspace depth of q with

respect to P is the minimum number of points in any closed half-plane bounded by

a line through q.

By using the idea of dividing simple polygon, it is easy to establish a first

relationship between sb, sr and the depths above. For simplicity, let dB(q) denote

the depth of a red point q ∈ R with respect to the blue point set B for any of the

depths.

Proposition 6. For every two red points p, q ∈ R such that dB(p) 6= dB(q) it holds

that sb ≥ n− 1. Moreover, sr ≥ (dB(p)− dB(q))
2 for the convex depth and also for

the Tukey depth, and sr ≥ |dB(p)− dB(q)| for the simplicial depth.

Proof. Clearly, if dB(p) 6= dB(q) then there is a blue dividing simple polygon and

so Proposition 3 says that sb ≥ n− 1.
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Consider now two red points p, q with different simplicial depth with respect

to B. Then, the segment pq intersects at least |dB(p) − dB(q)| different blue tri-

angles and hence sr ≥ |dB(p) − dB(q)|. In the case of the convex depth and the

Tuckey depth, it can be easily seen that the segment pq has to intersect at least

|dB(p) − dB(q)| disjoint blue segments, and so pq splits the extremes of those seg-

ments into two subsets B1, B2 of size |dB(p) − dB(q)|, and all the blue segments

with one extreme in B1 and the other in B2 are intersected by pq. Therefore,

sr ≥ (dB(p)− dB(q))
2.

5. Conclusions

In this paper, we have introduced the following variation of the bichromatic segment

intersection problem: given two sets of colored points defining two sets of segments,

report the set of segments of each color intersected by segments of the other color. We

have provided an O(n2) time and space algorithm for solving the problem. We have

also proved that the problem is 3-Sum-hard and analyzed the difference between

computing the exact number of intersected segments of each color and deciding the

existence of at least one bichromatic intersection. Finally, we have studied several

point configurations as illustrative examples.

As a future work, it would be interesting to extend this problem to 3D, i.e., given

two sets of points in 3D, consider the same problem but using monochromatic tri-

angles instead of segments. The goal is to improve the trivial brute force algorithm

for the problem. Also, it would be interesting to deepen the study regarding com-

binatorial depths.
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