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Abstract. A drawing of a given (abstract) tree that is a minimum spanning tree of

the vertex set is considered aesthetically pleasing. However, such a drawing can only

exist if the tree has maximum degree at most 6. What can be said for trees of higher

degree? We approach this question by supposing that a partition or covering of the

tree by subtrees of bounded degree is given. Then we show that if the partition or

covering satisfies some natural properties, then there is a drawing of the entire tree

such that each of the given subtrees is drawn as a minimum spanning tree of its vertex

set.

1. Introduction

The field of graph drawing studies aesthetically pleasing drawings of graphs1. There

are a number of recognised criteria for measuring the quality of a drawing of a given

graph. These include:

• no two edges should cross in drawings of planar graphs;

• the edges should be drawn as straight line-segments; and

• the drawing should have large angular resolution (defined to be the minimum

angle determined by two consecutive edges incident to a vertex).

These three criteria are adopted in the present paper. More formally, a (straight-line

general position) drawing of graph G is an injective function φ : V (G)→ R2 such that

the points φ(u), φ(v), φ(w) are not collinear for all distinct vertices u, v, w ∈ V (G). The
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1We consider graphs G that are simple and finite. Let G be an (undirected) graph. The degree of

a vertex v of G, denoted by degG(v), is the number of edges of G incident with v. The minimum and

maximum degrees of G are respectively denoted by δ(G) and ∆(G). We say G is degree-d if ∆(G) ≤ d.

Now let G be a directed graph. Let v be a vertex of G. The indegree of v, denoted by indegG(v), is

the number of incoming edges incident to v. The outdegree of v, denoted by outdegG(v), is the number

of outgoing edges incident to v. The maximum outdegree of G is denoted by ∆+(G). We say G is

outdegree-d if ∆+(G) ≤ d.
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image of an edge vw ∈ E(G) under φ is the line segment φ(v)φ(w). Where no confusion

is caused, we henceforth do not distinguish between a graph element and its image in a

drawing. Two edges cross if they intersect at a point other than a common endpoint.

Our focus is on drawings of trees. Here a number of other criteria have been studied

that will not be considered in this paper. These include: small bounding box area

[7–9, 11, 23, 27, 33], small aspect ratio [8, 23], few bends in the edges [28], few distinct

edge-slopes [14], few distinct edge-lengths [6], layered vertices [34], upwardness in rooted

trees [7, 11, 28, 36], and maximising symmetry [24].

A minimum spanning tree of a finite set P ⊂ R2, denoted by MST(P ), is a straight-

line drawing of a tree with vertex set P and with minimum total edge length; see Figure 1

for an example. A drawing of a given (abstract) tree that is a minimum spanning tree of

its vertex set is considered to be particularly aesthetically pleasing. In particular, every

minimum spanning tree is crossing-free and has angular resolution at least π
3 . Drawings

defined in this way are called ‘proximity drawings’; see Section 2 and [1, 2, 4, 12, 30–32]

for more on proximity drawings.

Figure 1. Example of a minimum spanning tree.

Monma and Suri [31] proved that every degree-5 tree can be drawn as a minimum

spanning tree of its vertex set, and they provided a linear time (real RAM) algorithm

to compute the drawing. In any drawing of a vertex v with degree at least 7, some

angle at v is greater than π
3 , and the same is true for a degree-6 vertex if the points

are required to be in general position. Thus a tree that contains a vertex with degree

at least 7 cannot be drawn as a minimum spanning tree, and the same is true for a

degree-6 vertex if the points are in general position. If collinear vertices are allowed,

then Eades and Whitesides [18] showed that it is NP-hard to decide whether a given

degree-6 tree can be drawn as a minimum spanning tree. In this sense, the problem of

testing whether a tree can be drawn as a minimum spanning tree is essentially solved.

(In related work, Liotta and Meijer [29] characterised those trees that have drawings

that are Voronoi diagrams of their vertex set.)

What can be said about drawings of a high degree tree T that ‘approximate’ the

minimum spanning tree of the vertex set? We prove the following solutions to this
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question based on partitions of T into subtrees of bounded degree. A partition of a

graph G is a set of subgraphs of G such that every edge of G is in exactly one subgraph.

A partition can also be thought of as a (non-proper) edge-colouring, with one colour for

each subgraph. We emphasise that ‘trees’ and ‘subtrees’ are necessarily connected.

Theorem 1.1. Let P be a partition of a tree T into degree-5 subtrees. Then there is a

drawing of T such that each subtree in P is drawn as the minimum spanning tree of its

vertex set.

The drawing of T produced by Theorem 1.1 possibly has crossings, which are unde-

sirable. The next result eliminates the crossings, at the expense of a slightly stronger

assumption about the partition, which is expressed in terms of rooted trees. A rooted

tree is a directed tree such that exactly one vertex, called the root, has indegree 0. It

follows that every vertex except r has indegree 1, and every edge vw of T is oriented

‘away’ from r; that is, if v is closer to r than w, then vw is directed from v to w. If r is

a vertex of a tree T , then the pair (T, r) denotes the rooted tree obtained by orienting

every edge of T away from r.

Theorem 1.2. Let P be a partition of a rooted tree T into outdegree-4 subtrees. Then

there is a non-crossing drawing of T such that each subtree in P is drawn as the mini-

mum spanning tree of its vertex set.

By further restricting the partition we introduce large angular resolution as an addi-

tional property of the drawing, again at the expense of a slightly stronger assumption

about the partition.

Theorem 1.3. Let P be a partition of a rooted tree T into outdegree-3 subtrees. Then

there is a non-crossing drawing of T with angular resolution at least
π

max{∆+(T )−1,4} such that each subtree in P is drawn as the minimum spanning tree

of its vertex set.

Since every drawing of T has angular resolution at most 2π
∆(T ) , the bound on the

angular resolution in Theorem 1.3 is within a constant factor of optimal.

Our final drawing theorem concerns a given covering of a tree by two bounded degree

subtrees. A covering of a graph G is a set of connected subgraphs of G such that every

edge of G is in at least one subgraph.

Theorem 1.4. Let {T1, T2} be a covering of a tree T by two degree-5 subtrees. Then

there is a non-crossing drawing of T such that each Ti is drawn as a minimum spanning

tree of its vertex set.

A number of notes about Theorems 1.1–1.4 are in order:
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• Each of Theorems 1.1, 1.2 and 1.4 imply and generalise the above-mentioned

result by Monma and Suri [31] that every degree-5 tree T can be drawn as a

minimum spanning tree of its vertex set. (Take k = 1 in Theorem 1.1; root T

at a leaf in Theorem 1.2; and take T1 = T and T2 = ∅ in Theorem 1.4.)

• Theorem 1.4 cannot be generalised for coverings by three or more subtrees; see

Section 5.

• The above theorems are loosely related to the notion of geometric thickness.

The geometric thickness of a graph G is the minimum integer k such that there

is a straight-line drawing of G and an edge k-colouring such that monochro-

matic edges do not cross; see [3, 13, 15–17, 19, 20, 25]. Thus in the drawing of

G, the subgraph induced by each colour class is crossing-free. The above theo-

rems also produce drawings in which the edges are partitioned into non-crossing

subgraph, but with additional proximity properties. Moreover, each subgraph

of the partition is connected, which intuitively at least, is a desirable property

in visualisation applications.

• All our proofs are constructive, and lead to polynomial time algorithms (in the

real RAM model). These algorithmic details are omitted.

2. Relative Neighbourhood Graphs

To aid in the proofs of Theorems 1.1–1.4, we now introduce some notation and a

number of geometric objects. Let x and y be points in the plane. Let |xy| be the

Euclidean distance between x and y. Let circle(x, δ) be the circle of radius δ centred at

x. Let disc(x, δ) be the open disc of radius δ centred at x. Let disc(x, δ) be the closed

disc of radius δ centred at x. As illustrated in Figure 2, for every real number δ such

that 0 < δ < |xy|, let

lune(x, y, δ) := (disc(y, δ)− disc(x, |xy|)) ∪ {y} .

The relative neighbourhood lens2 of x and y is

lens(x, y) := disc(x, |xy|) ∩ disc(y, |xy|) .

Let P ⊂ R2 be a finite set of points in the plane. Toussaint [35] defined the relative

neighbourhood graph of P , denoted by RNG(P ), to be the graph with vertex set P ,

where two vertices v, w ∈ P are adjacent if and only if lens(x, y)∩P = ∅. That is v and

w are adjacent whenever no vertex is simultaneously closer to v than w and closer to

w than v. Toussaint [35] proved that MST(P ) ⊆ RNG(P ). Hence if RNG(P ) is a tree,

then RNG(P ) = MST(P ). The result of Monma and Suri [31] mentioned in Section 1

was strengthened by Bose et al. [4] as follows.

2Unfortunately the computational geometry literature, and especially the literature on relative neigh-

bourhood graphs, often refers incorrectly to a ‘lens’ as a ‘lune’.
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Figure 2. The regions lune(x, y, δ) and lens(x, y)

Lemma 2.1 (Bose et al. [4]). Every degree-5 tree has a drawing that is the relative

neighbourhood graph of its vertex set.

For all of the theorems introduced in Section 1, we in fact prove stronger results

about relative neighbourhood graphs.

3. Drawings Based on a Partition

Theorem 1.1 is implied by the following result, since a relative neighbourhood graph

that is a tree is a minimum spanning tree.

Theorem 3.1. Let {T1, . . . , Tk} be a partition of a tree T into degree-5 subtrees. Then

there is a drawing of T in which each Ti is drawn as the relative neighbourhood graph

of its vertex set.

Proof. Let D be the maximum distance between any two vertices in T (the diameter of

T ). Let Q be the complete 5-ary tree of height D. That is, every non-leaf vertex in Q

has degree 5, and for some vertex r, the distance between r and every leaf equals D.

By Lemma 2.1, there is a drawing of Q that is the relative neighbourhood graph of its

vertex set. Since the vertices of Q are in general position, for some ε > 0, for all distinct

vertices x, y ∈ V (Q), the discs disc(x, ε) and disc(y, ε) are disjoint, and if P is a point

set that contains exactly one point from each disc disc(x, ε) (where x ∈ V (Q)), then

Q ∼= RNG(P ). (Here disc(x, ε) means the disc centred at the point where x is drawn.)

Define a homomorphism3 f from T to Q as follows. Choose an arbitrary starting

vertex v of T , let f(v) = r, and recursively construct a function f such that f(v)f(w)

is an edge of Q for every edge vw of T , and if f(v)f(w) = f(v′)f(w′) for distinct

3A homomorphism from a graph G to a graph H is a function f : V (G) → V (H) such that if

vw ∈ E(G) then f(v)f(w) ∈ E(H).
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edges vw ∈ E(Ti) and v′w′ ∈ E(Tj), then i 6= j. That is, edges in the same subtree

are mapped to distinct edges of Q. Hence for each subtree Ti of T , no two vertices

in Ti are mapped to the same vertex in Q (otherwise the image of the path in Ti

between the two vertices would form a cycle in Q). Moreover, if Qi is the subgraph

of Q induced by {f(v) : v ∈ V (Ti)} then Qi ∼= Ti. Draw each vertex v ∈ V (T ) at a

distinct point φ(v) ∈ disc(f(v), ε) so that {φ(v) : v ∈ V (T )} is in general position. Thus

Pi := {φ(v) : v ∈ V (Ti)} contains exactly one point from each disc disc(x, ε) where

x ∈ V (Qi). Hence Ti ∼= Qi ∼= RNG(Pi) as desired. �

Theorem 1.2 is implied by the following stronger result.

Theorem 3.2. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-4 sub-

trees. Then there is a non-crossing drawing of T such that each Ti is drawn as the

relative neighbourhood graph of its vertex set.

Theorem 3.2 is proved by induction with the following hypothesis. This proof method

generalises that of Bose et al. [4].

Lemma 3.3. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-4 subtrees.

Let r be the root of T . Let p and q be distinct points in the plane. Let δ be a real number

with 0 < δ < |pq|. Then there is a non-crossing drawing of T contained in lune(p, q, δ)

such that:

• r, which is drawn at q, is in lens(x, p) for every vertex x of T − r, and
• for all i ∈ {1, . . . , k}, the subtree Ti is drawn as the relative neighbourhood graph

of its vertex set.

Proof. We proceed by induction on |V (T )|. The result is trivial if |V (T )| = 1. Now

assume that |V (T )| ≥ 2. Let δ′ be a real number with 0 < δ′ < δ. The circular arc

A := circle(q, δ′) − disc(p, |pq|) has an angle (measured from q) greater than π. Thus,

as illustrated in Figure 3, there are four points s1, s2, s3, s4 in the interior of A, such

that the angle (measured from q) between distinct points si and sj is greater than π
3 ,

implying |siq| = |sjq| < |sisj | and q ∈ lens(si, sj), and lens(q, si) ∩ {s1, s2, s3, s4} = ∅.
For small enough discs around the si, these properties are extended to every point in

the disc. More precisely, there is a real number ε ∈ (0, δ′) such that:

(a) disc(si, ε) ⊂ lune(p, q, δ) for all i ∈ {1, 2, 3, 4};
(b) q ∈ lens(x, y) for all points x ∈ disc(si, ε) and y ∈ disc(sj , ε) for all distinct

i, j ∈ {1, 2, 3, 4};
(c) q 6∈ lens(x, y) for all points x, y ∈ disc(si, ε) for all i ∈ {1, 2, 3, 4}; and

(d) lens(x, y) ∩ disc(sj , ε) = ∅ for all points x, y ∈ disc(si, ε) and for all distinct

i, j ∈ {1, 2, 3, 4}.
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q
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Figure 3. The points s1, s2, s3, s4, showing that q ∈ lens(s1, s2) and

lens(q, s3) ∩ {s1, s2, s3, s4} = ∅.

For j ∈ {1, 2, 3, 4}, since disc(sj , ε) has diameter 2ε, there are points tj,1, . . . , tj,k on

the arc A ∩ disc(sj , ε) such that discs of radius ε
k centred at tj,1, . . . , tj,k are pairwise

disjoint, as illustrated in Figure 4.

For i ∈ {1, . . . , k}, let di be the outdegree of r in Ti. So di ∈ {0, 1, 2, 3, 4}. Let

vi,1, . . . , vi,di be the neighbours of r in Ti. For j ∈ {1, . . . , di}, let Ti,j be the component

of T − r that contains vi,j . So Ti,j is rooted at vi,j , and {T1 ∩ Ti,j , . . . , Tk ∩ Ti,j} is

a partition of Ti,j into outdegree-4 subtreess. By induction, there is a non-crossing

drawing of each Ti,j contained in lune(q, tj,i,
ε
k ) such that:

(e) vi,j , which is drawn at tj,i, is in lens(x, q) for every vertex x of Ti,j − vi,j , and

(f) for all ` ∈ {1, . . . , k}, the subtree T`∩Ti,j is drawn as the relative neighbourhood

graph of its vertex set.

Draw r at q, and draw a straight-line edge from r to each neighbour vi,j of r. Each

subtree Ti,j is drawn outside of disc(q, δ′), while the edges incident to r are contained
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Figure 4. Construction in the proof of Lemma 3.3.

within disc(q, δ′), and therefore do not cross any other edge. Hence the drawing of T

is non-crossing. By (a), Ti,j is drawn within lune(q, tj,i,
ε
k ) ⊂ disc(tj , ε) ⊂ lune(p, q, δ).

The edges incident to r are drawn within lune(p, q, δ). Hence all of T is drawn within

lune(p, q, δ).

Now consider a vertex x of T − r. Then x is in Ti,j for some i ∈ {1, 2 . . . , k} and

j ∈ {1, . . . , di}. Thus x is drawn in disc(q, δ) − disc(p, |pq|), implying |xq| < δ < |xp|
and |pq| < |px|. Hence q ∈ lens(x, p), implying r ∈ lens(x, p). This proves the first claim

of the induction hypothesis.

It remains to prove that each subtree Ti is drawn as the relative neighbourhood

graph of its vertex set. Consider distinct vertices v and w in Ti. We must show that

lens(v, w) ∩ V (Ti) = ∅ if and only if vw ∈ E(Ti). Without loss of generality, w 6= r.

Case 1. v = r and vw ∈ E(Ti): So w = vi,j for some j ∈ {1, 2, 3, 4}. Then v is

drawn at q, and w is drawn at tj,i . Now lens(q, tj,i) ⊂ disc(q, δ′), which contains no

vertex except r (at q). Thus lens(v, w) ∩ V (T ) = ∅, as desired.
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Case 2. v = r and vw 6∈ E(Ti): Then w is in Ti,j for some j ∈ {1, 2, 3, 4}. Since v is

drawn at q, by induction, the vertex tj,i, which is in Ti, is in lens(v, w), as desired.

Now assume that v 6= r and w 6= r.

Case 3. v and w are in the same component T`,j of T − r: Then v and w are

drawn within disc(t`, ε). Each vertex in Ti is r, is in T`,j , or is in Ti,j′ for some j′ 6= j.

Since r is drawn at q, (c) implies that r 6∈ lens(v, w). Since Ti,j′ is drawn within

disc(tj′,i, ε), by (d), lens(v, w)∩ V (Ti,j′) = ∅. Hence lens(v, w)∩ V (Ti) = ∅ if and only if

lens(v, w) ∩ V (T`,j) ∩ Ti = ∅. By induction, lens(v, w) ∩ V (Ti) = ∅ if and only if v and

w are adjacent in Ti, as desired.

Case 4. v and w are in distinct components of T − r: Thus r is in Ti, v is in Ti,j and

w ∈ Ti,j′ for some j 6= j′, and v and w are not adjacent. By construction, v is drawn in

disc(sj , ε) and w is drawn in disc(sj′ , ε). Thus (b) implies that q ∈ lens(v, w). Thus r,

which is drawn at q, is in lens(v, w), as desired. �

4. Drawings with Large Angular Resolution

Theorem 1.3 is implied by the following stronger result:

Theorem 4.1. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-3

subtrees. Then there is a non-crossing drawing of T with angular resolution at least
π

max{∆+(T )−1,4} such that each subtree Ti is drawn as the relative neighbourhood graph

of its vertex set.

Theorem 4.1 is proved by induction with the following hypothesis.

Lemma 4.2. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-3 subtrees.

Let r be the root of T . Let p and q be distinct points in the plane. Let δ be a real number

with 0 < δ < |pq|. Then there is a non-crossing drawing of T contained in lune(p, q, δ)

such that:

• r, which is drawn at q, is in lens(x, p) for every vertex x of T − r, and
• for all i ∈ {1, . . . , k}, the subtree Ti is drawn as the relative neighbourhood graph

of its vertex set, and

• the drawing of T has angular resolution greater than π
max{4,∆+(T )−1} .

Proof. We proceed by induction on |V (T )|. The result is trivial if |V (T )| = 1. Now

assume that |V (T )| ≥ 2. Let δ′ be a real number with 0 < δ′ < δ.

Let d := outdeg(r). For i ∈ {1, . . . , k}, let di be the outdegree of r in Ti. So

di ∈ {0, 1, 2, 3} and d =
∑k

i=1 di. Let vi,1, . . . , vi,di be the neighbours of r in Ti. Let

X := {i : di = 3}, Y := {i : di = 2}, Z := {i : di = 1} .

Thus d = 3|X|+ 2|Y |+ |Z|. Partition Z = Z ′ ∪ Z ′′ such that |Z ′′| ≤ |Z ′| ≤ |Z ′′|+ 1.
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The circular arc A := circle(q, δ′)−disc(p, |pq|) has an angle (measured from q) greater

than π. Thus there are points s1, . . . , sd in this order on A such that the angle (measured

from q) between distinct points sa and sb is greater than π|b−a|
d−1 .

Let � be the total ordering of the neighbours of r such that {vi,1 : i ∈ X} � {vi,1 : i ∈
Y } � {vi,1 : i ∈ Z ′} � {vi,2 : i ∈ X} � {vi,2 : i ∈ Y } � {vi,1 : i ∈ Z ′′} � {vi,3 : i ∈ X},
where within each set, the vertices are ordered by their i-value. Draw the neighbours

of r in the order of � at s1, . . . , sd. That is, the first vertex in � is drawn at s1, the

second vertex in � is drawn at s2, and so on. Let ti,j be the point where vi,j is drawn.

Consider distinct vertices vi,j and vi,` in some subtree Ti such that ` > j. Say

ti,j = sa and ti,` = sb. Observe that b− a ≥ |X|+ |Y |+ |Z ′′| ≥ |X|+ |Y |+ 1
2(|Z| − 1) ≥

1
3(3|X| + 2|Y | + |Z| − 1) = d−1

3 . Hence the angle (measured from q) between vi,j and

vi,` is greater than π(d−1)/3
d−1 = π

3 . This implies that |ti,jq| = |ti,`q| < |ti,jti,`|. Thus

q ∈ lens(ti,j , ti,`) and ti,` 6∈ lens(q, ti,j) and ti,j 6∈ lens(q, ti,`).

For small enough discs around s1, . . . , sd, these properties are extended to every point

in the disc. More precisely, there is a real number ε ∈ (0, δ′) such that:

(a) disc(sa, ε) ⊂ lune(p, q, δ) for all a ∈ {1, . . . , d};
(b) q ∈ lens(x, y) for all points x ∈ disc(ti,j , ε) and y ∈ disc(ti,`, ε) for all distinct

vertices vi,j and vi,` in the same subtree Ti;

(c) q 6∈ lens(x, y) for all points x, y ∈ disc(sa, ε) for all a ∈ {1, . . . , d}; and

(d) lens(x, y) ∩ disc(sb, ε) = ∅ for all distinct a, b ∈ {1, . . . , d} and for all points

x, y ∈ disc(sa, ε).

For i ∈ {1, . . . , k} and j ∈ {1, . . . , di}, let Ti,j be the component of T−r that contains

vi,j . Each subtree Ti,j is rooted at vi,j , and {T1 ∩ Ti,j , . . . , Tk ∩ Ti,j} is a partition of

Ti,j into outdegree-3 subtreess. By induction, there is a non-crossing drawing of Ti,j

contained in lune(q, ti,j , ε) such that:

(e) vi,j , which is drawn at ti,j , is in lens(x, q) for every vertex x of Ti,j − vi,j ; and

(f) for all ` ∈ {1, . . . , k}, the subtree T`∩Ti,j is drawn as the relative neighbourhood

graph of its vertex set; and

(g) the drawing of Ti,j has angular resolution greater than π
max{∆+(Ti,j)−1,4} , which

is at least π
max{∆+(T )−1,4} .

Draw r at q, and draw a straight-line edge from r to each neighbour vi,j of r. The

angle between two edges incident to r is at least π
d−1 ≥ π

∆+(T )−1
. The angle between an

edge rvi,j and each edge vi,jx in Ti,j is at least π
4 . With (g), this proves the third claim

of the lemma.

Each subtree Ti,j is drawn outside of disc(q, δ′), while the edges incident to r are

contained within disc(q, δ′), and therefore do not cross any other edge. Hence the

drawing of T is non-crossing. By (a), Ti,j is drawn within lune(q, ti,j , ε) ⊂ disc(ti,j , ε) ⊂
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q

T1,1

T2,1

T3,1
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T5,1

T6,1

T1,2 T2,2
T3,2

T4,2

T7,1

T8,1

T1,3

T2,3

Figure 5. Construction in the proof of Lemma 4.2. Here X = {1, 2},
Y = {3, 4}, Z ′ = {5, 6} and Z ′′ = {7, 8}. The tree T1 is highlighted.

lune(p, q, δ). The edges incident to r are drawn within lune(p, q, δ). Hence all of T is

drawn within lune(p, q, δ).

Now consider a vertex x of T − r. Then x is in Ti,j for some i ∈ {1, . . . , k} and

j ∈ {1, . . . , di}. Thus x is drawn in disc(q, δ) − disc(p, |pq|), implying |xq| < δ < |xp|
and |pq| < |px|. Hence q ∈ lens(x, p), implying r ∈ lens(x, p). This proves the first claim

of the lemma.

It remains to prove that each subtree Ti is drawn as the relative neighbourhood

graph of its vertex set. Consider distinct vertices v and w in Ti. We must show that

lens(v, w) ∩ V (Ti) = ∅ if and only if vw ∈ E(Ti). Without loss of generality, w 6= r.

Case 1. v = r and vw ∈ E(Ti): So w = vi,j for some j ∈ {1, 2, 3}. Then v is drawn

at q, and w is drawn at ti,j . Now lens(q, ti,j) ⊂ disc(q, δ′), which contains no vertex

except r (at q). Thus lens(v, w) ∩ V (T ) = ∅, as desired.

Case 2. v = r and vw 6∈ E(Ti): Then w is in Ti,j for some j ∈ {1, 2, 3}, but w 6= vi,j .

Since v is drawn at q, by (e), the vertex vi,j , which is in Ti, is in lens(v, w), as desired.
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Now assume that v 6= r and w 6= r.

Case 3. v and w are in the same component T`,j of T − r, for some ` ∈ {1, . . . , k}:
Then v and w are drawn within disc(t`,j , ε). Each vertex in Ti is r, is in T`,j , or is in Ti,j′

for some (i, j′) 6= (`, j). Since r is drawn at q, (c) implies that r 6∈ lens(v, w). Since Ti,j′

is drawn within disc(ti,j′ , ε), by (d), lens(v, w)∩V (Ti,j′) = ∅. Hence lens(v, w)∩V (Ti) = ∅
if and only if lens(v, w) ∩ V (T`,j) ∩ Ti = ∅. By (f), lens(v, w) ∩ V (Ti) = ∅ if and only if

v and w are adjacent in Ti, as desired.

Case 4. v and w are in distinct components of T − r: Thus r is in Ti, v is in Ti,j and

w ∈ Ti,j′ for some j 6= j′, and v and w are not adjacent. By construction, v is drawn in

disc(ti,j , ε) and w is drawn in disc(ti,j′ , ε). Thus (b) implies that q ∈ lens(v, w). Thus r,

which is drawn at q, is in lens(v, w), as desired.

Therefore the subtree Ti is drawn as the relative neighbourhood graph of its vertex

set. This completes the proof. �

5. Drawings Based on a Covering

Theorem 5.2 below establishes a result for relative neighbourhood graphs that implies

Theorem 1.4 for minimum spanning trees. Before proving Theorem 5.2 we give a simpler

proof of a weaker result, in which the obtained drawing might have crossings.

Proposition 5.1. Let {T1, T2} be a covering of a tree T by degree-5 subtrees. Then

there is a drawing of T in which each Ti is drawn as the relative neighbourhood graph

of its vertex set.

Proof. We proceed by induction on |V (T )|. If ∆(T ) ≤ 5 then T ∼= RNG(P ) for some

point set P by Lemma 2.1. This drawing is crossing-free since it also a minimum

spanning tree. Furthermore, each Ti is drawn as the relative neighbourhood graph of

the subset of P representing Ti. Now assume that ∆(T ) ≥ 6. Thus degT (v) ≥ 6 for some

vertex v. Hence there are edges vx ∈ E(T1)−E(T2) and vy ∈ E(T2)−E(T1). Let T ′ be

the tree obtained from T by identifying x and y into a new vertex w. (This operation

is called an elementary homomorphism or folding ; see [5, 10, 21, 22] and Figure 6.) Let

T ′i be the subtrees of T ′ determined by Ti for i ∈ {1, 2}. Note that the edge vw is in

T ′1 ∩ T ′2. Observe that {T ′1, T ′2} is a covering of T ′ by degree-5 subtrees. By induction,

there is a drawing of T ′ such that each T ′i is the relative neighbourhood graph of its

vertex set. Moreover, for some ε > 0, if w is moved to any point in disc(w, ε) then in

the resulting drawing of T ′, each T ′i is drawn as the relative neighbourhood graph of

its vertex set. Consider a drawing of T in which every vertex in V (T )− {x, y} inherits

is position in the drawing of T ′, and x and y are assigned distinct points in disc(w, ε).

Since x ∈ V (T1) − V (T2) and y ∈ V (T2) − V (T1), each Ti is drawn as the relative

neighbourhood graph of its vertex set in the drawing of T . �
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v yx

⊆ T1 − T2 ⊆ T2 − T1

v

w

⊆ T1 − T2 ⊆ T2 − T1

∈ T1 ∩ T2

Figure 6. Folding the tree T in the proof of Proposition 5.1.

We now strengthen Proposition 5.1 by showing that the drawing of T can be made

crossing-free. Theorem 1.4 is implied by the following stronger result:

Theorem 5.2. Let {T1, T2} be a covering of a tree T by degree-5 subtrees. Then there

is a non-crossing drawing of T such that each Ti is drawn as the relative neighbourhood

graph of its vertex set.

The proof of Theorem 5.2 depends on the following definition. A combinatorial

embedding of a graph is a cyclic ordering of the edges incident to each vertex. We define

a combinatorial embedding of a graph G, with respect to a covering {G1, G2} of G, to

be good if for each vertex v of G, in the clockwise ordering of the edges incident to v, the

edges in E(G1)−E(G2) are grouped together, followed by the edges in E(G1)∩E(G2),

followed by the edges in E(G2) − E(G1). Since every tree, covered by two subtrees,

obviously has a good embedding, Theorem 5.2 now follows from the next lemma:

Lemma 5.3. Let {T1, T2} be a covering of a tree T by degree-5 subtrees. For every good

combinatorial embeddding of T , with respect to {T1, T2}, there is a non-crossing drawing

of T such that each Ti is drawn as the relative neighbourhood graph of its vertex set,

and the given combinatorial embedding of T is preserved in the drawing.

Proof. We proceed by induction on |V (T )|. If ∆(T ) ≤ 5 then T ∼= RNG(P ) for some

point set P by Lemma 2.1. This drawing is crossing-free since it also a minimum

spanning tree. Moreover, by examining the proof of Lemma 2.1, it is easily seen that

any given combinatorial embedding of T can be preserved in the drawing. Each Ti is

drawn as the relative neighbourhood graph of the subset of P representing Ti. Now

assume that degT (v) ≥ 6 for some vertex v. Hence there are edges vx ∈ E(T1)−E(T2)

and vy ∈ E(T2) − E(T1) such that vx and vy are consecutive in the cyclic ordering of

the edges incident to v.

13



Let T ′ be the tree obtained from T by identifying x and y into a new vertex w. Let

T ′i be the subtrees of T ′ determined by Ti for i ∈ {1, 2}. Note that the edge vw is in

T ′1 ∩ T ′2. The cyclic ordering of the edges in T ′ incident to v is obtained from the cyclic

ordering of the edges in T incident to v by replacing vx and vy (which are consecutive)

by vw. And NT ′(w) is ordered (NT1−E(T2)(x), wv,NT2−E(T1)(y)). Other vertices keep

their ordering in T .

Observe that {T ′1, T ′2} is a covering of T ′ by degree-5 subtrees. By induction, there is

a non-crossing drawing of T ′ such that each T ′i is the relative neighbourhood graph of

its vertex set, and the given combinatorial embedding of T is preserved in the drawing.

For some ε > 0, if w is moved to any point in disc(w, ε) then in the resulting drawing

of T ′, each T ′i is drawn as the relative neighbourhood graph of its vertex set, and

the given combinatorial embedding of T is preserved. Consider a drawing of T in

which every vertex in V (T ) − {x, y} inherits is position in the drawing of T ′, and x

and y are assigned distinct points in disc(w, ε). Since x ∈ V (T1) − V (T2) and y ∈
V (T2) − V (T1), each Ti is drawn as the relative neighbourhood graph of its vertex set

in the drawing of T . It remains to assign points for x and y in disc(w, ε) so that the

drawing of T is crossing-free. In the drawing of T ′, the edges incident to w are ordered

(NT1−E(T2)(x), wv,NT2−E(T1)(y)). Let R be a ray centred at w that separates the edges

in T1 − E(T2) incident to w and those in T2 − E(T1) incident to w, such that v is not

on the extension of R. At most one of x and y, say x, has neighbours on both sides of

the extension of R. As illustrated in Figure 7, position x at w, and position y on R and

inside disc(w, ε). It follows that there are no crossings and the correct ordering of edges

is preserved at v, x and y. �

⊆ T1

⊆ T1

⊆ T1

⊆ T1

⊆ T2

⊆ T2

ε

v

w

R

⊆ T1

⊆ T1

⊆ T1

⊆ T1

⊆ T2

⊆ T2

v

x

y

R

Figure 7. Producing a drawing of T given a drawing of T ′ in the proof of Lemma 5.3.

We now show that Theorem 1.4 cannot be generalised for coverings by three or more

subtrees. (Thus neither Proposition 5.1 nor Theorem 5.2 can be similarly generalised.)
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Let T be the 6-star with root r and leaves v1, . . . , v6. Let {T1, T2, T3} be the following

covering of T . Let T1 be the subtree of T induced by {r, v1, v2, v3, v4}. Let T2 be

the subtree of T induced by {r, v1, v2, v5, v6}. Let T3 be the subtree of T induced by

{r, v3, v4, v5, v6}. Thus each Ti is a 4-star. Suppose on the contrary that T has a drawing

such that each Ti is drawn as a minimum spanning tree of its vertex set. The angle

∠virvj between some pair of consecutive edges rvi and rvj (in the cyclic order around

r) is less than π
3 since no three vertices are collinear. Since vi and vj are each in two

subtrees, and r is in every subtree, the vertices r, vi, vj are in a common subtree T`.

Every minimum spanning tree has angular resolution at least π
3 . Thus T` is not drawn

as a minimum spanning tree. This contradiction proves there is no drawing of T such

that each Ti is drawn as a minimum spanning tree of its vertex set. Note that this

argument generalises to show that if P1, . . . , P15 are the
(

6
2

)
paths through the root of

the 6-star T , then in every drawing of T , some Pi is not a minimum spanning tree of

its vertex set.

6. Further Research

This paper has not analysed the area of the drawings produced by our algorithms. It

would be interesting to consider whether there are drawings whose area is polynomial

in the number of vertices of the given tree, for example when the tree is partitioned into

outdegree-3 subtrees. While the problem of drawing a tree as a minimum spanning tree

in polynomial area is open in the general case [31], Kaufmann [26] proved that every

degree-4 tree has a drawing as a minimum spanning tree in polynomial area; also see

[32].

A second direction for further research is to extend the approach used in this paper

to other types of proximity drawings of trees; see [30]. For example, every degree-4 tree

admits a w-β-drawing for all values of β in (cos(2π
5 )−1,∞); see [12, Theorem 7]. Given

a partition of a rooted tree T into outdegree-3 subtrees and a value of β in the above

interval, is there a drawing of T in which each subtree is drawn as a w-β-drawing?

The results of this paper motivate studying coverings and partitions of trees by sub-

trees of bounded degree. We consider these purely combinatorial problems in our com-

panion paper [37]. For example, given a tree T and integer d, we present there a formula

for the minimum number of degree-d subtrees that partition T , and describe a poly-

nomial time algorithm that finds such a partition. Similarly, we present a polynomial

time algorithm that finds a covering of T by the minimum number of degree-d subtrees.
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