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Abstract

Polygons are a paramount data structure in computational geometry.
While the complexity of many algorithms on simple polygons or poly-
gons with holes depends on the size of the input polygon, the intrinsic
complexity of the problems these algorithms solve is often related to the
reflex vertices of the polygon. In this paper, we give an easy-to-describe
linear-time method to replace an input polygon P by a polygon P ′ such
that (1) P ′ contains P, (2) P ′ has its reflex vertices at the same positions
as P, and (3) the number of vertices of P ′ is linear in the number of
reflex vertices. Since the solutions of numerous problems on polygons (in-
cluding shortest paths, geodesic hulls, separating point sets, and Voronoi
diagrams) are equivalent for both P and P ′, our algorithm can be used
as a preprocessing step for several algorithms and makes their running
time dependent on the number of reflex vertices rather than on the size
of P. We describe several of these applications (including linear-time
post-processing steps that might be necessary).

1 Introduction

1.1 Definitions and Results

A simple polygon is a closed connected domain in the plane that is bounded
by a sequence of straight line segments (edges) such that any two edges may
intersect only in their endpoints (vertices), and such that in every vertex exactly
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two edges intersect. Let P be a simple polygon and let H1, . . . ,Hk be a set of
pairwise-disjoint simple polygons such that Hi is contained in the interior of P
for 1 ≤ i ≤ k. Then the closure Q of P \

⋃
1≤i≤kHi is called a polygon with

holes. The polygons Hi are called the holes of Q, and the vertices and edges of
Q are the vertices and edges of P and all Hi, respectively. We regard P and Q
as closed sets, i.e., they include their boundary. All polygons we consider are
either simple polygons or polygons with holes. A vertex of a polygon is reflex
if its inner angle is larger than 180◦. Given a polygon P with n vertices, the
geodesic path πP(p, q) between two points p and q of P is defined as the shortest
path that connects p and q among all the paths that stay within P. The length
of that path is called the geodesic distance. For any pair of points in P, such
a path always exists and, when P is simple, is unique (in contrast to polygons
with holes). Moreover, such a path is a polygonal chain whose vertices (other
than p and q) are reflex vertices of P. When the path πP(p, q) is a straight line
segment, we say that p sees q (and vice versa). We regard both polygons and
geodesics as closed subsets of the plane.

We say that two polygons P and P ′ have the same reflex vertices if any reflex
vertex v ∈ P is at the same point in the plane as a vertex of P ′ and v is also
reflex in P ′ (analogously, any reflex vertex of P ′ must also be a reflex vertex
of P). We say that P ′ subsumes P if P and P ′ have the same reflex vertices
and P ⊆ P ′. See Figure 1 for examples. For subsuming polygons, we can make
the following observation.

Figure 1: Simple polygons (dashed) drawn on top of subsuming polygons (solid).

Observation 1. Let P,P ′ be two simple polygons such that P ′ subsumes P.
Then, for any p, q ∈ P we have πP(p, q) = πP′(p, q).

For algorithms that solely rely on geodesic paths inside P, the output will
remain equivalent if we replace P by P ′ in the input. It is therefore desirable to
construct a subsuming polygon P ′ such that (1) P ′ has few vertices and (2) the
construction can be done in time linear in the size of P. For the creation of a
subsuming polygon of minimal size, one has to connect the reflex vertices by
pairwise non-intersecting paths in the union of the exterior and the boundary of
the original polygon. Guibas, Hershberger, Mitchell, and Snoeyink [15] address
various aspects of the problem of approximating polygonal paths and polygons
by simpler ones. They show that the problem of finding a minimum link simple
polygon (of a given homotopy class) having its boundary inside a given region R
is NP-hard. In this paper, we show the following result.
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Theorem 1. For any polygon P (possibly with holes) of n vertices out of which
r > 0 are reflex, there exists a polygon P ′ with O(r) vertices that subsumes P.
Moreover, P ′ can be computed in O(n) time and will have the same number of
holes as P.

Before giving the proof of Theorem 1 in Section 3, we review some basic
properties of pointed pseudo-triangulations (also known as geodesic triangula-
tions) in Section 2. Section 4 gives an overview of the various applications of
our result. In Section 5 we summarize our approach and give a short account
on the open problem of computing an optimal subsuming polygon.

1.2 Related Work

We follow the common aim of relating the time and space complexity of algo-
rithms on polygons not only to the input size, but also to the number of reflex
vertices. This is often a more significant parameter for the actual difficulty of the
problem instance. Hertel and Mehlhorn [19] give an algorithm for triangulating
a simple polygon of n vertices, r of which are reflex, in O(n log r) time.1 Bose et
al. [8] give a Θ(m+ n log r) algorithm for computing a geodesic ham-sandwich
cut of two given sets of m points in a simple polygon with r reflex vertices.
Keil [21] describes various decomposition algorithms that are dependent on the
number of reflex vertices. The number of reflex vertices in a simple polygon has
also been used as a parameter for combinatorial problems, see, e.g., [7, 20].

A related way of giving a more fine-grained analysis of algorithms on poly-
gons is by expressing its complexity in the number of edges in the visibility
graph (i.e., the number of point pairs that see each other), see for example [6]
and [12, p. 68]. Note that, e.g., for computing the minimum weight triangula-
tion of a simple polygon, the currently known worst case appears when there
are no reflex vertices [6].

The term “polygon simplification” is also used in connection with operations
that are used to compress polygons and to reduce noise in the representation.
A well-known algorithm to smoothen polygonal chains is the Douglas-Peucker
algorithm [11]. Guibas et al. [15] address several variations of the approach to
fatten existing polygonal chains and approximate the chain inside the fattened
region. There also exists work on constructing simple polygons that contain
given ones and fulfill certain properties, as a generalization of the convex hull
of simple polygons [3]; the main objective there is to approximate the shape.

2 Pseudo-Triangulations

In this section, we recall several properties of pseudo-triangles and pointed
pseudo-triangulations that will be used throughout the rest of the paper. We
exclusively consider pointed pseudo-triangulations of simple polygons. For more

1While the O(n) time algorithm of Chazelle [9] is asymptotically better, this algorithm
is considered as being difficult to implement (see, e.g., [26, p. 57]). Therefore, theoretically
suboptimal algorithms for that problem are still relevant.
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details on pseudo-triangulations see the survey by Rote, Santos, and Streinu [28].

A pseudo-triangle is a simple polygon with exactly three convex vertices.
The three convex vertices are the corners of the pseudo-triangle, and the three
polygonal chains between the corners are called the side chains. Note that a
side chain might consist only of one edge.

A pseudo-triangulation of a simple polygon P is a partition of P into pseudo-
triangles, such that the union of the vertices of the pseudo-triangles is exactly
the vertex set of P . A vertex v of a pseudo-triangulation is called pointed if it
is incident to a face in which the angle at v is larger than 180◦. In a pointed
pseudo-triangulation every vertex is pointed. Throughout this work, we are
only concerned with pointed pseudo-triangulations. It can be shown that a
pointed pseudo-triangulation of a simple polygon with c convex vertices has
c− 2 pseudo-triangles and adds c− 3 diagonals to the polygon (see, e.g., [28]).
Our main result heavily relies on that fact. Guibas et al. [14] showed that,
given a vertex v of a triangulated simple polygon P , the set of all shortest
paths between v and the vertices of P (i.e., the shortest path tree of v) can be
constructed in linear time (this algorithm was later simplified by Hershberger
and Snoeyink [18]). The union of all these shortest paths gives a pointed pseudo-
triangulation of P . Hence, given a triangulation of a simple polygon P , a pointed
pseudo-triangulation of P can be constructed in linear time.2

Let ∇ be a pseudo-triangle. The line ` bisecting the angle at any corner of ∇
separates the two adjacent side chains C1 and C2, and will leave ∇ through the
third chain C3. The bisecting line `′ of the angle of a second corner, say, the one
joining C1 and C3, separates C1 and C3. Therefore, ` and `′ intersect inside ∇
and hence separate C1 from C2 and C3; see Figure 2. This allows us to make
the following basic observation.

` `′

C1

C2
C3

Figure 2: The separating wedge of C1.

Observation 2. For any side chain C of a pseudo-triangle ∇, the bisectors of
the angles at the corners of C define a wedge that separates C from the remaining
boundary of ∇.

2The connection between pointed pseudo-triangulations and the shortest path tree was
mentioned by Speckmann and Tóth [29]; the concept of pseudo-triangulations has been de-
veloped after the writing of [14].
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We call this wedge the separating wedge of the side chain. Observation 2 is
the crucial property of pseudo-triangles that we will use in the next section.

3 Proof of the Main Theorem

We call a simple polygonal chain C hull-honest if it is completely contained in the
boundary of its convex hull CH(C). We call a simple chain C = 〈v1, v2, . . . , vk〉
simplifiable, if it is hull-honest and if the ray r(v1, v2) (i.e., the ray from v1
through v2) and the ray r(vk, vk−1) intersect. See Figure 3. Note that if a
chain is simplifiable, then any of its subchains is simplifiable as well. For any
simplifiable chain C of vertices v1, v2, . . . vk we introduce an operation called the
simplification of C as follows: If k ≤ 3 then C remains unchanged. Otherwise,
consider the rays r(v1, v2) and r(vk, vk−1). As k > 3, these two rays intersect
at a point m not on the chain. In that case, we replace C by the chain C ′ =
〈v1,m, vk〉.

m

v1
vk

vk
vk

v1
v1

Figure 3: A chain that is not hull-honest (left), a hull-honest chain (center),
and a simplifiable chain (right).

The basic idea of our construction is to simplify long convex chains along the
boundary of P. The main challenge is to avoid that the edges introduced by the
simplification intersect with the remaining boundary of the resulting polygon.

Lemma 1. All the side chains of any pseudo-triangle are simplifiable. When
simplifying an arbitrary number of pairwise interior-disjoint subchains, the re-
sulting polygon is again a pseudo-triangle, and, in particular, its boundary is
not self-intersecting.

The fact that a side chain of a pseudo-triangle ∇ is simplifiable follows
directly from Observation 2. The two rays witnessing simplifiability meet at
a point inside the separating wedge of the side chain. Thus, when simplifying
a side chain or one of its subchains, the new chain is completely contained in
the intersection of ∇ and the separating wedge of the original chain. Further,
interior-disjoint subchains of a side chain share at most one vertex, and the same
holds for their simplifications; see Figure 4. As the corners and their incident
angles are not altered by any such simplification, the resulting polygon is again
a pseudo-triangle. Using this result we can now prove our main theorem.

Theorem 1. We first consider the case where P is a simple polygon with at least
one reflex vertex. Let CH(P) be its convex hull (which can be computed in linear
time using, e.g., Melkman’s algorithm [22]). The set CH(P) \ P is the union of
(the interiors of) simple polygons whose interiors are pairwise disjoint. We call
these polygons the pockets. Each pocket Pi is defined by exactly one convex
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Figure 4: A pseudo-triangle and a possible simplification (removing the gray
regions). The separating wedges are indicated by dashed lines.

hull edge, which is not part of P and is called a lid edge, and a subchain C of
the boundary of P. The ci convex vertices of a pocket therefore consist of the
reflex vertices of P along C and the two vertices of the lid edge. Thus, a pointed
pseudo-triangulation of Pi has ci − 3 diagonals. We call the lid edges and the
pseudo-triangulation diagonals the support edges. For p pockets, the number of
support edges is

p+

p∑
i=1

(ci − 3) = p+ r + 2p− 3p = r .

Since the only vertices possibly shared by two pockets are the convex hull ver-
tices, we can construct a pointed pseudo-triangulation of each pocket in accu-
mulated O(n) time for all pockets. See Figure 5 for an example of a pseudo-
triangulated pocket.

Figure 5: A pocket and its pointed pseudo-triangulation. Support edges are
drawn dashed.

Consider a pocket Pi and a pointed pseudo-triangulation T (Pi) of Pi. A
side chain of a pseudo-triangle of T (Pi) consists of convex chains of P, possibly
separated by support edges. Note that any vertex of P that is not on CH(P)
is clearly part of a side chain of at least one pseudo-triangle of T (Pi) in some
pocket Pi of P. For each pseudo-triangle in every pocket of P we simplify all
maximal subchains of its side chains that do not contain support edges. Due to
Lemma 1, the resulting polygon is again simple and subsumes P.

6



Observe that CH(P) consists of convex chains of P, possibly separated by lid
edges. Unlike the maximal convex chains inside pseudo-triangles, there might
exist a maximal convex chain (not containing lid edges) C = 〈vi, . . . , vj〉 on
CH(P) that is not simplifiable. The reason for this being, that the turn of the
chain is at least 180◦, i.e., the rays r(vi, vi+1) and r(vj , vj−1) do not intersect.
However, such a chain C appears at most once on P and can be split into two
simplifiable parts with a common vertex v∗.

It remains to count the number of convex vertices of the resulting polygon P ′.
To this end, we charge the convex vertices of P ′ either to reflex vertices or to
one of the r support edges. Let C = 〈vi, . . . , vj〉 be a maximal convex chain
not containing support edges of P ′. Each of the two end points of C is either a
reflex vertex of P (or v∗), or end point of a support edge, or both. If vi is the
end point of a support edge e, then we charge C to e. Otherwise, we charge C
to the reflex point vi (or to the special point v∗). Observe that each end point
of a support edge can be at most once a starting point (vi) of such a maximal
convex chain C of P ′. The same is true for each reflex vertex of P (and v∗).
Thus, P ′ consists of at most 2r + r + 1 maximal convex chains.

Each such maximal convex chain of P ′ consists of at most three vertices that
might all be convex in P ′. Observe though, that the last vertex vj of a chain
C is either a reflex vertex or also the first vertex of another maximal convex
chain C ′ = 〈vj , . . . , vk〉 of P ′. Hence, we need to count only at most two convex
vertices per chain. Therefore, P ′ has at most 6r + 2 convex vertices.

Finally, observe that we can apply the same strategy to a polygon P with
holes Hi by considering each hole as a simple polygon itself. Recall that our
approach simplifies a polygon, preserving geodesics inside the polygon. We
independently pseudo-triangulate the interior of each hole Hi (in time linear in
the number of vertices of Hi) and apply the simplification strategy. For each Hi

we obtain a polygon whose complexity is proportional to the number of convex
vertices of (the polygon) Hi and preserves geodesics outside Hi (i.e., paths
that consider Hi as an obstacle). Thus, the resulting simplification preserves
geodesics inside P. As each convex vertex of Hi is a reflex vertex of P, the
complexity of this simplification will be proportional to the number of vertices
that are reflex in P.

Remark. Note that with this process we can explicitly give the coordinates
of P ′. If the coordinates of the vertices of P are rational, then the coordinates
used for P ′ are rational as well. Moreover, explicitly representing these vertices
needs at most a constant times the number of bits used by input vertices. Al-
ternatively, we can store the simplification in an implicit form: we store the first
and last vertices of each simplified chain, allowing an easy identification between
each connected component of P ′ \ P and the simplified chains. In either case,
at most O(r) space is needed (for constant size vertex representation).

While our result is asymptotically optimal, we do not construct a subsuming
polygon with the minimal number of vertices. Given a polygon Q with h holes,
Guibas et al. [15, Theorem 5] show how to construct a simple polygon P with its
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boundary insideQ such that P contains all holes and has onlyO(h) more vertices
than the (probably non-simple) optimum. We note that, after knowing that the
number of vertices of a minimal subsuming polygon is in O(r), also the method
by Guibas et al., after careful modification, could be used for constructing a
subsuming polygon within the given bounds when applying it to each pocket.
However, our constructive proof of the bound gives a straight-forward algorithm
that can be implemented using standard tools used for visibility problems in
simple polygons.

4 Applications

Let A be an algorithm that receives a polygon P (and potentially other input I).
We say that A is subsuming if the result of executing A with input P and I is
equal to the result obtained when the input is P ′ and I, where P ′ is a polygon
that subsumes P. Note that, if A is subsuming, so will any other algorithm
that solves the same problem (thus we say that the problem is simplifiable).

Theorem 2. Let P be a polygon of size n with r reflex vertices and let I be
additional input of size m. Let A(P, I) be an algorithm that solves a simplifiable
problem and runs in T (n,m) time using S(n,m) space. Then, A(P, I) can be
modified to run in O(n+ T (r,m)) time and O(n+ S(r,m)) space.

In the following we present several applications for Theorem 2 which show
the versatility of our approach. Most of these problems can be stated in terms
of shortest paths, which immediately implies that the problems are simplifiable.
For each task, we briefly state the problem, mention the (to the best of our
knowledge) fastest existing algorithm, and explain how our approach helps to
reduce the running time.

4.1 Shortest Paths

Computing the shortest path that avoids a series of obstacles and connects
two given points belongs to the most fundamental problems in computational
geometry. When looking for the shortest path between two given points inside
a simple polygon P of size n, the currently best known algorithm is due to
Guibas and Hershberger [13]: they provide a method that, after an O(n) time
preprocessing, can report the geodesic distance between any two points in P in
O(log n) time. If the geodesic is to be reported, their method needs O(k+log n)
time instead, where k is the number of vertices of the path. By applying our
polygon simplification strategy, we reduce the query time to O(log r).

Corollary 1. We can preprocess a simple polygon P of n vertices out of which
r > 0 are reflex in O(n) time and space, such that for any two points p, q ∈ P
we can determine their geodesic distance |πP(p, q)| in O(log r) time. Moreover,
the geodesic path can be reported in O(k+ log r) time, where k is the number of
vertices of πP(p, q).
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Many variations of the above problem have been studied in the literature
(see [24] for a survey). Among several results, we highlight the algorithm of
Hershberger and Suri [17] for computing shortest paths in the case where holes
are also present. The running time of their preprocessing algorithm is bounded
by O(n log n), which can again be improved by our approach.

Corollary 2. We can preprocess a polygon P with holes of n vertices out of
which r > 0 are reflex in O(n+ r log r) time and space, such that for any point
p ∈ P we can determine the geodesic distance |πP(p, q)| with respect to a fixed
point q ∈ P in O(log r) time. Moreover, a geodesic path can be reported in
O(k + log r) time, where k is the number of vertices of πP(p, q).

Shortest path computation has also been studied in other metrics, like, for
example, the L1 metric [23]. Although the proposed algorithm claims a running
time of O(n log n), it is easy to see that convex vertices only contribute a linear
fraction to the running time. Thus, the running time of the algorithm in [23]
can be bounded by O(n+ r log r) using a simple counting argument.

4.2 Geodesic Hull

A set S ⊆ P is called geodesically (or relative) convex if and only if for any
p, q ∈ S, it holds that their geodesic πP(p, q) is in S. The geodesic hull of a set
S ⊆ P is defined as the (inclusion-wise) smallest geodesically convex set that
contains S.

Given a set S of m points and a simple polygon P of n vertices, Toussaint [31]
studied the problem of determining whether S is geodesically convex, and — if
not — computing its geodesic hull. The proposed algorithm runs in O((n +
m) log (n+m)) time, which we can reduce with our approach.

Corollary 3. Given a simple polygon P of n vertices out of which r > 0 are
reflex, we can compute the geodesic hull of a given set S of m points in the
interior of P in O(n+ (m+ r) log(m+ r)) time using O(n+m) space.

4.3 Separating Point Sets

Given two sets R and B of m points in R2 and a geometric object ζ (usually
a line) that partitions the plane into two components, we say that ζ separates
R and B if each component of the plane only contains elements of one of the
two sets. The extension of separability to polygons with holes was studied by
Demaine et al. [10]. They showed that finding the minimum number of chords
that separate the two sets inside a polygon with holes is NP-hard.

However, if P is a simple polygon, the problem becomes easier: in [10] the
authors give necessary and sufficient conditions for the existence of a separating
geodesic in simple polygons, which results in an algorithm that runs in O((n+
m) log (n+m)) time to determine the separability of R and B. The combination
of their result with our simplification technique reduces the dependency in n.
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Corollary 4. Given a simple polygon P of n vertices out of which r > 0 are
reflex, and two sets R and B of m points each, we can determine whether or
not R and B are separable by a geodesic (and find a separating geodesic, if any
exists) in O(n+ (m+ r) log(m+ r)) time using O(n+m) space.

4.4 Triple Orientation

Many algorithms for point sets in the plane only use the orientations of point
triples, i.e., a ternary predicate p(a, b, c). In analogy to unconstrained point
sets, the orientation of a point triple inside a simple polygon is defined via the
order in which the points appear on the geodesic hull of the triple [1].

Corollary 5. We can preprocess a simple polygon P of n vertices out of which
r > 0 are reflex in O(n) time and space so that, for any three points a, b, c ∈ P,
we can determine their orientation in O(log r) time.

Proof. Suppose we want to obtain the orientation of the point triple abc. We
use the method of [13] for reporting geodesics inside a triangulated polygon.
We have to consider three different cases. If (1) all three points are in the same
triangle, the orientation is given trivially. Suppose (2) that b and c are in the
same triangle, but a is not. Then we report the first segment of the geodesics
πP(b, a) and πP(c, a), from which the orientation follows. If (3) all three points
are in different triangles, then the orientation of the triple is obtained using the
dual graph of the triangulation (which is a tree). The triple orientation can
be derived in the following way by a constant number of ancestor queries in
the dual tree, which are doable in constant time, after preprocessing the tree
(once) in linear time (see [13, Sect. 3]). Let ∆a,∆b, and ∆c be the triangles
that contain a, b, and c, respectively. If (3.1) according to these queries w.l.o.g.
∆b is on a path between ∆a and ∆c, then we report the first segment of the
geodesics πP(b, a) and πP(b, c), which give the orientation at b. Otherwise (3.2),
the order in which ∆a, ∆b, and ∆c are traversed by a depth-first traversal of the
tree (which is done during preprocessing), directly gives their orientation.

In [1], it was shown that each point set in a simple polygon corresponds to
an abstract order type, a generalization of point set order types in the plane
(roughly speaking, an order type is an equivalence class of point sets w.r.t. the
predicate p). Algorithms that operate on abstract order types can be applied
in this setting, using O(log r) time per orientation test. For example, using the
results of [2] one can compute a halving geodesic through a given point of a
set S of m points, and also the geodesic hull edges stabbed by (the extension
of) a geodesic through two given points in O(n+m log r) time.

4.5 Voronoi Diagram

Voronoi diagrams are another fundamental data structure in computational ge-
ometry, hence, it is no surprise that the geodesic variant was studied in the
late 80s [4]. Since then the algorithms have been improved, and the currently
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best algorithm is due to Papadopoulou and Lee [27]. The furthest-site Voronoi
diagram has also been studied in geodesic environments [5]. The fastest algo-
rithms for computing either diagram run in O((n + m) log (n+m)) time, and
use O(n + m) space [5, 27]. It is easy to see that, for any point q ∈ P, its
nearest or furthest site (w.r.t. geodesic distance) will be the same in P and in
any polygon that subsumes P. Thus, in principle our approach can be used.
Since the boundary is part of the Voronoi diagram, some post-processing will
be necessary for this problem.

Corollary 6. Given a simple polygon P of n vertices out of which r > 0 are
reflex, and a set S of m sites, we can compute the nearest- and furthest-site
geodesic Voronoi diagram of S with respect to P in O(n + (m + r) log(m + r))
time using O(n+m) space.

Proof. The nearest- and furthest-site geodesic Voronoi diagram both are a
concatenation of O(n + m) straight and hyperbolic arcs, proven by Aronov [4]
and Aronov et al. [5], respectively.

By the “Ordering Lemma” [5] for furthest-site geodesic Voronoi diagrams,
the ordering of the sites with nonempty Voronoi cells around the geodesic hull
of S is the same as the ordering of Voronoi cells around the boundary of P.
As the geodesic hull of S with respect to P stays unchanged for P ′, also this
ordering of Voronoi cells is the same on the boundary of P ′. Thus, the union
of the arcs of the furthest-site geodesic Voronoi diagram in P ′ is a superset of
the union of the arcs of P, and the connected components of the furthest-site
geodesic Voronoi diagram in P ′ \ P are paths.

Observe that there is no site in P ′ \ P. Therefore, in a nearest-site geodesic
Voronoi diagram there cannot be a complete Voronoi cell in P ′\P, and the edge
graph of the nearest-site geodesic Voronoi diagram inside P ′ \ P is cycle-free.
Further, the union of the arcs of the nearest-site geodesic Voronoi diagram in P ′
is a superset of the union of the arcs of P.

For both versions of a geodesic Voronoi diagram, it remains to obtain the ex-
act points where the geodesic Voronoi diagram and the boundary of P intersect.
The basic idea is to traverse the boundary of P and to obtain the intersections
with the arcs. This is straight-forward if P and P ′ are intersected by the same
arc. However, the part of the geodesic Voronoi diagram in a connected compo-
nent of P ′ \ P might be a forest.

Suppose that during our traversal of P we reach a vertex vi where a sim-
plification C ′ = 〈vi,m, vj〉 of a convex chain C = 〈vi, . . . , vj〉 starts. We obtain
the arc a of the current Voronoi cell that intersects C ′ next (if no such arc ex-
ists, there is no intersection with the geodesic Voronoi diagram and C, and we
continue at vj). For nearest-site geodesic Voronoi diagrams Aronov [4] shows
that the bisecting geodesic of any two points intersects the boundary of the sur-
rounding polygon (i.e., both P and P ′) exactly twice. For furthest-site geodesic
Voronoi diagrams a similar result is given in [5] and also follows from the above
mentioned “Ordering Lemma”. Hence, every arc of the geodesic Voronoi dia-
gram is either entirely on one side of an edge e of the polygon, or is intersected
exactly once by the supporting line of e. Thus, the arc a is the root of a tree
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in the connected component of P ′ \ P bounded by C and C ′. We apply the
basic linear-time approach to find the intersection(s) of C with the tree rooted
at a: Let x be the arc a and let e be the edge vivi+1. If x is to the right of (the
supporting line of) e (using a counterclockwise representation of the polygons),
then we store x on a stack and continue with the next son of x as the new arc
x. If x is not intersected by e, but by the supporting line of e, then we continue
with e = vi+1vi+2. If the edge e intersects x, we prune the arc x at this inter-
section. We use the stack to backtrack to the next unprocessed arc in the tree
and continue with this arc as x. (Note that using a stack and backtracking is
not needed for furthest-site geodesic Voronoi diagrams, as in this case there are
no Voronoi vertices in P ′ \ P.) If the stack becomes empty during backtrack-
ing, we have processed the whole tree for arc a and continue with the next arc
intersecting C ′. In every step, we either traverse an edge of P or discard one of
the O(n+m) arcs of the initial geodesic Voronoi diagram. Hence, we prune the
geodesic Voronoi diagram of P ′ to the one of P in O(n+m) time.

4.6 Geodesic Diameter, Median, and Maximum Distance

Given a set S of n sites in a simple polygon P, the geodesic median is the site
of S that minimizes the maximum geodesic distance to points of S. The geodesic
diameter of S is the maximal distance between any two sites of S. If we are
given two sets of sites S1 and S2 instead, their maximum geodesic distance is
defined as the largest distance between points of different sets. Toussaint [31]
introduced these concepts and gave algorithms on how to compute them. The
running times of the proposed algorithms range between O((n+m) log(n+m))
and O(n2 + m2). As pointed out by Toussaint, these problems can also be
solved by computing the furthest-site geodesic Voronoi diagram and making
O(m) queries. If we simplify the polygon before making the queries, we obtain
the following result.

Corollary 7. Given a simple polygon P of n vertices out of which r > 0 are
reflex, and two sets S1, S2 of m sites, we can compute the geodesic median, the
geodesic diameter of Si (for i ≤ 2), and the maximum geodesic distance between
S1 and S2 in O(n+ (m+ r) log(m+ r)) time using O(n+m) space.

5 Conclusion

As already mentioned, while asymptotically tight, our method does not con-
struct optimal subsuming polygons, i.e., subsuming polygons with the minimum
number of vertices. In particular, every edge of the subsuming polygon P ′ com-
pletely contains an edge of the initial polygon P. One can easily construct ex-
amples where this is not the case for optimal subsuming polygons, see Figure 6.
However, one can show that there always is an optimal subsuming polygon P ′
such that the supporting line of every edge of P ′ contains a vertex of P. Note
that in the example of Figure 6, the chain added to the subsuming polygon is
a minimum link path between the two reflex vertices inside the hole. We have
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Figure 6: A hole in a polygon where an edge of any optimal subsuming polygon
does not completely contain an edge of the initial polygon.

the additional requirement that the path is convex, but, since the paths are re-
stricted by a convex obstacle, any minimum link path between two consecutive
reflex vertices will be convex.

An optimal subsuming polygon consists of several disjoint paths with a min-
imum overall number of vertices. In general, the minimum link path problem is
3SUM-hard [25] even for a single path. However, the reduction used in [25] is
not applicable to our restricted setting where the paths are in a domain without
holes. Inside simple polygons, the minimum link path problem is solvable in
linear time [30] for a single path.

Guibas et al. [15] show that finding a minimum link simple polygon having
its boundary inside a given region R is NP-hard, but they point out that their
reduction requires holes in R on both sides of the polygon boundary.

The pairwise-disjoint link paths problem inside a simple polygon is discussed
by Gupta and Wenger [16]. They give a constant-factor approximation algo-
rithm, and ask whether there exists a polynomial-time algorithm for computing
the optimum. We state the same question for our restricted setting.

Open problem 1. Given a simple polygon P, what is the complexity of con-
structing a subsuming polygon with the least number of (convex) vertices?
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