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Abstract

We introduce and study the problem MUTUAL PLANAR DUALITY, which asks for two planar
graphs G1 and G2 whether G1 can be embedded such that its dual is isomorphic to G2. Our algo-
rithmic main result is an NP-completeness proof for the general case and a linear-time algorithm for
biconnected graphs.

To shed light onto the combinatorial structure of the duals of a planar graph, we consider the common
dual relation ∼, where G1 ∼ G2 if and only if they have a common dual. While ∼ is generally not
transitive, we show that the restriction to biconnected graphs is an equivalence relation. In this case,
being dual to each other carries over to the equivalence classes, i.e., two graphs are dual to each other if
and only if any two elements of their respective equivalence classes are dual to each other. To achieve the
efficient testing algorithm for MUTUAL PLANAR DUALITY on biconnected graphs, we devise a succinct
representation of the equivalence class of a biconnected planar graph. It is similar to SPQR-trees and
represents exactly the graphs that are contained in the equivalence class. The testing algorithm then
works by testing in linear time whether two such representations are isomorphic.

We note that a special case of MUTUAL PLANAR DUALITY is testing whether a graphG is self-dual.
Our algorithm handles the case where G is biconnected and our NP-hardness proof extends to testing
self-duality of general planar graphs and also to testing map self-duality, where a graph G is map self-
dual if it admits a planar embedding G such that G? is isomorphic to G, and additionally the embedding
induced by G on G? is G.
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1 Introduction

Let G be a planar graph with planar embedding G and let F be the set of faces of G. The dual of G with
respect to G is the graph G? = (F,E?), where E? = {e? | e ∈ E} and e? denotes the edge connecting the
two faces incident to e in G. Thus G? models the adjacencies of faces of G in the embedding G. Note that
the circular order of edges around faces in G naturally induces a planar embedding G? on G? and that the
dual of G? with respect to G? is G.

We consider the following problem, that we call MUTUAL PLANAR DUALITY. Given two planar
graphs G1 and G2, is it possible to find an embedding G1 of G1 such that the dual G?1 of G1 with respect
to G1 is isomorphic to G2? If G1 is triconnected it has a fixed planar embedding [12] and thus the problem
MUTUAL PLANAR DUALITY reduces to testing graph isomorphism for planar graphs, which can be done
in linear time due to Hopcroft and Wong [6]. Observe that biconnectivity and triconnectivity of a planar
graph is invariant under dualization [11]. For non-triconnected planar graphs MUTUAL PLANAR DUALITY

is more complicated since changing the embedding of G1 influences the structure of its dual graph. In fact,
we show that MUTUAL PLANAR DUALITY is NP-complete in general.

On the other hand, for biconnected planar graphs we provide a linear-time algorithm solving MUTUAL

PLANAR DUALITY that is based on the definition of a new data structure that we call dual SPQR-tree in
analogy to the SPQR-tree [4, 5]. As SPQR-trees allow to succinctly represent and efficiently handle all the
planar embeddings of a biconnected planar graph, the dual SPQR-trees, together with a newly-defined set of
operations, allow to succinctly represents and efficiently handle all the dual graphs of a biconnected planar
graph. This data structure has an interesting implication on the structure of the dual graphs of a biconnected
planar graph. Namely, consider the common dual relation ∼, where G1 ∼ G2 if and only if they have a
common dual graph. We show that, ∼ is not transitive on the set of connected planar graphs. However, it
follows from the dual SPQR-tree that ∼ is an equivalence relation on the set of biconnected planar graphs.
In particular, the graphs represented by a dual SPQR-tree form an equivalence class. Thus, testing MUTUAL

PLANAR DUALITY reduces to testing whether two dual SPQR-trees represent the same equivalence class.
We believe that this new data structure can be successfully used to efficiently solve other related prob-

lems. In fact, in many applications it is desirable to find an embedding of a given planar graph that optimizes
certain criteria, and such criteria can often be naturally described in terms of the dual graph with respect to
the chosen embedding. For example, Bienstock and Monma [3], and Angelini et al. [1] seek for an embed-
ding of a given planar graph minimizing the largest distance of internal faces to the external face. In terms
of the dual graph this corresponds to minimizing the largest distance of a vertex to all other vertices. Hence,
for problems of this kind it might be useful to work directly with a representation of all dual graphs, that can
be given by the dual SPQR-trees, instead of taking the detour over a representation of all planar embeddings,
that is given by the original SPQR-trees.

We finally remark that the MUTUAL PLANAR DUALITY problem we introduce in this paper is a general-
ization of the self-duality of planar graphs [9]. A graph G is graph self-dual if it admits an embedding such
that its dual G? is isomorphic to G. We call the corresponding decision problem GRAPH SELF-DUALITY.
A stronger form of self-duality can be defined as follows. A graph G is map self-dual [10] if and only if G
has an embedding G such that there exists an isomorphism from G to its dual graph G? that preserves the
embedding G. The corresponding decision problem is called MAP SELF-DUALITY. Note that, since tricon-
nected planar graphs have a unique planar embedding, GRAPH SELF-DUALITY and MAP SELF-DUALITY

are equivalent for this class of graphs. Servatius and Servatius [10] show the existence of biconnected planar
graphs that are graph self-dual but not map self-dual. Servatius and Christopher [9] show how to construct
self-dual graphs from given planar graphs. Archdeacon and Richter [2] give a set of constructions for tri-
connected self-dual graphs and show that every such graph can be constructed in this way. To the best of our
knowledge the computational complexity of testing MAP or GRAPH SELF-DUALITY is open. Since GRAPH

SELF-DUALITY is a special case of MUTUAL PLANAR DUALITY (simply set G1 = G2 = G), our algo-
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rithm solving MUTUAL PLANAR DUALITY in linear time can be used to solve GRAPH SELF-DUALITY in
linear time whenG is biconnected. Moreover, our construction showing NP-hardness of MUTUAL PLANAR

DUALITY for general instances extends to MAP and GRAPH SELF-DUALITY.

Outline. In Section 2 we show that MUTUAL PLANAR DUALITY is NP-complete, even if both input
graphs are required to be simple. With a similar construction we can show that MAP SELF-DUALITY and
GRAPH SELF-DUALITY are NP-complete in general. To solve MUTUAL PLANAR DUALITY efficiently for
biconnected graphs, we first describe decomposition trees as a generalization of SPQR-trees in Section 3.
In Section 4 we describe the dual SPQR-tree and show that it succinctly represents all dual graphs of a
biconnected planar graph. We consider the common dual relation in Section 5 and give a counter example
showing that ∼ is not transitive on the set of connected planar graphs. On the other hand, we show that it
follows from the dual SPQR-tree that ∼ is an equivalence relation on the set of biconnected planar graphs.
This implies that solving MUTUAL PLANAR DUALITY is equivalent to testing whether two dual SPQR-trees
represent the same equivalence class. In Section 6 we show that this can be further reduced to testing graph
isomorphism of two planar graphs, which leads to a linear-time algorithm for MUTUAL PLANAR DUALITY,
including GRAPH SELF-DUALITY as a special case.

2 Complexity

In this section we first show that MUTUAL PLANAR DUALITY is NP-complete by a reduction from 3-
PARTITION. Then we show that the resulting instances of MUTUAL PLANAR DUALITY can be further
reduced to equivalent instances of MAP and GRAPH SELF-DUALITY. An instance (A,B) of 3-PARTITION

consists of a positive integer B and a set A = {a1, . . . , a3m} of 3m integers with B/4 < ai < B/2 for
i = 1, . . . , 3m. The question is whether A admits a partitionA into a set of triplets such that for each triplet
X ∈ A we have

∑
x∈X x = B. The problem 3-PARTITION is strongly NP-hard [7], i.e., it remains NP-hard

even if B is bounded by a polynomial in m.

Theorem 1. MUTUAL PLANAR DUALITY is NP-complete, even if both graphs are simple.

Proof. Clearly, MUTUAL PLANAR DUALITY is in NP as we can guess an embedding for graphG1 and then
check in polynomial time whether the corresponding dual is isomorphic to G2.

To show NP-hardness we give a reduction from 3-PARTITION. We first give a construction containing
loops, afterwards we show how to get rid of them. Let (A,B) be an instance of 3-PARTITION with |A| =
3m. The graph G1 contains a wheel of size m, i.e., a cycle v1, . . . , vm together with a center u connected
to each vi. Additionally, for each element ai ∈ A we create a star Ti with ai − 1 leaves and connect its
center to u; see Figure 1(a). The graph G2 is a wheel of size m along with B loops at every vertex except
for the center; see Figure 1(b). We now claim that G1 and G2 form a YES-instance of MUTUAL PLANAR

DUALITY if and only if (A,B) is a YES-instance of 3-PARTITION.
Suppose that there exists a partitionA ofA. The embedding of the wheel inG1 is fixed and it has exactly

m faces incident to the wheels center u. The remaining degree of freedom is to decide the embedding of
the trees Ti into these m faces. For each triplet X = {ai, aj , ak} ∈ A we pick a distinct such face and
embed Ti, Tj and Tk into it. Call the resulting embedding G1 and consider the dual G?1 with respect to G1.
The wheel of G1 determines a wheel of size m in G?1. Consider a tree Ti that is embedded in a face f .
Since Ti contains ai bridges, which are all embedded in f , the corresponding vertex of G?1 has ai loops; see
Figure 1(c). Due to the construction each face contains exactly three trees with a total of B bridges. Thus
G?1 is isomorphic to G2.

Conversely, assume that we have an embedding G1 such that the dual G?1 of G1 with respect to G1 is
isomorphic to G2. Again, the wheel in G1 forms m faces incident to u, and since G?1 is isomorphic to G2,
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Figure 1: The graphs G1 (a) and G2 (b) of the reduction from 3-PARTITION. (c) Embedding a tree Ti inside
a face f creates ai loops at the corresponding dual vertex. (d) Bridges and corresponding loops can be
replaced by small graphs.

the trees must be embedded such that each face contains exactly B bridges. Since embedding Ti inside a
face f puts ai bridges into f and we haveB/4 < ai < B/2 each face must contain exactly three trees. Thus
the set of triplets determined by trees that are embedded in the same faces form a solution to 3-PARTITION.

Clearly, the transformation can be computed in polynomial time, and thus MUTUAL PLANAR DUALITY

is NP-hard. Moreover, the graph G2 can be made simple (G1 is already simple) by replacing each bridge
in G1 and each loop in G2 with a 4-wheel as depicted in Figure 1(d). The resulting graphs G′

1 and G′
2 are

obviously dual to each other if and only if G1 and G2 are dual to each other. Moreover, G′
1 and G′

2 are
simple, which concludes the proof.

In the following we show how the above construction can be used to show NP-completeness for MAP

and GRAPH SELF-DUALITY. To this end, we use the adhesion operation introduced by Servatius and
Christopher [9]. Let v be a vertex of G incident to a face f . Then the adhesion of G and its dual G?

(with respect to v and f ) is obtained by identifying v in G and f? in G? with each other. Servatius and
Christopher [9] show that the adhesion of a plane graph and its dual is graph self-dual. Moreover, they
implicitly show that this adhesion is even map self-dual, although they do not mention it explicitly. To show
the following theorem we essentially transform the instance of MUTUAL PLANAR DUALITY consisting of
the two graphs G1 and G2 described in the proof of Theorem 1 into an equivalent instance of MAP and
GRAPH SELF-DUALITY by forming the adhesion of G1 and G2.

Theorem 2. GRAPH SELF-DUALITY and MAP SELF-DUALITY are NP-complete.

Proof. Clearly, GRAPH SELF-DUALITY (MAP SELF-DUALITY) is in NP as we can guess an embedding for
G together with a bijection between the vertices of G and the vertices of G? and then check in polynomial
time whether this bijection is an isomorphism (that preserves the embedding).

Let G1 and G2 form an instance of MUTUAL PLANAR DUALITY obtained from an instance of 3-
PARTITION as described in the proof of Theorem 1. Let G be the graph obtained from G1 and G2 by
identifying a vertex that is not the center of the wheel in G2 with the vertex u in G1. In the following we
consider G as an instance of GRAPH SELF-DUALITY and MAP SELF-DUALITY. We claim the following.
Claim 1 If G is a YES-instance of MAP SELF-DUALITY, it is a YES-instance of GRAPH SELF-DUALITY.
Claim 2 If G1 and G2 form a YES-instance of MUTUAL PLANAR DUALITY, then G is a YES-instance of

MAP SELF-DUALITY.
Claim 3 If G is a YES-instance of GRAPH SELF-DUALITY, then G1 and G2 form a YES-instance of MU-

TUAL PLANAR DUALITY.
The three claims together show that the instance G1 and G2 of MUTUAL PLANAR DUALITY, the instance
G of GRAPH SELF-DUALITY and the instance G of MAP SELF-DUALITY are equivalent.

Claim 1 is clear since being map self-dual is a stricter requirement then being graph self-dual. For
Claim 2 assume that G1 and G2 form a YES-instance of MUTUAL PLANAR DUALITY, that is G1 and G2

admit embeddings such that they are dual to each other. As the vertex u is incident to all faces in G1 except
for the face forming the center of the wheel in G?1, it is in particular incident to the face dual to the vertex
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in G2 chosen for the adhesion. Thus it follows from the results by Servatius and Christopher [9] that the
adhesion G of G1 and G2 is map self-dual.

It remains to show Claim 3. Let G? be the dual graph of G with respect to a fixed embedding and let
ϕ : V (G) −→ V (G?) be a graph isomorphism between G and G?. As G is the adhesion of G1 and G2 there
is a unique vertex v in G belonging to G1 and G2, and a unique face f incident to both graph G1 and G2.
Since v was chosen to be u inG1, it is the only vertex inG that is a cutvertex and the center of a wheel of size
m. Moreover, f is the only cutvertex in G? that can be the center of a wheel of size m. Thus ϕ has to map
v to f . The blocks incident to v are a block with degree 3 at v stemming from G2, B loops also stemming
from G2, a block consisting of a wheel of size m with center v stemming from G1 and 3m attached trees
stemming from G1. Similar the vertex f in G? is incident to a block having degree 3 at f contained in G?1,
a set of loops stemming from the trees in G1 (the number of loops depends on the embedding), a wheel of
size m with center f contained in G?2 and a set of bridges stemming from the loops at G2. Thus, ϕ has to
map all vertices in G1 to vertices in G?2 and all vertices in G2 to vertices in G?1. This directly shows that G1

and G2 form a YES-instance of MUTUAL PLANAR DUALITY, which concludes the proof.

3 Decomposition Trees and the SPQR-Tree

A graph is connected if there exists a path between any pair of vertices. A separating k-set is a set of k
vertices whose removal disconnects the graph. Separating 1-sets and 2-sets are cutvertices and separation
pairs, respectively. A connected graph is biconnected if it does not have a cut vertex and triconnected if it
does not have a separation pair. The maximal biconnected components of a graph are called blocks.

In the following we consider decomposition trees of biconnected planar graphs containing the SPQR-
trees introduced by Di Battista and Tamassia [4, 5] as a special case. Let G be a planar biconnected graph
and let {s, t} be a split pair, that is either a separation pair or a pair of adjacent vertices. Let further H1 and
H2 be two subgraphs of G such that H1∪H2 = G and H1∩H2 = {s, t}. Consider the tree T consisting of
two nodes µ1 and µ2 associated with the graphs H1 + (s, t) and H2 + (s, t), respectively. For each node µi,
the graph Hi + (s, t) associated with it is the skeleton of µi, denoted by skel(µi), and the special directed
edge (s, t) is called virtual edge. The edge connecting the nodes µ1 and µ2 in T associates the virtual edge
ε1 = (s, t) in skel(µ1) with the virtual edge ε2 = (s, t) in skel(µ2); we say that ε1 is the twin of ε2 and vice
versa. Moreover, we say that ε1 in skel(µ1) corresponds to the neighbor µ2 of µ1. This can be expressed
as a bijective map corrµ : E(skel(µ)) −→ N(µ) for each node µ, where E(skel(µ)) and N(µ) denote the
set of edges in skel(µ) and the set of neighbors of µ in T , respectively. In the example above we have
corr(ε1) = µ2 and corr(ε2) = µ1 (the index at corr is omitted as it is clear from the context).

The above described procedure is called decomposition and can of course be applied further to the
skeletons of the nodes of T , leading to a larger tree with smaller skeletons. The decomposition can be
undone by contracting an edge in T . Let {µ, µ′} be an edge in T and let ε be the virtual edge in skel(µ)
with corr(ε) = µ′ having ε′ in skel(µ′) as twin. The contraction of {µ, µ′} replaces these two nodes by a
single node with a skeleton obtained as follows. The skeletons skel(µ) and skel(µ′) are glued together at the
twins ε and ε′ according to their orientation, that is the source and target of ε is identified with the source
and target of ε′, respectively. Afterwards the resulting virtual edge is removed. Applying the contraction
iteratively in an arbitrary order to edges in a decomposition tree T yields a tree consisting of a single node
µ (which can be seen as trivial decomposition tree). Then the graph represented by T is skel(µ), which is
uniquely determined by T .

A reversed decomposition tree is defined as a decomposition tree with the only difference that in the
decomposition step one of the two twin edges is reversed and in the contraction step they are glued together
such that they point in opposite directions. Note that a reversed decomposition tree can be easily transformed
into an equivalent normal decomposition tree representing the same graph by reversing one virtual edge for
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every pair of twin edges.
A special decomposition tree of a biconnected planar graphG is the SPQR-tree. A decomposition tree is

an SPQR-tree if each inner node is either an S-, a P-, or an R-node whose skeletons contain only virtual edges
forming a cycle, a bunch of at least three parallel edges or a triconnected planar graph, respectively, such that
no two S-nodes and no two P-nodes are adjacent. Moreover, each leaf is a Q-node whose skeleton consists
of two vertices with one virtual and one normal edge between them. The reversed SPQR-tree is defined
analogous as a special case of the reversed decomposition tree. The SPQR-tree T of a planar biconnected
graph G is unique up to the reversal of pairs of virtual edges that are twins. We can assume without loss of
generality that the virtual edges in the skeleton of each P-node are oriented in the same direction and those
in the skeleton of each S-node form a directed cycle.

The SPQR-tree T of G represents all planar embeddings of G, as there is a bijection between these
embeddings and the set of all combinations of embeddings of the skeletons in T . Note that the embedding
choices for the skeletons consist of reordering the parallel edges in a P-node and flipping the skeleton of
an R-node. The SPQR-tree of a biconnected planar graph can be computed in linear time [8]. Fixing the
embeddings of skeletons in an arbitrary decomposition tree T also determines a planar embedding of the
represented graph G. However, there may be planar embeddings that are not represented by T .

4 Succinct Representation of all Duals of a Biconnected Graph

Let G be a biconnected graph with SPQR-tree T and planar embedding G. In the following we study the
effects of changing the embedding of G on the corresponding dual graph G? of G. To this end, we do not
consider the graphs themselves but their SPQR-trees. More precisely, we first show how the SPQR-tree of
the dual graph G? can be directly obtained from the SPQR-tree of the primal graph G. This can then be
used to understand the effects in the dual graph caused by changing the embedding of a skeleton in T .

We first define the dual decomposition tree T ? of the decomposition tree T representingG (with respect
to a fixed embedding G ofG that can be represented by T ). It can then be shown that the dual decomposition
tree represents the dual graph G? of G. Essentially, T ? is obtained from T by replacing each skeleton with
its directed dual and interpreting the resulting tree as a reversed decomposition tree. More precisely, for
each node µ in T , the dual decomposition tree T ? contains a dual node µ? having the dual of skel(µ) as
skeleton. An edge ε? in skel(µ?) dual to a virtual edge ε in skel(µ) is again virtual and oriented from right to
left with respect to the orientation of ε. Similarly, an edge dual to a normal edge is also a normal edge in the
dual skeleton. Two virtual edges in T ? are twins if and only if their corresponding primal edges are twins.
This implicitly has the effect that corr(ε)? = corr(ε?) holds. Obviously, the tree structures of T ? and T are
isomorphic with respect to the map assigning each node in T to its dual node in T ?. For the case in which
T is the SPQR-tree of G we obtain the following. The dual of a triconnected skeleton is triconnected, the
dual of a (directed) circle is a bunch of parallel edges (all directed in the same direction), and the dual of a
normal edge with a parallel virtual edge is a normal edge with a parallel virtual edge. Thus, if a node µ in T
is an S-, P-, Q-, or R-node, its dual node µ? in T ? is a P-, S-, Q-, or R-node, respectively. This in particular
shows that the dual SPQR-tree is again an SPQR-tree and not just an arbitrary decomposition tree.

Lemma 1. Let G be a biconnected planar graph with SPQR-tree T and planar embedding G. The dual
SPQR-tree T ? with respect to G is the reversed SPQR-tree of the dual G?.

Proof. We show a slightly more general result by dealing with arbitrary decomposition trees instead of
SPQR-trees. We show that first contracting an edge {µ, µ′} in a decomposition tree T into a node µµ′

and then constructing the dual decomposition tree is equivalent to first constructing the decomposition tree
T ? and then contracting the edge {µ?, µ′?} into µ?µ′? (recall that T ? is interpreted as reversed decompo-
sition tree, thus the gluing operation contained in the contraction of {µ?, µ′?} is reversed). Applying this
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Figure 2: Glueing the virtual edge ε (a) and ε′ (b) together (c) and removing the resulting edge (d).

operation iteratively until the trees T and T ? consist of single nodes then directly shows that the reversed
decomposition tree T ? represents the graph G? dual to the graph G represented by T .

Let ε and ε′ be the virtual edges in skel(µ) and skel(µ′) corresponding to the edge {µ, µ′} in T . Let
further f` and fr, and f ′` and f ′r be the faces left and right to ε and ε′ with respect to the orientation of ε and
ε′, respectively; see Figure 2(a) and (b). We denote the graph skel(µ)− ε by H and the graph skel(µ?)− ε?
by H? (note that H? is not really the dual graph of H). The graphs H ′ and H ′? are defined similar. When
contracting {µ, µ′}, first the virtual edges ε and ε′ are glued together, that is u and v are identified with u′

and v′, respectively; see Figure 2(c). Obviously, the dual of the resulting graph can be obtained from H?

and H ′? by identifying fr with f ′` and adding the edge {f`, f ′r} (or the other way round). Finally, removing
the edge (u, v) contracts f` and f ′r into a single vertex, see Figure 2(d). Thus the dual graph skel(µµ′)? of
the resulting skeleton skel(µµ′) can be obtained from skel(µ)? and skel(µ′)? by removing the virtual edges
ε? and ε′? and identifying their endpoints with each other, reversing their orientation. As this is equal to
contracting {µ?, µ′?} in T ?, we have skel(µµ′)? = skel(µ?µ′?), which concludes the proof.

The above results help investigating the effects a change in the embedding of the graph G has on its
dual G?. Flipping the skeleton of an R-node and reordering the virtual edges in a P-node give rise to the
following two operations: reversal of R-nodes and restacking of S-nodes. A reversal applied on an R-node
µ reverses the direction of all the virtual edges in skel(µ). As no other skeleton is changed by this operation,
this only affects how skel(µ) is glued to the skeletons of its adjacent nodes. Let µ be an S-node with virtual
edges ε1, . . . , εk. A restacking of µ picks an arbitrary ordering of ε1, . . . , εk and glues their end-points such
that they create a directed cycle C in that order. Then, the skeleton of µ is replaced by C.

Lemma 2. Let T be the SPQR-tree of a biconnected planar graph and let T ? be the SPQR-tree of its dual,
with respect to a fixed planar embedding. Flipping an R-node and reordering a P-node in T corresponds to
reversing its dual R-node and restacking its dual S-node, respectively.

Proof. Due to Lemma 1 we can work with the dual SPQR-tree instead of the SPQR-tree of the dual. Obvi-
ously, flipping an R-node µ in T exchanges left and right in skel(µ) and thus reverses the orientation of each
virtual edge in skel(µ?), where µ? is the node in T ? dual to µ. Thus, flipping µ corresponds to a reversal of
µ?. Similarly, reordering the virtual edges in the skeleton of a P-node µ has the effect that the virtual edges
in its dual S-node µ? are restacked, yielding a different cycle. Note that this cycle is again directed since the
virtual edges in µ are still all oriented in the same direction.

This shows that the SPQR-tree of the dual graph with respect to a fixed embedding can be used to
represent the dual graphs with respect to all possible planar embeddings by allowing reversal and restacking
operations. If we say that an SPQR-tree represents a set of dual graphs, we implicitly allow reversal and
restacking. The following theorem directly follows.

Theorem 3. The dual SPQR-tree of a biconnected planar graph G represents exactly the dual graphs of G.
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If we are only interested in the structure of the dual graph and not in its embedding induced by the
primal graph, we may also allow the usual SPQR-tree operations, that is flipping R-nodes and reordering
the virtual edges in P-nodes. In this case we can apply the reversal operation not only to R-nodes but also
to P-nodes (as this only changes the embedding but not the graph). Moreover, reversing a Q-node does not
change anything and the reversal of an S-node can be seen as a special way of restacking it. This observation
can be used to show the following lemma.

Lemma 3. Let G be a biconnected planar graph and let G? be its dual graph with SPQR-tree T ? with
respect to an embedding G of G. Let T ?ε be the SPQR-tree obtained from T ? by reversing the orientation of
the virtual edge ε in T ? and let G?ε be the graph represented by it. Then there exists an embedding Gε of G
such that G?ε is the dual graph of G with respect to Gε.

Proof. Let µ be the node in T ? containing the virtual edge ε and let corr(ε) = µ′ be the neighbor of µ
corresponding to ε. Removing the edge {µ, µ′} splits T ? into two subtrees T ?µ and T ?µ′ . We claim that the
reversal of all nodes in one of these subtrees (no matter which one) yields an SPQR-tree T ?µµ′ representing
G?ε . Then it follows by Lemma 2 and the observation above, that G?ε is a dual graph of G.

It remains to show the claim. As it does not matter whether the orientation of ε or of its twin in µ′ is
changed, we can assume without loss of generality that all nodes in T ?µ are reversed in T ?µµ′ . The graph
represented by T ?µµ′ can be obtained by contracting the edges in an arbitrary order. Contracting edges in the
subtree T ?µ′ has the same effect as in the original graph, since T ?µ′ was not changed. Similarly, contracting an
edge in T ?µ also has the same effect as the orientation of both corresponding virtual edges is reversed. Finally,
when contracting the edge {µ, µ′} the skeletons are glued together oppositely as ε is reversed whereas its
twin remains the same. Thus, reversing all nodes in T ?µ is equivalent to reversing the orientation of ε, which
concludes the proof.

Lemma 2 and Lemma 3 together yield the following theorem.

Theorem 4. Two SPQR-trees represent the same set of dual graphs if and only if they can be transformed
into each other by either using reversal and restacking operations, or by choosing an orientation of the
virtual edges and restacking the skeletons of S-nodes.

5 Equivalence Relation

We define the relation ∼ on the set of planar graphs as follows. Two graphs G1 and G2 are related, i.e.,
G1 ∼ G2, if and only if G1 and G2 can be embedded such that they have the same dual graph G?1 = G?2.
We call ∼ the common dual relation.

Theorem 5. The common dual relation∼ is an equivalence relation on the set of biconnected planar graphs.
For a biconnected planar graph G, the set of dual graphs of G is an equivalence class with respect to ∼.

Proof. Clearly, ∼ is symmetric and reflexive. For the transitivity let G1, G2 and G3 be three biconnected
planar graphs such that G1 ∼ G2 and G2 ∼ G3. Let further T ?1 , T ?2 and T ?3 be the dual SPQR-trees
representing all duals of G1, G2 and G3, respectively. Due to G1 ∼ G2 there exists a graph G that is
represented by T ?1 and T ?2 . Since the SPQR-tree of a biconnected planar graph is unique (up to the reversal
of virtual edges), it follows that T ?1 and T ?2 are the same SPQR-trees representing the same sets of duals.
The same argument shows that G2 and G3 have the same set of dual graphs, due to G2 ∼ G3. Thus, also
G1 and G3 have exactly the same set of dual graphs, which yields G1 ∼ G3.

For the second statement, let C? be the set of dual graphs of G. Clearly, for G?1, G
?
2 ∈ C? the graph G

is a common dual, thus G?1 ∼ G?2. On the other hand, let G?1 ∈ C? and G?1 ∼ G?2. By the above argument,
G?1 and G?2 have the same set of dual graphs. Thus G is a dual graph of G?2 yielding G?2 ∈ C?.

7
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Figure 3: Illustration of Theorem 6

Theorem 5 shows that the equivalence class C of a biconnected planar graph G with respect to the
common dual relation is exactly the set of dual graphs that is represented by the SPQR-tree T of G. The
dual SPQR-tree T ? of G also represents a set of dual graphs forming the equivalence class C?. We say that
C? is the dual equivalence class of C. Given an arbitrary graphG ∈ C and an arbitrary graphG? ∈ C? then
G andG? can be embedded such that they are dual to each other sinceC? contains exactly the graphs that are
dual to G. The problems MUTUAL PLANAR DUALITY and GRAPH SELF-DUALITY can be reformulated
in terms of the equivalence classes of the common dual relation. Two biconnected planar graphs are a YES-
instance of MUTUAL PLANAR DUALITY if and only if their equivalence classes are dual to each other.
A biconnected planar graph is graph self-dual if and only if its equivalence class is dual to itself. This in
particular means that either each or no graph in an equivalence class is graph self-dual.

Although it might seem quite natural that the common dual relation is an equivalence relation, this is not
true for general planar graphs. This fact is stated in the following theorem.

Theorem 6. The common dual relation ∼ is not transitive on the set of planar graphs.

Proof. Consider the graph G1 consisting of a triconnected planar graph with an additional loop as depicted
in Figure 3(a). Its dual graph is a triconnected component with a bridge attached to it. In the graph G2 the
loop is attached to a different vertex, see Figure 3(b). However, in both graphs G1 and G2, the loop can be
embedded into the same face of the triconnected component, yielding the same dual graph (with a different
embedding). Thus,G1 andG2 have a common dual, i.e.,G1 ∼ G2 holds. The same argument yields thatG2

(with respect to the embedding in Figure 3(c)) and G3 have a common dual graph, i.e., G2 ∼ G3. However,
G1 and G3 do not have a common dual for the following reason. Let v1 and v3 be the vertices in G1 and G3

incident to the loop, respectively. The only embedding choice in G1 and G3 is to embed the loop into one of
the faces incident to v1 and v3, respectively. In the dual graphs this has the effect that the bridge is attached
to the corresponding vertex. Since all faces incident to v1 have degree 3 and all faces incident to v3 have
degree 4 or 5, the resulting dual graphs cannot be isomorphic. Thus, G1 6∼ G3 even though G1 ∼ G2 ∼ G3

holds.

6 Solving MUTUAL PLANAR DUALITY for Biconnected Graphs

Due to Theorem 3 the problem MUTUAL PLANAR DUALITY can be rephrased as follows.

Corollary 1. Let G1 and G2 be two biconnected planar graphs with SPQR-trees T1 and T2, respectively.
There is an embedding G1 of G1 such that G2 is dual to G1 with respect to G1 if and only if T2 and the dual
SPQR-tree T ?1 represent the same set of dual graphs.

In the following we define what it means for two SPQR-trees to be dual isomorphic and show that they
are isomorphic in that sense if and only if they represent the same set of dual graphs. Afterwards, we show
that testing the existence of such an isomorphism reduces to testing graph isomorphism for planar graphs,
which then solves MUTUAL PLANAR DUALITY. Figure 4(a) sketches this strategy.

For two graphs G and G′ with vertices V (G) and V (G′) and edges E(G) and E(G′), respectively,
a map ϕ : V (G) −→ V (G′) is a graph isomorphism if it is bijective and {u, v} ∈ E(G) if and only if
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Figure 4: (a) Overview of our strategy. (b) Commutative diagram illustrating Property IV.

{ϕ(u), ϕ(v)} ∈ E(G′). A graph isomorphism ϕ induces a bijection between E(G) and E(G′) and we use
ϕ(e) for e ∈ E(G) to express this bijection. Note that we consider the edges to be undirected, thus fixing
ϕ(·) only for the edges does not determine a map for the vertices. As the SPQR-tree has more structure
than a normal tree, we require some additional properties. A dual SPQR-tree isomorphism between two
SPQR-trees T and T ′ consists of several maps. First, a map ϕ : V (T ) −→ V (T ′) such that

(I) ϕ is a graph isomorphism between T and T ′; and
(II) for each node µ ∈ V (T ), the node ϕ(µ) ∈ V (T ′) is of the same type.

Second, a map ϕµ : V (skel(µ)) −→ V (skel(ϕ(µ))) for every R-node µ in T such that
(III) ϕµ is a graph isomorphism between skel(µ) and skel(ϕ(µ)); and
(IV) corr(ϕµ(ε)) = ϕ(corr(ε)) holds for every virtual edge ε in skel(µ).

If there is a dual SPQR-tree isomorphism between T and T ′, then we say that T and T ′ are dual isomorphic.
Note that Property IV is a quite natural requirement and one would usually require it also for S-nodes (for
P-nodes it does not make sense since every permutation is an isomorphism on its skeleton); see Figure 4(b)
for a commutative diagram illustrating Property IV. However, not requiring it for S-nodes has the effect
that restacking their skeletons is implicitly allowed. As the graph isomorphisms ϕµ(·) do not care about
the orientation of virtual edges it is also implicitly allowed to reverse them. These observations lead to the
following lemma showing that this definition of dual SPQR-tree isomorphism is well suited for our purpose.

Lemma 4. Two SPQR-trees represent the same set of dual graphs if and only if they are dual isomorphic.

Proof. Let T and T ′ be two SPQR-trees representing the same set of dual graphs. By Theorem 4 this
implies that they can be transformed into each other using reversal and restacking operations. Clearly, the
identity map, mapping T and each of its skeletons to itself, is a dual SPQR-tree isomorphism. It remains
a dual SPQR-tree isomorphism when restacking an S-node, since Properties I, II are independent from the
skeletons and Properties III, IV are only required for R-nodes. Moreover, the reversal of an R-node preserves
Properties I–IV since our definition of graph isomorphism considers edges to be undirected. It follows that
T and T ′ are dual isomorphic.

For the opposite direction assume that ϕ together with ϕµ1 , . . . , ϕµk is a dual SPQR-tree isomorphism
from T to T ′. For every virtual edge ε in an R-node µ the map ϕµ determines whether the orientation
of ε has to be reversed to match the orientation of ϕµ(ε). Moreover, how ϕ maps the neighbors of an S-
node µ to the neighbors of ϕ(µ) determines a restacking operation transforming skel(µ) into skel(ϕ(µ)). It
follows that T can be transformed into T ′ by applying restacking and reversal operations. Hence, T and T ′

represent the same set of dual graphs, which concludes the proof.

In the following we show how the question of whether two SPQR-trees are dual isomorphic can be
reduced to the graph isomorphism problem on planar graphs, which can be solved in linear time [6]. We
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Figure 5: The subgraphs Hµ of the skeleton graph depending on the type of the node µ. The small black
vertices are the attachment vertices.

define the skeleton graph GT of an SPQR-tree T as follows. For each node µ in T there is a subgraph Hµ

in GT and for each edge {µ, µ′} in T the skeleton graph contains an edge connecting Hµ and Hµ′ . In the
following we describe the subgraphs Hµ for the cases that µ is an S-, a P-, a Q- or an R-node and define
attachment vertices that are incident to the edges connecting Hµ to other subgraphs.

If µ is an S- or a P-node, the subgraph Hµ contains only one attachment vertex vµ and all subgraphs
stemming from neighbors of µ are attached to vµ. To distinguish between S- and P-nodes, small non-
isomorphic subgraphs called tags are additionally attached to vµ, see Figure 5(s) and (p), respectively. If µ
is a Q-node, then Hµ is a single attachment vertex, see Figure 5(q). Note that µ is a leaf in T and thus Hµ

is also a leaf in GT . If µ is an R-node, Hµ is the skeleton skel(µ), where additionally every virtual edge ε
is subdivided by an attachment vertex vε, see Figure 5(r) for the case in which skel(µ) is K4. The subgraph
Hcorr(ε) stemming from the neighbor corr(ε) of µ is attached to Hµ over the attachment vertex vε.

Lemma 5. The skeleton graph of an SPQR-tree is planar and can be computed in linear time.

Proof. Clearly, the skeleton graph GT of an SPQR-tree T can be computed in linear time by processing
each node µ separately to compute the subgraph Hµ consuming time linear in the size of skel(µ). Note that
this implicitly shows that the size of GT is linear.

Let T be an SPQR-tree rooted at an arbitrary node. The skeleton graph GT can be embedded in a planar
way by embedding the subgraphs corresponding to the nodes in T top-down with respect to the chosen root.
Obviously, every subgraph in GT corresponding to a node in T is planar, thus we can start by embedding
the subgraph corresponding to the root arbitrarily. Let µ be a non-root node in T and let µ′ be its parent.
If µ is not an R-node, Hµ can be embedded with its only attachment vertex on the outer face. If µ is an
R-node, Hµ can be embedded with the attachment vertex corresponding to the parent µ′ of µ in T on the
outer face. Thus, in any case, Hµ can be placed inside a face incident to the attachment vertex stemming
from µ′ corresponding to µ, yielding a planar drawing.

Lemma 6. Two SPQR-trees are dual isomorphic if and only if their skeleton graphs are isomorphic.

Proof. Let T and T ′ be two SPQR-trees and let ϕ together with ϕµ1 , . . . , ϕµk be a dual SPQR-tree iso-
morphism between them. We show how this induces a graph isomorphism ϕG between the skeleton graphs
GT and GT ′ . If µ is an S-, P- or Q-node, then its corresponding subgraph in Hµ only contains a single
attachment vertex vµ. Since ϕ(µ) is of the same type (due to Property II of dual SPQR-tree isomorphisms),
the subgraph Hϕ(µ) also contains a single attachment vertex vϕ(µ) and we set ϕG(vµ) = vϕ(µ). For S- and
P-nodes we additionally simply map their tags isomorphically to one another. For the case that µ is an R-
node, the map ϕµ is a graph isomorphism between skel(µ) and skel(ϕ(µ)) (Property III). Thus, it induces a
graph isomorphism betweenHµ andHϕ(µ) since these subgraphs are obtained from skel(µ) and skel(ϕ(µ)),
respectively, by subdividing each virtual edge. It remains to show that ϕG respects the edges between at-
tachment vertices of different subgraphs. Since ϕ is a graph isomorphism (Property I), attachment vertices
of two subgraphs of GT are connected if and only if the corresponding subgraphs in GT ′ are connected.
Moreover, Property IV ensures that for a subgraph stemming from an R-node the right attachment vertices
are chosen (for other nodes this is clear since their subgraphs have unique attachment vertices).
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For the opposite direction, assume ϕG is a graph isomorphism between GT and GT ′ . Let Hµ be the
subgraph stemming from a node µ in T . As Hµ is a block in GT (or a leaf if µ is a Q-node), it has to be
mapped to a block in GT ′ . As all edges in GT ′ connecting attachment vertices of subgraphs stemming from
different nodes are bridges, all vertices in Hµ have to be mapped to vertices in Hµ′ for some node µ′ in
T ′. This defines the map ϕ by setting ϕ(µ) = µ′. Clearly, ϕ is a graph isomorphism between T and T ′,
since two subgraphs in a skeleton graph are connected by an edge if and only if the corresponding nodes in
its SPQR-tree are adjacent, thus, ϕ satisfies Property I. Since the only leaves in a skeleton graph stem from
Q-nodes, ϕ(µ) is a Q-node if and only if µ is a Q-node. Let v be an attachment vertex stemming from an
inner node µ in T . Then v is a cutvertex and, since every cutvertex in a skeleton graph is an attachment
vertex, ϕG(v) is also an attachment vertex in GT ′ . The vertex v has degree 3 if and only if µ is an R-node,
thus ϕ maps R-nodes to R-nodes. Moreover, if µ is an S-node, v cannot be mapped to an attachment vertex
stemming from a P-node, since the tags attached to S- and P-nodes are not isomorphic. Hence, ϕ maps S-
and P-nodes to S- and P-nodes, respectively, and thus satisfies Property II.

To obtain a dual SPQR-tree isomorphism, it remains to define a map ϕµ for each R-node µ in T that sat-
isfies Properties III and IV. As observed before, ϕG defines a bijection between the vertices in the subgraph
Hµ stemming from µ and the vertices in Hϕ(µ) stemming from ϕ(µ). As Hµ and Hϕ(µ) are the skeletons
skel(µ) and skel(ϕ(µ)) (with a subdivision vertex on each virtual edge), ϕG defines a graph isomorphism ϕµ
between skel(µ) and skel(ϕ(µ)) (satisfying Property III). To show that Property IV holds consider a virtual
edge ε in skel(µ) and the attachment vertex vε in Hµ stemming from it. Let further denote vcorr(ε) the at-
tachment vertex in Hcorr(ε) such that GT contains the edge {vε, vcorr(ε)}. Then ϕG maps {vε, vcorr(ε)} to an
edge {ϕG(vε), ϕG(vcorr(ε))} in GT ′ . Since ϕG(vε) = vϕµ(ε) holds by the definition of ϕµ, and ϕG(vcorr(ε))
stems from the node ϕ(corr(ε)) by the definition of ϕ, we have that corr(ϕµ(ε)) = ϕ(corr(ε)) by the
definition of the skeleton graph GT ′ . As this establishes Property IV, it concludes the proof.

Theorem 7. MUTUAL PLANAR DUALITY can be solved in linear time for biconnected planar graphs.

Proof. See Figure 6 for an example. Corollary 1 states that MUTUAL PLANAR DUALITY can be solved
by testing whether two SPQR-trees (that can be computed in time linear in the size of the input graphs [8])
represent the same set of dual graphs. By Lemma 4 it is equivalent to test whether these two SPQR-trees
are dual isomorphic, which can be done by testing whether their skeleton graphs are isomorphic, due to
Lemma 6. The skeleton graph of an SPQR-tree is planar and has linear size, see Lemma 5. Hence, we
can use the linear time algorithm for testing whether two planar graphs are isomorphic by Hopcroft and
Wong [6] yielding a linear time algorithm solving MUTUAL PLANAR DUALITY.

Corollary 2. GRAPH SELF-DUALITY can be solved in linear time for biconnected planar graphs.

7 Conclusion

In this paper we defined and studied the problem MUTUAL PLANAR DUALITY of testing whether, given two
graphs G1 and G2, there exists an embedding of G1 such that the corresponding dual graph is isomorphic
to G2. We proved that MUTUAL PLANAR DUALITY is NP-complete in the general case, while it is solvable
in polynomial (actually linear) time for biconnected planar graphs.

The interest on this problem is twofold. On one hand, it represents a new step in the fundamental theory
of planar graphs isomorphism, also testified by the fact that, as a side effect, it provides the same results
for the well-known problem of testing GRAPH SELF-DUALITY [9, 2]. On the other hand, it could be seen
as a single example among a pletora of problems that require to find a dual graph of G1 satisfying certain
properties. In this direction, we believe that the definition of the new data-structure dual SPQR-tree and of
the operations that can be applied on it to efficiently handle all the duals of a biconnected planar graph could
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Figure 6: First building the dual graph G?1 of G1 (with respect to a fixed embedding) and then building its
SPQR-tree or first building its SPQR-tree T1 and then its dual SPQR-tree yields the same tree T ?1 (Lemma 1).
The graphs G1 and G2 are dual to each other (with respect to at least one pair of embeddings) if and only if
T ?1 and T2 represent the same set of duals (Corollary 1), which is the case if and only if their skeleton graphs
GT ?1 and GT2 are isomorphic (Lemma 4 and Lemma 6).

be considered as a main result of this paper, independently of its application to solve MUTUAL PLANAR

DUALITY, since it could potentially be used to tackle many other problems of the same type.
As remarked above, the results we obtained on MUTUAL PLANAR DUALITY can be extended to GRAPH

SELF-DUALITY, asking whether a given graph G can be embedded in such a way that the corresponding
dual is isomorphic to G. The restricted version MAP SELF-DUALITY [10] of GRAPH SELF-DUALITY

requires the embedding of G to be preserved in the isomorphism with the corresponding dual. We could
prove that the NP-completeness result for MUTUAL PLANAR DUALITY extends to MAP SELF-DUALITY,
but we could not prove the same for the polynomial-time testing algorithm. Hence, we leave as an open
problem the question whether MAP SELF-DUALITY can be solved efficiently for biconnected planar graphs.
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