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Spread: a measure of the size of metric
spaces

Simon Willerton

Abstract

Motivated by Leinster-Cobbold measures of biodiversity, the notion
of the spread of a finite metric space is introduced. This is related to
Leinster’s magnitude of a metric space. Spread is generalized to infinite
metric spaces equipped with a measure and is calculated for spheres and
straight lines. For Riemannian manifolds the spread is related to the
volume and total scalar curvature. A notion of scale-dependent dimension
is introduced and seen, numerically, to be close to the Hausdorff dimension
for approximations to certain fractals.
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Introduction

Given a finite metric space X with metric d we define the spread Ey(X) by

_
Y e—d(xx)’

x'eX

Eo(X) := ),

xeX

This is supposed to be a measure of the size of the finite metric space X. If X
has very small distances between all of the points then X looks like a single
point and the spread is roughly equal to one. If X has very large distances
between all of the points then X looks like a collection of very separate points
and the spread is roughly equal to the number of points. In general, of course,
a metric space lies between these two extremes and the spread is a measure of
how much between these two extremes it is.

The purpose of this paper is to demonstrate some of the basic properties of
the spread, to explain the motivation behind its definition and to show how
it is connected to other bits of mathematics. Actually, the spread is one of a
family of metric space ‘sizes” as we will see in Section [1| where biodiversity
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Figure 1: Spread profile of the three-point space R.

motivation is given. The definition generalizes easily from finite metric spaces
to arbitrary metric spaces with a measure, as will be seen in Section

One of the things that we will be interested in is how this measure of size
alters as the metric is scaled, so we need to define some notation. For t > 0
let tX denote the metric space X with the metric d scaled up by a factor of ¢,
so that the distance in tX between x and x’ is td(x, x"). We can consider the
spread profile of the space X which is just the graph of E,(tX) for t > 0.

An example of a profile is given in Figure [I| We consider the space ¢R, for
t > 0, having three points, two of which are a distance f apart and are both
a distance 1000t from the third point. This family of metric spaces can be
thought of as having three ‘regimes’: where t is very small and there looks
likes there is one point; where t is smallish and there looks like there are two
points; and where ¢ is very large and it looks like there are three points. This
way of thinking is reflected in the values plotted. So we wish to think of the
spread Ej as akin to an ‘effective number of points’.

The basic properties of spread, given in the next theorem, all follow easily
from the definition.

Theorem 1. For X a finite metric space with N points, the spread has the following
properties:
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° EO X) < ediam(X).

In this paper we consider further properties of the spread which are sum-
marized in the following synopsis.

In the first section we show how the spread can be thought of as the
analogue of the number of species in an ecosystem. We recall Leinster and



Cobbold’s diversity measures [4] and show how that gives rise to the spread
E, of a metric space as the order-zero diversity of the metric space equipped
with the uniform probability distribution. We also see that there is a spread E,
of order g for all 0 < g < co and relate these to generalized means.

In the second section we show how the spread relates to Leinster’s magni-
tude [3] and how the spread can be thought of as being better behaved. We
show that if the space has a positive definite ‘similarity matrix” then the magni-
tude is an upper bound for the spread, and if the space is homogeneous then
the magnitude is equal to the spread. We then go on to consider a space with
no magnitude, or rather, a space whose magnitude profile is discontinuous and
see that the spread profile is very similar, but much better behaved. Finally in
this section we see that two spaces with the same magnitude profile can have
different spread profiles.

In the third section we generalize the definition of spread to non-finite
metric spaces with a measure, calculate the spread of a straight line interval
and relate the asymptotic behaviour of the spread to the volume and total
scalar curvature of Riemannian manifolds. Explicitly, we calculate the spread
of L, the straight line interval of length ¢ with the usual Lebesgue measure
and show that for large ¢ the spread is approximately £/2 +In2. Then we
consider the spread of compact Riemannian manifolds, giving the spread of
the n-sphere explicitly, and we show that asymptotically, as the manifold is
scaled up, the leading order terms in the spread are determined by the volume
and the total scalar curvature of the manifold.

In the final section we consider the growth rate of the spread, which can
be viewed as a kind of (scale dependent) dimension of the space, and we
numerically compare this to the Haussdorff dimension for some fractals Here
is some idea of what we mean by scale dependent dimension: if millions
of points are formed into the shape of a square, then at small scales it will
look like a point, i.e. zero dimensional, at medium scales it will look two
dimensional, and at very large scales it will look like a collection of isolated
points, i.e. zero dimensional, again. We look at numerical calculations for some
simple approximations to fractals and see that at the medium scales the ‘spread
dimension’ is related to the Hausdorff dimension of the fractal.

1 Connection to Leinster-Cobbold diversity

In this section we recall the notion of Leinster-Cobbold diversity measures and
show how this gives rise to the spread of a metric space. We also see how
generalized notions of spread relate to generalized means.

1.1 Definition of the diversity measure

In [4] Leinster and Cobbold defined certain ‘diversity measures’. These are
numbers associated to any finite set equipped with a probability distribution
and a ‘similarity matrix’ — we will see that a metric on a finite set gives
rise to a similarity matrix in a canonical way. These numbers are supposed
to measure the biodiversity of a community where the points represent the
different species, the similarity matrix represents the similarity between the



species (a metric represents distance between the species) and the probability
distribution represents the relative abundances of the species.

Before defining the diversity measures we need to define the notion of
a similarity matrix. If X is a finite set with N points {x,...,xy} then a
similarity matrix Z is an N x N matrix with 0 < Z; < land Z; = 1. If
Zj; = 0 then this represents x; and x; being completely dissimilar and if Z;; = 1
then this represents x; and x; being completely identical. A metric d on X gives

rise to a similarity matrix Z by setting Z;; := exp(—d(x;, x;)), so that nearby
points are considered very similar and far away points dissimilar.

Given a finite set X with N points {x;, ..., xy} equipped with a probability
distribution p = {py,...,py}, so that Y; p; = 1, and a similarity matrix, Z, for

g € [0, 0], define the Leinster-Cobbold diversity of order g by

1
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For fixed X, p and Z, the graph of 9D?(p) against g is known as the
diversity profile. As a function of g, 1D (p) is monotonically decreasing. We
also have 1 < 7D?(p) < N and the order g diversity can be thought of as an
‘effective number of species’.

The Leinster-Cobbold diversity measures generalize a classic family of
diversity measures known as the Hill numbers [1]. The Hill number of order g,
THill(p), for g € [0, 00] is defined for a finite set X with probability distribution
p on it, so it requires no metric or similarity matrix. This Hill number can be
obtained as the Leinster-Cobbold diversity of the identity similarity matrix, or,
equivalenty, of the ‘discrete” metric where all of the points are infinitely far
apart from each other; so all species are considered to be completely dissimilar.
Symbolically, we have

THill(p) = D! (p).

The Hill numbers at the values g4 = 0, 1,2, o give, respectively, the following
classical diversity measures: the number of species, the exponential Shannon
index, the Simpson index and the reciprocal Berger-Parker diversity.

We can think of this specialization to Hill numbers as using the Leinster-
Cobbold diversity measure to get measures of a finite probability space by
equipping the space with a canonical metric, namely the discrete metric. On
the other hand we could use the Leinster-Cobbold diversity measures to get
measures of the size of a finite metric space by equipping the space with a
canonical probability distribution, namely the uniform distribution. This gives
rise to the spread. Symbolically, for a metric space X with N points, define the
q-spread E,(X), for 0 < g < oo, by

E,(X,d) := 1D, 4)).



Explicit formulas are given in Table[l} By the monotonically decreasing nature
of the Leinster-Cobbold diversity measures we have that g < 4’ implies that
E,(X) > E(X). In this paper we have generally concentrated on the greatest
of the these values, Ey(X) which we just call the spread; this is the analogue of
the ‘number of species’ in an ecosystem.
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Table 1: Writing Z;; := exp(—d(x;, x;)), we have these explicit formulas and
special cases of the g-spread.

1.2 Generalized means and reciprocal mean similarity

Fundamental to the definition of the Leinster-Cobbold diversity measures is
the idea of generalized mean [4]. Here we give a description of the g-spread in
those terms.

Suppose that X is a finite metric space with N points {xy,..., x5}, then
each point x; has a reciprocal mean similarity denoted by p; and defined, as
the name suggests, as follows:

Pi = N
i Zjlil efd(xi,x]v) ’
We have 1 < p; < N and think of the reciprocal mean similarity as being a
measure of how different the space is from the point x;, with p; being nearly 1
if all the points are close to x; and nearly N if all of the points are far from x;.
In order to get a measure of the whole space we can take an average of
these reciprocal mean similarities. There are many different averages we could
take. For a set of numbers a := {ay,...,ay} and a number s € RU {+o00}, the
s-mean y°(a) is defined, when s # 0, -0 as

= (g a)

i=1



and as a limit when s = 0, £co. This includes many standard means: u is
the maximum, y? is the quadratic mean, ! is the arithmetic mean, 1 is the
geometric mean, ! is the harmonic mean, and #~* is the minimum. These
have various nice properties, but the interesting one to note here is that if
s; > s, then p°1(a) > p®2(a) with equality if and only if all of the numbers in
a are equal.

For'| g € [0, ], the g-spread E (X) of the metric space X is by definition
the (1 — g)-mean of the individual reciprocal mean similarities:

E,(X) == 1" (p).

We have 1 < E;(X) < N with E_(X) being near to 1 if all of the points are

close to each other and E,(X) being near to N if all of the points are far away
from each other.

2 Comparison with magnitude

In this section we recall Leinster’s notion of magnitude and show how it relates
to the spread. We look at examples of a metric space with no magnitude and
two metric spaces with the same magnitude.

2.1 Recap on magnitude

Magnitude was introduced by Leinster in [3]. It is defined for ‘most” metric
spaces in the following way. For X a metric space a weighting on X consists
of a weight w, € R for each x € X such that

) w, e ) =1 forally € X.
xeX

If a weighting exist then | X| the magnitude of X is defined to be the sum of
the weights:
X =) w,.

xeX

If it exists then the magnitude is independent of any choice in the weighting.
The definition of magnitude comes from enriched category theory, although
it had previously appeared in the biodiversity literature [8]. For an example
of a space without a magnitude see Section [2.3|below. There are large classes
of spaces for which the magnitude is known to exist: one class of spaces on
which it is defined is the class of ‘positive definite spaces’. A positive definite
finite metric space is a finite metric space for which the similarity matrix Z
is positive definite. Examples of positive definite spaces include subspaces
of Euclidean space. One nice property of the magnitude of positive definite
spaces is the following.

The Positive Definite Subset Bound ([3, Corollary 2.4.4]). If X is a positive
definite space then |X| is well defined, furthermore if B C X then B is also positive
definite and |B| < | X|.

I The g-spread can also be defined for negative g, but the properties are slightly different and
we do not consider that case here.



The magnitude is related to the Leinster-Cobbold diversity via the ‘max-
imum diversity’ |X|, . Before defining that we say that a space X has a non-
negative weighting if there is a weighting for X in which all of the weights
are non-negative. The maximum diversity is defined to be the maximum of
the magnitudes of subsets of X with a non-negative weighting:

X|, = a B|.

‘ |+ ngﬂo)ri—neg | |
For instance, from the Positive Definite Subset Bound it follows that if X is
positive definite with non-negative weighting then |X| = |X|. The connection
with diversity is given by the following theorem.

Leinster’s Maximizing Theorem ([2, Theorem 3.1]). For X a metric space and
for any q € [0, 0] the maximum value of the Leinster-Cobbold diversity of order q,
over all probability distributions on X, is given by the maximum diversity:

supD(p) = [X|.

This explains the name. The maximum diversity is certainly in some sense
much better behaved than the magnitude, however it is considerably harder to
calculate in general.

2.2 Comparing spread with magnitude
We can now look at some basic comparisons.
Theorem 2. Suppose that X is a finite metric space.
1. The spread of X is bounded-above by the maximum diversity of X:
Eo(X) < X[

2. If X is positive definite then its maximum diversity is bounded above by its
magnitude, and thus so is its spread:

Eo(X) < [X[, < [X].

Proof. 1. This follows from immediately Leinster’s Maximizing Theorem
and the interpretation of Ey(X) as the order-zero Leinster-Cobbold diver-
sity of X with the uniform probability distribution.

2. By definition, the maximum diversity of X is the magnitude of a subset
B of X, so by the Positive Definite Subset Bound, if X is positive definite
then |X|, := [B| < |X].

O

Note that the positive definite condition in part [2| of the above theorem
cannot simply be removed as we will see in Section[2.3|that there is non-positive
definite space with magnitude smaller than spread.

We can show that the spread is actually equal to the magnitude in the
special case of a homogeneous metric space. Recall that a homogeneous space
is a space in which the points are all indistinguishable, or, more precisely, a
homogeneous metric space is a space with a transitive action by a group of
isometries.



Theorem 3. If X is a homogeneous finite metric space then the magnitude and the
spread coincide:

Eo(X) = |X].
More generally, the magnitude is equal to the q-spread for all q € [0, c0]:
E,(X) = [X].

Proof. If X has N points, then the Speyer’s Formula [5, Theorem 1] for the
magnitude of a homogeneous space, we have for any x € X that

N
Xl = =
Lyexe ’
On the other hand, every point in X has the same mean reciprocal similarity p,

with
N

Zx’eX eid(x/x/) '
The g-spread E,(X) is just the (1 —gq)-mean of the set of mean reciprocal
similarities. But the (1 — g)-mean of N copies of p is just p, thus

p:

E,(X) =p=1X],
as required. O

There is slightly interesting notational coincidence when Z is invertible:

00 = (3 2) s X=L Y (),

i=1j=1 if

2.3 A space with no magnitude

Here we look at an example, given by Leinster in [3], which has a discontinuity
in its magnitude profile and look at its continuous spread profile. Consider the
five-point space Kj , illustrated in Figure [2) equipped with the metric induced
by the pictured graph, so that points on the same side are a distance 2 from
each other and points on opposite sides are a distance 1 from each other. As
we scale this space, considering tKj, for t > 0, we see that when t = In(21/2)
this has no magnitude. However, the spread E;(tKj3 ;) is defined for all values
of t > 0, and this seems to be a well-behaved version of the magnitude. This
example also shows that magnitude is not always an upper bound for the
spread.

It is straightforward to generate examples of metric spaces with many
points on the magnitude profile not defined, for instance you can use maple to
take a random graph with say 100 vertices and an expected valency of 10 at
each vertex.

We summarize here some of the good properties that the spread has when
compared with the magnitude.

* The spread E is defined for all metric spaces.
* As an N-point space is scaled up, the spread E; increases from 1 to N.

e It is much easier to calculate Ey(X) than |X]|.
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Figure 2: A five-point space K3, with the plot of the singularity in its magnitude
profile together with its spread profile.

2.4 Trees with the same magnitude

A further class of metric spaces to consider is that of trees. Given a tree, that is a
graph with no cycles, we get a metric space consisting of the set of vertices and
the edge-length. We can generalize an example of Leinster [3, Example 2.3.5] to
show that all trees with the same number of vertices have the same magnitude.

Theorem 4. Suppose that Ty is a tree with N vertices for N > 1, then the magnitude
function is given by
N(et —1)+2

et +1

Proof. Observe that if N = 1 then [tT;| = 1 and the result holds. Suppose that
N > 1. Pick a leaf v, i.e. a univalent vertex, of the tree Ty. Let A be the metric
space Ty \ v and let B be the submetric space of Ty consisting of v and its
adjacent vertex. Then by [3] Corollary 2.3.3] we have

[tTy| =

2
tTy| = |tA| +[tB]| =1 = |[tA| + ——— —1
Ty = IPA] + B = 1 = [tA] + ==
el —1
= [tA|+ —,
Al + et +1
and as A is a tree with N — 1 vertices the result follows by induction. O

Let’s look in particular at two extreme examples; these are pictured in
Figure 3| On the one hand we have Ly the linear tree with N vertices; on the
other hand we have Cy; the corona with N vertices, that is the tree with one
“central” vertex which has an edge to each of the other vertices, and there are
no other edges. The corona Cy can be thought of as the complete bipartite
graph Kj j_1. Both of these N-trees give positive-definite metric spaces. By the
above theorem these two spaces have the same magnitude function. However,
they have various different properties. For instance, their diameters are distinct,
diam(Ly) = N —1 and diam(Cy) = 2; and tLy; always has a positive weighting,
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Figure 3: The linear tree tL, and the corona tCy with six points.
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Figure 4: Profiles for the linear tree L;;, and the corona C;; with 10 points.
The magnitude profile — the dotted line — is the same for both spaces. The
exponential in the diameter bounds the maximum diversity and the spread.

whereas Cy has a negative weight on the central point if N > 5 (and tC, has a
negative weight on the central point if ¢ < In(2)).

The spread distinguishes these spaces. An easy calculation gives the fol-
lowing.

et —1
T4 of — o Hi-1) — g—HN=)

Eq(tCy) = ! + N-1
VNI T 14 (N=1)et " 1+et+ (N—2)e 2

Eo(tLy) = )

i=1

It is not too hard to calculate the maximum diversity function either. The linear
tree is positive definite and has a positive weighting, therefore the maximum
diversity is precisely the magnitude. The corona does not always have a
positive weighting, and one finds that the central point needs to be ‘switched
off” when the corona is scaled down sufficiently; this gives the following
maximum diversity function.

t_
M t > In(N —2)
[tCx |y = et +1
A _N=L N2
T (N—2e 2 [<hN-2)

The linear tree and the corona with 10 points are compared in Figure 4
Whilst they have the same magnitude they clearly do not have the same

10



maximum diversity nor spread: the linear tree has greater spread than the
corona. The magnitude of both spaces grows essentially linearly to start with
(see Section [), which does not reflect the compact nature oft the corona.
The spread (and maximum diversity) grows linearly for the linear tree and
exponentially for the corona, reflecting the geometry of these spaces somewhat
more.

3 Generalization to non-finite metric spaces

The spread of a finite metric space was defined by using the canonical uniform
probability measure on the underlying finite set. The definition generalizes
immediately to any metric space equipped with a finite mass measure. If (X, d)
is a metric space equipped with a measure y such that y(X) < oo, then we can
define the spread of X by

— du(x)
Eo(X) :== /xex Jroxe 0 du(y)’

This is really the spread with respect to the associated probability measure
i/ 1(X), but the two factors of (X) cancel in the numerator and denomina-
tor. For E,(X) with g > 0 the total mass y(X) makes an appearance in the
definition.

We can now look at the following examples: the line interval with the
Lebesgue measure; the n-sphere with its intrinsic metric and standard measure;
and, asymptotically, any compact Riemannian manifold.

3.1 The closed line interval

We can quite straightforwardly calculate the spread of the length ¢ line interval
L, equipped with the standard Lebesgue measure.

Theorem 5. We have

arctanh(v/1 —e~t)

Eo(Ly) = Nir=a

and asymptotically, as { — co,
Eo(Ly) — (£/2+1In(2)) — 0.

Proof. This is just a case of calculating the integral. First observe that for
x €10,4],

l l
/ e~ gy — / e Vlay = /x e Vdy + / e Yt dy
yeL, y=0 y=0 y=x

=[] = e, =2 (e—x + e—<f—x>) .

11



Thus

4 dx /f e ¥dx
x=0 2e—% — (672x + 372)

Eo(Le) = |

x=02 — (e7¥ + e~ ((-%)) -

1-e* ¢
_/e e~ Ydx B arctanh(m)
T heo(-e ) —(1—e2 Vi—el

x=0

arctanh(v/1 — e~ %)
V1—et '

Now to consider the asymptotic behaviour as £ — oo, observe

arctanh(z) = %In (1 ti) — 1 ((11-22)
=In(1+z)—Lin(1-2%).

NI—

Thus
In(l+vi—e™) — 31— (1-¢")
Vi—el
In(1+vV1—e?)+4
Vi—et '

whence, as 1 — v/1 — e~ decays exponentially to 1,

Eo(Ly) — (€/2+1n(2)) 50  asl — oo

as required. O

This result should be compared with the magnitude for the interval of
length ¢ > 0 [5]:
|Ly| =£/2+1.

So asymptotically the magnitude and the spread of the interval have the same
leading order term but different sub-leading terms.

As an aside, we can easily calculate the integral theoretic versions of E,
and E, for the interval. Again, asymptotically these have the the same leading
order terms, but different sub-leading order terms.

Theorem 6. For £ > 0 we have the following results for the length ¢ interval.
L Ey(Ly) = gty
2. E5(Ly) — (£/241/2) — 0as £ — oo.
3. E(Ly) = ﬁ

4. E(Ly) —£/2 — 0as { — oo.

12



Proof. 1. This is obtained from the integral version of the order two spread:

(fxeLé dﬂ(x))

2

Ex(Ly) =
2 fxeLé fyeLA e~d¥) dp(y) dp(x)
62
 Jie @ (e e () dp(w)
52
T 2—2(1-e ')

2. This follows from the above.

3. This is obtained from the integral version of the order-infinity spread:

E.(L,) = inf Jyer, W) ¢
T e, fyeue*d(w) du(y)  x€0,02 — (e= + e~ ((=%))
-t
T 2(1—e )

4. This follows from the above.

3.2 Riemannian manifolds

A Riemannian manifold is a smooth manifold equipped with a Riemannian
metric, so in particular has an inner-product on each tangent space. This
structure gives rise to both a metric and a measure on the manifold. The
metric comes about because the Riemannian metric can be used to define a
length for each rectifiable path in the manifold and the distance between two
points is defined to be the infimum of the lengths of all the paths between the
two points. The measure comes about because the Riemannian metric can be
used to define a volume form which leads to a density and a measure. This
means that every Riemannian manifold has a well-defined spread given by the

formula 4
x

En(X ::/ _—

0( ) xeX fyeXe_d(x’y) dy

In the case of homogeneous Riemannian manifolds this coincides with the
formula for the magnitude that was examined in [10]. In particular this tells
us that the spread of S§ the n-sphere of radius R with its intrinsic metric, for
n > 11is given by

2 n/2 R 2
mr{<(2i—l) +1) n even
i=

(n—1)/2
TR 2
= 11 ((§)"+1) nodd

i=1

Eo(Sk) =

Moreover, the methods employed in [10] to calculate the asymptotics carry
over essentially unchanged but work for all closed Riemannian manifolds and
not just homogeneous ones.

13



Theorem 7. If X is an n-dimensional Riemannian manifold (without boundary), with
w,, denoting the volume of the unit n-ball, vol(X) denoting the volume of X and
tsc(X) denoting the total scalar curvature of X then as X is scaled up the asymptotics
of the spread are as follows:

n+1

1

Wy

(t” vol(X) + 12 tsc(X)+O(t”_4)> as t — oo,
Proof. This is almost identical to the proof of Theorem 11 in [10] except that
now the scalar curvature is not a constant and should be written as t(x). O

This simplifies in the case 1 = 2 as follows.

Corollary. For X a Riemannian surface, the spread is asymptotically given in terms
of the area and the Euler characteristic by

3
Eo(t2) = %tz FX(E)+0(t2) ast— o,

Proof. This follows from the theorem above as w, = 7t and the Gauss-Bonnet
Theorem says that tsc(X) = 4y (X2). O

4 Dimension and fractals

In this section we define the notion of spread dimension of a metric space
which is the instantaneous growth rate of the spread of the space. This notion
of dimension is scale dependent. For instance, we will see that a long, thin
rectangular array of points can have spread dimension close to zero, one, or
two, depending on the scale. Then we look at the spread dimension of some
finite approximations to simple fractals and see that the spread dimension
is close to the Hausdorff dimension at some scales. Finally we observe that
Meckes has recently related the asymptotic magnitude dimension of spaces to
the Minkowski dimension, for the spaces considered here the Hausdorff and
Minkowski dimensions are equal.

4.1 Definition of spread dimension

Now that we have a notion of size of a metric space, we can look at the
growth rate of this size as a measure of the ‘dimension” of the space. Typically
one looks at the asymptotic growth rate as a measure of dimension, but it is
interesting here to look at the instantaneous growth rate. The size is very scale
dependent in a non-obvious way so looking at how the growth rate varies is
very interesting. For a real-valued function f defined on some subset of the
reals, we can define the growth rate at t by

) =1L,

For example, if f(t) = " then Gf(t) = n. Another way of writing this is as

(6P = 75 L

14
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Figure 5: The spread dimension profiles for various rectangular grids.

The instantaneous growth rate is the gradient in a log-log plot of the function.

We define dimg(X) the instantaneous spread dimension, or just spread
dimension, of a metric space X to be Gf(1) where f(t) := Ey(tX), in other
words,

. din(Ey(tX))|  t dEy(tX)
dimo(X) = =G |y T BEX aF

It is then informative to look at examples of this instantaneous spread
dimension as the space is scaled. The following examples were calculated
using maple on a processor with 16GB of RAM.

4.2 Rectangular grids

As a first set of examples we can look at three types of rectangular grids with
equally spaced points. The spread-dimension profiles are shown in Figure

Starting first with the grid of 1 x 30000 points, or, in other words, a line of
30000 points, we see that when the points are very close together the spread
dimension is close to zero, reflecting the fact that the ‘line” at that scale is
point-like. As the line of points is scaled up, it looks more and more like a line,
so when the interpoint distance is 0.01 units, meaning the length is 300 units,
the spread dimension is close to one. As the line of points is scaled up further
and further, so that the interpoint distance is 10 units, say, the point-like nature
is apparent and the spread dimension drops to zero.

Considering the square grid of 220 x 220 points, we see that this starts off
looking like a point at small scales, with the spread dimension being close to
zero, then as the square grid is scaled up to about 20 units by 20 units, with an
interpoint distance of about 0.1 units, it looks more like a genuine square and
has an spread dimension of just under two. Then as the square grid is scaled
up further, the point-like nature is apparent and the spread dimension drops
to zero.

The most interesting case shown is where we consider the rectangular grid
of 10 x 4900 points. Again, at small scales the spread dimension is close to
zero whilst the grid looks like a small point. Then as it is scaled up there is
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Figure 6: The spread dimension profiles of finite approximations to certain
fractals, compared to the Hausdorff dimensions of the fractals.

a regime, around where the rectangle is of the order of 0.1 units by 50 units,
where the space looks ‘line-like” and the dimension is approximately one. As it
is scaled up further to around 10 units by 500 units, the width is apparent and
the spread dimension heads towards two. Finally, as it is scaled up further,
the point-like nature becomes apparent and the spread dimension descends to
Zero.

From this we deduce that the spread E; must be measuring something
geometric.

4.3 Fractals

We now look at the spread dimension of certain finite approximations to fractal
sets in Euclidean space, namely to the ternary Cantor set, the Koch curve and
the Sierpinski triangle. We can look at the spread dimension profile and see
that at certain scales the spread dimension is roughly the Hausdorff dimension
of the corresponding fractal, indicating that spread is a reasonable measure of
the size of these fractals, and, indeed, of these approximations to these fractals.

In the first case we look at the ternary Cantor set. This is approximated
by starting with two points a distance ¢ apart on a line. We use the two
contractions of the line by a factor of a third which respectively leave the two
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points fixed. By applying these two contractions successively up to 10 times,
starting at the initial points, we obtain 2048 points. The spread dimension
at various lengths £ can then be computed numerically. In Figure [f] we see
that at small scales the spread dimension is close to zero corresponding to
the fact that the space looks like a point at those scales. Similarly, at very
large scales, the space looks like a collection of distant points and the spread
dimension is again zero. At intermediate scalings, roughly for 10 < £ < 10000
the spread dimension is roughly the Hausdorff dimension of the Cantor set,
namely In2/ In3, indicating that the space looks more ‘Cantor set-like” at those
scales.

The top-right picture in Figure|[f]is an enlargement of the Cantor set profile,
and shows that things are apparently more intriguing than one might guess.
At intermediate scales, the spread dimension seems to oscillate around the
Hausdorff dimension, with the oscillations being of multiplicative period 3.
Such small oscillations were observed for the magnitude of the Cantor set
in [5]. I have no good explanation for these oscillations at the moment.

In the next case we look at the Koch curve. Again, this is approximated by
starting with a couple of points and iteratively applying one of four contrac-
tions, to obtain a finite metric space contained in the Koch curve. The graph
shows that as the approximation is scaled up from very small, the spread
dimension increases to roughly the Hausdorff dimension, In4/ In3, where it
remains over a range of scales, before descending to zero as the approximating
space is scaled up sufficiently so that its discrete, point-like nature is apparent.

The final example of the Sierpinski triangle is generated in the same way
using an iterated function system, and shows the same behaviour, namely,
of having roughly the same spread dimension as its Hausdorff dimension at
certain scales.

These examples should serve to show that there is something interesting
going on which has yet to be examined fully.

4.4 Asymptotic magnitude dimension and Minkowski dimension

Here we have been considering the instantaneous spread dimension of spaces
which is scale dependent. You can also consider the asymptotic spread di-
mension which is scale independent; for a space X it is essentially the lim
sup of the growth rate of Ey(tX) as t — oo. Following numerical and exact
calculations in [3} 5} 9} [10] Meckes showed [7] that the asymptotic magnitude
of a space is defined if and only if the Minkowski dimension of the space is
defined and in that case the two are equal. (For the spaces considered above
the Minkowski and Hausdorff dimensions agree.) This further suggests that it
is not far-fetched that the spread is encoding such geometric information.
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