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Abstract

The Hausdorff distance is a measure of (dis-)similarity between two sets which is widely
used in various applications. Most of the applied literature is devoted to the computation
for sets consisting of a finite number of points. This has applications, for instance, in image
processing. However, we would like to apply the Hausdorff distance to control and evaluate
optimisation methods in level-set based shape optimisation. In this context, the involved
sets are not finite point sets but characterised by level-set or signed distance functions. This
paper discusses the computation of the Hausdorff distance between two such sets. We recall
fundamental properties of the Hausdorff distance, including a characterisation in terms of
distance functions. In numerical applications, this result gives at least an exact lower bound
on the Hausdorff distance. We also derive an upper bound, and consequently a precise error
estimate. By giving an example, we show that our error estimate cannot be further improved
for a general situation. On the other hand, we also show that much better accuracy can
be expected for non-pathological situations that are more likely to occur in practice. The
resulting error estimate can be improved even further if one assumes that the grid is rotated
randomly with respect to the involved sets.

Keywords: Hausdorff Distance, Signed Distance Function, Level-Set Method, Error Esti-
mate, Stochastic Error Analysis

1 Introduction

The Hausdorff distance (also called Pompeiu-Hausdorff distance) is a classical measure for the
difference between two sets:

Definition 1. Let A,B ⊂ Rn. Then the one-sided Hausdorff distance between A and B is
defined as

d (A→ B) = sup
x∈A

inf
y∈B
|x− y| . (1)

This allows us to introduce the Hausdorff distance:

dH(A,B) = max (d (A→ B) , d (B → A)) (2)

While one can, in fact, define the Hausdorff distance between subsets of a general metric
space, we are only interested in subsets of Rn in the following. Note that d (A→ B) 6= d (B → A)
in general, such that the additional symmetrisation step in (2) is necessary. For instance, if
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A ⊂ B, then d (A→ B) = 0 while dH(A,B) = d (B → A) > 0 unless A = B. Since the
Euclidean norm |·| is continuous, it is easy to see that (1) and thus also dH is not changed if we
replace one or both of the sets by their interior or closure. The set of compact subsets of Rn is
turned into a metric space by dH . For some general discussion about the Hausdorff distance,
see Subsection 6.2.2 of [3]. The main theoretical properties that we need will be discussed in
Section 2 in more detail.

Historically, the Hausdorff distance is a relatively old concept. It was already introduced by
Hausdorff in 1914, with a similar concept for the reciprocal distance between two sets dating back
to Pompeiu in 1905. In recent decades, the Hausdorff distance has found plenty of applications
in various fields. For instance, it has been applied in image processing [6], object matching [16],
face detection [7] and for evolutionary optimisation [14], to name just a few selected areas. In
most of these applications, the sets whose distance is computed are finite point sets. Those sets
may come, for instance, from filtering a digital image or a related process. Consequently, there
exists a lot of literature that deals with the computation of the Hausdorff distance for point sets,
such as [11]. Methods exist also for sets of other structure, for instance, convex polygons [1].

We are specifically interested in applying the Hausdorff distance to measure and control the
progress of level-set based shape optimisation algorithms such as the methods employed in [8]
and [9]. In particular, the Hausdorff distance between successive iterates produced by some
descent method may be useful to implement a stopping criterion or to detect when a descent
run is getting stuck in a local minimum. For these applications, the sets A and B are typically
open domains that are described by the sub-zero level sets of some functions. To the best of
our knowledge, no analysis has been done so far on the computation of the Hausdorff distance
for sets given in this way. A special choice for the level-set function of a domain is its signed
distance function:

Definition 2. Let Ω ⊂ Rn be bounded. We define the distance function of Ω as

dΩ(x) = inf
y∈Ω
|x− y| .

Note that dΩ(x) = 0 for all x ∈ Ω. To capture also information about the interior of Ω, we
introduce the signed (or oriented) distance function as well:

sdΩ(x) =

{
dΩ(x) x 6∈ Ω,

−dRn\Ω(x) x ∈ Ω

See also chapters 6 and 7 of [3]. Both dΩ and sdΩ are Lipschitz continuous with constant one.

If the signed distance function of Ω is not known, it can be calculated very efficiently from an
arbitrary level-set function using the Fast Marching Method [15]. Conveniently, the Hausdorff
distance can be characterised in terms of distance functions. It should not come as a big surprise
that this is possible, considering that the distance function dB(x) appears on the right-hand
side of (1). This is a classical result, which we will recall and discuss in Section 2. For numerical
calculations, though, the distance functions are known only on a finite number of grid points.
In this case, the classical characterisation only yields an exact lower bound for dH(A,B). The
main result of this paper is the derivation of upper bounds as well, such that the approximation
error can be estimated. These results will be presented in Section 3. We also give an example to
show that our estimates of Subsection 3.1 are sharp in the general case. In addition, we will see
that much better estimates can be achieved for (a little) more specific situations. Since these
situations still cover a wide range of sets that may occur in practical applications, this result is
also useful. Subsection 3.3 gives a comparison of the actual numerical error for some situations
in which dH(A,B) is known exactly. We will see that these results match the theoretical
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conclusions quite well. In Section 4, finally, we show that further improvements are possible
if we assume that the orientation of the grid is not related to the sets A and B. This can be
achieved, for instance, by a random rotation of the grid, and is usually justified if the data
comes from a measurement process.

Note that our code for the computation of (signed) distance functions as well as the Hausdorff
distance following the method suggested here has been released as free software. It is included
in the level-set package [10] for GNU Octave [5].

2 Characterising dH in Terms of Distance Functions

Let A,B ⊂ Rn be two compact sets throughout the remainder of the paper. In this case, it is
easy to see that compactness implies that the various suprema and infima in Definition 1 and
Definition 2 are actually attained:

Lemma 1. For each x ∈ Rn there exist y1, y2 ∈ A such that dA(x) = |x− y1| and |sdA(x)| =
|x− y2|. Furthermore, there also exist x ∈ A and y ∈ B such that d (A→ B) = |x− y|. This,
of course, implies that dH(A,B) can also be expressed in a similar form.

Let us now, for the rest of this section, turn our attention to the relation between the
Hausdorff distance and distance functions. While most of this content is well-known and not
new, we believe that it makes sense to give a comprehensive discussion. This is particularly
true because the Hausdorff distance is a concept that can be quite unintuitive. Thus, we try to
clearly explain potential pitfalls and give counterexamples where appropriate. This discussion
forms the basis for the later sections, in which we present our new results.

2.1 Distance Functions

One may have the idea to “characterise” the sets A and B via their distance functions dA
and dB from Definition 2. Since the distance functions are part of the Banach space C(Rn) of
continuous functions, the norm on this space can be used to define a distance between A and B
as ‖dA − dB‖∞. We will now see that this distance is equal to the Hausdorff distance defined
in Definition 1:

Theorem 1. For each x ∈ Rn, the inequality

|dA(x)− dB(x)| ≤ dH(A,B) (3)

holds. More precisely, one even has

dH(A,B) = ‖dA − dB‖∞ = sup
x∈Rn

|dA(x)− dB(x)| . (4)

Proof. This is a classical result, which is, for instance, given also on page 270 of [3]. Since the
argumentation there contains a small gap, we provide a proof here nevertheless for convenience.

Assume first that x ∈ A. In this case, dA(x) = 0 such that |dA(x)− dB(x)| = dB(x). Since

dH(A,B) ≥ d (A→ B) = sup
y∈A

dB(y) ≥ dB(x),

the estimate (3) follows. A similar argument can be applied if x ∈ B. Thus, it remains to
consider the case x ∈ Rn \ (A ∪ B). According to Lemma 1, we can choose y ∈ B with
dB(x) = |x− y|. There also exists z ∈ A such that dA(y) = |z − y|. Then (3) follows, since

dA(x)− dB(x) ≤ |x− z| − |x− y| ≤ |z − y| = dA(y) ≤ d (B → A) ≤ dH(A,B).
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Figure 1: Sketch for the situation of Example 1. The dark ring is B = A ∩ B, while the inner
circle is A \B. The red line shows the Hausdorff distance between A and B.

To show also (4), let us assume, without loss of generality, that dH(A,B) = d (A→ B). But
since

d (A→ B) = sup
x∈A

dB(x) = sup
x∈A
|dA(x)− dB(x)| ≤ ‖dA − dB‖∞ , (5)

the claim follows.

Theorem 1 forms the foundation for the remainder of our paper: It gives a representation of
the Hausdorff distance in terms of the distance functions. Furthermore, it is also easy to actually
evaluate this representation in practice. In particular, if dA and dB are given numerically on
a grid, one can just consider |dA(xi)− dB(xi)| for all grid points xi. The largest difference
obtained in this way is guaranteed to be at least a lower bound for dH(A,B). If the maximising
point for (4) is not a grid point, however, we can not expect to get equality with the Hausdorff
distance. Section 3 will be devoted to a discussion of the possible error introduced in this way.

It is sometimes convenient to use not the Hausdorff distance itself, but the so-called com-
plementary Hausdorff distance dH(Rn \ A, Rn \ B) instead. (Particularly when dealing with
open domains in applications.) See, for instance, [2]. In this case, our assumption of compact
sets is not fulfilled any more, since the complements are unbounded if the sets themselves are
bounded. However, one can verify that Lemma 1 and Theorem 1 are still valid also for this
situation.

2.2 Signed Distances

We turn our focus now to signed distance functions: Since sdA and sdB are in C(Rn) as well, also
‖sdA − sdB‖∞ can be used as a distance measure between A and B. See also Subsection 7.2.2
of [3]. This distance is, however, not equal to dH(A,B):

Example 1. Let 0 < r < R be given, and define A = BR (0), B = A \Br (0). This situation is
depicted in Figure 1. Then dH(A,B) = d (A→ B) = r, as highlighted in the sketch with the
red line. On the other hand, sdA(0) = −R while sdB(0) = r. Hence,

‖sdA − sdB‖∞ ≥ |sdA(0)− sdB(0)| = R+ r > r = dH(A,B).

In fact, one can show that ‖sdA − sdB‖∞ induces a stronger metric between the sets than
either the complementary or the ordinary Hausdorff distance alone:
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A

B
(a) A and B themselves.

R \A

R \B
(b) R \A and R \B.

Figure 2: The situation of Example 2. The red line highlights the Hausdorff distance between
A and B (left), as well as their complements (right).

Theorem 2. Let x ∈ Rn. Then

|sdA(x)− sdB(x)| = |dA(x)− dB(x)|+
∣∣dRn\A(x)− dRn\B(x)

∣∣ . (6)

Consequently, also

max (dH(A,B), dH(Rn \A, Rn \B)) ≤ ‖sdA − sdB‖∞ ≤ dH(A,B) + dH(Rn \A, Rn \B). (7)

Proof. Choose x ∈ Rn arbitrary. If x ∈ A ∩B, then

|dA(x)− dB(x)| = 0,
∣∣dRn\A(x)− dRn\B(x)

∣∣ = |sdA(x)− sdB(x)| .

This implies the claim. For x ∈ A \B instead, we get

|dA(x)− dB(x)| = dB(x),
∣∣dRn\A(x)− dRn\B(x)

∣∣ = dRn\A(x), |sdA(x)− sdB(x)| = dRn\A(x)+dB(x).

Taking these together, we see that the claim is satisfied also in this case. The two remaining cases
can be handled with analogous arguments. The relation (7) follows by taking the supremum
over x ∈ Rn in (6).

Unfortunately, equality does not hold in general for the right part of (7). This is due to the
fact that taking the supremum in (6) may yield different maximisers for |dA(x)− dB(x)| and∣∣dRn\A(x)− dRn\B(x)

∣∣. One can also construct a simple example where this is, indeed, the case:

Example 2. Choose A = [0, 1] and B = [0, 3]. Then dH(A,B) = 2, while dH(R \ A, R \ B) =
3/2. For the signed distance functions, we have ‖sdA − sdB‖∞ = 2. See also Figure 2, which
sketches this situation.

That ‖sdA − sdB‖∞ is strictly stronger than dH(A,B) also manifests itself in the induced
topology on the space of compact subsets of Rn:

Example 3. Let A = [−1, 1]. For k ∈ N, we define

Ak = A \
(
−1

k
,

1

k

)
.

This defines a compact set Ak ⊂ A for each k. Furthermore, dH(A,Ak) = 1/k → 0 as k →∞.
In other words, Ak → A in the Hausdorff distance. However, sdA(0) = −1 while sdAk

(0) = 1/k.
In particular, sdAk

6→ sdA.

Example 3 implies also that the reverse of (7),

‖sdA − sdB‖∞ ≤ C · dH(A,B),

can not hold for any constant C. Thus, one really needs both the ordinary and the complemen-
tary Hausdorff distance to get an upper bound on ‖sdA − sdB‖∞. In other words, dH(A,B) and
‖sdA − sdB‖∞ are not equivalent metrics. Compare also Example 2 in [2]: There, it is shown
that the topologies induced by the ordinary and the complementary Hausdorff distance are not
the same. This is done with a construction similar to Example 3.
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2.3 The Maximum Distance Function

In the final part of this section, we would like to introduce another lower bound for dH(A,B).
This additional bound may improve the approximation of dH(A,B) if we are not able to max-
imise over all x ∈ Rn but only, for instance, grid points. However, we ultimately come to the
conclusion that this bound is probably not very useful for a practical computation of dH(A,B).
This will be discussed further at the end of the current subsection. Hence, we will not make
use of the results here in the later Section 3. Since the concepts are, nevertheless, interesting at
least from a theoretical point of view, we still give a brief presentation here. As far as we are
aware, these results have not been discussed in the literature before.

Our initial motivation is the following: We have seen in Theorem 1 that the Hausdorff
distance dH(A,B) can be expressed as ‖dA − dB‖∞. On the other hand, ‖sdA − sdB‖∞ gives
not the Hausdorff distance. If we are given sdA and sdB for the computation, this is unfortunate.
While it is, of course, trivial to get dA and dB from the signed distance functions, this process
throws away valuable information. In particular, the information from the signed distance
functions at points inside the sets can not be used. By defining yet another type of “distance
function”, which now gives the maximal distance to any point in a set, we get rid of this
qualitative difference between interior and exterior points:

Definition 3. Let Ω ⊂ Rn be bounded. The maximum distance function of Ω is then

mdΩ(x) = sup
y∈Ω
|x− y| . (8)

Since Ω is bounded, this is well-defined for any x ∈ Rn. If Ω is compact in addition, an analogous
result to Lemma 1 holds.

Indeed, mdΩ is always non-negative (assuming Ω 6= ∅). For mdΩ(x), it does not immediately
matter whether x ∈ Ω or not. Furthermore, also the maximum distance function gives a lower
bound on the Hausdorff distance, similar to (3):

Theorem 3. Let A,B ⊂ Rn be compact and choose x ∈ Rn arbitrarily. Then

|mdA(x)−mdB(x)| ≤ dH(A,B).

Proof. The proof is similar to the proof of Theorem 1: Let x ∈ Rn be given. There exist y ∈ B
with mdB(x) = |x− y| and z ∈ A with dA(y) = |y − z|. Note that dH(A,B) ≥ |y − z| and
mdA(x) ≥ |x− z|. Thus

mdB(x)−mdA(x) ≤ |x− y| − |x− z| ≤ |y − z| ≤ dH(A,B).

This completes the proof if we apply the same argument also with the roles of A and B ex-
changed.

Unfortunately, the analogue of (4) does not hold. In fact, it is possible that mdA = mdB
everywhere on Rn but the sets A and B are quite dissimilar. Such a situation is depicted in
Figure 3. Due to the “outer ring”, which is part of A∩B, the maximum in (8) is always achieved
with some y from this ring. A typical situation is shown with the point x and the red line,
which highlights its maximum distance to both A and B. Consequently, mdA = mdB and the
differences between A and B inside the ring are not “seen” by the maximum distance functions
at all. Thus, we have to accept that ‖mdA −mdB‖∞ < dH(A,B) can be the case.

The situations where the maximum distance functions actually carry valuable information
(as opposed to Figure 3) are actually similar to those characterised in Definition 5. For such
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A B

x

Figure 3: In the shown situation, mdA = mdB while A and B are clearly not the same sets.
Dark regions are A ∩ B, while lighter regions are A or B alone. The red line highlights the
maximum distance mdA(x) = mdB(x) for some generic point x.

situations, the additional information in mdA and mdB could, indeed, be used to improve the
approximation of dH(A,B). However, as we will see below in Theorem 5, those are also the
situations where (4) alone already gives a very close estimate of dH(A,B). In these cases, we are
not really in need of additional information. On the other hand, for situations like Figure 3 also
the approximation of dH(A,B) from grid points is actually difficult and extra data would be very
desirable. But particularly for those situations, the maximum distance functions do not provide
any extra data! Furthermore, it is not clear how mdA and mdB can actually be computed from,
say, the level-set functions of A and B. It seems plausible that those functions are the viscosity
solutions of an equation similar to the Eikonal equation, and so it may be possible to develop
either a Fast Marching scheme or some other numerical method. However, since we have just
argued that we do not expect a real benefit from the usage of the maximum distance functions
in practice, the effort involved seems not worthwhile. For the remainder of this paper, we will
thus concentrate on Theorem 1 as the sole basis for our numerical computation of dH(A,B).

3 Estimation of the Error on a Grid

With the basic theoretical background of Section 2, let us now consider the situation on a grid.
In particular, we assume that we have a rectangular, bounded grid in Rn with uniform spacing
h in each dimension. (While it is possible to generalise some of the results to non-uniform grids
in a straight-forward way, we assume a uniform spacing for simplicity.) We denote the finite set
of all grid points by N , and the set of all grid cells by C. For each cell c ∈ C, N(c) is the set
of all grid points that span the cell (i. e., its corners). For example, for a k × k grid in R2 that
extends from the origin into the first quadrant, we have

N = {xij | i, j = 0, . . . , k − 1, xij = (i, j)h} ,
C = {cij | i, j = 1, . . . , k − 1} , N(cij) = {xi−1,j−1, xi,j−1, xij , xi−1,j} .

Let us assume that we know the distance functions of A and B on each grid point, i. e.,
dA(x) and dB(x) for all x ∈ N . We furthermore assume that these values are known without
approximation error. This is, of course, not realistic in practice. However, the approximation
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error in describing the geometries and computing their distance functions is a matter outside
the scope of this paper. Finally, let us also assume that the grid is large enough to cover the
sets. In particular: For each y ∈ A ∪ B, there should exist a grid cell c ∈ C such that y is
contained in the convex hull co (N(c)) of the corners of c. If this is not the case, the grid is
simply inadequate to capture the geometrical situation.

3.1 Worst-Case Estimates

In order to approximate dH(A,B) from the distance functions on our grid, we make use of (4).
In particular, we propose the following straight-forward approximation:

dH(A,B) ≈ d̃(A,B) = max
x∈N
|dA(x)− dB(x)| (9)

From (3), we know that this is, at least, an exact lower bound. However, in the general case,
an approximation error

0 ≤ δ =
∣∣∣dH(A,B)− d̃(A,B)

∣∣∣ = dH(A,B)− d̃(A,B)

will be introduced by using (9). This is due to the fact that we only maximise over grid points.
The real maximiser of the supremum in (4), on the other hand, may not be a grid point.

Let us now analyse the approximation error δ. We have seen in the proof of Theorem 1 that

dH(A,B) = sup
y∈A∪B

|dA(y)− dB(y)| = max
c∈C

sup
y∈co(N(c))

|dA(y)− dB(y)| .

Note that this is still an exact representation, with no approximation error introduced so far.
We have just split up the supremum over A∪B into grid cells, but we still take into account all
points contained in a grid cell, not just its corners. This is achieved by using the convex hull
co (N(c)) instead of the finite set N(c) alone. On the other hand, the approximation (9) can be
formulated as

d̃(A,B) = max
c∈C

max
x∈N(c)

|dA(x)− dB(x)| .

Comparing both equations, we see that the approximation error δ is introduced precisely by
the step from co (N(c)) to N(c). We can now formulate and prove a very general upper bound
on dH(A,B):

Theorem 4. Let x ∈ N be a grid point and y ∈ Rn be arbitrary. We set

t(x, y) =

{
|x− y| x ∈ A,

2 |x− y| x 6∈ A.

For a cell c ∈ C, we define furthermore

d(c) = sup
y∈co(N(c))

min
x∈N(c)

(|dA(x)− dB(x)|+ t(x, y)) . (10)

Then
d (A→ B) ≤ max

c∈C′(A)
d(c).

Here, C ′(A) = {c ∈ C | co (N(c)) ∩A 6= ∅} is the set of all grid cells which contain some part of
A.

Similarly, d (B → A) and thus dH(A,B) can be estimated.
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Proof. We will show that
sup

y∈A∩co(N(c))
|dA(y)− dB(y)| ≤ d(c)

for each c ∈ C. The claim then follows from (5). So choose c ∈ C, y ∈ A ∩ co (N(c)) and
x ∈ N(c). It remains to verify that

|dA(y)− dB(y)| = dB(y) ≤ |dA(x)− dB(x)|+ t(x, y).

Assume first that x ∈ A. Since dB has Lipschitz constant one, we really get

|dA(x)− dB(x)|+ t(x, y) = dB(x) + |x− y| ≥ dB(y)

in this case. Assume now x 6∈ A. Since y ∈ A and thus dA(y) = 0, Lipschitz continuity of dA
implies that dA(x) ≤ |x− y|. Using this auxiliary result, we get that also in this case

|dA(x)− dB(x)|+ t(x, y) ≥ dB(x)− dA(x) + 2 |x− y| ≥ dB(x) + |x− y| ≥ dB(y).

Hence, the claim is shown.

Even though the formulation of Theorem 4 is complicated, the idea behind it is quite simple:
Since the distance functions are Lipschitz continuous, also the function |dA − dB|, which we have
to maximise over co (N(c)) for each grid cell, is Lipschitz continuous. This allows us to estimate
the maximum in terms of the function’s values at the corners (which are known). We are even
allowed to try all corners and use the smallest resulting upper bound. This is what happens in
(10). Furthermore, the Lipschitz constant depends on whether or not the corner is in A. (If it
is, dA vanishes, which reduces the Lipschitz constant to just that of dB. Otherwise, we have to
use two as the full Lipschitz constant of |dA − dB|.) This is the role that t(x, y) plays. It gives
the “distance” between x and y based on the applicable Lipschitz constant.

Coupled with the fact that d̃(A,B) is a lower bound for the exact Hausdorff distance, the
upper bound in Theorem 4 allows us now to estimate δ. However, evaluating (10) is difficult
and expensive in practice (although it can be done in theory). Hence, we will now draw some
conclusions that simplify the upper bound. As a first result, let us consider the worst case where
x 6∈ A for all corners x ∈ N(c) of some cell:

Corollary 1. Theorem 4 implies for the error estimate:

δ ≤
√
n · h

Proof. Let c ∈ C be some grid cell and y ∈ co (N(c)). Then there exists x ∈ N(c) such that

t(x, y) ≤ 2 |x− y| ≤ 2 ·
√
n · h
2

=
√
n · h.

This is simply due to the fact that the grid cell’s longest diagonal has length
√
n·h. Consequently,

in the worst case the nearest corner x has half that distance to y. Hence also

min
x∈N(c)

(|dA(x)− dB(x)|+ t(x, y)) ≤ max
x∈N(c)

|dA(x)− dB(x)|+ min
x∈N(c)

t(x, y)

≤ max
x∈N(c)

|dA(x)− dB(x)|+
√
n · h.

This estimate can be used for d(c) from (10). Consequently, Theorem 4 implies

d (A→ B) ≤ max
c∈C

max
x∈N(c)

|dA(x)− dB(x)|+
√
n · h = d̃(A,B) +

√
n · h.

Since the same estimate also works for d (B → A), the claim follows.
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A

Figure 4: A possible pathological situation where the grid is not suitable for A.

Taking a closer look, though, the worst-case situation considered above is quite strange.
In principle, it can happen that there is some cell c with A ∩ co (N(c)) 6= ∅ but for which all
corners are not in A. Such a situation is depicted in Figure 4. However, in practice such a
case is very unlikely to occur. In particular, assume that we describe the set A by a level-set
function φ, and that φ(x) > 0 for all corners x ∈ N(c) of some grid cell c. In that case, there is
no way of knowing whether, in reality, there is some part of A inside the cell or not. The grid is
simply too coarse to “see” such geometric details. Consequently, it makes sense to assume the
simplest possible situation, namely that A ∩ co (N(c)) = ∅ for all such cells c. Thus, we make
the following additional assumption:

Definition 4. Consider grid cells c ∈ C such that x 6∈ A for all corners x ∈ N(c). If co (N(c))∩
A = ∅ for all those c, the grid is said to be suitable for A.

In the case of a suitable grid (for both A and B), we get the “reduced Lipschitz constant”
in (10) for at least one corner per relevant cell. This allows us to lower the error estimate:

Corollary 2. Let the grid be suitable for A and B. Furthermore, we introduce the dimensional
constant

∆n = sup
y∈Q

min

(
|y| , min

x∈N ′
2 |x− y|

)
. (11)

Here, Q = {y ∈ Rn | 0 ≤ yi ≤ 1 for all i = 1, . . . , n} is the unit square, and

N ′ = {x ∈ Rn | xi ∈ {0, 1} for all i = 1, . . . , n} \ {0}

is the set of its corners except for the origin. Then,

δ ≤ ∆n · h.

Proof. Let c ∈ C be a cell with co (N(c)) ∩ A 6= ∅. Since the grid is assumed to be suitable,
we know that there exists at least one corner x0 ∈ N(c) with x0 ∈ A. Hence, for arbitrary
y ∈ co (N(c)),

min
x∈N(c)

t(x, y) ≤ min

(
|y − x0| , min

x∈N(c)\{x0}
2 |y − x|

)
≤ ∆n · h.

With this, the claim follows as in the proof of Corollary 1.

The most difficult part of Corollary 2 is probably the strange dimensional constant ∆n

defined in (11). This constant replaces the functions t(x, ·) for x ∈ N(c). It can be interpreted
like this: Let spherical fronts propagate starting from all corners of the unit square Q. The
front starting at the origin has speed one, while the other fronts have speed 1/2. Over time, the
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fronts will hit each other, and will reach all parts of Q. The value of ∆n is precisely the time it
takes until all points in Q have been hit by at least one front. For the case n = 2, these arrival
times are shown in Figure 5a. The correct value of ∆2 is the maximum attained at both spots
with the darkest red (one in the north and one in the east). Figure 5b shows the maximising
points (red and black) over the unit cube for n = 3. Since the expression that is maximised
in (11) is symmetric with respect to permutation of the coordinates, there are six maximisers.
The highlighted one sits at the intersection of the spheres originating from the three corners
marked in blue. Based on these observations and some purely geometrical arguments, one can
calculate

∆1 =
2

3
≈ 0.67, ∆2 =

2

3

√
5−
√

7 ≈ 1.02, ∆3 =
2

3

√
8−
√

19 ≈ 1.27.

These constants are a clear improvement over the estimate of Corollary 1. In fact, the bound
in Corollary 2 is actually sharp. To demonstrate this, we will conclude this subsection with an
example in two dimensions that really attains the maximal error δ = ∆2 · h:

Example 4. For simplicity, assume h = 1. We consider the situation sketched in Figure 6.
Observe first that all grid points except a, b, c and d are part of A ∩B, and thus dA = dB = 0
for them. Consequently, we only have to consider these four points in order to find d̃(A,B). For
symmetry reasons, it is actually enough to concentrate only on a and b. The point p corresponds
to the position with maximal arrival time, as seen also in Figure 5a. It is characterised by
requiring

|a− p| = |d− p| = r

2
, |b− p| = |c− p| = r. (12)

Solving these equations for the coordinates of p and the radius r yields

p =

(
8−
√

7

6
,

1

2

)
, r =

2

3

√
5−
√

7.

Note specifically that r = ∆2. (In fact, a construction similar to this one can be used to calculate
∆2 in the first place.) The relations (12) can also be seen in the sketch: The dotted circle has
radius r and centre p. The points b and c lie on it. The two smaller circles (which define the
exclusion from A) have centres a and d with radius r/2, and p lies on both of them.

B is chosen in such a way that p is also at the centre of its hole. Consequently, p is the point
in A that achieves dH(A,B) = d (A→ B) = dB(p). This is indicated by the red line. Let us
also introduce ρ as the width of the small ring between the dotted circle and the dark region.
Then ρ = dB(b) and dH(A,B) = r + ρ. Furthermore, note that

dA(a) =
r

2
, dB(a) =

r

2
+ ρ.

Hence,
d̃(A,B) = |dA(a)− dB(a)| = |dA(b)− dB(b)| = ρ.

This also implies that δ = r = ∆2 · h, which is, indeed, the largest possible bound permitted by
Corollary 2.

3.2 External Hausdorff Distances

As we have promised, the situation from Example 4 shows that one can not, in general, expect a
better error estimate than Corollary 2. However, considering Figure 6, we also observe that the
situation there is quite strange. Thus, there is hope that we can get stronger estimates if we add
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(b) Maximising points for ∆3.

Figure 5: The computation of ∆2 and ∆3 from the maximisation of the arrival times over Q.
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ρ

Figure 6: The situation considered in Example 4. The dark region is A ∩ B, the lighter part
inside the circle is A \B. The red line indicates the Hausdorff distance dH(A,B) = d (A→ B).
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x

y

A

B

(a) The external line with dH(A,B) = |dA − dB |.

yxc r

(b) External Hausdorff distance with a restricted
r.

Figure 7: The situation of an external Hausdorff distance from Definition 5. The red lines
indicate the Hausdorff distances dH(A,B) = d (A→ B). The dark regions are, as always,
A ∩B, while the lighter parts are A or B alone.

some more assumptions on the geometrical situation. This is the goal of the current subsection.
It will turn out in Theorem 5 that this is, indeed, possible. Consider, for example, Figure 7a:
There, dH(A,B) = d (A→ B) = |x− y|. Furthermore, all points z along the external black
line satisfy |dA(z)− dB(z)| = |x− y|. Consequently, all those points are maximisers of (4). If a
grid point happens to lie somewhere on this line, d̃(A,B) is exact. But even if this is not the
case (as shown in the figure), |dA − dB| will be very close to |x− y| for grid points that are far
away from the sets and close to the line. In all of these cases, we can expect d̃(A,B) to be much
closer to dH(A,B) than the bounds from the previous Subsection 3.1 tell us. Furthermore, the
estimate will be more precise the further away we can go on the external line. Two conditions
determine how far that really is: First, of course, the size of our finite grid is a clear restriction.
Second, we need that dA(z) = |z − x| and dB(z) = |z − y| for the points z on the external line
that we consider. This means that x and y must be the closest points to z of the sets A and
B, respectively. The latter is a purely geometrical condition on A and B, and is not related to
the grid. Let us formalise it:

Definition 5. Assume that dH(A,B) = d (A→ B) = |x− y| > 0 with x ∈ A and y ∈ B. Let
r > 0 and set d = (x− y)/ |x− y| as well as c = x+ rd and R = r + dH(A,B). We say that A
and B admit an external Hausdorff distance with radius r if

Br (c) ∩A = {x} , BR (c) ∩B = {y} . (13)

The condition in Definition 5 is quite technical, but it is relatively easy to understand and
verify for concrete situations (as long as it is known where the Hausdorff distance is attained).
It is related to the skeleton of the sets A and B, for which we refer to Section 3.3 of [3]. We
will see later in Corollary 3 that, for instance, convex sets admit an external Hausdorff distance
for arbitrary radius r, and that Definition 5 applies in a lot of additional practical situations.
Even for non-convex sets, an external Hausdorff distance with some restriction on the possible
r may be admissible. See, for instance, the situation in Figure 7b. A possible choice for r and
c is shown there. (The furthest possible c is at the end of the black line.) The dotted circles
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are Br (c) and BR (c). One can see that the inner one only touches A at x, and the outer one
does the same with B at y. This is the geometrical meaning of (13). Due to this property, we
know that dA(c) = |c− x| and dB(c) = |c− y|. One can also verify that the condition (13) gets
strictly stronger if we increase r. In other words, if an external Hausdorff distance with r is
admissible, this is automatically also the case for all radii s < r.

Based on this concept of external Hausdorff distances, we can now formalise the motivating
argument about better error bounds for this situation:

Theorem 5. Let A and B admit an external Hausdorff distance with r > 0. Let h be the grid
spacing, and assume that the grid is chosen large enough. Then, for h→ 0,

δ ≤ n

2

h2

r
+O

(
h3
)
. (14)

Proof. We use the same notation as in Definition 5. In particular, let dH(A,B) = d (A→ B) =
|x− y| with x ∈ A and y ∈ B. We also use c and R as in the definition. If z is a point next
to the straight line x–c, we can project it onto this line. Let the resulting point be called c′,
then c–c′–z and x–c′–z are right triangles. This situation is shown in Figure 8. According to
the sketch, we set

ρ = R− |z − c| = R−
√
a2 + b2.

Note that the dotted circle Bρ (z) is entirely contained in BR (c). By (13), this implies that
dB(z) ≥ ρ. Since x ∈ A, we also know dA(z) ≤ |z − x| =

√
b2 + (r − a)2. Both inequalities

together yield

d̃(A,B) ≥ |dA(z)− dB(z)| ≥ dB(z)− dA(z) ≥ R−
√
a2 + b2 −

√
b2 + (r − a)2.

(Assuming that z is a grid point.) On the other hand, since we have an external Hausdorff
distance, also

dH(A,B) =
∣∣dA(c′)− dB(c′)

∣∣ = dB(c′)− dA(c′) = (R− a)− (r − a)

holds. Hence,

δ = dH(A,B)− d̃(A,B) ≤
√
b2 + a2 − a+

√
b2 + (r − a)2 − (r − a). (15)

So far, z was just an (almost) arbitrary grid point. We will now try to choose it in a way
that reduces the bound on δ as much as possible. For this, observe that (15) contains two terms
of the form s 7→ (

√
b2 + s2− s) and that this function is decreasing in s. Thus, in order to get a

small bound, we would like to choose both values of s, namely a and r− a, as large as possible.
Consequently, we want a ≈ r/2. Let m = (c + x)/2 be the precise midpoint between c and
x. Since

√
n · h is the longest diagonal of the grid cells, there exists a grid point z ∈ N with

|m− z| ≤
√
n/2 · h. Choosing c′ as the projection of z onto the line x–c as before, this implies

that

a ≥ r

2
−
∣∣m− c′∣∣ ≥ r −

√
n · h

2
, r − a ≥ r −

√
n · h

2
, b =

∣∣z − c′∣∣ ≤ √n
2
h.

(Since |m− z|2 = |m− c′|2 + |z − c′|2, not all of these estimates can be sharp at the same time.
It may be possible to refine them and get smaller bounds below, but we do not attempt to do
that for simplicity.) Substituting in (15) yields

δ ≤
√
nh2 + (r −

√
n · h)2 − (r −

√
n · h).

Series expansion of this result for h→ 0 finally implies the claimed estimate (14).
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Figure 8: Deriving the bound (15) in the proof of Theorem 5.

A particular situation in which Definition 5 is satisfied is that of convex sets (see Figure 7a).
For them, (14) holds with arbitrary r as long as the grid is large enough to accommodate for
the far-away points:

Corollary 3. Let A and B be compact and convex. Then A and B admit an external Hausdorff
distance for arbitrary r > 0. Consequently, (14) applies for all r for which the grid is large
enough.

Proof. We exclude the trivial case A = B, since (14) is obviously fulfilled for that situation
anyway. Assume, without loss of generality, that dH(A,B) = d (A→ B). Let x ∈ A and y ∈ B
be given with d (A→ B) = |x− y| > 0 according to Lemma 1. Choose r > 0 arbitrarily and let
c be as in Definition 5.

The assumption d (A→ B) = dB(x) = |x− y| means that y is the closest point in B to x.
In other words, Bs (x) ∩ B = ∅, where we have set s = |x− y| for simplicity. This is depicted
with the dotted circle (which is outside of B) in Figure 9. The dotted lines indicate half-planes
perpendicular to the line x–y and through x and y, respectively. Assume for a moment that we
have some point z ∈ B that is “above” the “lower” half-plane. Due to convexity of B, this would
imply that the whole line z–y must be inside of B. This, however, contradicts Bs (x)∩B = ∅ as
indicated by the red part of z–y. Hence, the half-plane through y separates B and x. Similarly,
we can show that the half-plane through x separates A and c: Assume that z′ ∈ A is “above”
this half-plane. Then dB(z′) > s must be the case, as shown by the blue line. But this is a
contradiction, since dB(z′) ≤ d (A→ B) = s for all z′ ∈ A. These separation properties of the
half-planes, however, in turn imply (13). Thus, everything is shown.

Let us also remark that the proof of Corollary 3 stays valid as long as the sets A and B
are “locally convex” in a neighbourhood of x and y. This is an important situation for a lot
of potential applications: We already mentioned above that our own motivation for computing
the Hausdorff distance is to measure convergence during shape optimisation. In this case, it
is often the case that the Hausdorff distance is already quite small in relation to the sets. For
a lot of these situations, the largest difference between the sets is attained in a way similar to
Figure 9, even if the sets themselves need not necessarily be convex.
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Figure 9: Sketch for the proof of Corollary 3.

x

(a) Inner circle at the origin.

x

(b) Displaced inner circle.

Figure 10: The example situation (schematically) used for Subsection 3.3. We have a dark
“outer ring” A∩B and a smaller circle A\B that is inside. The Hausdorff distance dH(A,B) =
d (A→ B) is indicated with the red line. In right plot, the external line with |dA − dB| =
dH(A,B) is also indicated.
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3.3 Numerical Demonstration

To conclude this section, let us give a numerical demonstration of the results presented so far.
The situation that we consider is depicted schematically in Figure 10: We have an “outer ring”
which is part of both A and B, and an inner circle (corresponding to A \ B) is placed within.
Note that this is already a situation where we have non-convex sets. For the inner circle at the
origin as in Figure 10a, no external Hausdorff distance is admissible. This is due to the fact
that the point x ∈ A that achieves dH(A,B) = d (A→ B) = dB(x) is in the interior of A. If
we displace the inner circle, the point x will be on the boundary as soon as the origin is no
longer part of A. In these situations, we have an external Hausdorff distance with a restricted
maximal radius r. This is indicated in Figure 10b. In our calculations, the outer circle has a
radius of nine and the inner circle’s radius is one. Figure 10 shows other proportions since this
makes the figure clearer. However, qualitatively, the situations shown are exactly those that will
be used in the following.

Let us first fix the grid spacing h and consider the effect of moving the inner circle. The
approximation error δ of the exact Hausdorff distance is shown (in units of h) in Figure 11.
The blue curve shows δ under the assumption that sdA and sdB are known on the grid points
without any approximation error. This is the situation we have discussed theoretically above.
The red curve shows the error if we also compute the signed distance functions themselves using
the Fast Marching code in [10]. This is a situation that is more typical in practice, where often
only some level-set functions are known for A and B. They are, most of the time, not already
signed distance functions. Note that the grid was chosen such that the origin (and thus the
optimal x for small displacements) is at the centre of a grid cell and can not be resolved exactly
by the grid. This yields the “plateau” in the error for small displacements. However, as soon
as external Hausdorff distances are admitted, the observed error falls rapidly in accordance to
Theorem 5. The “steps” in the blue and red lines are caused by the discrete nature of the grid.
The black curve shows the expected upper bound, which is given by ∆2 for small displacements
and by (14) for larger ones. (For our example situation, the maximum allowed radius r in
Definition 5 can be computed exactly.) One can clearly see that the theoretical and numerical
results match very well in their qualitative behaviour.

Figure 12 shows how the error depends on the grid spacing h. The blue and red data is
as before. In the upper Figure 12a, the inner circle is at the origin. This is the situation of
Figure 10a, and corresponds to the very left of the curves in Figure 11. Here, the upper bound
of Corollary 2 applies and is shown with the black curve. The convergence rate corresponds to
O (h), which can be seen clearly in the plot. On the other hand, the lower Figure 12b shows
how δ behaves if we have an external Hausdorff distance. It corresponds to the very right
in Figure 11, with the inner circle displaced from the origin similarly to Figure 10b. Here,
Theorem 5 implies O

(
h2
)

convergence. Also this is, indeed, confirmed nicely by the numerical
calculations. (While both plots look similar, note the difference in the scaling of the y-axes!)

4 Improvements by Randomising the Grid

Let us now take a closer look at the concept of external Hausdorff distances and, in particular,
the error estimate in the proof of Theorem 5. An important ingredient for the resulting estimate
(and the actual error) is how close grid points come to lie to the external line. We can emphasise
this even more by reformulating the error estimate in the following way:

Lemma 2. Let A and B admit an external Hausdorff distance with r > 0. Choose x ∈ A,
y ∈ B and d = (x − y)/ |x− y| as in Definition 5. We denote by β > 0 the minimum distance
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Figure 11: Error δ (relative to h) for a situation similar to Figure 10. The blue curve is based
on exact signed distance functions. For the red curve, sdA and sdB were approximated as well.
Black shows a combination of the error estimates from Corollary 2 (small displacement) and
(14) (where applicable for larger displacements). The x-axis shows how far the inner circle is
moved away from the origin.
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(a) Inner circle at the centre, as in Figure 10a.
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(b) Displaced inner circle, like Figure 10b.

Figure 12: Dependence of the error δ on the grid spacing h. The three data series are as in
Figure 11.
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Figure 13: Random placement of a line segment in a grid and the corresponding estimation of
the distance β to the closed grid point.

any grid point has to the part L of the external line between x+ 3/8 · rd and x+ 5/8 · rd, i. e.,

L =

{
x+ τ · rd | τ ∈

[
3

8
,
5

8

]}
, β = min

z∈N
dL(z) = min

z∈N
min
y∈L
|y − z| . (16)

If the grid is large enough, then the error estimate

δ ≤ 3

r
· β2

holds for all grid spacings h that are small enough.

Proof. We base the proof on (15). Using the notation of Figure 8, let us consider points c′ on
the middle third M of the external line. For them, min(a, r − a) ≥ r/3. Consequently, (15)
implies

δ ≤
√
b2 + a2 − a+

√
b2 + (r − a)2 − (r − a) ≤ 2 ·

(√
b2 +

r2

9
− r

3

)
≤ 3

r
· b2.

The last estimate can be seen with a series expansion. This holds for b being any distance (in
normal direction) of a grid point z to M . Furthermore, note that the interval [3/8, 5/8] is a
strict subset of [1/3, 2/3], which implies that also L is a strict subset of M . As long as h is
small enough, this means that we can find a suitable grid point such that b ≤ β holds. This
finishes the proof.

Of course, the distance β between grid points and the line segment L can always be estimated
trivially by

√
n/2 · h. We did this in the proof of Theorem 5, and this leads precisely to the

upper bound given in (14). The only difference to Lemma 2 is the smaller constant in (14). This
is due to the very generous estimation we used in Lemma 2 for simplicity. We can now make an
important observation: This is the absolutely worst-case estimate, which matches a situation
as shown in Figure 7a. If the external line is not running “parallel” to the grid, we can expect
that some of the grid points lie much closer to it (see Figure 13). Such a situation occurs, in
particular, almost surely if the grid is placed “randomly” with respect to the geometry. This
usually happens, for instance, if the original input data for a computation stems from real-world
measurements in one way or another.

In this section, we analyse the effect that such a random grid placement has on the resulting
error bounds. We will see that we can show even stronger convergence than in Theorem 5
in this case. These estimates are based on Lemma 2. The crucial additional ingredient is a
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suitable upper bound for the minimum distance β. The idea we employ for that is illustrated in
Figure 13: We look for edges of the grid that are intersected by the line segment L, and use the
distance along such an edge to the next grid point as an upper bound for β. The finer the grid,
the more such intersection edges appear. Each one of them gives us an additional “chance” to
find a particularly short distance, and thus improve β. Consequently, it is interesting to know
how many such edges are there for a particular line segment:

Lemma 3. Let L ⊂ Rn be an arbitrary line segment with length λ, placed in a grid as shown in
Figure 13. Then L intersects at least bλ/(

√
n · h)c edges (or faces in 3D, cells in 4D and so on)

of the grid, where h > 0 is the grid spacing as usual. In particular, the line L of (16) intersects
at least r/(5

√
n) · 1/h edges if h is small enough.

Proof. Since
√
n · h is the longest diagonal of a grid cell, every line segment of at least this

length must intersect some edge. Our line L of length λ is made up of bλ/(
√
n · h)c such pieces,

which shows the claim. The additional statement follows by noting that λ = r/4 for L in (16)
and that the estimate ⌊

r

4
√
n
· 1

h

⌋
≥ r

5
√
n
· 1

h

is true if h is sufficiently small.

To further motivate this idea, let us continue Subsection 3.3 with more numerical examples.
We use the same basic situation (that is shown schematically in Figure 10b), but add two
randomised changes: First, the grid is randomly shifted in x- and y-direction up to a grid cell.
This prevents any bias due to the placement of the coordinate system relative to the outer
circle. Second, the inner circle is displaced in a random direction, which has the same effect
as a random rotation of the grid. The resulting errors δ between the exact and approximated
Hausdorff distances are plotted in Figure 14. These figures show the results of 1,000 runs with
different randomisations. The bound of Theorem 5 is shown again with the black line, and it
clearly holds true for all runs. Another observation, however, is that the error really decreases
much faster on average: The red dots indicate the geometric mean over all runs; while not
rigorously justified, this gives a rough first indication of the average convergence behaviour.
A more representative analysis can be based on Figure 15: There, we show histograms of the
approximated convergence orders for each of the individual runs. One can clearly see that
most of the runs have, indeed, a stronger order than O

(
h2
)
. For 2D, the median order is

almost O
(
h4
)
. For 3D, it is “only” about O

(
h3
)
, but that is still a drastic improvement over

Theorem 5. Also note that a tiny fraction of runs shows an order worse than O
(
h2
)
. This is,

however, not in contradiction to our theory and rather a numerical artefact: For them, the error
is (due to good luck) already very small for coarse grids, so that the corresponding decrease
seems slower for the grid sizes we considered. The error bound of (14) is, nevertheless, still true.

4.1 Super-Quadratic Convergence in 2D

Let us now consider the randomised situation more thoroughly. In this subsection, we concen-
trate on the 2D case and will be able to show improved error bounds that hold almost surely if
a randomisation is applied. These results will be complemented by a heuristic argument given
in Subsection 4.2 that yields even better convergence rates for the “average case” and works in
arbitrary dimension.

The main thing to do now is to find a bound on β of (16). For this, consider Figure 13 again
and assume h = 1 for the moment. The distance between the line segment L and the grid point
below it along each intersected edge behaves then like bx0 + ikc, where x0, k ∈ R depend on the
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Figure 14: The errors δ between the exact and approximated Hausdorff distances for the situa-
tion of Figure 10b with randomisation applied. The black line shows the bound of Theorem 5,
the dots correspond to the results of individual runs. Their geometric mean is shown with red
circles.
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Figure 15: Histogram of the approximated convergence orders for the runs in Figure 14.
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particular line in question and i ∈ N numbers the intersected grid edges. The analysis of such
a sequence of numbers lies at the heart of the error bound shown later in this subsection:

Lemma 4. Let x0 ∈ R and k ∈ R \ Q be given. For i ∈ N, we define xi = bx0 + ikc ∈ [0, 1).
Then, for arbitrary N ∈ N, there are i0, j0 ∈ {0, . . . , N} such that 0 < ε = |xi0 − xj0 | ≤ 1/N .
Furthermore, there is m ∈ {0, . . . ,K} with |xm| ≤ ε, where the maximum number K of iterates
necessary for achieving this condition satisfies

K ≤ N
⌈

1

ε

⌉
≤ 2

ε2
.

Proof. Assume for a moment that |xi − xj | > 1/N for all i, j = 0, . . . , N with i 6= j. This also
implies that all intervals Ii = [xi − 1/N, xi + 1/N ] are disjoint. Since |Ii ∩ (0, 1)| ≥ 1/N and
there are N + 1 of the intervals, this is not possible. Thus, there exist i0, j0 ∈ {0, . . . , N} with
i0 6= j0 and ε = |xi0 − xj0 | ≤ 1/N . It remains to show that ε > 0. Assume to the contrary that
|xi0 − xj0 | = 0. This means |i0 − j0| k ∈ N. But since i0 6= j0, this contradicts the assumption
that k 6∈ Q. Thus, the first statement is shown.

Without loss of generality, let us now assume that i0 < j0 and that xi0 < xj0 . Setting
p = j0− i0 ∈ N, note that p ∈ {1, . . . , N} and bpkc = |xi0 − xj0 | = ε. In other words, advancing
p iterates in the sequence increases the value of xi by ε. With a similar argument to before, this
implies that we cover the whole interval [0, 1] in at most p d1/εe iterations. This implies that
|xm| ≤ ε for some m ∈ {0, . . . ,K} with

K ≤ p
⌈

1

ε

⌉
≤ N

⌈
1

ε

⌉
≤ 1

ε

(
1

ε
+ 1

)
≤ 2

ε2
.

There are a few things to remark about the proof of Lemma 4: Note that we do not directly
get an upper bound for the number of iterates required to get close to zero within a certain
threshold. Instead, the sequence itself yields a distance ε, and the number of iterates required
is then defined in terms of ε. If ε happens to be much smaller than 1/N , we also need a lot
more iterates. On the other hand, however, this larger number of iterates also brings us much
closer to zero than 1/N . There is a balance between closeness to zero and the number of iterates
we need, but we have no direct control over either quantity. This also shows why it is crucial
that k is an irrational number: If it is not, it may happen that ε = 0. In this case, we are
not guaranteed to ever come close to zero in a finite number of iterations since the sequence
becomes periodic. In terms of our error analysis, this corresponds to the situation that the
external line is parallel to the grid as depicted, for instance, in Figure 7a. Fortunately for us,
however, the rational numbers have measure zero. This means that a randomly rotated grid
will almost surely yield an irrational k so that our analysis applies.

Another interesting observation is the following: The important first part of the proof
establishes an estimate on the number of steps necessary before a pair of iterates occurs that
are close to each other. On the first thought, this may sound as if the birthday paradox is

applicable in this situation. This would improve the number of iterates necessary to O
(√

N
)

.

Unfortunately for us, however, this is not true: In our case, the actual question is when bpkc
comes close to zero. It is only formulated in terms of a pair of iterates because this seems like
the more natural formulation for the proof.

Finally, let us briefly discuss what happens if we try to use the same approach for the
Hausdorff distance in R3: In this case, we consider a sequence of points on the unit square
[0, 1)2. With the same argument as in the proof of Lemma 4, we can still show that a pair of
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iterates is within 1/N of each other if we perform O
(
N2
)

steps. (Note that the estimate gets
drastically worse here!) It is not so clear, however, whether the second part of the proof can be
adapted: On the one-dimensional interval [0, 1), repeatedly adding ε to an arbitrary point will
eventually wrap around and yield an iterate close to zero. On the square in 2D, however, there
is much more freedom for the sequence to iterate without ever getting close to the origin.

With the technical result of Lemma 4 in place, we can now use it to derive an estimate for
β. Combining this with Lemma 2, we obtain an improved error estimate δ for the approximate
Hausdorff distance:

Corollary 4. Let n = 2 and A,B ⊂ R2 admit an external Hausdorff distance with r >
0. Assume that the grid is rotated randomly with respect to the external line. Then, with
probability one, there exists a sequence (hm)m∈N → 0 of grid spacings tending to zero such that

δ ≤ 45

r2
· hmh2 (17)

for all m ∈ N and grids with h < hm. In particular, the approximation error δ vanishes
super-quadratically in the grid spacing.

Proof. For m ∈ N, choose εm ∈ (0, 1/m] according to Lemma 4 and define

hm =
ε2r

10
√
n
⇔ εm =

√
10
√
n

r
·
√
hm.

Then clearly hm → 0 as m→∞. Furthermore, this definition ensures that the line segment L
of (16) intersects at least 2/ε2m edges of any grid with h ≤ hm according to Lemma 3.

As discussed above, the intersections of the line segment L with grid edges (see Figure 13)
can be described by a sequence like bx0 + ikc after scaling the grid cells to size one. Note that a
random rotation of the grid ensures k ∈ R\Q with probability one. Thus, Lemma 4 is applicable
and yields that β ≤ εmh, where the additional factor h can be added since our grid has cells of
size h× h instead of unit size. Thus, Lemma 2 yields

δ ≤ 3

r
· ε2mh2 =

30
√

2

r2
· hmh2 ≤ 45

r2
· hmh2.

Let us emphasise again that Corollary 4 only shows super-quadratic convergence and O
(
h3
)

along a particular sequence of grids, not cubic convergence in general. Since Lemma 4 does not
give us any control over ε, we also do not have any knowledge about the resulting sequence
(hm)m∈N along which third-order convergence occurs. In practice, however, the bound in (17)
seems to be quite conservative and usually an overestimation of the error. This matches also
the behaviour seen in Figure 15a, which suggests that most of the runs show an empirical
convergence order stronger than O

(
h3
)
.

4.2 A Heuristic, Statistically-Motivated Estimate

While Corollary 4 gives a rigorously proven estimate, it is not clear how to extend the result to
situations in more than two dimensions. Furthermore, the result is rather a conservative worst-
case estimate than a practical bound on the expected average error. In this subsection, we give
a different argument leading to stronger estimates that match the empirical results of Figure 15
more closely. This argument works in arbitrary space dimension, although the statement gets
weaker the higher the dimension is. Also note that the main idea is only heuristically motivated
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Figure 16: Histogram of 10,000 iterates in a sequence bx0 + ikc with randomly chosen x0, k ∈
[0, 1].

and cannot be recovered in a formal proof. Consequently, all of this subsection will be written
in an informal way without rigorously proving any statements.

We still base our estimate on Lemma 2, but replace Lemma 4 by the following heuristic idea:
If the line segment L intersects a large enough number of grid edges and is not parallel to the
grid in any way, it seems plausible to assume that the intersection distances bx0 + ikc follow
roughly a uniform distribution on [0, 1). In a rigorous setting, this is of course not true—we
do not consider independent random numbers at all, but correlated iterates of a deterministic
sequence. Empirically, however, this assumption seems to be justified relatively well: The
sequence can be compared to the well-known linear congruential generators for pseudo-random
numbers (see, for instance, Section 3.1 of [13]). They are among the simplest and statistically
weakest PRNGs, but their weaknesses seem to be irrelevant for our situation. See also Figure 16:
This plot shows a histogram of 10,000 iterates of such a sequence. One can clearly see that while
the distribution seems not to be perfectly uniform, it is quite close. The more iterates we use,
the more uniform the distribution gets. Since we are interested in the limit of fine grids, i. e.,
h → 0, this corresponds to a large number of intersected edges. Thus, it seems reasonable to
assume that the intersections between the line segment L and grid edges follow such a uniform
distribution.

This idea can be applied also in three and more dimensions: Instead of intersections along
grid edges, we consider intersections of L with faces of the grid cells in 3D. For them, we may
(with the same heuristic justification) assume that they follow a uniform distribution on the
square [0, 1)2. In even higher dimensions, this approach can be generalised further. Thus, let us
assume that X1, . . . , XN is a sequence of independent random variables that follow a uniform
distribution on [0, 1)n−1. To replace Lemma 4 and find an estimate on β for Lemma 2, we have
to analyse the statistical properties of their minimum distance to the origin, i. e., of the derived
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Figure 17: Relation between the quarter circle Q3 of (18) and the square [0, 1)2. The latter is
filled dark grey, with the additional regions of Q3 light grey.

random variable
X = min(|X1| , . . . , |XN |).

For simplicity, we will not analyse X directly. Instead, we base our computations on random
variables Yi that are uniformly distributed on the set

Qn =
{
x ∈ [0,∞)n−1 | |x| <

√
n− 1

}
⊂ Rn−1. (18)

This is a superset of [0, 1)n−1 and a spherical sector. For 3D, the setQ3 is illustrated in Figure 17.
Since the additional regions of Qn with respect to [0, 1)n−1 are far away from the origin, the
corresponding minimum Y is “larger than” X with respect to important properties such as the
expectation value or quantiles. Furthermore, with an appropriate scaling, one can also produce
a subset of [0, 1)n−1 from Qn. This implies that X and Y differ, roughly speaking, at most by a
dimensional constant. Thus, we can use Y for our analysis of the resulting convergence order.

Next, we compute the density function for a random variable |Yi|. For this, we are interested
in the question what distance a uniformly placed point on Qn has from the origin. For n ∈ N,
let us denote the volume of the n-dimensional unit ball B1 (0) ⊂ Rn by ωn. For a general
derivation of these constants, see Theorem 26.13 in [17]. Furthermore, note that the surface
measure of a spherical shell with radius one is given by nωn according to Observation 26.24
in [17]. It is then straight-forward to express the density function f(r) for a particular distance
r = |Yi| with these constants as

f(r) =
rn−2 · (n− 1)ωn−1(√
n− 1

)n−1 · ωn−1

= (n− 1)
3−n
2 · rn−2.

Note that it is trivial to check that this density function is normalised, i. e.,∫ √n−1

0
f(r) dr = (n− 1)

3−n
2

∫ √n−1

0
rn−2 dr = 1.

Building on |Yi|, it remains to find the distribution of the minimum Y of N such random
variables. In the case Y = |Y1|, we know that Y takes the norm of Y1 and that all other points
Y2, . . . , YN must have a norm at least as large. The probability density for this to happen is
consequently

g̃(r) = f(r)

(∫ √n−1

r
f(ρ) dρ

)N−1

= (n− 1)N
3−n
2 · rn−2 ·

(
(n− 1)

n−3
2 − rn−1

n− 1

)N−1

.
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Since any of the N variables could be the minimum, the density function of Y is given by

g(r) = N · g̃(r) = N · f(r)

(∫ √n−1

r
f(ρ) dρ

)N−1

.

Again, one can show that g is normalised by integrating over r ∈ [0,
√
n− 1).

Let us now compute the expectation value E (Y ). This quantity tells us how close the
minimum distance of a grid point is on average to the line segment L. Again, the computation
is straight-forward but technical. One finds

E (Y ) =

∫ √n−1

0
r · g(r) dr = N

√
n− 1 ·B

(
n

n− 1
, N

)
= N
√
n− 1 ·Γ

(
n

n− 1

)
· Γ (N)

Γ
(
N + n

n−1

) ,
where B (·, ·) and Γ (·) are the beta and gamma functions, respectively. See Chapter 5 of [4] for
more details about these special functions. We are particularly interested in the limit of fine
grids, corresponding to N → ∞. The asymptotic behaviour in this limit can be derived from
5.11.12 in [4], yielding

E (Y ) ∼ N · Γ (N)

Γ
(
N + n

n−1

) ∼ N ·N− n
n−1 ∼ N−

1
n−1 . (19)

For n = 2, one can also compute the percentiles of Y exactly. They show precisely the same
asymptotic behaviour.

Finally, let us discuss what (19) implies for the convergence order of δ. For this, note
first that N ∼ 1/h according to Lemma 3. The minimum distance β of (16) is given by hX
after scaling the grid cells to unit size (matching the definition of X). As discussed above, we
approximate this value by

β ≈ h · E (Y ) ∼ h · h
1

n−1 .

Thus, Lemma 2 implies that we can expect the approximation error to behave like

δ ∼ β2 ∼ h2 · h
2

n−1 = h
2n
n−1 .

In other words, we get, indeed, a stronger average convergence order than O
(
h2
)

of Theorem 5.
The additional factor shrinks with increasing space dimension. For n = 2, we get O

(
h4
)
. With

n = 3, the expected order is h3. Note that this matches precisely the empirical results found in
Figure 15.

5 Conclusion and Outlook

In this paper, we have discussed the relation between the Hausdorff distance dH(A,B) of two
sets and their (signed) distance functions. This allowed us to state a method for computing
dH(A,B) based on these distance functions dA and dB. They can be easily computed, for
instance, if the sets themselves are described in a level-set framework. Furthermore, we were
able to analyse the approximation error made if the distance functions are only known on a
finite grid (which is mostly the case in applications). To the best of our knowledge, such an
error analysis has not been carried out before. We were able to derive a general and sharp
estimate in Corollary 2. For the more regular situation characterised in Definition 5, our result
of Theorem 5 implies an even lower error bound: In this case, the error is at most O

(
h2
)
, where
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h is the grid spacing. With a random rotation of the grid, even better convergence rates can be
achieved. We have rigorously shown super-quadratic convergence for geometries in R2 in this
case, and given a heuristic derivation of the average convergence order. All of our results are
confirmed by numerical experiments. Nevertheless, there remain a lot of areas open for further
investigations. In particular, we believe that the following open questions would be interesting
targets of further research:

• We have not given a general formula for the constants ∆n in arbitrary space dimensions.
While cases with n > 3 are, arguably, not so important, it could still be interesting
to consider a general dimension n. It is probably not too hard to devise a method of
assembling the system of equations that characterises ∆n similarly to (12).

• Going even further, is it possible to find an efficient algorithm to evaluate (10) in a general
situation? If this was possible, one could exploit Theorem 4 directly instead of resorting
to approximations like Corollary 2. This is particularly interesting, since it would allow
to couple information about |dA(x)− dB(x)| on the corners x of a grid cell with the
corresponding Lipschitz constants in t(x, ·). Doing this on a per-cell basis could improve
the error bounds even further for an actual computation.

• Our definition of external Hausdorff distances in Definition 5 is straight-forward to verify
for concrete situations and we argued why we believe that a lot of practical shapes fall
into this category. It would, nevertheless, be interesting to further analyse the class of
geometries that admit such an external Hausdorff distance.

• While we believe that our discussion of the effect of randomisation in Section 4 forms a
sound basis both theoretically and for practical applications, the stochastic error analysis
started there opens up a lot of possibilities for further refinement.
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