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Abstract

Chvétal and Klincsek (1980) gave an O(n?)-time algorithm for the problem of finding a maximum-
cardinality convex subset of an arbitrary given set P of n points in the plane. This paper examines
a generalization of the problem, the Bottleneck Convex Subsets problem: given a set P of n points
in the plane and a positive integer k, select k pairwise disjoint convex subsets of P such that the
cardinality of the smallest subset is maximized. Equivalently, a solution maximizes the cardinality
of k mutually disjoint convex subsets of P of equal cardinality. We show the problem is NP-hard
when k is an arbitrary input parameter, we give an algorithm that solves the problem exactly, with
running time polynomial in n when k is fixed, and we give a fixed-parameter tractable algorithm
parameterized in terms of the number of points strictly interior to the convex hull.

1 Introduction

A set P of points in the plane is convez if for every p € P there exists a closed half-plane H* such that
H*™ NP = {p}. Determining whether a given set P of n points in the plane is convex requires ©(nlogn)
time in the worst case, corresponding to the time required to determine whether the convex hull of
P has n vertices on its boundary [I7]. Chvatal and Klincsek [4] gave an O(n?)-time and O(n?)-space
algorithm to find a maximum-cardinality convex subset of any given set P of n points in the plane.
Later, Edelsbrunner and Guibas [6] improved the space complexity to O(n). In this paper, we examine a
generalization of the problems to multiple convex subsets of P. Given a set P of points in the plane and
a positive integer k, we examine the problem of finding £ convex and mutually disjoint subsets of P, such
that the cardinality of the smallest set is maximized. We define the problem formally, as follows.

BOTTLENECK CONVEX SUBSETS
Instance: A set P of n points in R2, and a positive integer k.

Problem: Select k sets Py,..., Py such that

Vie{l,...k}, P, C P,
Vi e {l,...k}, P;is convex,
V{i,j} C{1,...k}, i#j=P NP =@, and

min | P;| is maximized.
i€{1,....k}
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Figure 1: (a) A point set P. (b) A solution to the Bottleneck Convex Subsets problem when k = 2. (¢) A
solution when k = 3.

Since every subset of a convex set of points remains convex, any k convex sets can be made to have equal
cardinality by removing points from any set whose cardinality exceeds that of the smallest set. Therefore,
an equivalent problem is to find k£ mutually disjoint convex subsets of P of equal cardinality, where the
cardinality is maximized.

1.1 Owur Contributions

In this paper we examine the problem of finding k large convex subsets of a given point set with n points.
Our contributions are as follows:

1. We give a polynomial-time algorithm that solves Bottleneck Convex Subsets for any fixed k. The
algorithm constructs a directed acyclic graph G whose vertices correspond to distinct configurations
of edges passing though vertical slabs between neighbouring points of P. A solution to the problem
is found by identifying a node in G associated with a maximum-cardinality set that is reachable
from the source node.

2. Using a reduction from a restricted version of Numerical 3-Dimensional Matching, which is known
to be NP-complete, we show that Bottleneck Convex Subsets is NP-hard when k is an arbitrary
input parameter.

3. We show that Bottleneck Convex Subsets is fixed-parameter tractable when parameterized by the
number of points that are strictly interior to the convex hull of the given point set, i.e., the number
of non-extreme points. Therefore, if the number of points interior to the convex hull is fixed, then
for every k, Bottleneck Convex Subsets can be solved in polynomial time.

1.2 Related Work

A convex k-gon is a convex set with k points. A convex k-hole within a set P is a convex k-gon on a
subset of P whose convex hull is empty of any other points of P. A rich body of research examines
convex k-holes in point sets [20]. By the Erdés-Szekeres theorem [I0], every point set with n points in
the Euclidean plan contains a convex k-gon for some k € (logn). Urabe [2I] showed that by repeatedly
extracting such a convex {2(logn)-gon, one can partition a point set into O(n/logn) convex subsets, each
of size O(logn).

Given a set P of n points in the plane, there exist O(n3)-time algorithms to compute a largest convex
subset of P [4, 6] and a largest empty convex subset of P [2]. Both problems are NP-hard in R? [13].
In fact, finding a largest empty convex subset is W[1]-hard in R3 [13]. Gonzalez-Aguilar et al. [14] have
recently examined the problem of finding a largest convex set in the rectilinear setting.

The convex cover number of a point set P is the minimum number of disjoint convex sets that covers
P. The convex partition number of a point set P is the minimum number of convex sets with disjoint
convex hulls (in addition to their vertex sets being pairwise vertex disjoint) that covers P. Urabe [21]
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examined lower and upper bounds on the convex cover number and the convex partition number. He
showed that the convex cover number of a set of n points in R? is in ©(n/logn) and its convex partition
number is bounded from above f%ﬂ Furthermore, there exist point sets with convex partition number
at least [271].

Arkin et al. [I] proved that both finding the convex cover number and the convex partition number
of a point set are NP-hard problems, and gave a polynomial-time O(logn)-approximation algorithm for
both problems. Although the Bottleneck Convex Subsets problem appears to be similar to the convex
cover number problem as both problems attempt to find disjoint convex sets, the objective functions are
different. Neither the NP-hardness proof nor the approximation result for convex cover number [I] readily
extends to the Bottleneck Convex Subsets problem. Previous work has also considered partitioning a
point set into empty convex sets, where the convex hulls of the sets do not contain any interior point. For
the number of empty convex point sets, an upper bound of [$2] and a lower bound of [2+1] is known [5].
We refer the readers to [8, [@] for related problems on finding convex sets with various optimization criteria.

Another related problem in this context is to partition a given point set using a minimum number of
lines (Point-Line-Cover), which Megiddo and Tamir [I9] showed to be NP-hard, and was subsquently shown
to be APX-hard [3| [I§]. Point-Line-Cover is known to be fixed-parameter tractable when parameterized
on the number of lines. Whether the minimum convex cover problem is fixed-parameter tractable remains
an open problem [7]. Note that for any fixed k, one can decide whether the minimum convex cover
number of a point set is at most k in polynomial time [I].

Previous work on the Ramsey-remainder problem provides insight into the Bottleneck Convex Subsets
problem [IT]. Given an integer i, the Ramsey-remainder is the smallest integer 7 (i) such that for every
sufficiently large point set, all but rr(¢) points can be partitioned into convex sets of size at least .
Therefore, a Bottleneck Convex Subsets problem with sufficiently large n and with & < | 2=22%) | must
have a solution where the size of the smallest convex set is at least k. Note that the Bottleneck Convex
Subsets problem is straightforward to solve for the case when k > n/3, i.e., one needs to compute a
balanced partition without worrying about the convexity of the sets. However, the case when k = n/4
already becomes nontrivial. Karolyi [I6] derived a necessary and sufficient condition for a set of 4n
points in general position to admit a partition into n convex quadrilaterals, and gave an O(nlogn)-time
algorithm to decide whether such a partition exists.

2 A Polynomial-Time Algorithm for a Fixed k

Given a set P of n points in the plane and a fixed integer k, we describe an O(kn®**3)-time algorithm
that solves Bottleneck Convex Subsets for any fixed k. The idea is to construct a directed acyclic graph G
whose vertices each correspond to a vertical slab of the plane in a given state with respect to the selected
subsets Py, ..., P, of P, with an edge from one slab to the slab immediately to its right if the states of
the two neighbouring slabs form a locally mutually compatible solution. A feasible solution (P4, ..., Py
are mutually disjoint convex subsets of P) corresponds to a directed path starting at the root node in
G, i.e., a sequence of consecutive compatible slabs. Among the feasible solutions, an optimal solution
(min;eqy,.. xy [P;] is maximized) corresponds to a path that ends at a node for which the cardinality of
the smallest set is maximized.

Rotate P such that no two of its points lie on a common vertical line. Partition the plane into n — 1
vertical slabs, S1,...,S,_1, determined by the n vertical lines through points of P. Let L be the set of
(g) line segments whose endpoints are pairs of points in P. Within each slab, S;, consider the set of line
segments L; = {INS; |l € L}. A convex point set corresponds to the vertices of a convex polygon; in a
feasible solution, j convex polygons intersect S; for some j € {0,...,k}. Each of these polygons has a
top segment and a bottom segment in L;. There are at most (‘LQ‘) possible choices of segments in L;
for the first polygon, (lLi2|72) for the second polygon, ..., and ('Li‘fg(jfl)) for the jth polygon, giving
Hé;é (lLilg%) € O(|L;]*) = O(n") possible combinations of edges in S; for a given j € {0,...,k}.

We construct an unweighted directed acyclic graph G. Each vertex in V(G) corresponds to a slab S;,
aj€{0,...,k}, and a top edge and a bottom edge for each of the j convex polygons that intersect S;.
Consequently, the number of vertices in G is O(31—)' Z?:o n*) = O(kn*k+1).

Furthermore, we create (n/k)* copies of each vertex associated with a slab S;, each of which is assigned
a distinct value (¢1,...,¢) € Z*, where for each j € {1,...,k}, £; = |P;N(S1U---US,;)|, i.e., the number
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Figure 2: Each slab .S; has various combinations of pairs of edges possible, each of which corresponds to a
vertex in G, which is copied at levels 1 through n/k. Directed edges are added from a vertex associated
with slab S; to a vertex associated with a compatible slab S;;1. The edge remains at the same level if
the cardinality of the smallest set in S; U --- U S;41 remains unchanged; the level of S;;1 is one greater
than the level of S; if the cardinality of the smallest set in S; U--- U S;;1 increases. Some vertices cannot
be reached by any path from any source node at level 1 in slab S7; these vertices and their out-edges are
shaded gray. A feasible solution corresponds to a path rooted at a source node associated with the slab
S1 on level 1. An optimal solution ends at a sink node at the highest level among all feasible solutions.

of points of P; that lie in the first i slabs. We refer to £ = minjc(y, . ) ¢; as the vertex’s level. Each
vertex at level £ in G corresponds to a slab S;, such that the minimum cardinality of any polygon in
S1U...US; (or partial polygon if it includes points to the right of S;) is £. Therefore, the resulting graph
G has O((n/k)*kn***1) C O(z&+ - n®*1) vertices. See Figure

Every slab has exactly one point of P on its left boundary and one on its right boundary. For each
vertex v in G, let v; and v, denote these two points of P for the slab corresponding to v. We add an edge
from vertex u to vertex v in G if they are compatible. See Figure [3] The vertices u and v are compatible
if:

e u and v correspond to neighbouring slabs, u to S; and v to S;41, for some 4, and

e all top and bottom segments associated with u that do not pass through p; continue in v, where
p; = u, = vy is the point of P on the common boundary of S; and S;+1, and

e one of the four following conditions is met:

Case 1. either (a) one top associated with u ends at p; and one top associated with v begins at p;,
forming a right turn at p;, or (b) one bottom associated with u ends at p; and one bottom
associated with v begins at p;, forming a left turn at p; (all polygons in S; continue in S;y1;
the number of edges in S; is equal to that in S;11);

Case 2. one top and one bottom associated with u end at p;, (one polygon ends in S; and all remaining
polygons continue into S;11);

Case 3. no top or bottom associated with u end at p;, but one top and one bottom associated with v
start at p; (one polygon starts in S;;1 and all remaining polygons continue from S; into S;y1).

Case 4. all edges in u continue into v and no edge passes through p; = u,, = v; (all polygons in S;
continue into S;41; the number of edges in \S; is equal to that in S;41).

For a given vertex u at most n — 2 edges satisfy Case 1 (there are at most n — 2 possible edges
that continue from p; to form a convex bend), at most one edge satisfies Case 2, at most (”53) edges
satisfy Case 3, and at most one edge satisfies Case 4. Consequently, the number of edges in G is
O(n*[V(G)]) € O - n**9).

Any path from a source on level 1 to a highest-level node corresponds to an optimal solution, and
can be found using breadth-first search in time proportional to the number of edges in GG. The resulting

worst-case running time is proportional to the number of vertices and edges in G: O(|V(G)| + |E(G)|) =
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Figure 3: The four cases in which we add an edge between the vertices u (associated with the slab S;) and
v (associated with the slab S;11) in G; i.e., u and v are compatible. In this example, k = 2, corresponding
to two polygons, for which the edges through S; and S;; 1 are coloured blue and red, respectively. In
Figure (a), p; lies on the upper hull of the blue polygon, so the polygon makes a right turn at p;, i.e.,
the angle below p; must be convex. Figure d)7 p; is omitted from the selection.

O(kk—l,1 -n5%+3) In addition to storing a single in-neighbour from which a longest path reaches each node
u, we can maintain a list of all of its in-neighbours that give a longest path, allowing the algorithm to
reconstruct all distinct optimal solutions with the running time increased only by the output size.

The time for constructing the graph G is proportional to its number of edges. The combinations
of (272) line segments in a slab S; on level j can be enumerated and created in O(1) time each, with
O(1) time per edge added if graph vertices are indexed according to their slab, their level, and the line
segments they include. The level of each node in G is determined in O(1) time per node by examining
the level of any of its in-neighbours; the level increases by one in Cases 1 and 2 if the point p; is added to
the minimum-cardinality set and that set is the unique minimum.

Theorem 1. Given a set P of n points in the plane, and a positive integer k, Bottleneck Convexr Subsets
can be solved ezactly in O(zx= - n°*3) time.

3 NP-Hardness

In this section we show that Bottleneck Convex Subsets is NP-hard. We first introduce some notation.
Let z(p), y(p) be the & and y-coordinates of a point p. An angle Zpgr determined by points p, ¢ and r
is called a y-monotone angle if y(p) > y(q) > y(r), as illustrated in Figure |4 A y-monotone angle is
left-facing (resp. right-facing) if the point ¢ lies interior to the left (resp., right) half-plane of the line
through pr. If ¢ lies on the line through pr, then we refer to Zpqr as a straight angle.

The idea of the hardness proof is as follows. We first prove that given a set of 3n points in the
FEuclidean plane, it is NP-hard to determine whether the points can be partitioned into n y-monotone
angles, where none of them are right facing (Section . We then reduce this problem to Bottleneck
Convex Subsets (Section [3.2)).

r
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Figure 4: Tllustration for different types of y-monotone angles: (a) a left-facing angle, (b) a straight angle,
and (c) a right-facing angle.

3.1 Covering Points by Straight or Left-Facing Angles

In this section we show that given a set of 3n points in the Euclidean plane, it is NP-hard to determine
whether the points can be partitioned into n y-monotone angles, where none of them are right facing. In
fact, we prove the problem to be NP-hard in a restricted setting, as follows:

ANGLE PARTITION



A ={16,14,10}, B = {8,6,12},C = {18,28,20} T = {(16,12,28), (14,6,20), (10,8, 18)}

y=1 o300 ey T
y=0 (100) (140) (160)
(a) (b)

Figure 5: (a) Construction of ) from an instance M of DNMTS. (b) A solution for M and the corresponding
angles of Q.

Instance: A set P of 3n points lying on three parallel horizontal lines (y =0,y = 1 and y = 2) in
the plane, where each line contains exactly n points.

Problem: Partition P into at most n y-monotone angles, where none of them are right facing.

We reduce Distinct 3-Numerical Matching with Target Sums (DNMTS), which is known to be strongly
NP-complete [I5, Corollary 8].

DISTINCT NUMERICAL MATCHING WITH TARGET SUM

Instance: Three sets A = {ay,.. an} B ={by,...,b,},C =A{c1,...,cn}, each with n distinct
positive integers, where Y. | a; + Zl b =300 e

Problem: Decide whether there exist n triples (a;,b;,c,), where 1 < 4,5,k < n, such that
a; +b; = ¢, and no two triples share an element.

Theorem 2. Angle Partition is NP-hard.

Proof. Let M = (X,Y, Z) be an instance of DNMTS, where each set A, B, C' contains n positive integers.
We now construct an instance @) of Angle Partition as follows: (I) For each a € A, create a point at (a,0).
(IT) For each b € B, create a point at (b,2). (III) For each ¢ € C, create a point at (¢/2,1).

This completes the construction of the point set P of the Angle Partition instance @ (e.g., see
Figure a)). Since the numbers in A, B, C' are distinct, no two points in P will coincide. Note that by
definition, a y-monotone angle must contain one point from each of the lines y = 0,y = 1 and y = 2.
Furthermore, every straight angle Zpgr will satisfy the equation M = x(q). This transformation is
inspired by a 3-SUM hardness proof for a geometric problem known as ‘GeomBase’ [12].

We now show that M has an affirmative solution if and only if P admits a partition into n y-monotone
angles where none of them are right facing.

First consider that M has an affirmative answer, i.e., a set of n triples (a;, b;, ¢ ), where 1 < 4,5,k < n,
such that a; + b; = ¢, and no two triples share an element. Therefore, we will have % = 4. Hence
we will find a straight line through (a;,0), (bx,2), (¢;/2,1). These lines will form n y-monotone straight
angles (e.g., see Figure (b)) Since none of these angles are right facing, this provides an affirmative
solution for the instance Q.

Consider now the case when @ has an affirmative solution 7', i.e., a partition of P into n y-monotone
angles, where none of them are right facing. We first claim that (Step 1) all these n y-monotone angles
must be straight angles and then (Step 2) show how to construct an affirmative solution for M.

Step 1: Suppose for a contradiction that the solution 7' contains one or more left-facing angles. For
each left-facing angle /rst, where r,s,t are on lines y = 0,y = 1 and y = 2, respectively, we have
z(s) < M M. Since we do not have any

right-facing angle, the following inequality holds: »° ,,  ,cr2(s) < ZﬁsteT o) | Y srsteT 3 ) Since
no two angles share a point, we have Y1 | (¢;/2) < > i (a;/2) + >y (bi/2), Wthh COIltl“adICtb that M
is an affirmative instance of DNMTS.

Step 2: We now transform the y-monotone straight angles of T" into n triples for M. For each angle,
Zrst, where r, s,t are on lines y = 0,y = 1 and y = 2, we construct a triple (z(r), z(t), 2z(s)). Since Lrst
is a straight angle, 2:(r) + 2(t) = 2z(s). Since no two angles share a point, the triples will be disjoint. [

. For each straight angle Zrst, we have z(s) =
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Figure 6: Illustration for the construction of H. Note that this is only a schematic representation, which
violates the property that all the chains are inside the wedge determined by the y-monotone angles.

3.2 Bottleneck Convex Subsets is NP-Hard

In this section we reduce Angle Partition to Bottleneck Convex Subsets. Let P be an instance of Angle
Partition, i.e., three lines y = 0,y = 1 and y = 2, each line containing n points. We construct an instance
H of Bottleneck Convex Subsets with & = n.

Construction of H: We first take a copy P’ of the points of P and include those in H. Let A be
a sufficiently large number (to be determined later). We now construct n upper chains. The ith upper
chain U;, where 1 < i < n, is constructed following the step below (see Figure @

Construction of U;: Place two points at the coordinates (iA, A% +3) and ((i + 1)A, 3). Let C be
the curve determined by y = A% + 3 — (z — iA)?, which passes through these two points. Place 2n
points uniformly on C between (iA, A% + 3) and ((i + 1)A, 3).

Each upper chain contains (2n + 2) points. We define the n lower chains symmetrically, where each lower
chain V; starts at (iA, —A? — 1) and ends at ((i + 1)A, —1).

We now choose the parameter A. Let ¢ be the maximum z-coordinate of the points in P, and set A
to be t*. This ensures that for any line ¢ with non-zero slope passing through two points of P, the upper
and lower chains lie on the right half-plane of £.

This concludes the construction of the Bottleneck Convex Subsets instance H, where k = n. Note
that H has 3n 4+ n(4n + 4) = n(4n + 7) points. In the best possible scenario, one may expect to cover all
the points and have a partition into n disjoint convex subsets, where each set contains (4n + 7) points.

Lemma 3. Let W be a partition of the upper and lower chains into a set L of at most n disjoint convex
sets. Then each convex set in L contains at least one point from an upper chain and one point from a
lower chain.

Proof. Suppose for a contradiction that we have a convex set that contains points from the same type of
chains, without loss of generality, from lower chains. Then we could delete all the points on the lower
chain to obtain a convex set partition for the upper chains with fewer than n disjoint convex sets. To
reach the contradiction, we now show that the upper chains cannot be covered with fewer than n disjoint
convex sets.



Every three points of an upper chain forms a right-facing y-monotone angle. Since a convex set cannot
have two such right-facing angles, no convex set can take three or more points from two different upper
chains. Since an upper chain U contains (2n + 2) points, at least one convex set C' must contain at least 3
or more points from this set. We assign C' to U and repeat this process for the other upper chains. Since
C cannot contain 3 points from any other upper chain, C will not be assigned to any upper chain except
for U. Since each upper chain is assigned a unique convex set, we must have at least n convex sets. [

Reduction: We now show that the Angle Partition instance P admits an affirmative solution if
and only if the Bottleneck Convex Subsets instance H admits k(= n) disjoint convex sets with each set
containing (4n + 7) points.

Assume first that P admits an affirmative solution, i.e., P admits a set of n y-monotone angles such
that none of these are right facing. By the construction of H, the corresponding point set P’ must have
such a partition into y-monotone angles. For each i from 1 to n, we now form a point set C; that contains
the ith y-monotone angle, the upper chain U; and the lower chain V;. Figure [7] illustrates such a scenario.
By the construction of H, all the chains are inside the wedge determined by the y-monotone angle and
hence C; is a convex set with (4n + 7) points. Since the sets are disjoint, we obtain the required solution
to the Bottleneck Convex Subsets instance.

(A, A% +3) (2A,A% 4 3) (3A, A% 4 3)

y=2
[ A N N N
[ e N N

D

(24, ;AZ —1) (3A —A2 1)

(A, —A? 91»)

Figure 7: A schematic representation for the construction of a convex partition for H from an angle
partition of P.

Consider now that the points of H admits n disjoint convex sets with each set containing (4n + 7)
points. Since H contains n(4n + 7) points, the convex sets form a partition of H. Let L be such a
partition. We now show how to construct a solution for P using L. Let L’ be a set of convex sets obtained
by removing the points of P’ from each convex set of L. By Lemma [3] each set of L’ contains at least
one point from the upper chains and one point from the lower chains. Since there are 3n points on P/,
to partition P’ into n convex sets, we must need each convex set of L to contain a y-monotone angle
with exactly one point from y = 0, one point from y = 1 and one point from y = 2. Since each convex
set contains one point from an upper chain and one point from a lower chain, none of these y-monotone
angles can be right facing. Hence we obtain a partition of P’ into the required y-monotone angles, which
implies a partition also for P. This completes the reduction. The following theorem summarizes the
results of this section.

Theorem 4. The Bottleneck Convex Subsets problem is NP-hard.



4 Point Sets with Few Points inside the Convex Hull

In this section we show that the Bottleneck Convex Subsets problem is fixed-parameter tractable when
parameterized by the number of points r inside the convex hull, i.e., these points do not lie on the
convex-hull boundary.

Theorem 5. Let P be a set of n points and let T be the number of points interior to the convezr hull of P.
Then one can solve the Bottleneck Convex Subsets problem on P in f(r) -nPW) time, i.e., the Bottleneck
Convex Subsets problem is fixed-parameter tractable when parameterized by r.

Proof. Let k be the number of disjoint convex sets that we need to construct. We guess the cardinality of
the smallest convex set in an optimal solution and perform a binary search.
For a guess ¢, we check whether there exists k disjoint convex sets each with ¢ points as follows.

Figure 8: Ilustration for the Bottleneck Convex Subsets problem with eight points inside the convex hull
of P. For the convex set corresponding to v, we have assigned the left halfplane of the line through pig
and pgg. The edges carrying the flow are shown in thick edges.

Assume that j of the k convex sets contain points from the interior. Since there are only r interior
points, we enumerate for each j from 0 to r, all possible j convex sets such that each set in these j
convex sets contains at most g points from the interior of P. For each set of length ¢ < r, we also
consider all £ possible convex orderings of the points. Figure (a) illustrates such a set of j = 3 convex
sets Cq,Cy, C3 with a particular ordering of the points. Therefore, we have Z?:o 7“(2]') possibilities to
consider. We need an additional consideration when all the points of a convex set lie on a straight line
L. In that situation, we enumerate two further cases one that considers the left halfplane and the other
that considers the right halfplane of L. Thus the number of elements in the enumeration is at most
S () < e <2t

The idea is to examine whether these j sets can be extended to contain ¢ points each and to check
whether the remaining points can be used to construct the remaining (k — j) convex sets. To verify
this, we construct a bipartite graph G with vertex set AU B. The set A contains j vertices vi,...,v;
corresponding to the sets C1,...,C; and (k— j) additional vertices representing the remaining (k —j) sets
(which are currently empty) to be constructed. The set B consist of (n — r) vertices each corresponding
to a distinct point on the convex hull of P. We add a directed edge from a vertex v in A to a vertex w in
B if the point w together with the interior points corresponding to v form a convex set. For the case
when the interior points corresponding to v form a straight line (e.g., Cs in Figure a)), we connect v to
the points of B that lie on the halfplane assigned to v. Figure b) illustrates the resulting graph.

We now consider a maximum flow on this graph where each vertex v; in A has a production of (¢— |C;|)
units of flow and each sink can consume at most 1 unit of low. A maximum flow of Z?ZO(q —1Ci)
units indicates that the guess ¢ is feasible, and we continue the binary search by guessing a higher value.
Otherwise, we search by guessing a lower value.

Hence the overall time complexity becomes O(f(r) - g(n)logn), where f(r) € O(r2" "), g(n) is the
time required for the maximum flow algorithm, and the logn term corresponds to the binary search. [



5 Discussion

We examined the Bottleneck Convex Subsets problem of selecting & mutually disjoint convex subsets
of a given set of points P such that the cardinality of the smallest set is maximized. We described an
algorithm that solves Bottleneck Convex Subsets for small values of k, showed Bottleneck Convex Subsets
is NP-hard for an arbitrary k, and proved Bottleneck Convex Subsets to be fixed parameter tractable
when parameterized by the number of points interior to the convex hull. The problem is also solvable
in polynomial time for specific large values of k. If k > n/4, then some subset has cardinality at most
three; a solution is found trivially by arbitrarily partitioning P into k subsets of size [n/k] or [n/k].
If k€ {|n/5] +1,...,n/4} then some subset has cardinality at most four. As discussed in Section
Kaérolyi [I6] characterized necessary and sufficient conditions for a set of n points in general position to
admit a partition into k = n/4 convex quadrilaterals, and gave an O(nlogn)-time algorithm to decide
whether such a partition exists; if no such partition exists, then some set must contain at most three
points, which can be solved as described above. It remains open to determine whether Bottleneck Convex
Subsets can be solved in polynomial time for all k € ©(n).

As a direction for future research, a natural question is to establish a good lower bound on the time
required to solve these problems for small fixed values of k. In particular, is the O(n?)-time algorithm
of Chvéatal and Klincsek [4] optimal for the case k = 1?7 Note that our algorithm has time O(n®) when
k = 1. It would also be interesting to examine whether a fixed-parameter tractable algorithm exists for
Bottleneck Convex Subsets when parameterized by k, and to find approximation algorithms for Bottleneck
Convex Subsets when k is an arbitrary input parameter, with running time polynomial in n and k.
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