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Abstract. We give an O(n2(k+logn)) algorithm for computing the k-dimensional persistent homology

of a filtration of clique complexes of cyclic graphs on n vertices. This is nearly quadratic in the number of
vertices n, and therefore a large improvement upon the traditional persistent homology algorithm, which

is cubic in the number of simplices of dimension at most k + 1, and hence of running time O(n3(k+2))
in the number of vertices n. Our algorithm applies, for example, to Vietoris–Rips complexes of points

sampled from a curve in Rd when the scale is bounded depending on the geometry of the curve, but

still large enough so that the Vietoris–Rips complex may have non-trivial homology in arbitrarily high
dimensions k. In the case of the plane R2, we prove that our algorithm applies for all scale parameters

if the n vertices are sampled from a convex closed differentiable curve whose convex hull contains its

evolute. We ask if there are other geometric settings in which computing persistent homology is (say)
quadratic or cubic in the number of vertices, instead of in the number of simplices.

Persistent homology, Vietoris–Rips complex, convex curve, evolute, computational complexity

1. Introduction

Given only a finite sample from a metric space, what properties of the space can one recover from
the finite sample? Vietoris–Rips complexes, which thicken a (possibly discrete) metric space into a more
connected space, are a commonly used tool in applied topology in order to recover the homotopy type,
homology groups, or persistent homology of a space from a finite sample [12, 13, 23, 24, 26, 27, 28, 29, 34].
Given a metric space X and a scale parameter r ≥ 0, the Vietoris–Rips simplicial complex VR(X; r) has
a simplex for every finite subset of X of diameter at most r.

It can in general be expensive to compute the homotopy type or persistent homology of a Vietoris–
Rips complex. Indeed, let n = |X| be the number of points in a finite metric space X. Computing
the k-dimensional persistent homology of VR(X; r) as r increases is cubic in the number of simplices of

dimension at most k+1, and hence of running time O(
(
n
k+2

)3
) = O(n3(k+2)) in the number of vertices n.1

In this paper we show that if the scale parameter is such that the underlying 1-skeleton of a Vietoris–Rips
complex is a cyclic graph, then the k-dimensional homology of VR(X; r) (in that range of scales) can be
computed in running time O(n2(k + log n)), which is nearly quadratic in the number of vertices n. A
cyclic graph is a combinatorial abstraction of the 1-skeleton of a Vietoris–Rips complex built on a subset
of the circle; a precise definition is given in Section 3.

Our main results are the following.

Theorem 1. Let G1 ⊆ G2 ⊆ . . . ⊆ GM be an increasing sequence of cyclic graphs on a final vertex
set of size n. Then the k-dimensional persistent homology of the resulting increasing sequence of clique
complexes Cl(G1) ⊆ Cl(G2) ⊆ . . . ⊆ Cl(GM ) can be computed in running time O(n2(k + log n)).

As shown in Figure 1, the homotopy types of clique complexes of finite cyclic graphs can be surprising:
an odd sphere S2k+1 for any k ≥ 0, or a wedge of even spheres

∨m
S2k for any m ≥ 0 and k ≥ 0.

The initial motivating examples to which Theorem 1 can be applied are when the increasing sequence
of clique complexes are obtained as the Vietoris–Rips complexes, over increasing scale parameters, of
n points sampled from a circle or from an ellipse of sufficiently small eccentricity (meaning the ratio

between the axes is at most
√

2). Indeed, the 1-skeletons of these Vietoris–Rips complexes are cyclic
graphs by Definition 3.3 of [2] and Lemma 7.1 of [5], respectively. As a much more general setting to
which Theorem 1 applies, let C be a curve in Rd. The following theorem gives a lower bound on a scale
parameter such that the 1-skeleton of VR(C; r) is an infinite cyclic graph.

Theorem 2. Let C ⊆ Rd be a curve homeomorphic to the circle. Fix rC > 0. Suppose that for all p ∈ C
and 0 ≤ r ≤ rC , the intersection B(p, rC) ∩ C is a connected arc. Then the 1-skeleton of VR(C; r) is a
cyclic graph for all 0 ≤ r ≤ rC .

1For example, computing the 3-dimensional persistent homology of a Vietoris–Rips complex of n points is cubic in the
number of simplices, but of order O(n15) in the number of vertices n.
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Figure 1. A possible evolution of the homotopy types of clique complexes of cyclic
graphs (or in particular, of VR(X; r), for X a subset of curve in Theorems 2 or 3). The
homotopy type is either a single odd sphere S2k+1, or a wedge sum of even spheres∨m

S2k for some m ≥ 0. The vertical axis gives a cartoon of how m might vary with the
scale: the number m of 2k-spheres is a non-decreasing function of the scale for 2k = 0,
but otherwise m need not be a monotonic function of r for 2k ≥ 2.

The clique complexes even of infinite cyclic graphs, such as VR(C; r) when Theorem 2 applies, are
homotopy equivalent to either an odd-dimensional sphere or a wedge sum of even-dimensional spheres
(see Theorems 5.1 and 5.2 of [5]).

For example, let f : S1 → R4 be the scaled symmetric moment curve defined by

f(t) = (cos t, sin t, α cos 3t, α sin 3t),

where α ∈ R is a constant (Figure 2(left)). We show in Example 5 that if α < 1√
3
, then C = im(f) satisfies

the hypotheses of Theorem 2 for all scales up until the diameter of C, after which the Vietoris–Rips
complex VR(C; r) is contractible. Understanding the persistent homology of Vietoris–Rips complexes
of trigonometric moment curves such as this is important for applications of topology to time series
analysis [53, 54, 55].

2     SymmetricMomentCurve.nb

Figure 2. Example curves for which our results apply. (Left) A projection
onto the first three coordinates of the scaled symmetric moment curve f(t) =
(cos t, sin t, α cos 3t, α sin 3t), with α = 1√

3
− 1

100 . Theorem 2 holds for all r up to the

diameter of f , after which the Vietoris–Rips complex is contractible. (Right) An ellipse

C = {(a cos t, b sin t} | t ∈ R} ⊆ R2, with a
b <
√

2. The convex hull of C contains the
evolute of C, and hence Theorem 3 applies.

For some curves, the bound on the allowable scale parameters in Theorem 2 disappears. Let C be
a convex closed differentiable curve in the plane. The evolute of C is the envelope of the normals, or
equivalently, the locus of the centers of curvature. We say that a graph is a cone if there is a vertex v
that shares an edge with every other vertex in the graph. If the 1-skeleton of VR(C; r) is a cone, then
the simplicial complex VR(C; r) is contractible. The following theorem shows that if the convex hull of
C contains the evolute of C, then the homotopy type of VR(C; r) is conntrollable for all r ≥ 0.
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Theorem 3. Let C be a strictly convex closed differentiable planar curve C equipped with the Euclidean
metric. If the convex hull of C contains the evolute of C, then the 1-skeleton of VR(C; r) is a cyclic
graph or a cone for all r ≥ 0.

For example, consider the ellipse in Figure 2(right). The convex hull of an ellipse contains its evolute

if the ratio of the axis lengths is at most
√

2, as is the case here. Hence Theorem 3 applies.
As a consequence, we can compute persistent homology efficiently. We hope this is a first step towards

identifying more general geometric settings in which computing persistent homology is (say) quadratic
or cubic in the number of vertices, instead of in the number of simplices.

Corollary 4. There is an O(n2(k + log n)) algorithm for determining the k-dimensional persistent
homology of VR(X; r), where X is a sample of n points from a strictly convex closed differentiable
planar curve whose convex hull contains its evolute.

Corollary 4 follows from Theorems 1 and 3 since, as we explain in C, given a sample X of n points
from some strictly convex closed differentiable planar curve C whose convex hull contains its evolute, it
is easy to determine the cyclic graph structure on the 1-skeleton of VR(X; r) even without knowledge of
C.

Corollary 5. There is an O(n log n) algorithm for determining the homotopy type of VR(X; r), where
X is a sample of n points from a strictly convex closed differentiable planar curve whose convex hull
contains its evolute, and where r ≥ 0.

We emphasize that even though X is planar, the homotopy type of VR(X; r) in Corollary 5 can be
surprising: a wedge sum of spheres of arbitrarily high dimension (see Figure 1).

We would like to emphasize that the goal of this paper is not to recover a curve from a finite sample,
which is a well-studied problem [13, 19]. Instead, our goal is to better understand the computational
complexity of the homology and homotopy types of Vietoris–Rips complexes. Vietoris–Rips complexes
are designed to recover not only curves but also arbitrary homotopy types. When given a finite subset
X ⊆ Rd for d small, in order to understand the “shape” of X, one would want to compute its Čech
or alpha complex [34] instead of computing its Vietoris–Rips complex. Indeed, by the nerve lemma the
Čech and alpha complexes will have milder homotopy types. However, in higher-dimensional Euclidean
space, it becomes prohibitively expensive to compute a Čech or alpha complex, and hence Vietoris–Rips
complexes are frequently used [19, 34]. The theory of Vietoris–Rips complexes, though more subtle than
that for the aforementioned Čech and alpha complexes, is important since Vietoris–Rips complexes are
computable in Rd for d large whereas Čech and alpha complexes are not.

Though Theorems 2 and 3 are about curves, these results have consequences for much broader classes
of spaces. Let M be an arbitrary metric space, for example a manifold of arbitrary dimension, or a
stratified space, or something more wild. If M contains a curve C ⊆ M as a metric retract, meaning
that there exists a map f : M → C with the restriction f |C equal to the identity on C, and with
d(m,m′) ≤ d(f(m), f(m′)) for all m,m′ ∈ M , then recent work by Virk extending [62] shows that the
persistent homology of the Vietoris–Rips complex of C appears as a summand in the persistent homology
of the Vietoris–Rips complex of M . A related result is also true even if C is not a metric retract of M , but
instead only a metric retract of a small neighborhood of C in M — in which case the higher-dimensional
persistent homology of the Vietoris–Rips complex of C appears for a short range of scale parameters in
the persistent homology of the Vietoris–Rips complex of M . Virk has used these results to show how
the persistent homology of M can encode a lot of geometric information about M , such as the lengths of
geodesic curves in M [40, 61]. However, this relies on knowing the persistent homology “motifs” produced
from simpler spaces, such as curves C. Therefore, our progress in this paper towards understanding the
persistent homology of curves also has consequences for the persistent homology of more general classes
of spaces, including higher-dimensional manifolds.

Our work motivates the following question: Are there other geometric contexts where computing the
persistent homology of the Vietoris–Rips complex of a sample of n points can be similarly improved,
from cubic in the number of simplices to a low-degree polynomial in n?

Question 6. For X ⊆ R2 arbitrary, is there a cubic or near-quadratic algorithm in the number of
vertices n = |X| for determining the k-dimensional persistent homology of VR(X; r)?

Question 7. For X ⊆ R3 arbitrary, what is the complexity of computing the k-dimensional persistent
homology of VR(X; r) in terms of the number of vertices n = |X|?
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We remark that it is NP-hard to compute the homology of the clique complex of an arbitrary graph;
see Theorem 7 of [7]. Since every every finite graph can be realized as the unit ball graph of a collection
of points in Rd for d sufficiently large (see A), it follows that computing the homology (or persistent
homology) of Vietoris–Rips complexes in any Euclidean space is NP-hard. However, to our knowledge
this NP-hardness result may not hold in restricted low dimensions, such as R2 or R3.

Another motivating question behind this work is the following. Given a planar subset X ⊆ R2, is the
Vietoris–Rips complex VR(X; r) necessarily homotopy equivalent to a wedge of spheres for all r ≥ 0?
See Problem 7.3 of [6] and Question 5 in Section 2 of [39]. Some evidence towards this conjecture is
contained in [26] and [6]. Our results show that the conjecture is true in the limited case where X is a
subset of a strictly convex closed differentiable curve whose convex hull contains its evolute.

2. Related work

Vietoris–Rips complexes were invented independently by Vietoris for use in algebraic topology [59],
and by Rips for use in geometric group theory [42]. Indeed, Rips proved that if a group G equipped
with the word metric is δ-hyperbolic, then VR(G; r) is contractible for r ≥ 4δ. An important theorem
by Hausmman [44] states that if M is a Riemannian manifold, then VR(M ; r) is homotopy equivalent to
M for scale parameters r sufficiently small (depending on the curvature of M). This theorem has been
extended by Latschev [47] to state that if X is a (possibly finite) metric space that is sufficiently close
to M in the Gromov–Hausdorff distance, then VR(X; r) is still homotopy equivalent to M .

Hausmann’s and Latschev’s theorems form the theoretical basis for more recent applications of
Vietoris–Rips complexes in applied and computational topology [34, 23, 24]. There are by now a wide
variety of reconstruction guarantees—one can use Vietoris–Rips complexes to recover a wide variety of
topological properties, such as homotopy type, homology, or fundamental group, from a finite subset
drawn from some unknown underlying shape [12, 13, 23, 24, 26, 27, 28, 29, 34]. Several algorithms
exist in order for approximating the persistent homology of a Vietoris–Rips complex filtration in a more
computationally efficient manner [16, 17, 51, 58], or for collapsing the size of the simplicial complex prior
to computing persistent homology [21, 22, 31, 32, 45].

This paper relies upon and builds upon cyclic graphs, and on the known homotopy types of the
Vietoris–Rips complex of the circle [1, 2, 3, 4]. Section 6 of our paper can be viewed as a generalization
of [5, 57] from ellipses to a much broader class of planar curves.

3. Preliminaries on topology

We set notation for topological and metric spaces, simplicial complexes, persistent homology, and
cyclic graphs. See [11, 43, 46] for background on topological spaces, simplicial complexes, and homology,
and [34] for background on Vietoris–Rips complexes and persistent homology.

Topological spaces. A topological space is a set X equipped with a collection of subsets of X, called
open sets, such that any union of open sets is open, any finite intersection of open sets is open, and both
X and the empty set are open. For X a topological space and Y ⊆ X a subset, we denote the interior
of Y by int(Y ) and the boundary of Y by ∂Y . Let I = [0, 1] denote the unit interval. We let Sk denote
the k-dimensional sphere and

∨m
Sk denote the m-fold wedge sum of Sk with itself. We write X ' Y

to denote that spaces X and Y are homotopy equivalent, which roughly speaking means that “they have
the same shape up to bending and stretching”.

Metric spaces. A metric space is a set X equipped with a distance function d : X ×X → R satisfying
certain properties: nonnegativity, symmetry, the triangle inequality, and the identity of indiscernibles
(d(x, x′) = 0 if and only if x = x′). Given a point x ∈ X and a radius r > 0, we let BX(x, r) = {y ∈
X | d(x, y) < r} denote the open ball with center x and radius r. Given a metric space X, a point x ∈ X,
and a set Y ⊆ X, we define d(x, Y ) = inf{d(x, y) | y ∈ Y }.

Simplicial complexes. A simplex is a generalization of the notion of a vertex, edge, triangle, or
tetrahedron to arbitrary dimensions. Formally, given k + 1 points x0, x1, . . . , xk in general position, a
simplex of dimension k (a k-simplex) is the smallest convex set containing them. A simplicial complex K
on a vertex set X is a collection of subsets (simplices) of X, including each element of X as a singleton,
such that if σ ∈ K is a simplex and τ ⊆ σ is a face of σ, then also τ ∈ K. We do not distinguish
between abstract simplicial complexes (which are combinatorial) and their geometric realizations (which
are topological spaces).
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Vietoris–Rips complexes. A Vietoris–Rips complex VR(X; r) is a simplicial complex, defined from a
metric space X and distance r ≥ 0, by including as a simplex every finite set of points in X that has
a diameter at most r [44]. Said differently, the vertex set of VR(X; r) is X, and {x0, x1, . . . , xk} is a
simplex when d(xi, xj) ≤ r for all 0 ≤ i, j ≤ k.
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Figure 3. Vietoris–Rips complexes, on the same vertex set X at two different choices
of scale r.

Homology and persistent homology. Given a topological space Y and an integer k ≥ 0, the ho-
mology group Hk(Y ) measures the independent “k-dimensional holes” in Y (roughly speaking). For
example, H0(Y ) measures the number of connected components, H1(Y ) measures the loops, and H2(Y )
measures the “2-dimensional voids” in Y .

Given an increasing sequence of spaces Y1 ⊆ Y2 ⊆ . . . ⊆ YM , persistent homology is a way to “track
the holes” as the spaces get larger. A common choice for applications is to choose Yi = VR(X; ri) to
be a Vietoris–Rips complex, where X is a metric space (or data set), and where r1 < r2 < . . . < rM
an increasing sequence of scale parameters. We apply the homology functor (with coefficients in a field)
in order to get a sequence of vector spaces Hk(Y1) → Hk(Y2) → . . . → Hk(YM ), which decomposes
into a collection of 1-dimensional interval summands. Each interval corresponds to a k-dimensional
topological feature that is born and dies at the start and endpoints of the interval. Our algorithm for
persistent homology in Section 4 works simultaneously for all choices of field coefficients. It also works
for integer coefficients (which are much more subtle [52]), or for persistent homotopy [37, 48], since all
of the spaces that appear in our context are homotopy equivalent to wedges of spheres, with controllable
maps in-between.

Cyclic graphs and clique complexes. A directed graph G = (X,E) consists of a set of vertices X and
edges E ⊆ X ×X, where no loops, multiple edges, or edges oriented in opposite directions are allowed.
A cyclic graph [2, 5] is a directed graph in which the vertex set is equipped with a counterclockwise
cyclic order, such that whenever we have three cyclically ordered vertices x ≺ y ≺ z ≺ x and a directed
edge x→ z, then we also have the directed edges x→ y and y → z. We say a cyclic graph G is finite if
its vertex set is finite, and otherwise G is infinite. For example, in the proof of Theorems 2 and 3, we
will show that the 1-skeleton of VR(C; r) is an infinite cyclic graph (recall C is a curve). We give more
preliminaries on cyclic graphs in Section 4, for use in the proof of Theorem 1.

Figure 4. Four example cyclic graphs. The homotopy types of their clique complexes,
from left to right, are S1, S2,

∨2
S2, and S3 (since, as will be explained in Section 4,

the winding fractions are 1
4 , 1

3 , 1
3 , and 3

8 , with the graphs having 1, 2, 3, and 1 periodic
orbit(s)).

The clique complex of a (directed or undirected) graph G (with no loops or multiple edges), denoted
Cl(G), is the largest simplicial complex that contains G as its 1-skeleton. Note, for example, that a
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Vietoris–Rips complex is the clique complex of its 1-skeleton. If a graph G is a cone, meaning that some
vertex x shares an edge with every other vertex of G, then the clique complex Cl(G) is contractible.

4. Persistent homology of cyclic graphs

Theorem 1 states that given any increasing sequence of cyclic graphs G1 ⊆ G2 ⊆ . . . ⊆ GM , we can
compute the k-dimensional persistent homology of the resulting increasing sequence of clique complexes
Cl(G1) ⊆ Cl(G2) ⊆ . . . ⊆ Cl(GM ) in running time O(n2(k + log n)). Before proving Theorem 1, we
provide some further background on cyclic graphs and their associated dynamical systems. We then give
the algorithm for computing even-dimensional persistent homology, followed by the algorithm for odd
homological dimensions.

4.1. Cyclic dynamical systems and winding fractions. Let G be a finite cyclic graph with vertex
set X. The associated cyclic dynamical system is generated by the dynamics f : X → X, where we
assign f(x) to be the vertex y with a directed edge x→ y that is counterclockwise furthest from x (else
f(x) = x if x is not the source vertex of any directed edges in G). Since X is finite, the dynamical system
f : X → X necessarily has at least one periodic orbit. By Lemma 2.3 of [4] or Lemma 3.4 of [10], every
periodic orbit of f has the same length ` and winding number ω (the number of times a periodic orbit
x → f(x) → f2(x) → . . . → f `(x) = x wraps around the cyclic ordering on X). We define the winding
fraction of G to be wf(G) = ω

` .

Figure 5. Two example cyclic graphs and their associated dynamical systems f : X →
X. (Left) This cyclic graph G has a dynamical system with 3 periodic orbits, each of

winding fraction 1
3 , giving Cl(G) '

∨2
S2. (Right) This cyclic graph G has a dynamical

system with a single periodic orbit of winding fraction 3
8 , giving Cl(G) ' S3 since

1
3 <

3
8 <

2
5 .

Let P be the number of periodic orbits in a finite cyclic graph G. By Proposition 4.1 of [5], we have

Cl(G) '

{
S2k+1 if k

2k+1 < wf(G) < k+1
2k+3∨P−1

S2k if wf(G) = k
2k+1

for some k ∈ N.

Furthermore, as described in Section 4.6, given an inclusion of cyclic graphs G ↪→ G′, we have strong
results determining the topology of the map Cl(G) ↪→ Cl(G′).

Even when G is an infinite cyclic graph, Theorems 5.1 and 5.2 of [5] combine to state that the
homotopy type of Cl(G) is either an odd-dimensional sphere or a wedge sum of even-dimensional spheres
of the same dimension.

4.2. Even-dimensionsional homology. Let G be a finite cyclic graph with vertex set X of size n.
Let E be a list of all directed edges, in sorted order from first to last, such that the subgraph of G
formed by including any initial segment of edges in E is also a cyclic graph. We show how to compute
the persistent homology of the clique complexes of the subgraphs of G formed by starting with vertex
set X, and then adding edges one at a time in sorted order. To compute 2k-dimensional homology, we
must count the number of periodic orbits with winding fraction k

2k+1 . Let B be an array of n booleans

storing whether each vertex is periodic or not (true means periodic, false means nonperiodic). Initialize
each entry of B to be false (unless k = 0, in which case every vertex is periodic with winding fraction
0 prior to adding any edges). Let P be the number of vertices that are periodic with winding fraction
k

2k+1 , initialized to be 0 (again unless k = 0). Let f be an array of n integers, where f [i] = j when the

cyclic dynamical system maps the i-th vertex to the j-th vertex. Initialize f so that f [i] = i for all i. For
each new edge, in order of appearance, we must update whether some vertices are periodic with winding
fraction k

2k+1 . If the source vertex of the new edge is periodic (look it up in B), walk along f , marking

every vertex along this (old) periodic orbit as non-periodic in B. Decrement P by one. Now, update f
6



to add the new edge. Walk 2k + 1 steps along f starting from the source vertex of the new edge. If we
get back to where we started, after looping k times around, then re-walk along this newly found periodic
orbit, marking all the vertices as periodic in B, and increment P by one. We’re now done updating f ,
B, and P for the new edge. Then, P − 1 is the number of 2k-dimensional spheres in the homotopy type
of Cl(G). Thus, we now know what the homology groups are. See Section 4.6 for an explanation of how
to recover not only the homology at each stage, but also the persistent homology (i.e., the maps between
homology groups induced by inclusions).

We now explain why this algorithm works. The algorithm has a loop invariant that f , B, and P are
correct. When we add a new larger step x 7→ f(x) to the cyclic dynamics f , we are implicitly removing
a prior smaller step from x. This prior step was either part of a periodic orbit or not. If it was on a
periodic orbit, we update f , B, and P to account for destroying this periodic orbit. When we add the
new step x 7→ f(x), it either creates a new periodic orbit or not. We check to see if it does, and, if so,
we update f , P , and B accordingly. Thus, the loop invariant is maintained throughout the execution of
the algorithm. Since the 2k-dimensional homology of the clique complex of G is determined purely by
the number of periodic orbits of winding fraction k

2k+1 , this algorithm produces the correct homology at
each stage.

4.3. Pseudocode for even-dimensional homology. The following pseudocode for the even-dimensional
persistent homology algorithm described above accepts as inputs the vertex set X, the sorted list E of
directed edges, and k. It computes the 2k-dimensional homology of the increasing sequence of clique
complexes. We let n = |X|.
function computeEvenDimensionalHomology(X, E, k):

set numPeriodicOrbits to 0 (unless k=0)

set isPeriodic to an array of length n, filled with 0’s (unless k=0)

set f to an array of length n, where the i-th entry is i

set edges to a sorted list of all edges between points in X

for edge in edges:

if isPeriodic[edge.sourceVertex]:

walk along the periodic orbit, marking each vertex nonperiodic

numPeriodicOrbits -= 1

edit f to add the new edge

walk around f, starting at edge.sourceVertex, taking 2k+1 steps

if we returned to edge.sourceVertex, and looped around k times:

walk along the new periodic orbit, marking each vertex periodic

numPeriodicOrbits += 1

print the number (numPeriodicOrbits-1) of 2k-spheres

See Section 4.6 for an explanation of how to recover not only the homology at each stage, but also the
persistent homology.

4.4. Odd-dimensional homology. If we’re interested in (2k + 1)-dimensional homology, run the al-
gorithm for even-dimensional homology in dimensions 2k and 2k + 2. There is only ever at most one
(2k+1)-dimensional sphere. This sphere is born when the last periodic orbit with winding fraction k

2k+1

is destroyed (at which point the winding fraction first exceeds k
2k+1 ), and this sphere dies when the first

periodic orbit with winding fraction k+1
2k+3 is created.

4.5. Computational complexity. Computing the list of edges in sorted order takes O(n2 log(n2)) =
O(n2 log n) time. Walking along the length of a periodic orbit takes O(k) time. We walk along the length
of a periodic orbit a constant number of times for each edge. Since there are O(n2) edges, this takes
O(n2k) time. Thus, the total runtime is O(n2(k + log n)).

4.6. Determining the persistent homology maps. In Sections 4.2–4.4 we provide an algorithm to
compute the homology groups (and indeed the homotopy types) of an increasing sequence of clique
complexes of cylic graphs Cl(G1) ⊆ Cl(G2) ⊆ . . . ⊆ Cl(GM ). From these computations, it is not difficult
to determine the persistent homology information, i.e., the maps on homology induced by inclusions.
Indeed, if Cl(Gi) and Cl(Gi+1) are not spheres (or wedge sums of spheres) of matching dimensions,
then necessarily the inclusion Cl(Gi) ↪→ Cl(Gi+1) induces the zero map on homology in all homological
dimensions. Furthermore, if Cl(Gi) and Cl(Gi+1) are each homotopy equivalent to S2k+1, then it follows
from Proposition 4.9 of [2] that the induced map Cl(Gi) ↪→ Cl(Gi+1) is a homotopy equivalence.

7



For the case of even-dimensional homology, we rely on Proposition 4.2 of [5]. Each interval in the
2k-dimensional persistent homology barcode will be labeled with a periodic orbit of winding fraction
k

2k+1 . Upon adding a new directed edge with source vertex x, there are four cases in the algorithm for
even-dimensional homology in Section 4.2.

(1) If x was previously nonperiodic but became periodic, then unless this is the very first periodic
orbit of winding fraction k

2k+1 to appear2, begin a new persistent homology interval in homological
dimension 2k. Label this interval with the periodic orbit containing x.

(2) If x was previously nonperiodic and remains nonperiodic, then no updates are needed. All
persistent homology intervals continue.

(3) If x was previously periodic and remains periodic (necessarily with a new periodic orbit), then
simply update the periodic orbit label of this persistent homology interval. All persistent homol-
ogy intervals continue.

(4) If x was in a periodic orbit O and becomes nonperiodic, then under repeated applications of
f , the vertex x now maps into a different periodic orbit O′. End the persistent homology
interval corresponding to exactly one of the periodic orbits O or O′ according to the elder rule:
end the persistent homology interval that was born more recently, and (re)label the persistent
homology interval that continues with the periodic orbit O′. All other persistent homology
intervals continue unchanged.

4.7. Adding vertices. If the sequence of cyclic graphs do not all have the same vertex set, we can use a
small modification to the algorithm above to still compute the winding fractions and periodic orbits. We
break the sequence of cyclic graphs into a sequence of operations, either adding a new edge, or adding
a new vertex (and all of the corresponding edges for the new vertex which may be required to maintain
cyclicity). We already know how to add a new edge. When we add a new vertex, all we must do is add
the outgoing edges, which can be done in O(n) time by walking around the convex hull. Furthermore,
we must add any new outgoing edges that end in the new vertex, which can also be done in O(n) time
by walking around the convex hull.

5. Curves in Euclidean space

In this section, we consider curves, equipped with the Euclidean metric, in Euclidean space of arbitrary
dimension.

Let C ⊆ Rd be a curve homeomorphic to the circle. Fix rC > 0. Suppose that for all p ∈ C and
0 ≤ r ≤ rC , the intersection B(p, rC) ∩ C is a connected arc. Theorem 2 states that the 1-skeleton of
VR(C; r) is a cyclic graph3 for all 0 ≤ r ≤ rC .

Proof of Theorem 2. Fix a homeomorphism between C and the circle, allowing us to discuss counter-
clockwise and clockwise directions on C. This is the cyclic ordering under which VR(C; r) may or may
not be cyclic.

Let 0 ≤ r ≤ rC ; we need to assign orientations to each edge of VR(C; r) that endow it with the
structure of a cyclic graph. Recall that B(p, rC) ∩ C is a connected arc. For all q ∈ C with ‖p− q‖ ≤ r
we assign the orientation p→ q (resp. q → p) to this edge in VR(C; r) if q is in the portion of the interval
B(p, r) ∩C counterclockwise (resp. clockwise) of p. An edge cannot be equipped with both orientations
(from looking both at balls B(p, rC) and at B(q, rC)), since that would imply that B(p, rC) ∩ C = C =
B(q, rC) ∩ C, contradicting our hypothesis that each such intersection is homeomorphic to an arc.

We claim that these assignments of orientation give a cyclic graph structure on VR(C; r) for any
r ≤ rC . Indeed, let x → z be in the 1-skeleton of VR(X; r). Then the arc B(x, r) ∩ C has z in the
portion counterclockwise of x, and dually the arc B(z, r)∩C has x in the portion clockwise of z. Suppose
y ∈ C satisfies x ≺ y ≺ z ≺ x. Then y is also in the portion of B(x, r) ∩C counterclockwise of x, giving
the directed edge x → y. Similarly y is also in the portion of B(z, r) ∩ C clockwise of z, giving the
directed edge y → z. Thus VR(X; r) is a cyclic graph for all r ≤ rC . �

Example. Let f : S1 → R4 be the scaled symmetric moment curve defined by f(t) = (cos t, sin t, α cos 3t, α sin 3t),
where α ∈ R is a constant (see Figure 8). Suppose α < 1√

3
. We then show in B that C = im(f) satisifies

the hypotheses of Theorem 2 for all scale parameters up until the diameter of C. Hence for all scales r,

2In homological dimension 0 we are using reduced homology.
3When equipped with the obvious cyclic ordering on C.
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2     SymmetricMomentCurve.nb

view = {4, -5, 2};

alpha = 1 / Sqrt[3] - 1 / 100;

ParametricPlot3D[{Cos[t], Sin[t], alpha * Cos[3 t]}, {t, 0, 2 Pi},
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Figure 6. Projections onto the first three coordinates of the scaled symmetric mo-
ment curve f(t) = (cos t, sin t, α cos 3t, α sin 3t) ∈ R4. (Left) For α = 1√

3
− 1

100 <
1√
3
,

Theorem 2 holds for all r up to the diameter of C = im(f), after which the Vietoris–Rips
complex is contractible. (Right) For α = 1, Theorem 2 holds only up to a scale smaller
than the diameter of C.

VR(C; r) is homotopy equivalent to either an odd-sphere or a wedge of even spheres4. We remark that
this example applies to the multidimensional scaling [30] embedding of the geodesic circle in R4, which
is obtained by choosing α = 1

3 <
1√
3
; see [8, 63].

Let C ⊆ Rd be a C2 curve that is homeomorphic to the circle S1. Let reach(C) denote the reach
of C, i.e., the distance from C to its medial axis. Proposition 13 of [20] implies that B(x, r) ∩ C is a
topological 1-dimensional ball (an open interval) for all p ∈ C and 0 ≤ r < reach(C).5 Hence Theorem 2
implies that VR(C; r) is a cyclic graph for all 0 ≤ r < reach(C). However, r < reach(C) is too small for
interesting topology (homology in dimension above one) to occur in VR(C; r). What is more interesting
is when the hypothesis of Theorem 2 are satisfied for a curve C in Rd at scale parameters much larger
than the reach. Interesting examples when Theorem 2 applies for all scales r ≥ 0 up until the diameter
of the curve include for example when C is a circle, when C is a scaled symmetric moment curve as in
Example 5, or when C is a strictly convex closed differentiable planar curve whose convex hull contains
its evolute (Theorem 3), such as an ellipse that is not too eccentric (Example 6).

6. Planar curves

For convex curves in the plane, we can give a nice criterion so that Theorem 2 applies whenever the
Vietoris–Rips complex is not a cone (and hence contractible). We first set notation for convex curves
and evolutes.

Strictly convex curves. A set Y ⊆ R2 is strictly convex if for all y, y′ ∈ Y and t ∈ (0, 1), the point
ty+ (1− t)y′ is in the interior of Y . We say a curve C ⊆ R2 is strictly convex if C = ∂Y for some strictly
convex set Y ⊆ R2. If L is a line and C is strictly convex curve in R2 that intersect transversely, then L
and C intersect in either zero or two points; see for example [14, 33, 41, 56].

Tangent vectors, normal vectors, and evolutes. Let α : I → R2 be a differentiable curve in the
plane. Then α′(t) is the tangent vector to α at time t, and we denote the corresponding unit tangent

vector by T (α(t)) = α′(t)
‖α′(t)‖ . The unit normal vector, which is perpendicular to T (α(t)) and points in

the direction the curve is turning, is given by n(α(t)) = T ′(α(t))
‖T ′(α(t))‖ .

The curvature of α at time t is κ(t) = ‖T ′(t)‖
‖α′(t)‖ , with corresponding radius of curvature r(t) = 1

κ(t) .

The center of curvature is the point on the inner normal line to α(t) at distance equal to the radius
of curvature away, given by xα(t) = α(t) + 1

κ(t)n(α(t)). The evolute of a curve is the envelope of the

normals, or equivalently, the set of all centers of curvature.

We now restrict attention to planar curves C ⊆ R2 that are strictly convex, closed, differentiable, and
equipped with the Euclidean metric. Our Theorem 3 has one extra the hypothesis that the convex hull
of C contains the evolute of C; this hypothesis could potentially be rephrased in terms of the symmetry

4Or VR(C; r) is contractible, i.e. homotopy equivalent to a point, but we think of this as the 0-fold wedge sum of
0-spheres.

5Every C2 curve is also C1,1, i.e. differentiable with locally Lipschitz partial derivatives, for example by (1.70) of [36].
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set of C, which is the closure of the set of circles tangent to C in at least two points. Theorem 3 implies
that the 1-skeleton of VR(C; r) is a cyclic graph or a cone for all r ≥ 0. We provide an example before
building to the proof of Theorem 3.

Figure 7. Evolutes of ellipses C = {(a cos t, b sin t) | t ∈ R} ⊆ R2. On the left we

have a
b <
√

2, and the convex hull of C contains the evolute of C. On the right we have
a
b >
√

2.

Example. Let C = {(a cos t, b sin t) | t ∈ R} ⊆ R2 be an ellipse, where we assume a > b > 0. The

evolute of C is given by the points
{(

a2−b2
a cos3 t, b

2−a2
b sin3 t

)}
⊆ R2. One can show that the convex

hull of C contains its evolute if and only if a
b ≤
√

2. Indeed, for one direction, note that the point

(0, b
2−a2
b ) on the evolute (corresponding to t = π

2 ) is contained in the convex hull of C if and only if

−b ≤ b2−a2
b , meaning a2 ≤ 2b2, or equivalently a

b ≤
√

2. Hence the convex hull of C contains its evolute
if and only if C is an “ellipse of small eccentricity” [5], showing that our work generalizes [5] to a broader
class of curves.

Let C be a strictly convex closed differentiable curve in the plane.

Definition 8. Define the continuous function h : C → C which maps a point p ∈ C to the unique point
in the intersection of the normal line to C at p with C \ {p}.
Lemma 9. The map h : C → C is of degree one, which implies that h is surjective.

Proof. Suppose that C is parametrized by α : S1 → C. Write h(α(e2πit)) = α(e2πi(t+f(e
2πit))) where

f : S1 → [0, 2π) is a continuous function, which is possible since h◦α and α never intersect. Then we can
do a “straight-line” homotopy from f down to the zero function to show that h ◦α and α are homotopy

equivalent. Indeed, consider the homotopy H : S1 × I → C defined by H(e2πit, s) = α(e2πi(t+sf(e
2πit))),

in which H(·, 0) = α and H(·, 1) = h ◦α. Since these maps are homotopy equivalent, it follows6 that the
winding number of h ◦ α is equal to the winding number of α, which is 1. Hence h is surjective. �

For p ∈ C, define the function dp : C → R by dp(q) = d(p, q), where d(p, q) is the Euclidean distance
between p, q.

Lemma 10. Let p ∈ C. Then a point q ∈ C is a critical point of the function dp : C → R if and only if
q = p or h(q) = p.

Proof. It is clear that p is a global minimum of dp, and therefore we may restrict attention to q 6= p.
Consider an arbitrary point p = (p1, p2) ∈ C ⊆ R2. Let α : I → C be a parametrized curve in C. Note

that dp(α(t)) =
√

(p1 − α1(t))2 + (p2 − α2(t))2, for all t ∈ I. This gives us

(1)
d

dt
dp(α(t)) =

−α′1(t)
(
p1 − α1(t)

)
− α′2(t)

(
p2 − α2(t)

)√
(p1 − α1(t))2 + (p2 − α2(t))2

=
−α′(t) · (p− α(t))

‖p− α(t)‖
.

6 A more general statement, which follows from the same proof, is that if two maps α, α̃ : S1 → S1 satisfy α(p) 6= α̃(p)
for all p ∈ S1, then the winding numbers of α and α̃ are equal.
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Therefore, the only critical points of dp away from p are when d
dtdp(α(t)) = 0, i.e. α′(t) · (p− α(t)) = 0.

These are precisely the points where the tangent line to α(t) is perpendicular to the line between α(t)
and p. Therefore, the critical points of dp occur at p and all q ∈ C such that h(q) = p. �

We are now ready to prove Theorem 3, which states given a strictly convex closed differentiable planar
curve C equipped with the Euclidean metric, if the convex hull of C contains the evolute of C, then the
1-skeleton of VR(C; r) is a cyclic graph or a cone for all r ≥ 0.

Proof of Theorem 3. Let C be a strictly convex closed differentiable planar curve C equipped with the
Euclidean metric. Furthermore, suppose the convex hull of C contains the evolute of C. We must show
that the 1-skeleton of VR(C; r) is a cyclic graph or a cone for all r ≥ 0. We will show the implications
(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) below, completing the proof.

(i) The evolute of C is contained in the convex hull conv(C).
(ii) Function h : C → C is injective.
(iii) For all points p ∈ C, the distance function dp has exactly two critical points.
(iv) For all points p ∈ C there is a unique global maximum of dp (call it p+), and the distance

function dp is monotonic along the two arcs in C from p to p+.
(v) The 1-skeleton of VR(C; r) is a cyclic graph7 or a cone for all r ≥ 0.

(i) ⇔ (ii). The intuition (before the proof) is as follows. For an example, see Figure 7. If α : I → C
is a curve moving in the counterclockwise direction, then note that h(α(t)) will also be moving in the
counterclockwise direction at t ∈ I if and only if the center of curvature xα(t) is in conv(C). For the
proof, we first note that a continuous map h : C → C of degree one is injective if and only if for any
continuous function α : I → C, the orientations of α(t) and h(α(t)) match for all times t. The result
then follows from Lemma 15 in D, which says that α(t) and h(α(t)) have matching orientations for all t
if and only if the evolute of C is contained in the convex hull conv(C).

(ii) ⇔ (iii). Note that h is injective if and only if for each p ∈ C, there is a unique point q ∈ C with
h(q) = p, which by Lemma 10 is equivalent to dp having exactly two critical points (a global minimum
p, and the point q satisfying h(q) = p as a global maximum).

(iii) ⇒ (iv). Note that for all p ∈ C, compactness implies that dp has at least two extrema (a global
minima at p, and a global maxima). If each dp has exactly two critical points, then each dp must have
exactly two extrema (as every extrema is a critical point). Therefore (iv) is satisfied.

Though not needed here, it is also true that (iv) ⇒ (iii); see E,
(iv) ⇒ (v). If r is such that C ⊆ B(p, r) for some p ∈ C, then the 1-skeleton of VR(C; r) is a cone.

Otherwise, r is small enough so that no ball B(p, r) with p ∈ C contains all of C. Then the assumptions
of (iv) imply that for all p ∈ C and 0 ≤ r′ ≤ r, the intersection B(p, r′) ∩ C is a connected arc. By
Theorem 2, the 1-skeleton of VR(C; r) is a cyclic graph.

�

We can now also prove Corollary 5, which provides an O(n log n) algorithm for determining the
homotopy type of VR(X; r), where X is a sample of n points from a strictly convex closed differentiable
planar curve whose convex hull contains its evolute, and where r ≥ 0.

Proof of Corollary 5. By Theorem 3 we know that the 1-skeleton of VR(C; r) is a cyclic graph, and it
follows that the same is true of VR(X; r) for any X ⊆ C. We use the O(n log n) algorithm in C to
determine the cyclic ordering of the points in X (along C) from their coordinates in R2; this algorithm
does not require knowledge of C. The result then follows since given a cyclic graph G with n vertices,
there exists an O(n log n) algorithm for determining the homotopy type of the clique complex of G.
Indeed, this is contained in Theorem 5.7 and Corollary 5.9 of [3], in which the algorithm is stated for
a Vietoris–Rips complex of points on the circle, though it holds more generally for the clique complex
of any finite cyclic graph. The algorithm proceeds by removing dominated vertices, without changing
the homotopy type of the clique complex, until arising at a minimal regular configuration (in which
each vertex has the same number of outgoing neighbors, such as the two cyclic graphs in the middle of
Figure 4). One can read off the homotopy type from this regular configuration. �

Remark 11. The algorithm in Corollary 5 is furthermore of linear running time O(n) if the vertices
are provided in cyclic order.

7When equipped with the obvious cyclic ordering on C.
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7. Conclusion

We have derived conditions under which the Vietoris–Rips complex of a curve C ⊆ Rd is a cyclic graph.
For example, we have shown that if the convex hull of a strictly convex closed differentiable planar curve
C contains the evolute of C, then the 1-skeleton of VR(C; r) is a cyclic graph or a cone for all r ≥ 0.
As a consequence, if X is any finite set of n points from C, then the homotopy type of VR(X; r) can be
computed in time O(n log n). Furthermore, we give an O(n2(k + log n)) time algorithm for computing
the k-dimensional persistent homology of VR(X; r) (or more generally, the persistent homology of an
increasing sequence of cyclic graphs). This is significantly faster than the traditional persistent homology
algorithm, which is cubic in the number of simplices of dimension at most k + 1, and hence of running
time O(n3(k+2)) in the number of vertices n, though our algorithm only applies in specific settings.

Our work motivates the following questions.

• For X ⊆ R2 arbitrary, is there a cubic or near-quadratic algorithm in the number of vertices
n = |X| for determining the k-dimensional persistent homology of VR(X; r)? This would be more
likely if the conjecture that the Vietoris–Rips complex VR(X; r) of any planar subset X ⊆ R2 is
homotopy equivalent to a wedge sum of spheres were true (see Problem 7.3 of [6] and Question 5
in Section 2 of [39]).

• As for one dimension higher, when X ⊆ R3 what is the computational complexity of computing
the k-dimensional persistent homology of VR(X; r) in terms of the number of vertices n = |X|?

• Is there a generalization of the evolute condition in Theorem 3 for curves in higher-dimensional
Euclidean space Rd?
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Appendix A. Any finite graph is a unit ball graph

An abstract simple graph G (no loops or multiple edges) with n vertices 1, 2, . . . , n is a unit ball graph
in Rd if there exist points v1, v2, . . . , vn ∈ Rd such that ‖vi − vj‖ ≤ 1 for i 6= j if and only if edge ij is in
G. As cited in the introduction, we show that any finite graph with n vertices can be realized as a unit
ball graph in Rn−1. This result is surely well-known, though we have not yet found a reference.

In our argument we use the theory of multidimensional scaling [30], a dimensionality reduction and
visualization technique. In particular, we use the notation from from [18]. Let D be the n×n symmetric
distance matrix corresponding to the discrete metric space with n points; D has zeros along the diagonal
and ones everywhere else. Let H = I − 1

n11T , where 1 is the vertical vector of all ones. The matrix

B = H(− 1
2d

2
ij)H has zero as an eigenvalue (coming from the kernel of H), and n−1 nonzero eigenvalues

all equal to 1
2 . Since B is positive semi-definite, it follows from Theorem 14.2.1 of [18] that D is Euclidean,

i.e., the discrete metric space on n points can be isometrically embedded in Rn−1 (as the vertices of a
regular simplex).

Now, let G be an arbitrary simple graph with n vertices. Let ε > 0. Let D′ be the n× n symmetric
distance matrix with zeros along the diagonal, with dij = 1− ε if edge ij is in G, and with dij = 1 + ε if
edge ij is not in G. The matrix B′ = H(− 1

2 (d′ij)
2)H has zero as an eigenvalue, and for ε sufficiently small,

n−1 positive eigenvalues arbitrarily close to 1
2 . Hence B′ is positive semi-definite, and so Theorem 14.2.1

of [18] implies that the metric space determined by D′ admits an isometric embedding into Rn−1. These
embedded points give the vertex locations showing that G is a unit ball graph in Rn−1, as desired.

Appendix B. Intersections of balls with symmetric moment curves

Let f : S1 → R4 be the scaled symmetric moment curve defined by f(t) = (cos t, sin t, α cos 3t, α sin 3t),
where α ∈ R is a constant. Let rC be the diameter of C = im(f). We show that if α < 1√

3
, then for

all p ∈ C and 0 ≤ r ≤ rC , the intersection B(p, rC) ∩ C is a connected arc. Hence Theorem 2 applies
to give that the 1-skeleton of VR(C; r) is a cyclic graph up until r = rC , at which point VR(C; r) is
contractible.

Let the circle S1 = [0, 2π) act on R4 by rotations: let θ ∈ S1 act via the rotation matrix

Rθ =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos 3θ − sin 3θ
0 0 sin 3θ cos 3θ

 .

Curve C is the orbit of the single point f(0) = (1, 0, 1, 0) under this (isometric) action of the circle S1

on R4 by rotations, and therefore C is metrically homogeneous. Therefore it suffices to prove our claim
when p ∈ C is a single point. For convenience, we let p = f(0) ∈ C.

The squared Euclidean distance between f(0) and f(t) on C is given by

d2
(
f(0), f(t)

)
= (1− cos t)2 + sin2(t) + α2(1− cos 3t)2 + α2 sin2 3t

= 2(1− cos t+ α2 − α2 cos 3t).

We take the derivative of this squared distance and set it equal to zero in order to obtain

0 =
d

dt
d2
(
f(0), f(t)

)
= 2(sin t+ 3α2 sin 3t).

Using the triple angle formula we have

sin t = −3α2 sin 3t = −3α2(3 sin t− 4 sin3 t) =⇒ (1 + 9α2) sin t = 12α2 sin3 t.
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In[151]:= alpha = 1 / Sqrt[3];
Plot[(1 - Cos[t])^2 + Sin[t]^2 + alpha^2 * (1 - Cos[3 t])^2 + alpha^2 * Sin[3 t]^2,
{t, 0, 2 Pi}, ImageSize → Large, TicksStyle → Large]
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In[154]:= alpha = 1;
Plot[(1 - Cos[t])^2 + Sin[t]^2 + alpha^2 * (1 - Cos[3 t])^2 + alpha^2 * Sin[3 t]^2,
{t, 0, 2 Pi}, ImageSize → Large, TicksStyle → Large]

Out[155]=

1 2 3 4 5 6

2

4

6

8

SymmetricMomentCurve_SquaredDistances.nb     3

Figure 8. The squared Euclidean distance d2
(
f(0), f(t)

)
between f(0) and f(t), for

(left) α = 1√
3

and (right) α = 1.

This provides solutions when sin t = 0, i.e. t = 0 or π, and when sin2 t = 1+9α2

12α2 . If α < 1√
3

then

1+9α2

12α2 > 1, and so the only solutions to 0 = d
dtd

2
(
f(0), f(t)

)
are obtained when t = 0 or π, corresponding

to the global minimum and maximum of d2
(
f(0), f(t)

)
, respectively. Hence the intersection B(f(0), r)∩C

is a connected arc for all 0 ≤ r ≤ rC , where rC is the diameter of C.
Interestingly, the symmetric moment curve (cos t, sin t, cos 3t, sin 3t) is closely related to Barvinok–

Novik orbitopes [15], and also to the Vietoris–Rips thickening of the circle and Borsuk–Ulam theorems
for maps from the circle into higher-dimensional Euclidean spaces [9].

Appendix C. From Euclidean points to a cyclic graph

Given a sample X of n points from a strictly convex differentiable planar curve C whose convex hull
contains its evolute, it is easy to determine the cyclic graph structure on the 1-skeleton of VR(X; r) even
without knowledge of C. We can place the points in X in cyclically sorted order by running a convex
hull algorithm, which takes O(n log n).
Determining the direction of each edge. Given the n points X on C, suppose we are adding the next
shortest undirected edge {x, y} and need to determine whether this edge is oriented x → y or y → x.
First, we add another array to the algorithm in Section 4, to keep track of the degree of each vertex.
Indeed, if any vertex v has full degree n− 1, then the Vietoris-Rips complex is contractible (it is a cone
with v as its apex), and so we’re trivially done. So, consider the case where no vertex has degree n− 1.
Going counterclockwise from x, all the other vertices in X fall into three categories: first the vertices
v with an edge x → v, then the vertices that are not connected to x, then the vertices v with an edge
v → x, before finally getting back to x (see Figure 9(right)). To determine the direction on the new edge
{x, y}, note that since the graph is cyclic, y will be adjacent (in the cyclic order) to either a vertex v from
the first category (x→ v) or to a vertex v from the third category (v → x). If y is adjacent exclusively
to a vertex v with x→ v, then the direction on our new edge is x→ y. If y is adjacent exclusively to a
vertex v with v → x, then the direction on our new edge is y → x. Finally, if y is adjacent to a vertex
of each type, then after adding the new edge {x, y} necessarily x has degree n − 1, meaning that the
Vietoris–Rips complex is contractible.

Appendix D. Evolutes and injectivity

The goal of this section is to prove Lemma 15. Lemma 15 is used in the proof of Theorem 3 in order
to prove (i) ⇔ (ii), namely that the evolute of C is contained in the convex hull of C if and only if the
function h : C → C is injective.

We begin with some background on orientations. A differentiable closed simple curve α : I → C ⊆ R2

with α injective is said to be positively (resp. negatively) oriented if it is moving in the counterclockwise
(resp. clockwise) direction around C. It follows from Lemma 12 that (α′(t), n(α(t))) is a positive (resp.
negative) basis for R2, for all t ∈ I. The curve β : I → C is said to have a matching orientation to α
when the basis (β′(t), n(β(t))) has the same sign as (α′(t), n(α(t))) [33].

Recall from Section 3 that for α : I → R2 a differentiable curve in the plane, we define the inner
normal vector n(t), the curvature κ(t), and the center of curvature xα(t) = α(t) + 1

κ(t)n(t).

Lemma 12. Let C be a convex curve in R2, and let α : I → C be a differentiable curve moving in the
counterclockwise (resp. clockwise) direction around C. Then (α′(t), n(α(t))) is a positive (resp. negative)
basis for R2.
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Figure 9. We identify that the new edge, the dashed edge, must be oriented from
bottom-right to top-left.

Proof. Definition 2.1.2 and Theorem 2.4.2 of [56] show that the signed curvature n(α(t)) · α′(t) never
changes sign for C convex, which implies that the orientation on the basis (α′(t), n(α(t))) never changes
signs. �

Lemma 13. Let C be a differentiable convex curve in R2, and let α : I → C be differentiable. The line
through α(t) and xα(t) intersects C at a unique other point, which we denote by β(t) = h(α(t)). If we
define s : I → R to satisfy β(t) = α(t) + s(t)n(α(t)), then the function s is differentiable.

Proof. We employ the implicit function theorem. Define d± : R2 → R to be the signed distance to the
curve C, namely

d±(y) =

{
d(x,C) if x ∈ conv(C)

−d(x,C) otherwise.

Since C is a smooth and complete manifold, it follows from Section 3 of [49] that d± is differentiable on
an open neighborhood of C, with derivative

∇d±(x) =


x−y
‖x−y‖ if x ∈ int(conv(C))
y−x
‖x−y‖ if x /∈ conv(C)

n(x) if x ∈ C,
where y ∈ C is the unique closest point on C to x. Related references include [25, 35, 38, 50, 60].
Furthermore, define g : R2 → R2 via g(t, s) = α(t) + sn(α(t)), and define f : R2 → R by f = d± ◦ g. Note
that g is differentiable since C is, and hence f is differentiable as the composition of d± with g.

Pick t0, s0 such that f((t0, s0)) = 0; hence g(s0, t0) ∈ C. In order to apply the implicit function
theorem we need to show that the Jacobian of f with respect to s is invertible at (t0, s0); this is

equivalent to showing that ∂f
∂s (t0, s0) 6= 0. Using the chain rule for f = d± ◦ g, we compute

∂f
∂s (t0, s0) = ∇d±(α(g(t0, s0)))T · ∂g∂s (s0, t0) = n(g(t0, s0))T · n(α(t0)).

Suppose for a contradiction that the vectors α′(g(t0, s0)) and n(α(t0)) were parallel. Then the normal
to C at α(t0) and the tangent to C at g(t0, s0) would be the same line (they have the same direction
vectors, and both pass through g(t0, s0)). This would mean that α(t0) lives on the tangent line to C at
g(t0, s0) and that α′(t0) is perpendicular to α′(g(t0, s0)), contradicting convexity. Hence it must be that

α′(g(t0, s0)) and n(α(t0)) are not parallel, and therefore ∂f
∂s (t0, s0) 6= 0.

It then follows from the implicit function theorem that there exists an open set U about t ∈ R, and
a differentiable function s : U → R, such that s(t0) = s0 and f(t, s(t)) = 0 for all t ∈ U . This gives the
differentiability of s : I → R, as desired. �

Lemma 14. Let C be a differentiable convex curve in R2, and let α : I → C be a differentiable curve
moving in the counterclockwise direction about C. Let L(t) be the line through α(t) and xα(t), namely
L(t) = {α(t)+sn(t) | s ∈ R}. Suppose that β(t) = α(t)+s(t)n(α(t)) is an arbitrary8 differentiable curve
with β(t) ∈ L(t) \ {xα(t)} for all t ∈ I. Then (β′(t), n(α(t))) is a positive basis for R2 if and only β(t)
is in the same connected component of L(t) \ {xα(t)} as α(t).

8In Lemma 13 we assume that β has image in C; that is not necessary here.
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Proof. We claim that when s(t) = 1
κ(t) , we have α′(t) · β′(t) = 0. From the Frenet-Serret formulas [33],

we have

(2) n′(α(t)) = ‖α′(t)‖
(
−κ(t)

(
α′(t)

‖α′(t)‖

)
+ τ(t)B(t)

)
= −κ(t)α′(t),

where the last equality follows since the torsion term is τ(t) = 0 for all curves in R2. Note that when
s(t) = 1

κ(t) , we have

α′(t) · β′(t) = α′(t) ·
(
α′(t) + s′(t)n(α(t)) + s(t)n′(α(t))

)
= ‖α′(t)‖2 +

1

κ(t)
α′(t) · n′(α(t)) since α′(t) and n(α(t)) are orthogonal

= ‖α′(t)‖2 − 1

κ(t)
‖α′(t)‖ ‖n′(α(t))‖ by (2)

= ‖α′(t)‖
(
‖α′(t)‖ − 1

κ(t)
‖n′(α(t))‖

)
= 0 by (2).

Now, let’s consider the case where α(t) and β(t) are on the same connected component of L(t)\{xα(t)}.
Since α′(t) is perpendicular to n(α(t)), it suffices to show that the dot product α′(t) · β′(t) is positive.
Since α(t) and β(t) are on the same connected component, we know that s(t) < 1

κ(t) . Since

α′(t) · β′(t) = ‖α′(t)‖2 − 1

κ(t)
‖α′(t)‖ ‖n′(α(t))‖ = 0,

it must be the case that for for s(t) < 1
κ(t) we have

α′(t) · β′(t) = ‖α′(t)‖2 − s(t)‖α′(t)‖ ‖n′(α(t))‖ > 0.

Finally, consider the case where α(t) and β(t) are not on the same connected component of L(t) \
{xα(t)}. So s(t) > 1

κ(t) . This gives us that

α′(t) · β′(t) = ‖α′(t)‖2 − s(t)‖α′(t)‖ ‖n′(α(t))‖ < 0.

�

Lemma 15. Let C be a convex curve in R2, and let α : I → C be a differentiable curve moving in the
counterclockwise direction about C. The line through α(t) and xα(t) intersects C at a unique point of
C \ {α(t)}, which we denote by β(t) = h(α(t)). Then α and β have matching orientations at time t if
and only if xα(t) ∈ conv(C).

Proof. Note that, by definition of convexity, C lies completely on one side of its tangent lines. A vector
v ∈ R2 with its tail placed at p ∈ C points toward the interior of C if it is completely contained on the
same side of the tangent line to C at p as C. For such a vector, there exists some constant c > 0 such
that cv intersects C \ {p} at a unique point p̃. If we instead place the tail of v at p̃, then v is on the
side of the tangent line to C at p̃ that does not contain C. Thus, v points toward the exterior of C at
p̃. By definition, the unit normal vector to C at each p ∈ C points to the interior of C. This means
that n(α(t)) points to the interior of C when its tail is placed at α(t), and to the exterior of C when its
tail is placed at β(t). In summary, when their tails are placed at β(t), both of the vectors −n(α(t)) and
n(β(t)) point toward the interior of C.

Define s : I → R to satisfy β(t) = α(t) + s(t)n(α(t)); note that s is differentiable by Lemma 13.
Suppose xα(t) ∈ conv(C). So 0 < 1

κ(t) < s(t). From Lemma 14, (β′(t), n(α(t))) is a negative basis for

R2, and hence (β′(t),−n(α(t))) is a positive basis for R2. So it must be the case that (β′(t),−n(α(t)))
and (β′(t), n(β(t))) are bases of the same sign. Thus, α and β have matching orientations.

Next, suppose that xα /∈ conv(C). So s(t) < 1
κ(t) . From Lemma 14, (β′(t), n(α(t))) is a positive

basis. However, at β(t), the vector n(α(t)) points outward while n(β(t)) must point inward. Thus,
(β′(t), n(β(t))) is a negative basis, and so α and β do not have matching orientations. �
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Appendix E. Theorem 3: (iv) ⇒ (iii)

In this appendix we show that in the proof of Theorem 3, (iv) ⇒ (iii) is also true. The argument is
subtle, but we proceed regardless.

Suppose for a contradiction that dp has more than two critical points for some p ∈ C contradicting
(iii); our task is to find some point p̃ ∈ C that does not satisfy property (iv). We may therefore assume
that dp : C → R has a unique global maximum, call it p+ (for otherwise we are done). The assumption
on p means that there exists some critical point q of dp that is neither p nor p+. Since q is a critical

point we can find a curve α : (−δ, δ)→ C with α(0) = q and d
dtdp(α(t)) = 0 for t = 0.

Figure 10. For a single point p, it may be that dp has more critical points than extrema.
Indeed, see the half-circle-half-ellipse example for C above, with the specific point p as
pictured. We have three critical points and only two extrema of dp (note that q is a
critical point of dp that is not an extremum). Nevertheless, (iv) ⇒ (iii) still holds since
for other points p̃ ∈ C, we have more than two extrema of dp̃.

We claim that there is a point p̃ ∈ C arbitrarily close to p such that

(a) d
dtdp̃(α(t)) < 0 for t = 0, and

(b) a global maximum of dp̃ is arbitrarily close to p+.

We first show (a). By (1), the sign of this derivative depends only on whether the angle between α′(0)
and p̃−q is larger or smaller than π

2 radians. Since the angle between α′(0) and p−q is exactly equal to π
2

radians, there is some satisfactory point p̃ arbitrarily close to p. We next show that we can additionally
satisfy (b). Since dp is a continuous function on a compact domain with a unique global maximum p+,
given any δ > 0, there exists some ε > 0 such that every point x ∈ C with dp(x) ≥ dp(p

+) − ε satisfies
‖x − p+‖ < δ. Now, choose p̃ sufficiently close to p so that the sup norm of the difference between the
functions dp and dp̃ is less than ε

2 . It then follows that any global maximum of dp̃ is within δ of p+.
Note that p̃ is the global minimum of dp̃, and that as we wrap around C in one direction towards a

global maximum of dp̃, we have found a point α(0) such that d
dtdp̃(α(t)) < 0 for t = 0. It follows that

dp̃ does not satisfy the monotonicity property in (iv), and hence we have completed the proof of (iv) ⇒
(iii).
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