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ABSTRACT

We consider the topological and geometric reconstruction of a geodesic subspace of RN both from

the Čech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our recon-
struction technique leverages the intrinsic length metric induced by the geodesics on the subspace.
We consider the distortion and convexity radius as our sampling parameters for the reconstruc-

tion problem. For a geodesic subspace with finite distortion and positive convexity radius, we
guarantee a correct computation of its homotopy and homology groups from the sample. This

technique provides alternative sampling conditions to the existing and commonly used conditions

based on weak feature size and µ–reach, and performs better under certain types of perturbations
of the geodesic subspace. For geodesic subspaces of R2, we also devise an algorithm to output a
homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown

underlying space.
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1. Introduction

With the advent of modern sampling technologies, such as GPS, sensors, medical imag-

ing, etc., Euclidean point-clouds are becoming widely available for analysis. In the last

decade, the problem of reconstructing an (unknown) Euclidean shape, from a (noisy) sam-

ple around it, has received a far and wide attention both in theoretical and applied literature;

see [1, 2, 3, 4, 5, 6]. The nature of such a reconstruction attempt can commonly be classi-

fied as being topological or geometric. A topological reconstruction is usually attributed to

inferring significant topological features—such as homology and homotopy groups—of the

hidden shape of interest. To be more specific, one may also say homological reconstruction or

homotopy type reconstruction. A much stronger paradigm is the geometric reconstruction,

where one is interested in producing, from the sample, a Euclidean subset that is homotopy

equivalent and geometrically “close” (e.g., in Hausdorff distance) to the underlying shape.

The nature of the problem and the techniques of the solution change depending on

the type of the shape X and the sample S considered, as well as how their “closeness”

is measured. The most natural distance measure between two abstract metric spaces is

the Gromov-Hausdorff distance, which measures how “metrically close” two metric spaces

are. The reconstruction of a geodesic metric space X from another metric space S that

is Gromov-Hausdorff close to X is considered in [7, 8]. For a Euclidean shape X and a

Euclidean sample S, however, the sample density is usually quantified by their Hausdorff

distance. For the Hausdorff-type reconstruction of Euclidean shapes, see [3, 5, 6, 4].

In many applications, a point cloud approximates a geodesic subspace (see Definition 2.1)

of Euclidean space. Examples include GPS trajectories sampled around a road-network

(modeled as sampling paths in a graph in R2), earthquake data sampled around the fila-

mentary trajectory of the shock, or 3D medical imaging. The intrinsic geodesics of these

underlying shapes enjoy a rich geometric structure. Capturing that structure from the sam-

pled data is the challenge. The length metric dL (see (1)) turns them into geodesic subspaces

of RN . In this work, we consider both topological and geometric reconstruction of a geodesic

subspace X of RN from a finite Hausdorff-close Euclidean sample.

In shape reconstruction, the use of various simplicial complexes built on the point-clouds

is becoming increasingly popular; see for example [9, 10, 11, 5, 12]. The most common of

them are Vietoris-Rips and Čech complexes. In this work, we use filtrations of both of them,

and we recognize the distortion δ = δ(X) and convexity radius ρ = ρ(X) of X to be natural

sampling parameters when the geodesic subspaces of RN are considered; see Section 2 for

their formal definitions.

Our homological reconstruction approach is similar to [5], which is based on the weak

feature size (wfs) of the underlying space. However, the use of partition of unity, for exam-

ple, in the proof of Theorem 3.10 makes our techniques substantially different. The novelty

of this paper is discerned by the introduction of distortion and convexity radius as sampling

parameters, which is not related to the known sampling parameters such as the reach, µ–

reach or wfs [6, 4, 10]. These works are based on an analysis of the gradient flow of the

Euclidean distance function to X in RN and its critical points. Our techniques are substan-

tially different from that and our results apply to a large class of spaces including smooth
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submanifolds of RN , finite embedded graphs and higher dimensional simplicial complexes.

As an application of our reconstruction technique, we develop in Section 4 a new topological

approach for the reconstruction of embedded graphs.

1.1. Review of Related Works

This subsection surveys relevant and pivotal results in shape reconstruction from point

clouds using topological methods, and compares them to the results of this paper. Table 1

presents a list of some of the most related results alongside the contribution presented in

this work. For necessary definitions and background we refer the reader to Section 2.

Reach. The most well-behaved spaces are smooth Euclidean submanifolds, more generally

spaces with a positive reach r(X). In [3], the authors apply geometric and topological tools

to reconstruct a smooth submanifold by the union of Euclidean balls of sufficiently small

radius around a dense subset. The work uses the reach of the embedded submanifold as the

sampling parameter. In a more recent work ([15]), the authors improve some of the previously

known bounds and develop homotopy-type reconstruction of a Euclidean (compact) subset

with positive reach (and µ-reach) using Čech and Vietoris-Rips complexes on a sample.

The above results do not apply when considering shapes beyond the class of Euclidean

submanifolds or spaces that do not have a positive reach, although such shapes are frequently

encountered in practical applications. A common reason for a space to have a vanishing reach

is the presence of sharp corners and branchings. Such spaces include graphs, embedded

simplicial complexes, manifolds with corners—also the type of shapes we consider in this

work for reconstruction. For manifold reconstruction by Vietoris-Rips complexes in a slightly

different but related context, see [11, 16].

Weak Feature Size, µ-Reach. In developing a sampling theory for general compact

sets in RN , the notion of weak feature size (wfs) was introduced in [4] as the infimum of

the positive critical values of the distance function to the compact set. Using the wfs as

a sampling condition, the authors developed a persistence-based approach to reconstruct

the homology groups and the fundamental group of a hidden shape from the Euclidean

thickenings of the sample around it.

The results have been further extended in [5] to facilitate reconstruction of homology

groups from Čech, Vietoris-Rips, and witness complexes built on the sample. In comparison

with the manifold reconstruction result in [3], the techniques of [4, 5] apply to much less

regular subspaces of RN , such as compact Euclidean neighborhood retracts [17, 18]—as long

as they have a positive wfs.

The notion of the wfs of a Euclidean compact set was generalized in [6] by introducing

the concept of µ-reach, denoted rµ(X). A homotopy-type reconstruction of spaces with pos-

itive µ-reach has been developed in [6, 10]. Although these works consider for reconstruction

spaces beyond the class of positive wfs, the difficulty lies in applying the results to shapes

as simple as an embedded tree. Also, choosing a suitable µ so that the µ-reach is positive is

not always clear.
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Table 1: Reconstruction results. Parameters (params.) are: weak feature size (wfs), µ-reach

(R), shorted edge length (b), global reach (ξ), smallest turning angle (α), distortion (δ), and

convexity radius (ρ).

Authors Space X Param. Condition on S Result

Niyogi
et al. [3]

manifolds ξ ε <
√

3
5ξ and S ⊂ X

is ε
2 -dense

Sε deformation
retracts to X

Chazal,
Lieutier [4]

compact sets wfs dH(X,S) < ε <
wfs(X)

4 Im(i∗) ' H∗(Xα), where

i : Sε → S3ε and α is
sufficiently small

Chazal,
Oudot [5]

compact sets wfs dH(X,S) < ε < 1
9wfs(X),

S is finite
Im(i∗) ' H∗(Xα), where
i : Rε(S)→R4ε(S), α
is sufficiently small

Attali
et al. [10]

compact sets µ-reach
R

dH(X,S) ≤ ε < λcech(µ)R Cα(S) is homotopy
equivalent to
Xη for η ∈ (0, R)

Anjaneya
et al. [13]

abstract metric
graphs

b, r S is an
(ε,R)-approximation,
15ε
2 < b < min

{
R
4 ,

3b−6ε
5

} homeomorphic graph

Wasserman
et al. [14]

embedded
metric graphs

µ of each
edge,
ξ, α, b, τ

S is δ
2 -dense in

Xα, 0 < r + δ < ξ − 2σ,
and 0 < δ < f(b, α, τ, ξ, σ)

isomorphic pseudo-graph

Theorem 3.5 geodesic spaces δ, ρ dH(X,S) < ε
4 <

ρ
2δ(3δ+2)

Im(i∗) ' H∗(X), where i :
Rε(S)→R 1

2 (3δ+1)ε(S)

Theorem 4.7 planar
subspaces

δ, ρ dH(X,S) < ε
3 <

ρ
δ(15δ+2)

Hausdorff-close, homotopy
equivalent subset

Our topological reconstruction results (Theorem 3.5 and Theorem 3.10), are very sim-

ilar in style to the results presented in [5]. However, the use of partition of unity for Čech

complexes and homotopy equivalence result of Hausmann ([19]) for Vietoris-Rips complexes

make our proofs very different. The wfs-based technique employed in [4, 5] restricts their

results to work for homology with coefficients only in a field. Moreover, it’s not apparently
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(0, 0) (1, 0)

sin π
x

Fig. 1: The compact set X (Warsaw circle) has a positive wfs, but X and Xλ do not have

the same homotopy type for any λ > 0. In fact, X has the weak homotopy type of a point,

whereas Xλ has the homotopy type of S1.

clear whether the results can easily be extended to higher homotopy groups. Our recon-

struction results, however, do not suffer such restrictions; see Remark 3.11.

Apart from the fact that we employ δ(X) and ρ(X) for our sampling condition, all wfs

(and µ-reach) based results guarantee a reconstruction of a thickening Xλ of X and not X

directly. There are known pathological examples of spaces where the thickening (however

small) is not homotopy equivalent to the underlying space, such as the Warsaw circle shown

in Figure 1. Although the homological reconstruction results in our work concern the homo-

logical reconstruction of the subspace X itself, not the thickening of X, they are not strong

enough to apply in the case of the Warsaw circle because of δ(X) = +∞ in this case.

Another notable difference in the previously discussed approaches appears in the cases

where X is “slightly perturbed”, e.g., a submanifold with corners. Such a perturbation is

illustrated in Figure 2 for a circle X topologically embeddeda in R2. The top part of the

space X is the graph of a rectifiable curve γ : [0, 1] → R2 such that, when restricted to

the segment
[

1
n+1 ,

1
n

]
, it is a half-circle of diameter 1

n(n+1) for n odd and a line-segment

for n even. For this space, the set of critical points of the distance function is an infinite

set with an accumulation point at (0, 0). Consequently, wfs(X) = 0. However, X has a

finite distortion δ = π
2 and a positive intrinsic convexity radius: ρ(X) > 0. Thus X fails

to satisfy the conditions of the reconstruction results of [4, 5], however our results apply

to this case. Another important point, suggested by the example of Figure 2, is that any

embedded submanifold X in RN can be perturbed to a submanifold X ′, just by adding a

small “spherical cap” at any of its points. Such a small perturbation does not change the

distortion and the convexity radius too much, however can produce very small wfs, because

we introduce a critical point of the distance function at the center of the cap. Small values

of wfs result in large sample sizes needed for the reconstruction.

Metric Graph Reconstruction. We finish this introduction with a quick summary of

some of the existing works on reconstruction of embedded metric graphs ([13, 20, 8]). In [13],

the authors consider an abstract metric graph and a sample that is close to it in Gromov-

Hausdorff metric, and reconstruct the structure of the metric graph along with the metric

aa topological embedding is simply a C0–embedding.
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(0, 0) (1, 0)

Fig. 2: The space X is a compact Euclidean subspace with wfs(X) = 0 and rµ(X) = 0.

The critical points of the distance function are shown in blue; they accumulate at (0, 0).

However, X has a finite distortion and a positive convexity radius.

on it. In a more recent work [20], the authors show a statistical treatment of metric graph

reconstruction. They consider an embedded metric graph and a Euclidean sample around

it. The Gromov-Hausdorff proximity used in [13] is replaced by the density assumption.

The algorithm presented in [13] only reconstructs the connectivity of the vertices of the

underlying metric graph and outputs an isomorphic pseudo-graph. And lastly, we mention

that the first Betti number of an abstract metric graph is computed by considering the

persistent cycles in the Vietoris-Rips complexes of a sample that is very close to it, with

respect to the Gromov-Hausdorff distance; see [8, Lemma 6.1]. In Gromov-Hausdorff type

reconstruction schemes, a small Gromov-Hausdorff distance between the graph and the

sample guarantees a successful reconstruction. These methods are not a good choice when

embedded graphs in RN are considered. For an embedded graph with the induced length

metric and a Euclidean sample around it, the Gromov-Hausdorff distance is not guaranteed

to be made infinitely small, even if a dense enough sample is taken. Also, most of the

above mentioned works may be insufficient to give a geometrically close embedding for the

reconstruction. Whereas our technique, presented in Section 4, can successfully be used to

reconstruct embedded graphs; see Corollary 4.8.

1.2. Our Contribution

One of the major contributions of this work is to reconstruct geodesic subspaces of RN ,

both topologically and geometrically. In our pursuit, we recognize distortion and convexity

radius as new sampling parameters. These sampling parameters are very natural properties

of geodesic spaces.

In Section 2, along with the other important notions of metric geometry and algebraic

topology that we use throughout this paper, we define convexity radius and distortion of a

geodesic space.

In Section 3, our main topological reconstruction results for a geodesic subspace X of RN
are presented. When the distortion is finite and the convexity radius is positive, the Vietoris-

Rips and Čech filtrations of the sample are shown to successfully compute the homology

and homotopy groups of X (Theorem 3.5 and Theorem 3.10).
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In Section 4, we consider geometric reconstruction of geodesic subspaces. We construct a

complex on the sample as our geometric reconstruction of the space of interest. Theorem 4.3

establishes the isomorphism of their fundamental groups. As an interesting application in

Section 4.2, we consider the geometric reconstruction of planar subspaces and embedded pla-

nar graphs (Definition 4.4) in particular. In Theorem 4.7, we compute a homotopy equivalent

geometric complex in the same ambient space that is also Hausdorff-close to X. Since the

sample S can be taken to be finite, our result gives rise to an efficient algorithm (Algo-

rithm 1) for the geometric reconstruction of planar embedded graphs.

2. Notation and Background

In this section, we provide a brief overview of useful notation and classical results from metric

geometry and algebraic topology. For more detailed and complete treatment, we refer the

reader to textbooks on metric geometry [21, 22] and algebraic topology [23, 24, 25].

2.1. Geodesic Subspaces, Distortion, Convexity Radius

We first present relevant definitions from metric geometry.

Geodesic Subspaces (of RN) We start with the unit interval I := [0, 1] ⊂ R. A con-

tinuous function γ : I → RN is called a path. We call T = {ti}ki=0 a discretization of I

if 0 = t0 < t1 < t2 < . . . < tk = 1. We create a piecewise linear path by using straight line

segments to connect γ(ti) with γ(ti+1) for each i ∈ {0, 1, . . . , k − 1}. We often equip RN
with the Euclidean, or L2 distance, d2 : RN × RN → R defined by d2(x, y) := ‖x− y‖2.

Let γ : I → RN be a (continuous) path. The length of γ is defined as:

L(γ) := sup
T

∑
i∈{1,2,...,|T |}

d2 (γ(ti), γ(ti+1)) ,

where the supremum is taken over all finite discretizations of I. Furthermore, the curve γ

is called rectifiable if L(γ) is finite. For a path-connected subset X ⊆ RN , we call the

restriction of d2 to X the restricted metric on X. We define the induced length metric or

geodesic metric, dL : X ×X → R, by

dL(x, y) = inf
γ:[0,1]→X

L(γ), (1)

where the infimum is taken over all paths γ : I → X such that γ(0) = x and γ(1) = y.

Definition 2.1 (Geodesic Subspace). We call X ⊆ RN a geodesic subspace if between

any pair of points x, y ∈ X, there exists a rectifiable path on X starting at x and ending

at y whose length is dL(x, y).

One example of a geodesic subspace is a connected and compact subset of RN . The

“niceness” of an geodesic subspace is quantified by its distortion, a concept first introduced

by M. Gromov in the context of knots on Riemannian manifolds [26, 27, 22]. For a geodesic

subspace X ⊆ RN , we consider the map f : (X, d2)→ (X, dL) induced by the identiy map
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on X. The distortion of X is the best Lipschitz constant for f . More formally, we have the

following definition.

Definition 2.2 (Distortion). The distortion of the induced length metric dL with respect

to Euclidean distance over a set X ⊆ RN is defined as:

δ := δ(X) = sup
x6=y∈X

dL(x, y)

‖x− y‖2
.

For simplicity of exposition, we refer to δ as the distortion of X.

Since dL is the induced length metric, δ is bounded below by one and above by +∞. If X

is a straight line segment, then δ = 1. On the other extreme, if X is the subspace {(x, y) ∈
R2 | x2 = y3}, then δ = +∞. To see this, consider the limit as ε approaches zero of the two

points (−ε3/2, ε) ∈ X and (ε3/2, ε) ∈ X, getting arbitrarily close to the cusp point (0, 0).

Thus, both the lower and upper bounds on δ are tight. For more on distortion, see [28].

Remark 2.3 (Equivalence of Topologies). Given a metric space (X, d), we can topol-

ogize X with metric balls; that is, the topology is generated by sets of the form Bd(x, r) :=

{y ∈ X | d(x, y) < r}, where x ∈ X and r ∈ R. If we assume that dL has finite distortion

with respect to d2, then (X, dL) and (X, d2) have equivalent topologies. The equivalence of

the two topologies is a direct consequence of the following inequalities for x, y ∈ X:

‖x− y‖2 ≤ dL(x, y) ≤ δ ‖x− y‖2 . (2)

Fig. 3: The set X, the closure of the union of the falling segments in the figure, is known as

the infinite broom. The topology of (X, d2) is strictly finer than the length metric topology

of (X, dL). The latter topology is locally path-connected; whereas, the former topology

is not.

Equivalence of the topologies does not generally hold if the distortion of X is

not finite. For an example, let X ⊂ R2 be the closure of the union of line seg-

ments
{[

(0, 0),
(
cos π

2i , sin
π
2i

)]}
i∈N, as shown in Figure 3. Such a space is also known as
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the infinite broom. We see that the distortion of the space is infinite by considering the

sequence ai =
(
cos π

2i , sin
π
2i

)
of points on the right end of the spokes of the broom:

lim
i→∞

dL
(
(0, 1), ai

)
‖(0, 1)− ai‖2

=∞.

The Euclidean metric topology, in this case, is strictly finer than the length metric

topology, as (X, dL) is locally path-connected, but (X, d2) is not.

Convexity Radius Convexity radius of the underlying geodesic subspace is one of the

parameters of X used in all our reconstruction results. We start with its formal definition

from [19]. Although the concept is defined for general length spaces, we restrict ourselves

to only geodesic subspaces.

Definition 2.4 (Convexity Radius). We define the convexity radius, denoted ρ, of a

geodesic subspace X ⊆ RN to be the supremum of all r > 0 such that:

(1) For all x, y ∈ X with dL(x, y) < 2r, there exists a unique (length-minimizing) geodesic

path joining x and y.

(2) If x, y, z, u ∈ X such that dL(x, y) < r, dL(y, z) < r, dL(z, x) < r,

and u is a point on the (length-minimizing) geodesic path joining x and y,

then dL(u, z) ≤ max {dL(x, z), dL(y, z)}.
(3) If γ and γ′ are arc-length parametrized (length-minimizing) geodesics on X such that

γ(0) = γ′(0), then dL (γ(ts), γ′(ts′)) ≤ dL (γ(s), γ′(s′)) for 0 ≤ s, s′ < r and 0 ≤ t ≤ 1.

Consider a circle in R2 with perimeter R; its convexity radius is R
4 . Also, the convexity

radius of an embedded graph is b
4 , where b is the length of its smallest simple cycle. It is

well-known that the convexity radius of a compact Riemannian manifold is positive. The

convexity radius of a geodesic space is an intrinsic property.

2.2. Simplicial Complexes, Nerve Lemma

We finally conclude this section by outlining a few important notions from algebraic topol-

ogy. Readers are referred to [23, 24, 25] for more details.

Abstract Simplicial Complex The combinatorial analogue of a topological space, often

used in algebraic and combinatorial topology, is an abstract simplicial complex. An abstract

simplicial complex K is a collection of finite sets such that if σ ∈ K, then so are all its

non-empty subsets.

In general, elements of K are called simplices of K. The singleton sets in K are often

called the vertices of K. If a simplex σ ∈ K has cardinality (q + 1), then it is called a

q-simplex (or the dimension of σ is q or dim(σ) = q). If σ′ ⊆ σ, then σ′ is called a face of σ.

Simplicial Maps and Contiguity Let K1 and K2 be abstract simplicial complexes with

vertex sets V1 and V2, respectively. A vertex map is a map between the vertex sets.

Let φ : V1 → V2 be a vertex map. If, for all σ ∈ K1, we have φ(σ) := ∪v∈σ{φ(v)} is,
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in fact, an element of K2, then we say that φ induces a simplicial map φ : K1 → K2.

Two simplicial maps φ1, φ2 : K1 → K2 are called contiguous if for every simplex σ1 ∈ K1,

there exists σ2 ∈ K2 such that φ1(σ1) ∪ φ2(σ1) ⊆ σ2. A simplicial map between abstract

simplicial complexes is the combinatorial analogue of a continuous map between topolog-

ical spaces; likewise, contiguous simplicial maps play the role of homotopic maps in the

combinatorial world.

Geometric Complex Although, abstract simplicial complexes have enough combinatorial

structure to define simplicial homology and homotopy, they are not topological spaces. For

an abstract simplicial complex K with vertex set V , its underlying topological space or

geometric complex, denoted as
∣∣K∣∣, is defined as the space of all functions α : V → [0, 1],

also called barycentric coordinates, satisfying the following two properties:

(1) supp (α) := {v ∈ V | α(v) 6= 0} ∈ K
(2)

∑
v∈V

α(v) = 1.

The details on the topologies on
∣∣K∣∣ and their relations can be found in [24, 25]. In this

work, we use the standard metric topology on |K|, as defined in [25]. Naturally, a simplicial

map φ : K1 → K2 induces a continuous map
∣∣φ∣∣ :

∣∣K1

∣∣→ ∣∣K2

∣∣ defined by∣∣φ∣∣(α)(v′) =
∑

φ(v)=v′

α(v), for v′ ∈ K2.

As one expects, the contiguous simplicial maps induce homotopic continuous maps between

their respective underlying topological spaces; see [25] for a proof.

Nerve Lemma A critical ingredient for our Čech reconstruction results is the Nerve

Lemma or a modification thereof; therefore, we discuss the concept here. An open cover

U = {Ui}i∈Λ of a topological space X is called a good cover if all finite intersections of its

elements are contractible. The nerve of U , denoted N (U), is defined to be the simplicial com-

plex having Λ as its vertex set, and for each non-empty k-way intersection Ui1∩Ui2∩. . .∩Uik ,

the subset {i1, i2, . . . , ik} is a simplex of N (U). Under the right assumptions, the nerve pre-

serves the homotopy type of the union X, as stated by the following fundamental result.

Lemma 2.5 (Nerve Lemma [29]). Let U = {Ui}i∈Λ be a good open cover of a topological

space X. Then, the underlying topological space
∣∣N (U)

∣∣ is homotopy equivalent to X.

Remark 2.6. If the open cover U is locally finite, then the homotopy equivalence in the

Nerve Lemma is usually constructed with the help of a partition of unity for the cover [23].

Specifically, let h : X −→
∣∣N (U)

∣∣ be a homotopy equivalence. Then, a partition of unity is

a collection of continuous functions {ϕi : X −→ [0, 1]}i∈Λ such that for all x ∈ X,

h(x) =
∑
i∈Λ

ϕi(x)vi, (3)

where vi denotes the vertex of N (U) corresponding to the cover element Ui. In addition,

each ϕi must satisfy the following two requirements: (i) for all i ∈ Λ, the support of ϕi,
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denoted supp (ϕi), is a compact proper subset of Ui, and (ii) for all x ∈ X,
∑
i∈Λ ϕi(x) = 1.

Čech and Vietoris-Rips Complexes Consider a subspace A of a metric space (M,d) and

a positive scale α. The nerve of the collection of open metric balls of radius α centered at the

points of A is known as the Čech complex of A at scale (radius) α. We are interested in Čech

complexes in two metric spaces: Euclidean and the length metric space. Let X ⊆ RN . Then,

the Čech complex under the standard Euclidean metric is: Cα(X) := N ({B(x, r)}x∈X),

where B(x, r) is the Euclidean ball of radius r centered at x. The Čech complex under the

length metric (X, dL) is CLα(A) := N ({BL(x, r)}x∈X), where BL(x, r) denotes the metric

ball of radius r centered at X in (X, dL). Note that these complexes may be infinite.

The Vietoris-Rips Complex is an abstract simplicial complex having a k-simplex for every

set of (k+ 1) points in A of diameter at most α. Explicit knowledge about the entire metric

space (M,d) is not needed to compute the complex. Unlike the Čech complex, the Vietoris-

Rips complex is completely determined by the restriction of the metric to the subset A.

For X ⊆ RN under the standard Euclidean metric, we denote it simply by Rα(X). In the

case when A ⊆ X equipped with length metric (X, dL), we denote the Vietoris-Rips complex

by RL
α(A).

Together, the definition of convexity radius and Nerve Lemma immediately imply the

following fact:

Lemma 2.7 (Čech Equivalence). Let X ⊆ RN be a geodesic subspace with a positive

convexity radius ρ, and let 0 < ε < ρ. Let A be an ε-dense subset of X with respect to the dL
metric. Then, the complex CLε (A) is homotopy equivalent to X.

Proof. Since A is an ε-dense subset of X, we know that U := ∪a∈ABL(a, ε) is an open cover

of (X, dL). Since ε < ρ and by the definition of convexity radius (Definition 2.4), we know

that for each x ∈ X and y ∈ BL(x, ε), there exists a unique length-minimizing geodesic

path between x and y. Using these paths to define a deformation retract from BL(x, ε)

to x, we conclude that the metric balls in U are contractible. Since any finite intersection of

metric balls in U has dimeter less than 2ε, by the similar argument it is also contractible.

Hence, U is a good cover of X. By the Nerve Lemma (Lemma 2.5), we conclude that the

complex CLε (A) is homotopy equivalent to X.

3. Topological Reconstruction

In this section, we consider the problem of topological reconstruction of a geodesic sub-

space X of RN from a noisy sample S. From now on, unless otherwise stated, we assume

that the underlying shape X has a positive convexity radius and a finite distortion, also

that the sample S is a finite subset of RN . We show that both Čech and Vietoris-Rips

filtrations of S can be used to compute the homology and homotopy groups of X. Before we

treat each type of complex separately, we show how the Čech and Vietoris-Rips complexes

behave under Hausdorff perturbation.

Lemma 3.1 (Hausdorff Distance and Complexes). Let A,B ⊆ RN be finite, and ε be
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a positive number such that dH(A,B) < ε. Then for any α > 0, there exist simplicial maps

Cα(A) −→ Cα+ε(B)

and

Rα(A) −→Rα+2ε(B)

induced by a vertex map ξ : A→ B such that for every vertex a ∈ A, we have ‖a− ξ(a)‖2 <
ε. Moreover, such simplicial maps are unique, up to contiguity.

Proof. We first note the definition

dH(A,B) = inf {ε > 0 | A ⊆ Bε, B ⊆ Aε},

where Aε denotes the Euclidean thickening of A.

The definition of Hausdorff distance implies that if dH(A,B) < ε, there exists a (possibly

non-unique, non-continuous) map ξ : A→ B such that ‖a− ξ(a)‖2 < ε. We show that this

vertex map extends to a simplicial map between both Čech and Vietoris-Rips complexes.

Let σ = {a0, a1, . . . , ak} be a k-simplex of Cα(A). By definition, there exists a point z

in RN such that ‖ai − z‖2 < α for all i ∈ {0, 1, . . . , k}. By the triangle inequality, we then

have

‖ξ(ai)− z‖2 ≤ ‖ξ(ai)− ai‖2 + ‖ai − z‖2 < ε+ α.

So, {ξ(a0), · · · , ξ(ak)} is a simplex of Cα+ε(B). Hence, ξ extends to a simplicial map between

the Čech complexes. To argue for the uniqueness of the simplicial map, let us assume

that η is another simplicial map with the property that for every vertex a ∈ A, we have

‖a− η(a)‖2 < ε. Again from the triangle inequality, we have ‖η(ai)− z‖2 < ε + α. So,

ξ(σ) ∪ η(σ) is a simplex of Cα+ε(B). Hence, ξ and η are contiguous.

For the Vietoris-Rips complex part, we follow a similar argument. Let σ =

{a0, a1, . . . , ak} be a k-simplex of Rα(A). By definition, the diameter of σ is not greater

than α. From the triangle inequality, we have

‖ξ(ai)− ξ(aj)‖2 ≤ ‖ξ(ai)− ai‖2 + ‖ai − aj‖2 + ‖ξ(aj)− aj‖2 < 2ε+ α.

So, {ξ(a0), · · · , ξ(ak)} is a simplex of Rα+2ε(A). Hence, ξ extends to a simplicial map also

between Vietoris-Rips complexes.

3.1. Homology Groups via Vietoris-Rips Complex

We use the following fundamental result from [19] to compute the homology groups of X

from a filtration of Vietoris-Rips complexes on a finite sample.

Theorem 3.2 (Hausmann’s Theorem [19]). Let X be a geodesic subspace with a positive

convexity radius ρ. For 0 < ε < ρ, there exists a homotopy equivalence T :
∣∣RL

ε (X)
∣∣ −→ X.

Note that RL
ε (X) is usually an infinite Vietoris-Rips complex on the entire space X. A

quick corollary of this result is:
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Corollary 3.3. Let X be a geodesic subspace with a positive convexity radius ρ. For 0 <

ε′ ≤ ε < ρ, the inclusion i : RL
ε′(X) ↪−−−→RL

ε (X) induces isomorphisms on homology and

homotopy groups.

In order to achieve our result, we use certain simplicial maps to compare RL
∗ (X), R∗(X),

and R∗(S).

Lemma 3.4 (Euclidean and Intrinsic Rips Complexes). Let X a geodesic subspace

of RN with a finite distortion δ. Then for A ⊆ X and any positive number α, we have the

following simplicial inclusions

RL
α(A) ↪−−−→Rα(A) ↪−−−→RL

δα(A).

Proof. The fact that ‖x− y‖2 ≤ dL(x, y) implies the first inclusion RL
α(A) ↪−−−→Rα(A).

Similarly, dL(x, y) ≤ δ ‖x− y‖2 implies the second inclusion.

Theorem 3.5 (Reconstruction via Rips Complex). Let X be a geodesic subspace

of RN with a positive convexity radius ρ and finite distortion δ. Let S be a finite subset

of RN , and let ε be a positive number such that

dH(X,S) <
ε

4
<

ρ

2δ(3δ + 2)
.

Then, for any non-negative integer k we have the following isomorphism

Hk(X) ∼= im
(
j∗ : Hk(Rε(S)) ↪−−−→ Hk(R 1

2 (3δ+1)ε(S))
)

where j∗ is induced by the simplicial inclusion j : Rε(S) ↪−−−→R 1
2 (3δ+1)ε(S).

Proof. We derive the following chain of simplicial maps:

RL
ε
2
(X)

φ1−−−−−→Rε(S)
φ2−−−−−→RL

3ε
2 δ

(X)
φ3−−−−−→R(3δ+1) ε2

(S)
φ4−−−−−→RL

1
2 (3δ+2)δε(X).

(4)

The first map φ1 is the composition of the simplicial inclusion RL
ε
2
(X) ↪−−−→R ε

2
(X) from

Lemma 3.4 and the simplicial map R ε
2
(X) −−−→ Rε(S) from Lemma 3.1, thanks to the

assumption dH(S,X) < ε
4 .

Now, starting with Rε(S) and composing maps from Lemma 3.1 and Lemma 3.4, re-

spectively, we get the second simplicial map φ2. Similarly, we get the maps φ3 and φ4.

From Lemma 3.1, we first note that the composition φ3◦φ2 is contiguous to the inclusion:

j : Rε(S) ↪−−−→R(3δ+1) ε2
(S).

Therefore, they induce homotopic maps on the respective underlying topological spaces.

Consequently, we have (φ3 ◦ φ2)∗ = j∗. We first argue that φ2∗ is surjective and φ3∗ is

injective.

By the choice of the simplicial maps in Lemma 3.4 and Lemma 3.1, we observe that φ2◦φ1

is contiguous to the inclusion

RL
ε
2
(X) ↪−−−→RL

3ε
2 δ

(X).
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By Corollary 3.3, the inclusion induces isomorphism on homology, hence so does φ2 ◦φ1. In

particular, (φ2 ◦ φ1)∗ is surjective. Hence, we have φ2∗ is surjective, and φ1∗ is injective.

Also, φ4 ◦ φ3 is contiguous to the inclusion

RL
3ε
2 δ

(X) ↪−−−→RL
1
2 (3δ+2)δε(X),

which induces an isomorphism on homologies. Therefore, φ3∗ induces an injective homo-

morphism.

Since we have j∗ = φ3∗ ◦ φ2∗ and φ2∗ is surjective, the image of j∗ is the image of φ3∗.

On the other hand, we know that Im(φ3∗) is isomorphic to H∗
(
RL

3ε
2 δ

(X)
)
/Ker(φ3∗). As

we have already shown that φ3∗ is injective, its kernel is trivial. Therefore, the image of j∗
is isomorphic to RL

3ε
2 δ

(X). Since 3ε
2 δ < ρ, Theorem 3.2 implies that RL

3ε
2 δ

(X) is, in fact,

homotopy equivalent to X. This completes the proof.

The Vietoris-Rips reconstruction result works also for an infinite sample S. In applica-

tions, however, we are computationally constrained to use only finite samples.

3.2. Homology Groups via Čech Complex

The reconstruction of homology groups via the Vietoris-Rips filtration (see Theorem 3.5

in Section 3.1) was due to the homotopy equivalence theorem (Theorem 3.2). In this sub-

section, we use Čech filtration to obtain similar reconstruction results. The Nerve Lemma

(Lemma 2.5) is resorted to as the Čech alternative to Theorem 3.2. Like the Vietoris-Rips

case, we still use different simplicial maps to compare CL∗ (X), C∗(X), and C∗(S). The ap-

proach involves a (controlled) variant of the partition of unity; see Lemma 3.8.

Lemma 3.6 (Euclidean and Intrinsic Čech Complexes). Let X a geodesic subspace

of RN with a finite distortion δ. Then for A ⊆ X and any positive number α, we have the

following simplicial inclusions

CLε (A) ↪−−−→ Cα(A) ↪−−−→ CL2δα(A).

Proof. From ‖x− y‖2 ≤ dL(x, y), we have the first inclusion.

On the other hand, for any x, y ∈ X we have dL(x, y) ≤ δ ‖x− y‖2. Let σ = {x0, ..., xk}
be a simplex of Cα(A). Then ‖xi − xj‖2 < 2α, consequently dL(xi, xj) < 2δα for all 1 ≤
i, j ≤ k. This implies

{x0, x1, . . . , xk} ⊂
k⋂
i=0

BL(xi, 2δα),

where BL(xi, r) denotes the ball of radius r centered at xi in the metric space (X, dL).

Therefore σ ∈ CL2δα(A), and this verifies the second inclusion.

We begin with a lemma that is analogous to Corollary 3.3 in the Čech regime:
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Lemma 3.7 (Inclusion of Covers). Let U = {Ui}i∈Λ and U ′ = {U ′i}i∈Λ be locally-finite,

good open covers of a para-compact topological space X such that Ui ⊆ U ′i for each i. Then,

the inclusion

i : N (U) ↪−−−→N (U ′)

induces isomorphisms on the homology and homotopy groups of the respective geometric

complexes.

Proof. Consider the following commutative diagram:∣∣N (U)
∣∣ ∣∣N (U ′)

∣∣

X

i

h i ◦ h

where the map h =
∑
ϕiui is obtained from an arbitrary partition of unity {ϕi} for U . By

the Nerve Lemma (Lemma 2.5), h is a homotopy equivalence ([23]). Since Ui ⊆ U ′i , {ϕi}
is a partition of unity for U ′. So, i ◦ h is also a homotopy equivalence. Since the maps h

is a homotopy equivalence, we conclude that i induces an isomorphism on homology and

homotopy groups.

We now state the following extension of the partition of unity. Follow [30] for a proof.

Lemma 3.8 (Controlled Partition of Unity). Let {Ui} and {Vi} be open covers of a

paracompact, Hausdorff space X such that Vi ⊆ Ui for each i. Then, there exists a partition

of unity {ϕi} subordinate to {Ui} such that Vi ⊆ supp ϕi ⊆ Ui for all i.

We now use the controlled partition of unity to prove the following important lemma.

Lemma 3.9 (Commuting Diagram). Let X,Y be paracompact, Hausdorff spaces with a

continuous map f : X → Y . Let U = {Ui} and V = {Vi} be good, locally finite, open covers

of X and Y respectively, such that

(1)
⋂
i Vi 6= ∅ implies

⋂
i Ui 6= ∅, i.e., we have the simplicial inclusion j : N (V) → N (U)

that sends the vertex corresponding to Vi to the vertex corresponding to Ui,

(2) f−1(Vi) ⊆ Ui for all i.

Then, the following diagram commutes, up to homotopy:

∣∣N (V)
∣∣ ∣∣N (U)

∣∣

Y X

j

hY hX

f
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where hX , hY are homotopy equivalences from (3).

Proof. We make use of the controlled partition of unity lemma to prove our result. Let

us choose a partition of unity {φi} subordinate to {Vi}. One can choose hY so that for

each y ∈ Y ,

hY (y) =
∑
i

φi(y)vi,

where vi is the vertex of N (V) corresponding to Vi.

Since {f−1(Vi)} is an open cover of X with f−1(Vi) ⊆ Ui for each i, by Lemma 3.8 we

can choose a partition of unity {ψi} subordinate to {Ui} such that for each i

f−1(Vi) ⊆ supp ψi.

Also, choose hx such that for each x ∈ X

hX(x) =
∑
i

ψi(x)ui,

where ui is the vertex of N (U) corresponding to Ui.

To see that the diagram commutes, up to homotopy, it suffices to show that (j ◦ hY ◦ f)

is homotopic to hX . We start with a point x0 ∈ X

(j ◦ hY ◦ f)(x0) = j
(∑

i

φi(f(x0))vi
)

=
∑
i

φi(f(x0))j(vi) =
∑
i

φi(f(x0))ui.

On the other hand, hX(x0) =
∑
i ψi(x0)ui. Now if φi(f(x0)) is non-zero for some i,

then f(x0) ∈ Vi, and consequently x0 ∈ f−1(Vi) ⊆ Ui. From our choice of the support

of ψi and ψi(x0) has to be non-zero. This shows that both (j ◦ hY ◦ f)(x0) and hX(x0) lie

in an (open) simplex of N (V). Due to convexity of simplices, the following (straight-line)

homotopy is well-defined:

F (x, t) =
∑
i

[tψi(x) + (1− t)φi(x)]ui.

This shows that (j ◦ hY ◦ f) is homotopic to hX .

Now we are in a position to prove our reconstruction result for Čech complexes.

Theorem 3.10 (Reconstruction via Čech complex). Let X be a geodesic subspace

of RN with a positive convexity radius ρ and finite distortion δ. Let S be a finite subset

of RN , and let ε be a positive number such that

dH(X,S) < ε <
ρ

2δ(4δ + 1)
.

Then, any non-negative integer k we have the following isomorphism

Hk(X) ∼= im
(
j∗ : Hk(Cε(S)) ↪−−−→ Hk(C(4δ+1)ε(S))

)
(5)

where j∗ is induced by the simplicial inclusion j : Cε(S) −→ C(4δ+1)ε(S).
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Proof. We first note from dH(X,S) < ε and Lemma 3.1 that there is a map ξ : S → X

such that for each s ∈ S,

‖s− ξ(s)‖2 < ε. (6)

Let X ′ = ξ(S). Then, (6) implies dH(S,X ′) < ε, hence dH(X,X ′) < 2ε by the triangle

inequality.

We now derive the following chain of simplicial maps:

Cε(S)
φ1−−−−−→ CL4εδ(X ′)

φ2−−−−−→ C(4δ+1)ε(S)
φ3−−−−−→ CL2δ(4δ+1)ε(X

′).

The first map φ1 is the composition of the simplicial map Cε(S) ↪−−−→ C2ε(X
′) from

Lemma 3.1 (due to dH(S,X ′) < ε) and the simplicial inclusion C2ε(X
′) ↪−−−→ CL4δε(X ′)

from Lemma 3.6.

Similarly, starting with CL4δε(X ′) and composing maps from Lemma 3.6 and Lemma 3.1,

respectively, we get the second simplicial map φ2. The other map φ3 is also obtained re-

peating the exact same argument for a different scale as for φ1.

We first observe that the choice of simplicial maps in Lemma 3.6 and Lemma 3.1

makes φ2 ◦ φ1 contiguous to the given natural inclusion j of Cε(S) into C2δ(4δ+1)ε(S). We

now consider the following diagram:

∣∣Cε(S)
∣∣ ∣∣CL4δε(X ′)∣∣ ∣∣C(4δ+1)ε(S)

∣∣ ∣∣CL2δ(4δ+1)ε(X
′)
∣∣

Sε X X

φ1 φ2 φ3

h1 h2

i Id

h3

(7)

To show that the diagram commutes up to homotopy, we first explain the horizontal maps

in the bottom row of (7). Since dH(X,S) < ε, we get the first inclusion X ⊆ Sε. The three

vertical maps are homotopy equivalences that come from the Nerve Lemma (Lemma 2.5)

for various good open covers as constructed in Lemma 3.9. The first vertical map h1 is

obtained for the open cover U1 = {B(x, ε)}x∈S of Sε by Euclidean balls. The other two

vertical maps, h2 and h3, are corresponding to the (intrinsic) covers U2 and U3 of (X, dL)

by the intrinsic balls of radii 2δε and 4δ(2δ+1)ε, respectively. The assumption 4δ(2δ+1)ε < ρ

implies that they are indeed good (intrinsic) covers of X. Therefore, by Lemma 2.7 we get

the homotopy equivalences h2 and h3.

Apply Lemma 3.9 to each of the rectangles in (7) to show that the diagram is homotopy

commutative, and therefore it commutes on the homology level. The commutativity then

implies that φ1 induces a surjective homomorphism and φ2 induces an injective homomor-

phism on the homology groups. As a consequence, Im(φ2∗ ◦ φ1∗) = Im(φ2∗) = Hk(X) on

the k-th homology group. Also, we note that φ2 ◦ φ1 is homotopic to the given simplicial

inclusion j.

To see that the first rectangle commutes, we consider the covers U1 and U2 of Sε

and (X, dL). Note that for any x ∈ S, the choice of ξ(x) implies that i−1(B(x, ε)) = B(x, ε)∩
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X ⊆ BL(ξ(x), 2δε). Consequently, B(x, ε) ∩X ⊆ BL(ξ(x), 4δε). A similar argument also

applies to other rectangle. Therefore by Lemma 3.9, the diagram (7) commutes.

Remark 3.11. We remark that Theorem 3.5 and Theorem 3.10 of this section can be

formulated in terms of any natural functor from the category of topological spaces (with

continuous maps as morphisms) to the category of groups (with group homomorphisms). In

particular, the results extend immediately to homology groups H∗( · ;G) with coefficients in

any abelian group G, or homotopy groups π∗( · ).

4. Geometric Reconstruction

In the previous section, we used filtrations of both the Čech and the Vietoris-Rips complexes

to compute the homology and homotopy groups of our hidden geodesic subspace X from

a noisy sample S around it. The results, however, do not provide us with a topological

space that faithfully carries the topology of X. To remedy this, we consider the problem of

geometric reconstruction of geodesic subspaces.

In Section 4.1, we introduce a new metric dε on S. As our first step towards capturing

the homotopy type, we show in Theorem 4.3 that the Vietoris-Rips complex of (S, dε) and

X have isomorphic fundamental groups. Finally in Section 4.2, we further use this complex

for the geometric reconstruction of embedded graphs.

4.1. Recovery of the Fundamental Group

For any fixed ε > 0, we first consider the Euclidean Vietoris-Rips complex Rε(S) on the

sample S. Regardless of how dense the sample S is, Rε(S) is not guaranteed to be homo-

topy equivalent to X in general; as shown in Figure 5. This is not surprising, because the

Euclidean metric on S, used to compute the complex, can be very different from the length

metric dL on X. Our goal is to approximate dL by the shortest path metric, denoted dε, on

the one-skeleton of Rε(S). Let us denote the one-skeleton of Rε(S) by Gε. Since Rε(S) is

an abstract simplicial complex, Gε inherits the structure of an abstract graph. However, we

turn its geometric complex
∣∣Gε∣∣ into a metric graph by defining the metric dε on it in the

following way: the metric, when restricted to an edge (s, t), is isometric to a real interval of

length ‖s− t‖2.

We show in Lemma 4.1 that dε nicely approximates the metric dL, which the Euclidean

sample is oblivious to. For any positive scale α, we denote the Vietoris-Rips complex of S in

the dε metric by Rε
α(S). The metric dε can be computed in O(k3)-time from a sample (S, d2)

of size k. In the following lemma, we compare the metric dε with the standard Euclidean

metric d2 and the length metric dL.

Lemma 4.1 (Minimal Covering of Paths). Let X be a geodesic subspace of RN . Let S

be a subset of RN and ε > 0 such that dH(X,S) < ε
3 . For any path γ joining any two

points x, y ∈ X, we can find a sequence {ai}ki=0 ⊆ S with ‖ai+1 − ai‖2 < ε such that

k−1∑
i=0

‖ai+1 − ai‖2 < 3l(γ).
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Moreover, a0 and ak can be chosen to be any points with ‖x− a0‖2 < ε
3 and ‖y − aK‖2 < ε

3 .

Proof. Since dH(X,S) < ε
3 , there exists a0 ∈ S such that ‖x− a0‖2 < ε

3 . We now iteratively

define the sequence {ai} ⊆ S, along with a sequence {ti}k0 ⊂ [0, 1] that defines a partition

of [0, 1]. We set t0 = 0. Assuming both ai and ti are defined, we define ti+1 ∈ [0, 1] in the

following way: if γ([ti, 1]) ∩ ∂B
(
ai,

2ε
3

)
6= ∅, we set

ti+1 = min{t ∈ [ti, 1] | γ(t) ∈ ∂B
(
ai,

2ε

3

)
}.

Otherwise if γ([ti, 1]) ∩ ∂B
(
ai,

2ε
3

)
= ∅, set ti+1 = 1. Since dH(S,X) < ε

3 , we set ai+1 ∈ S
to be a point in S such that ‖γ(ti+1)− ai+1‖2 < ε

3 . This procedure forces ti+1 to be strictly

greater than ti, hence {ti} defines a partition of [0, 1]. Therefore,

l(γ) =

k∑
i=0

l(γ|[ti,ti+1]) ≥
k∑
i=0

‖γ(ti)− γ(ti+1)‖2 ≥
k∑
i=0

ε

3
≥ 1

3

k∑
i=0

‖ai+1 − ai‖2 .

We also note that

0 < ‖ai+1 − ai‖2 ≤ ‖ai+1 − γ(ti+1)‖2 + ‖γ(ti+1)− ai‖2 <
ε

3
+

2ε

3
= ε.

Analogous to Lemma 3.1, we get the following useful simplicial maps.

Lemma 4.2 (Vietoris-Rips Inclusion by dε). Let X a geodesic subspace X ⊆ RN . Let

S ⊆ RN and ε > 0 be such that dH(X,S) < ε
3 . For any α > 0,

(1) there exists a natural simplicial inclusion

Rε
α(S) ↪−−−→Rα(S).

(2) there exists a simplicial map

ξ : RL
α(X) −−−−→Rε

3α(S)

induced by the vertex map ξ that sends a vertex x ∈ X to s ∈ S such that ‖x− s‖2 < ε
3 .

Proof.

(1) Follows immediately from the definition of the metric dε.

(2) As observed before in Lemma 3.1, the assumption dH(X,S) < ε
3 ensures that there is a

vertex map ξ : X → S such that for each x ∈ X we have ‖x− ξ(x)‖2 < ε
3 .

We show that the map extends to a simplicial map. Let σ = {x0, x1, · · · , xk} be a

k-simplex of RL
α(X). Then, dL(xi, xj) ≤ α ∀i, j. Now by Lemma 4.1, there exists a path

joining ξ(xi) and ξ(xj) in Gε, moreover dε(ξ(xi), ξ(xj)) < 3α. So, ξ(σ) is a simplex of

Rε
3α(S). Hence, the vertex map extends to a simplicial map.

We now show that the fundamental group of the Vietoris-Rips complex on S under the

metric dε is isomorphic to that of X. We tolerate the sloppiness from ignoring the basepoint.
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Theorem 4.3 (Fundamental Group). Let X be a connected geodesic subspace of RN
with a positive convexity radius ρ and a finite distortion δ. Let S ⊆ RN and ε > 0 be such

that

dH(X,S) <
ε

3
<

ρ

δ(15δ + 2)
.

Then, the fundamental groups of Rε
5εδ(S) and X are isomorphic.

Proof. We derive the following chain of simplicial maps:

Rε(S)
φ1−−−−−→RL

5εδ
3

(X)
φ2−−−−−→Rε

5δε(S)
φ3

↪−−−−−→R5δε(S)
φ4−−−−−→RL

δ(15δ+2)ε/3(X).

The map φ1 is the composition of the simplicial map Rε(S) −−−→R 5ε
3

(X) from Lemma 3.1

and the simplicial inclusion R 5ε
3

(X) ↪−−−→ RL
5εδ
3

(S) from Lemma 3.4, thanks to the as-

sumption dH(S,X) < ε
3 . By a similar composition but at different scales, we get φ4. We

also obtain φ2 from Lemma 4.2 and φ3 from Lemma 4.2.

We argue that φ2 induces the desired isomorphism on the fundamental groups. By The-

orem 3.5 and since ε < ρ
δ(15δ+2) , the simplicial map φ4 ◦ φ3 ◦ φ2 induces an isomorphism on

all homotopy groups. Therefore, φ2 induces an injective homomorphism on the homotopy

groups, particularly the fundamental group of X.

We now show that the induced homomorphism is also surjective on the fundamental

groups by showing that φ2 ◦ φ1 induces a surjection. As observed Theorem 3.5, it suffices

to show the surjection for the the natural inclusion i : Rε(S) ↪−−−→ Rε
5δε(S), because i is

contiguous to φ2 ◦ φ1.

We start with a loop η in Rε
5δε(S). We can assume that η is made up of edges (one-

simplices) of Rε
5δε. Let us consider an edge σ = {a, b} in η, then we have dε(a, b) ≤ 5δε. By

the definition of dε, there must be a sequence of points a = x0, x1, · · · , xk = b such that for

each i, the segment [xi, xi+1] is an edge of Rε(S). Moreover, we observe for later that the

diameter of the whole set {x0, · · · , xk} in the dε metric is not greater than 5εδ.

a = x0

x1 · · · xk−1

b = xk

Fig. 4: The red one-simplex [a, b] of Rε
5δε(S) is shown to be pushed off to a path a =

x0, x1, · · · , xk = b in Rε(S). All the nodes form a simplex (shown in green) in Rε
5δε(S).

Now, we define a loop η′ in Rε(S) by replacing each constituent edge [a, b] of η by the

path joining the points in the sequence a = x0, x1, · · · , xk = b consecutively, as shown in

Figure 4. We note that η′ is indeed a loop in Rε(S). We now show that (φ2 ◦ φ1)(η′) is

homotopic to the loop η in Rε
5δε(S). As observed before, {a = x0, · · · , xk = b} is a simplex
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of Rε
5δε(S). We can then use a (piece-wise) straight line homotopy that maps each edge [a, b]

of η to the segment [a = x0, x1]∪ · · · ∪ [xk−1, xk = b] of η′. Hence, [η′] is, in fact, a preimage

of [η]. This shows, in turn, that φ2 induces a surjective homomorphism on π1. This completes

the proof.

4.2. Reconstruction of Embedded Graphs

We finally turn our attention to the geometric reconstruction of embedded graphs. We start

with the formal definition of an embedded graph.

Definition 4.4 (Embedded Metric Graph). An embedded metric graph G is a subset

of RN that is homeomorphic to a one-dimensional simplicial complex, where the induced

length metric dL is the shortest path distance on G. For simplicity of exposition, we call

such G embedded graphs.

We note that if G has finitely many vertices and b is the length of its shortest simple

cycle, then the convexity radius ρ is b
4 . In this paper, we always assume that G has finitely

many vertices. We now consider the shadow of the Vietoris-Rips complex Rε
•(S), which is

defined in Section 4.1.

Definition 4.5 (Shadow of a Complex). Let A be a subset of RN , and let K be an ab-

stract simplicial complex whose vertex set is A. For each simplex σ = {x1, x2, . . . , xk}
in K, we define its shadow, denoted Sh(σ), as the convex-hull of the Euclidean point

set {x1, x2, . . . , xk}. The shadow of K in RN , denoted by Sh(K), is the union of the shadows

of all its simplices, i.e., Sh(K) :=
⋃
σ∈K

Sh(σ).

We, therefore, have the following natural projection map p :
∣∣K∣∣ → Sh(K). In gen-

eral, Sh(K) may not have the same homotopy type as |K|. However, as proved in [31], the

fundamental group of the Vietoris-Rips complex of a planar point set is isomorphic to the

fundamental group of its shadow. In [16], the authors further the understanding of shadows

of Euclidean Rips complexes. In the case of planar subsets and K = Rε
•(S), we prove a

similar result now.

Lemma 4.6 (Shadow). Let X be a connected planar subspace with a positive convexity

radius ρ and a finite distortion δ. Given S ⊆ R2 finite and ε > 0 such that

dH(X,S) <
ε

3
<

ρ

δ(15δ + 2)
.

Then, the shadow projection p :
∣∣Rε

5εδ(S)
∣∣ −−−−→ Sh(Rε

5εδ(S)) induces isomorphism on the

fundamental groups.

Proof. From Theorem 4.3, we have the following chain of simplicial maps:

Rε(S)
φ1−−−−−→RL

5εδ/3(X)
φ2−−−−−→Rε

5δε(S)
φ3

↪−−−−−→R5δε(S)
φ4−−−−−→RL

δ(15δ+2)ε/3(X).

We have shown that φ2 induces an isomorphism on π1. As we have also noted that (φ4 ◦φ3 ◦
φ2) induces an isomorphism on all homotopy groups. So, we conclude first that φ3 induces

an injective homomorphism on π1 .
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Fig. 5: We implement Algorithm 1 on a Lissajous G with β1(G) = 8. On the left, the

Euclidean Vietoris-Rips complex Rε(S) (in red) on an ε-dense sample S of 150 points

fails to capture the homotopy type, as its β1 = 9. On the right, the shadow G̃ (green) of

Rε
5δε(S) is shown to correctly reconstruct G. The pictures were generated using the shape

reconstruction library available on www.smajhi.com/shape-reconstruction.

Now, we consider the following commutative diagram:

Rε(S) Rε
5δε(S) R5δε(S)

Sh(Rε
5δε(S)) Sh(R5δε(S))

i φ3

j2

p p̃
(8)

where i is contiguous to the composition (φ2 ◦ φ1), and p, p̃ are the natural (shadow) pro-

jections.

We show that the induced map p∗ is an isomorphism on the fundamental groups. From

the commutativity of the diagram (8), we note that p∗ is an injection on π1, since φ3∗ is

injective and p̃∗ is also injective on π1 by [31]. For surjectivity, we follow the same lifting

argument presented in [31].

As a consequence of Lemma 4.6, we finally present our main geometric reconstruction

result.

Theorem 4.7 (Geometric Reconstruction of Planar Subspaces). Let X be a con-

nected geodesic subspace of R2 with a positive convexity radius ρ and a finite distortion δ,

which has the homotopy type of a finite simplicial complex. Let S ⊆ R2 be finite, and ε > 0

https://www.smajhi.com/shape-reconstruction
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be such that

dH(X,S) <
ε

3
<

ρ

δ(15δ + 2)
. (9)

Then, the shadow complex X̃ = Sh(Rε
5εδ(S)) of Rε

5εδ(S) has the homotopy type of X.

Moreover,

dH(X, X̃) <

(
5δ +

1

3

)
ε. (10)

Proof. By Lemma 4.6, the shadow X̃ = Sh(Rε
5εδ(S)) and X have isomorphic fundamental

groups, via the map p of diagram (8). Note that, by assumption, both Sh(Rε
5εδ(S)) and X

have a homotopy type of a finite wedge of circles and therefore trivial higher homotopy

groups. By the Whitehead’s theorem [32], applied to the map p, we conclude that p is a

homotopy equivalence.

For statement (10), we note that for any finite vertex set σ ⊆ S with diam(σ) < 5δε we

have σ ⊆ Sh(σ) and dH(σ,Sh(σ)) ≤ diam(σ). As a consequence, dH(X̃, S) ≤ 5δε. By the

triangle inequality, we conclude the result.

Corollary 4.8 (Geometric Reconstruction of Embedded Graphs). Let G be a finite,

connected embedded graph in R2. Let b be the length of the shortest simple cycle of G, and

let δ be its distortion. Let S ⊆ R2 be finite and ε > 0 be such that

dH(G,S) <
ε

3
<

b

4δ(15δ + 2)
.

Then, the shadow of G̃ = Sh(Rε
5εδ(S)) has the same homotopy type as G and (10) holds

for X = G and X̃ = G̃.

Proof. It suffices to note that the convexity radius of G is b
4 and apply Theorem 4.7.

Based on Corollary 4.8, we devise Algorithm 1 for the geometric reconstruction of (pla-

nar) embedded graphs. For a demonstration, see Figure 5.

5. Discussion

In this paper, we successfully reconstruct homology/homotopy groups of general geodesic

spaces. We also reconstruct the geometry of embedded graphs. Currently, the output of

such geometric reconstruction is a thick region around the hidden graph; see Figure 5. One

can consider a post-processing step to prune the output shadow G̃ in order to output an

embedded graph that is isomorphic to the hidden graph G. A natural extension of our work is

to consider the geometric reconstruction of higher-dimensional simplicial complexes. Unlike

the graphs, such a space may have non-trivial higher homotopy groups. The reconstruction

result remains, therefore, an object of future work.
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Algorithm 1 Graph Reconstruction Algorithm

Require: Finite sample S ⊆ R2, ε > 0, δ, and b

Ensure: dH(G̃, S) < ε
3 <

b
4δ(15δ+2)

1: Initialize G̃← ∅
2: Compute the one-skeleton of Rε(S)

3: Compute (S, dε)

4: for all {a, b, c} ∈ S do

5: if dε(a, b) ≤ 5δε and dε(b, c) ≤ 5δε and dε(c, a) ≤ 5δε then

6: G̃← G̃ ∪ CONVEX-HULL({a, b, c})
7: end if

8: end for

9: return G̃

On the other hand, we also note that both approaches are not performing well when

we deform X, e.g., by “pinching” a pair of points in X, i.e., deforming X to bring these

points ε–close in the extrinsic Euclidean distance but with bounded intrinsic distance. Cre-

ating such an ε–pinch generally results in a small wfs as well as large distortion of the

resulting submanifold.

Based on these considerations, we conjecture that there should be a stability result within

an appropriate class of geodesics subspaces of RN , saying that a fixed sample S satisfying

assumptions of Theorem 3.5 and Theorem 3.10, statements (3.5) and (5) should be valid not

only for a given X but also for any ε–close perturbation within the class. We will address

this claim in the forthcoming work.
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Čech complex and the Vietoris-Rips complex, in 36th International Symposium on Computa-
tional Geometry (SoCG 2020) (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020).

13. M. Aanjaneya, F. Chazal, D. Chen, M. Glisse, L. Guibas and D. Morozov, Metric graph recon-
struction from noisy data, International Journal of Computational Geometry & Applications
22 (2012) 305.

14. F. Lecci, A. Rinaldo and L. A. Wasserman, Statistical analysis of metric graph reconstruction.,
Journal of Machine Learning Research 15 (2014) 3425.

15. J. Kim, J. Shin, F. Chazal, A. Rinaldo and L. Wasserman, Homotopy reconstruction via the
cech complex and the vietoris-rips complex, .

16. M. Adamaszek, F. Frick and A. Vakili, On homotopy types of Euclidean Rips complexes,
Discrete Comput. Geom. 58 (2017) 526.

17. K. Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44 (Państwowe Wydawnictwo
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