
November 1990 UILU-EN G-90-2251 
ACT-115

Applied Computation Theory

THE PARALLEL 3D 
CONVEX-HULL 
PROBLEM REVISITED

N. Amato 
F. P. Preparata

Coordinated Science Laboratory College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.



unclassified
jgfljftlTV flJdSIEI¿ATl<3M"'aF THIS Pa ¿ ¿

REPORT DOCUMENTATION PAGE
form Approved 
OMB No. 070441BB

1«. REPORT sec u r ity  cla ss if ic a t io n

Unclassified
1b. RESTRICTIVE MARKINGS

None
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; 
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2251 ÂCT #115)
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The Parallel 3D Convex-Hull Problem Revisited*

N. Amato and F. P. Preparata 
University of Illinois at Urbana-Champaign

Abstract

In this paper we establish a correct ” local” criterion for computing the convex hull 
of the union ( ’’merging” ) of two disjoint convex polyhedra. This criterion is amenable 
to parallel implementation and leads to a provably correct algorithm that computes 
the convex hull of any point set in three-dimensional space in 0 ( log2 n) time using 
0(n)  CREW PRAM processors.

1 Introduction

Computing the convex hull of a set of n points in three-dimensional space is a fundamental 
problem in Computational Geometry, which has received considerable attention since the 
early days of this discipline. About ten years ago technological innovations prompted some 
interest in parallel algorithms for this problem and A. Chow [5] proposed the first algorithm 
in this class. Other ingenious parallel convex-hull algorithms have been proposed since, 
notable among them the CREW PRAM algorithms by Aggarwal et al. [1, 3]. Dadoun 
and Kirkpatrick [6] made use of simple data structures (the hierarchical representations of 
Dobkin and Kirkpatrick [7, 8, 9] also adopted in this paper) to improve the efficiency of 
the techniques of Aggarwal et al.. In spite of their sound overall construction, the above 
algorithms [1, 3, 5, 6] unfortunately contain inaccuracies that prevent their correct operation, 
at least on some problem instances.

It is the purpose of this paper to evidence and rectify these inaccuracies, and to present 
a self-contained 3D parallel convex-hull algorithm. The previous algorithms for the three- 
dimensional convex hull problem are based on the serial divide-and-conquer algorithm of 
Preparata and Hong [15], whose crucial operation is the merging of the convex hulls of two 
linearly separated point sets. The main contribution of this paper is therefore a correct cri
terion for merging disjoint convex hulls, yielding a provably correct algorithm for computing

*This work was supported in part by NSF Grant CCR89-06419
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the convex hull of a three-dimensional point set in 0 (log2 n) time using 0(n)  processors on a 
CREW PRAM. It must be emphasized, however, that many of the techniques implementing 
the introduced ” merge criterion” are either derived from or inspired by ideas appearing in 
the papers quoted above [7, 8, 9], which should receive all the appropriate credit.

2 A  Convex-H ull M erge Criterion

The algorithms of Chow [5] and Aggarwal et al. [1, 3] are all inspired by the serial divide- 
and-conquer algorithm of Preparata and Hong [15]. Let C H ( X )  denote the convex hull of 
the point set X.  The serial algorithm for computing the convex hull of a point set S can be 
outlined as follows: the set S is evenly divided into two sets P  and Q such that the 2 -value 
of each vertex in P  is greater than the 2 -value of every vertex in Q\ C H( P)  and CH(Q)  are 
recursively computed; the cycle of supporting faces that are tangent to CH( P)  and CH(Q)  
is computed; finally, CH(P)  and CH(Q)  are merged along the cycle of supporting faces just 
computed to form C H( P  U Q).

Note that the edges of C H ( P ) (C H ( Q )) that are incident to the cycle of supporting faces 
of CH(P)  and CH(Q)  will form an Eulerian circuit which will be referred to as the upper 
seam ( lower seam)as in [1, 3], in which vertices may be visited more than once and the same 
edge may occur with both orientations along the seam. The criteria used to identify the
seam edges in [1, 5] do not take into account the fact that the same edge may occur with
both orientations along the seam. It is correctly noted in [3] that the crucial operation is 
the efficient computation of the seam edges at each stage:

Once the edges in the seam have been calculated, their cyclic connection order can 
be ascertained in logarithmic time by a list-ranking process. The full structure of 
the sleeve can be deduced once both seams have been constructed by implementing 
what is essentially a merging process, easily accomplished in logarithmic time.

The following criterion is used in [3] to determine which edges belong to the upper seam 
(an analogous criterion is used for the lower seam).

Consider a fixed edge o f C H( P) ;  let L be the line containing it. I f the edge
belongs to the upper seam it is necessary (a) that L should not meet the interior
o fCH(Q) ,  and (b) one (or conceivably both) o f the two planes through L tangent 
to CH(Q)  should not intersect the interior o f C H (P ) .

It is not difficult to verify that the above criterion is necessary, although it is not sufficient, 
as illustrated in Figure 1. Here edge ab is clearly not a seam edge, although it satisfies the 
above criterion for inclusion in the seam: The line containing ab does not intersect CH(Q)
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Figure 1: The edge aF is not a seam edge even though it satisfies the criterion of [3] for 
inclusion in the seam.

Figure 2: The four quadrants defined by T/(e) and Tr(e) of an arbitrary edge e of CH(P) .

and the plane tangent to CH(Q)  passing through ab, defined by the points a, b and c, does 
not intersect P.

Considering without loss of generality the upper seam, we now present a necessary and 
sufficient condition for the classification of an edge of C H ( P ) as a seam edge. For a point 
set U, interior(U) denotes the set of points in the interior of CH(U).  For an edge e of 
C H ( P ), the planes containing the two faces of CH( P)  incident to e partition the space into 
four quadrants. (See Figure 2, where CH(P)  is projected onto a plane orthogonal to e.) 
Specifically, edge e is given an arbitrary orientation, which permits us to identify as T/(e) 
and Tr(e) the planes respectively containing faces //(e ) and / r(e) of C H( P)  incident to e. 
The quadrant containing P  is referred to as P(e); the two quadrants adjacent to P(e)  are 
referred to as L(e)  and P(e), separated from P(e) by T/(e) and Tr(e) respectively; finally, 
the remaining quadrant, vertically opposed to P (e), is called wedge(e).
D efinition: A point p is P-visible from a point q if the segment pq does not intersect CH{P) .  
An edge e is P-visible from a point q if every point of e is P-visible from q. (Similarly, a face 
/  is P-visible from a point q if every point of /  is P-visible from q.)

The following lemma characterizes the edges of C H( P)  belonging to the upper seam of 
C H( P  U Q).
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R(e)

Figure 3: Edge e of CH( P)  is not part of the upper seam if Q C P(e) or interior(Q) fl 
wedge(e) ^  0, (a) and (b), respectively, otherwise e is part of the upper seam, (c) and (d).

Lem m a 1: An edge e of C H ( P)  belongs to the upper seam of C H ( P  U Q) if and only if
(i) Q £  P (e), and
(ii) interior(Q) fl wedge(e) =  0.

P roof: If an edge e of CH(P)  belongs to CH(P\JQ)  but is not a seam edge we will say that 
e ” lies above” the seam. If an edge e of CH(P)  is not part of C H ( P  U Q) we will say that 
e ” lies below” the seam. It is immediate to verify that (i) an edge e of C H( P)  lies above 
the seam if and only if e is not P-visible from any point q of CH(Q)  and (ii) an edge e of 
CH(P)  lies below the seam if and only if there exists a point q of Q such that both //(e ) and 
/ r(e) are P-visible from q. If neither of the above conditions is met then e is a seam edge.

We now note that e is not P-visible from exactly the points which lie in P(e) — CH(P)  
and both //(e ) and / r(e) are P-visible from exactly the points which lie in the interior of 
wedge(e). Thus, if Q C P(e) or interior(Q) H wedge(e) ^  0 we can establish that e is not 
part of the seam (see Figure 3, cases (a) and (b), in which P  and Q are projected onto a 
plane orthogonal to e). In all other cases, e is part of the seam (see Figure 3, cases (c) and 
(d)); thus, negating the statement ” Q C P(e) or interior(Q) fl wedge(e) ^  0” yields the 
theorem. □

4



3 T he A lgorithm

As a consequence of Lemma 1, we see that a technique that tests the conditions Q <£_ P(e)  
and interior(Q) fl wedge(e) =  0 for each edge e of CH(P)  could be used to determine the 
upper seam edges of C H ( P  U Q). We will next develop such a technique.

We first illustrate that the above conditions can be tested by executing a particular 
combination of the following three types of primitives.

P lane_query(T ,Q ): Let T be a plane and Q a convex polyhedron. A plane_query(T, Q) 
will return a point of T fl interior(Q) if an intersection occurs, otherwise it will return 
the empty set.

L ine_query(l,Q ): Let / be a line and Q a convex polyhedron. A line_query(/, Q) will return 
” YES” if / intersects interior(Q) and ” N 0” otherwise.

Halfspace_query(p, T ): Let T  be a plane and p a point not contained in T. A halfs- 
pace_query(p, T) will determine in which of the halfspaces defined by T the point p 
lies.

We begin with Condition (i): Q (f. P(e).  Clearly, if either plane_query(T/(e), Q) or 
plane_query(Tr(e), Q) find a point of intersection, then Q £  P(e). Otherwise, if neither 
plane_query(T/(e),Q) nor plane_query(Tr(e), Q) find a point of intersection then Q is con
tained in exactly one of the four quadrants P(e), L(e), R(e)  or wedge(e). Let q be any 
point of interior(Q) (such a point can be determined in 0 (1 ) time from any four vertices of 
CH(Q)) .  Then halfspace_query(g, X/(e)) and halfspace_query(^,Tr(e)) will determine which 
quadrant contains Q, and consequently whether Q (£_ P(e).

Next we consider Condition (ii): interior(Q) fl wedge(e) =  0. Let /(e) be the line 
containing e. Clearly, if line_query(/(e), Q) returns YES, then interior(Q) fl wedge(e) ^  0 
and we are done. Otherwise, we perform plane_query(T/(e), Q) and plane_query(Tr(e), Q). 
If neither plane_query(T/(e), Q) nor plane_query(Tr(e), Q) find a point of intersection then 
Q is contained in exactly one of the four quadrants P(e), L(e), R(e)  or wedge(e), and the 
quadrant containing Q can be determined by the same halfspace_queries described above for 
testing the condition Q P(e).  The remaining case to consider is when plane_query(T/(e), Q) 
and/or plane_query(Tr(e), Q) find a point of intersection. In this case we use the points of 
intersection returned by the queries to determine if interior(Q) fl wedge(e) =  0. The line 
containing e divides T/(e) into two half-planes; we will denote the half-plane of T/(e) which 
bounds wedge(e) as T^(e) and the other as T f  (e) ( Tjf(e) and T f  (e) are defined analogously). 
Note that it is not possible for Q to intersect either (i) both Tf'(e) and T f(e ) , or (ii) both 
T^(e) and T f(e ), because the initial test, i.e. line_query(/(e), Q), established that /(e) does 
not intersect interior(Q). Thus, halfspace_query(pr, T/(e)) and halfspace_query(p/, T r(e))
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will determine if interior(Q) fl wedge(e) ^  0, where pi and pr are the points of intersection 
returned by plane_query(T/(e), Q) and plane_query(Tr(e), Q), respectively.

Thus, we see that we can determine if an edge e € CH(P)  belongs to the seam by 
answering line, plane and halfspace queries. Whereas the technique of [1, 3] required that 
the tangent planes from e to CH(Q)  be computed, as we have seen, it is enough to perform 
the potentially simpler computations of detecting the intersection of CH(Q)  with certain 
lines and planes.

We will next show how each of the above queries can be implemented in parallel. Clearly 
the halfspace queries can be answered in 0(1 ) time using a single CREW PRAM processor. 
The techniques used to answer line and plane queries are patterned after analogous more 
general techniques sketched in [7, 8, 9]; their adaptation to the present situation, however, 
considerably simplifies the implementation.

The data structure for CH(Q)  we will use is the very versatile hierarchical representation 
of Dobkin and Kirkpatrick [7, 8, 9]. Loosely following the notation used in [9], the hierarchical 
representation (HR) of a convex polyhedron (and, analogously, of a convex polygon) can be 
described as a sequence of polytopes P i,P 2, ....,Pfc with the following properties. Let V(P)  
denote the vertex set of the given polytope P.  An independent set of vertices in P  is a subset 
of V(P)  no two elements of which are joined by an edge. In three dimensions, polyhedron 
P  is assumed to be triangulated.

1. Pi — P  and Pk is a tetrahedron.

2. Pi+i C Pi, for 1 < i <  k.

3. V (P i+1) C V (Pt), for 1 <  i < k.

4. The vertices of V{Pi) — V(P;+i) form an independent set in Pt, for 1 <  i <  k.

5. Each facet /  of P w  that is not a facet of P, has associated with it a pointer to the 
unique vertex of Pt that lies in the halfspace not containing P m ,  with respect to the 
plane containing / .  (The fact that there is a unique such vertex follows from Property
4.)

The HR of a convex polytope P  with a triangulated surface can be constructed by a 
process reminiscent of the preprocessing of a planar triangulation occurring in Kirkpatrick’s 
planar point-location-technique [13], in which a maximal independent set of vertices, each of 
degree less than 7, is removed from Pt to form P m -  In fact, the HR of P  can be constructed 
by applying this same process to the planar subdivision obtained as a stereographic projection 
of the surface of polyhedron P  on a plane. A remarkable feature of the approach is that 
the cardinality of the maximal independent set of vertices, each of degree less than some 
fixed integer /¿, removed at each stage will be large enough to ensure that k =  O(logn) and
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]T£_i |V(P,)| =  0(\V(P)\). Kirkpatrick [13] selected p =  12; Lipton and Miller [14] (and 
independently Edahiro et al. [10]) showed that p — 7 is equally applicable.

Intersection is preserved through projection, so that plane/polyhedron and line/polyhedron 
intersections can be tested on their projections onto a plane orthogonal to the given plane or 
line, respectively. We let P ^  denote the orthogonal projection (a polygon) of polyhedron 
P  onto an arbitrary plane H. If we can easily construct -  where H  is now the plane 
orthogonal to the query line or plane -  then linejqueries and plane_queries become much 
simpler two-dimensional problems. IN reality, need not be explicitly constructed in its 
entirety; all that is needed is the portion of P ^  relevant to the intersection detection. An 
important property of the hierarchical representation of P  is that it enables us to efficiently 
construct the ” relevant portion” of P ^ ;  in other words, an HR of P  implicitly contains 
p( H) for an arbitrary plane H.

Specifically, let Pl5 P2 , . . . ,  P* be an HR of a polyhedron P. The problem of detecting the 
intersection of P  with a linear variety S (a line or a plane) is transformed to the construction 
of the sequence of separating pairs (pi, Si), (p2, s2), • • •> (Pk, $*), where, denoting by H  a plane 
orthogonal to 5 , pi G (P * )^  and s, G are a pair of points realizing the distance cr(P,-, S) 
between P, and S. Given (p,+i, s1+i), the HR of P  enables us to obtain (p,-, st) in time 0 (1 ). 
Adapting the approach presented in [9], this is done as follows. On plane H , let /,+i be the line 
normal to pi+IsT+T and passing by pt+1, and let lf+l and be the two halfplanes defined by 
lm  such that C lt+1. Thus* =  ((P )W n /+ +1)U (P )(»> n i-+1) and a (P „S )  =
a ( ( P , ) ^ , S )  =  m in (a ((P )W  fl n l~+ u S)). Since <7( (P ) (H) n is
realized by (p,+i ,s t+i), what remains to be done is the construction of ( P , ) ^  D li+l. This 
is easily done from the HR of P. If (P , ) ^  fl lf+1 ^  0, then at least one edge e' of (P /^  is 
internal to ( P , ) ^  (one such edge is either incident to p,+1 -  if p,+1 is a vertex of (P ;+ i)^  -  
or it contains pi+i in its interior). This edge e' is the projection onto H  of an edge e of Ph u  
incident with a facet /  of p.+1 that is not a facet of P,-. By Property 5, facet /  has a pointer 
to a unique vertex v of P{\ to identify this vertex it is sufficient to also associate with e a 
pointer, stamped with the integer i, to vertex v. In this manner each edge has at most two 
pointers with the same stamp; it is immediate to select the correct one, by testing on which 
side of the line containing e' the projection of the vertex pointed to lies. The projection v' of 
v on H  can therefore be found in time 0 (1 ). If v’ £  l̂ +11 then ( P , ) ^  fl lj"+1 =  0 and we are 
done, i.e., <t(P,-, S) =  <7(Pt+i ,5 )  and (pt+i ,s t+i) =  (pt*,st). Otherwise, e  *r+i and we must 
find the supporting lines from v' to (Pl+1) ^  in order to compute (P , ) ^  fl l~+1 (see Figure 
4). Note that the supporting fines from v' to (Pt-+ i )^  will be projections onto H  of the fines 
containing two of the edges incident to v in Pt-, and recall that v is incident to at most p —l =  6 
vertices of P,-+i. Therefore, the supporting fines from v' to ( P , ) ^  (and thus ( P , ) ^  fl l~+1) 
can be computed in 0 (1 ) time. Once ( P , ) ^  fl lf+1 hcis been found, cr((Pt-)(H) fl /JJ.i,5) and 
consequently, a{{Pi)^H\ S) and a corresponding separating pair (pt-, st), can be be computed 
in 0 (1 ) time.
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Figure 4: The supporting lines from v' to (P ,+ i)^  determine the structure of ( P , ) ^  fl lf+1.

It is easy to prove the claim that the additional edge-to-vertex pointer does not essentially 
alter the size of the data structure. Recall that the surface of each Pt, i =  1 ,2 , . . . , fc, is 
assumed to be triangulated. Each facet points to at most one vertex; therefore each facet 
may give rise to at most three edge-to-vertex pointers. Since the total number of facets is 
0(|V(P)|), the claim is established.

We can now give an overall description of a 3D parallel algorithm based on the above 
ideas. We recall that a technique of Cole and Zajicek [4] can be used to build an HR 
of a convex polytope in O(logn) time using n /lo g n  processors on an EREW PRAM. A 
hierarchical representation constructed in this manner will have k =  O(logn).

T heorem  1: The convex hull of a set of n points in three-dimensional space can be computed 
in 0 ( log2 n) time using 0( n)  processors on a CREW PRAM.

P roof: It suffices to consider the "merge” step of the divide-and-conquer convex hull algo
rithm by Preparata and Hong [15]; we are dealing here with two separated polytopes P and 
Q , whose surfaces may be assumed to be triangulated. We can build HRs of P  and Q in 
O(logn) time using n /lo g n  processors on an EREW PRAM [4], Using the serial technique 
of Dobkin and Kirkpatrick [9] for each of the 0(\P\ -I- |Q|) edges of C H( P)  and C H ( Q ), 
we can perform the line and plane queries required to determine if that edge is part of the 
seam of C H ( P  U Q ) in 0(k)  =0(log|P| +  log|<5|) = 0 (log n ) time using one processor on 
a CREW PRAM. (We ne«d a CREW PRAM because the same HR of CH(Q)  must be 
accessed for each edge of C H ( P ), and analogously for the HR of CH(P) ) .  After we have 
determined which edges belong to the seam their cyclic connection order can be determined 
by a list-ranking process [12] in O(logn) time using 0(n)  processors.

Once the cyclic connection order of the seam is determined, we can join CH( P)  and 
CH(Q)  to form C H ( P  U Q) with a simple merging process in O(logn) time using 0(n)
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processors as follows. Assume that the edges of both the upper and lower seams have been 
numbered in clockwise order with an edge receiving two indices if it is visited twice, and let 
there be np and nq indices in the upper and lower seams, respectively. Using nq processors we 
find the planes (and thus the faces) through edges ex and [enp/2J of the upper seam that are 
tangent to the lower seam at vertices ut- and Uj, respectively, in 0 (1 ) time. We now note that 
the planes through |_enp/ 4j and |_e3np/ 4j of the upper seam will be tangent to vertices u,/ and 
vy of the lower seam, such that i' lies on the portion of the lower seam between i and j  and 
j '  lies on the portion of the lower seam between j  and i. Thus, these planes can be found in 
constant time by assigning (j  — i) mod nq processors to [enp/ 4j and (¿ — j )  mod nq processors 
to [e3np/4J, for a total of nq processors. Continuing in this manner, the faces of C H { P  U Q) 
that contain an edge of the upper seam can be found in 0(log n) time (the faces that contain 
an edge of the lower seam can be found analogously). Note that because the surfaces of 
CH(P)  and CH(Q)  were triangulated, the surface of C H( P  U Q ) will be triangulated as 
well. Thus, each stage of the divide-and-conquer process can be accomplished in O(logn) 
time using 0( n)  processors on a CREW PRAM. The fact that there are O(logn) stages, 
each of complexity O(logn), establishes that the total complexity is 0 (log2n) time using 
0(n)  processors on a CREW PRAM. □

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel Computational 
Geometry, Proc. 26th IEEE FOCS Symposium (1985), pp. 468-477.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel Computational 
Geometry, Robotics Report No. 115, Courant Institute, New York University (1987).

[3] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel Computational 
Geometry, Algorithmica 3 (1988), pp. 293-327.

[4] R. Cole and 0 . Zajicek, An Optimal Parallel Algorithm for Building A Data Structure 
for Planar Point Location, Journal of Parallel and Distributed Computing, 8 (1990), 
pp. 280-285.

[5] A. Chow, Parallel Algorithms for Geometric Problems, Ph.D Dissertation, Dept, of 
Computer Science, University of Illinois, Urbana, Illinois, (1980).

[6] N. Dadoun and D. Kirkpatrick, Parallel Construction of Subdivision Hierarchies, Jour
nal o f Computer and System Sciences 39 (1989), pp. 153-165.

[7] D. Dobkin and D. Kirkpatrick, Fast Detection of Polyhedral Intersections, Lecture Notes 
in Computer Science 140 (1982), pp. 154-165.

9



[8] D. Dobkin and D. Kirkpatrick, A Linear Algorithm for Determining the Separation of 
Convex Polyhedra, Journal o f Algorithms 6 (1985), pp. 381-392.

[9] D. Dobkin and D. Kirkpatrick, Determining the Separation of Preprocessed Polyhedra 
- A Unified Approach, ICALP (1990), pp. 400-413.

[10] M. Edahiro, I. Kokubo, and T. Asano, A New Point-Location Algorithm and its Prac
tical Efficiency - Comparison with Existing Algorithms, ACM Trans. Graphics 3(2) 
(1984), pp. 86-109.

[11] H. Edelsbrunner, Computing the Extreme Distances between Two Convex Polygons, 
Journal o f Algorithms 6 (1985), pp. 213-224.

[12] R. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, 
Handbook o f Theoretical Computer Science, North Holland, to appear.

[13] D. Kirkpatrick, Optimal Search in Planar Subdivisions, SIAM Journal on Computing 
12(4) (1983), pp. 28-35.

[14] R. Lipton and R. Miller, A Batching Method For Coloring Planar Graphs, Inform. 
Process. Lett. 7(4) (1978), pp. 185-188.

[15] F. Preparata and S. J. Hong, Convex Hulls of Finite Sets of Points in Two and Three 
Dimensions, Comm. A C M 20 (1977), pp. 87-93.

10


