
November 1990 UILU-EN G-90-2251
ACT-115

Applied Computation Theory

THE PARALLEL 3D
CONVEX-HULL
PROBLEM REVISITED

N. Amato
F. P. Preparata

Coordinated Science Laboratory College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

unclassified
jgfljftlTV flJdSIEI¿ATl<3M"'aF THIS Pa ¿ ¿

REPORT DOCUMENTATION PAGE
form Approved
OMB No. 070441BB

1«. REPORT sec u r ity cla ss if ic a t io n

Unclassified
1b. RESTRICTIVE MARKINGS

None
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2251 ÂCT #115)
5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
Universit^^,^^

6b. OFFICE SYMBOL
(If applicable)

N /A

7a. NAME OF MONITORING ORGANIZATION
National Science Foundation

6c AODRESS (City, State, and ZIP Cock)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS (City, SfJft, and ZIP Code)

1800 G Street
Washington, DC 20552

8a. NAME OF FUNDING/SPONSORING
ORGANIZATIONNational Science Foundation

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NSF CCR-89-06419
8c ADDRESS (City, State, and ZIP Coda)

1800 G Street
10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

20552 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Otss/fkation)

The Parallel 3D Convex-Hull Problem Revisited
12. PERSONAL AUTHOR«)Amato, N. ana T?reparata, F. P.
13«. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT

Technical FROM TO November 1990 10
16. SUPPLEMENTARY NOTATION

!
17. COSATI COOES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continua on ravarsa If necessary and identify by block number)
convex hull, computational geometry, parallel computation,
PRAM, hierarchical representation

19. ABSTRACT (Contìnua on ravarsa If nacasaary and idantify by block number)

In this paper we establish a correct ” local” criterion for computing the convex hull
of the union ("merging”) of two disjoint convex polyhedra. This criterion is amenable
to parallel implementation and leads to a provably correct algorithm that computes
the convex hull of any point set in three-dimensional space in 0 (log2 n) time using
0{n) CREW PRAM processors.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
G3 UNCLASSIFIED/UNUMITED □ SAME AS RPT. □ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22«. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Includa Araa Coda) 22c. OFFICE SYMBOL

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

The Parallel 3D Convex-Hull Problem Revisited*

N. Amato and F. P. Preparata
University of Illinois at Urbana-Champaign

Abstract

In this paper we establish a correct ” local” criterion for computing the convex hull
of the union (’’merging”) of two disjoint convex polyhedra. This criterion is amenable
to parallel implementation and leads to a provably correct algorithm that computes
the convex hull of any point set in three-dimensional space in 0 (log2 n) time using
0(n) CREW PRAM processors.

1 Introduction

Computing the convex hull of a set of n points in three-dimensional space is a fundamental
problem in Computational Geometry, which has received considerable attention since the
early days of this discipline. About ten years ago technological innovations prompted some
interest in parallel algorithms for this problem and A. Chow [5] proposed the first algorithm
in this class. Other ingenious parallel convex-hull algorithms have been proposed since,
notable among them the CREW PRAM algorithms by Aggarwal et al. [1, 3]. Dadoun
and Kirkpatrick [6] made use of simple data structures (the hierarchical representations of
Dobkin and Kirkpatrick [7, 8, 9] also adopted in this paper) to improve the efficiency of
the techniques of Aggarwal et al.. In spite of their sound overall construction, the above
algorithms [1, 3, 5, 6] unfortunately contain inaccuracies that prevent their correct operation,
at least on some problem instances.

It is the purpose of this paper to evidence and rectify these inaccuracies, and to present
a self-contained 3D parallel convex-hull algorithm. The previous algorithms for the three-
dimensional convex hull problem are based on the serial divide-and-conquer algorithm of
Preparata and Hong [15], whose crucial operation is the merging of the convex hulls of two
linearly separated point sets. The main contribution of this paper is therefore a correct cri
terion for merging disjoint convex hulls, yielding a provably correct algorithm for computing

*This work was supported in part by NSF Grant CCR89-06419

1

the convex hull of a three-dimensional point set in 0 (log2 n) time using 0(n) processors on a
CREW PRAM. It must be emphasized, however, that many of the techniques implementing
the introduced ” merge criterion” are either derived from or inspired by ideas appearing in
the papers quoted above [7, 8, 9], which should receive all the appropriate credit.

2 A Convex-H ull M erge Criterion

The algorithms of Chow [5] and Aggarwal et al. [1, 3] are all inspired by the serial divide-
and-conquer algorithm of Preparata and Hong [15]. Let C H (X) denote the convex hull of
the point set X. The serial algorithm for computing the convex hull of a point set S can be
outlined as follows: the set S is evenly divided into two sets P and Q such that the 2 -value
of each vertex in P is greater than the 2 -value of every vertex in Q\ C H(P) and CH(Q) are
recursively computed; the cycle of supporting faces that are tangent to CH(P) and CH(Q)
is computed; finally, CH(P) and CH(Q) are merged along the cycle of supporting faces just
computed to form C H(P U Q).

Note that the edges of C H (P) (C H (Q)) that are incident to the cycle of supporting faces
of CH(P) and CH(Q) will form an Eulerian circuit which will be referred to as the upper
seam (lower seam)as in [1, 3], in which vertices may be visited more than once and the same
edge may occur with both orientations along the seam. The criteria used to identify the
seam edges in [1, 5] do not take into account the fact that the same edge may occur with
both orientations along the seam. It is correctly noted in [3] that the crucial operation is
the efficient computation of the seam edges at each stage:

Once the edges in the seam have been calculated, their cyclic connection order can
be ascertained in logarithmic time by a list-ranking process. The full structure of
the sleeve can be deduced once both seams have been constructed by implementing
what is essentially a merging process, easily accomplished in logarithmic time.

The following criterion is used in [3] to determine which edges belong to the upper seam
(an analogous criterion is used for the lower seam).

Consider a fixed edge o f C H(P) ; let L be the line containing it. I f the edge
belongs to the upper seam it is necessary (a) that L should not meet the interior
o fCH(Q) , and (b) one (or conceivably both) o f the two planes through L tangent
to CH(Q) should not intersect the interior o f C H (P) .

It is not difficult to verify that the above criterion is necessary, although it is not sufficient,
as illustrated in Figure 1. Here edge ab is clearly not a seam edge, although it satisfies the
above criterion for inclusion in the seam: The line containing ab does not intersect CH(Q)

2

L

Figure 1: The edge aF is not a seam edge even though it satisfies the criterion of [3] for
inclusion in the seam.

Figure 2: The four quadrants defined by T/(e) and Tr(e) of an arbitrary edge e of CH(P) .

and the plane tangent to CH(Q) passing through ab, defined by the points a, b and c, does
not intersect P.

Considering without loss of generality the upper seam, we now present a necessary and
sufficient condition for the classification of an edge of C H (P) as a seam edge. For a point
set U, interior(U) denotes the set of points in the interior of CH(U). For an edge e of
C H (P), the planes containing the two faces of CH(P) incident to e partition the space into
four quadrants. (See Figure 2, where CH(P) is projected onto a plane orthogonal to e.)
Specifically, edge e is given an arbitrary orientation, which permits us to identify as T/(e)
and Tr(e) the planes respectively containing faces //(e) and / r(e) of C H(P) incident to e.
The quadrant containing P is referred to as P(e); the two quadrants adjacent to P(e) are
referred to as L(e) and P(e), separated from P(e) by T/(e) and Tr(e) respectively; finally,
the remaining quadrant, vertically opposed to P (e), is called wedge(e).
D efinition: A point p is P-visible from a point q if the segment pq does not intersect CH{P) .
An edge e is P-visible from a point q if every point of e is P-visible from q. (Similarly, a face
/ is P-visible from a point q if every point of / is P-visible from q.)

The following lemma characterizes the edges of C H(P) belonging to the upper seam of
C H(P U Q).

3

R(e)

Figure 3: Edge e of CH(P) is not part of the upper seam if Q C P(e) or interior(Q) fl
wedge(e) ^ 0, (a) and (b), respectively, otherwise e is part of the upper seam, (c) and (d).

Lem m a 1: An edge e of C H (P) belongs to the upper seam of C H (P U Q) if and only if
(i) Q £ P (e), and
(ii) interior(Q) fl wedge(e) = 0.

P roof: If an edge e of CH(P) belongs to CH(P\JQ) but is not a seam edge we will say that
e ” lies above” the seam. If an edge e of CH(P) is not part of C H (P U Q) we will say that
e ” lies below” the seam. It is immediate to verify that (i) an edge e of C H(P) lies above
the seam if and only if e is not P-visible from any point q of CH(Q) and (ii) an edge e of
CH(P) lies below the seam if and only if there exists a point q of Q such that both //(e) and
/ r(e) are P-visible from q. If neither of the above conditions is met then e is a seam edge.

We now note that e is not P-visible from exactly the points which lie in P(e) — CH(P)
and both //(e) and / r(e) are P-visible from exactly the points which lie in the interior of
wedge(e). Thus, if Q C P(e) or interior(Q) H wedge(e) ^ 0 we can establish that e is not
part of the seam (see Figure 3, cases (a) and (b), in which P and Q are projected onto a
plane orthogonal to e). In all other cases, e is part of the seam (see Figure 3, cases (c) and
(d)); thus, negating the statement ” Q C P(e) or interior(Q) fl wedge(e) ^ 0” yields the
theorem. □

4

3 T he A lgorithm

As a consequence of Lemma 1, we see that a technique that tests the conditions Q <£_ P(e)
and interior(Q) fl wedge(e) = 0 for each edge e of CH(P) could be used to determine the
upper seam edges of C H (P U Q). We will next develop such a technique.

We first illustrate that the above conditions can be tested by executing a particular
combination of the following three types of primitives.

P lane_query(T ,Q): Let T be a plane and Q a convex polyhedron. A plane_query(T, Q)
will return a point of T fl interior(Q) if an intersection occurs, otherwise it will return
the empty set.

L ine_query(l,Q): Let / be a line and Q a convex polyhedron. A line_query(/, Q) will return
” YES” if / intersects interior(Q) and ” N 0” otherwise.

Halfspace_query(p, T): Let T be a plane and p a point not contained in T. A halfs-
pace_query(p, T) will determine in which of the halfspaces defined by T the point p
lies.

We begin with Condition (i): Q (f. P(e). Clearly, if either plane_query(T/(e), Q) or
plane_query(Tr(e), Q) find a point of intersection, then Q £ P(e). Otherwise, if neither
plane_query(T/(e),Q) nor plane_query(Tr(e), Q) find a point of intersection then Q is con
tained in exactly one of the four quadrants P(e), L(e), R(e) or wedge(e). Let q be any
point of interior(Q) (such a point can be determined in 0 (1) time from any four vertices of
CH(Q)) . Then halfspace_query(g, X/(e)) and halfspace_query(^,Tr(e)) will determine which
quadrant contains Q, and consequently whether Q (£_ P(e).

Next we consider Condition (ii): interior(Q) fl wedge(e) = 0. Let /(e) be the line
containing e. Clearly, if line_query(/(e), Q) returns YES, then interior(Q) fl wedge(e) ^ 0
and we are done. Otherwise, we perform plane_query(T/(e), Q) and plane_query(Tr(e), Q).
If neither plane_query(T/(e), Q) nor plane_query(Tr(e), Q) find a point of intersection then
Q is contained in exactly one of the four quadrants P(e), L(e), R(e) or wedge(e), and the
quadrant containing Q can be determined by the same halfspace_queries described above for
testing the condition Q P(e). The remaining case to consider is when plane_query(T/(e), Q)
and/or plane_query(Tr(e), Q) find a point of intersection. In this case we use the points of
intersection returned by the queries to determine if interior(Q) fl wedge(e) = 0. The line
containing e divides T/(e) into two half-planes; we will denote the half-plane of T/(e) which
bounds wedge(e) as T^(e) and the other as T f (e) (Tjf(e) and T f (e) are defined analogously).
Note that it is not possible for Q to intersect either (i) both Tf'(e) and T f(e) , or (ii) both
T^(e) and T f(e), because the initial test, i.e. line_query(/(e), Q), established that /(e) does
not intersect interior(Q). Thus, halfspace_query(pr, T/(e)) and halfspace_query(p/, T r(e))

5

will determine if interior(Q) fl wedge(e) ^ 0, where pi and pr are the points of intersection
returned by plane_query(T/(e), Q) and plane_query(Tr(e), Q), respectively.

Thus, we see that we can determine if an edge e € CH(P) belongs to the seam by
answering line, plane and halfspace queries. Whereas the technique of [1, 3] required that
the tangent planes from e to CH(Q) be computed, as we have seen, it is enough to perform
the potentially simpler computations of detecting the intersection of CH(Q) with certain
lines and planes.

We will next show how each of the above queries can be implemented in parallel. Clearly
the halfspace queries can be answered in 0(1) time using a single CREW PRAM processor.
The techniques used to answer line and plane queries are patterned after analogous more
general techniques sketched in [7, 8, 9]; their adaptation to the present situation, however,
considerably simplifies the implementation.

The data structure for CH(Q) we will use is the very versatile hierarchical representation
of Dobkin and Kirkpatrick [7, 8, 9]. Loosely following the notation used in [9], the hierarchical
representation (HR) of a convex polyhedron (and, analogously, of a convex polygon) can be
described as a sequence of polytopes P i,P 2,,Pfc with the following properties. Let V(P)
denote the vertex set of the given polytope P. An independent set of vertices in P is a subset
of V(P) no two elements of which are joined by an edge. In three dimensions, polyhedron
P is assumed to be triangulated.

1. Pi — P and Pk is a tetrahedron.

2. Pi+i C Pi, for 1 < i < k.

3. V (P i+1) C V (Pt), for 1 < i < k.

4. The vertices of V{Pi) — V(P;+i) form an independent set in Pt, for 1 < i < k.

5. Each facet / of P w that is not a facet of P, has associated with it a pointer to the
unique vertex of Pt that lies in the halfspace not containing P m , with respect to the
plane containing / . (The fact that there is a unique such vertex follows from Property
4.)

The HR of a convex polytope P with a triangulated surface can be constructed by a
process reminiscent of the preprocessing of a planar triangulation occurring in Kirkpatrick’s
planar point-location-technique [13], in which a maximal independent set of vertices, each of
degree less than 7, is removed from Pt to form P m - In fact, the HR of P can be constructed
by applying this same process to the planar subdivision obtained as a stereographic projection
of the surface of polyhedron P on a plane. A remarkable feature of the approach is that
the cardinality of the maximal independent set of vertices, each of degree less than some
fixed integer /¿, removed at each stage will be large enough to ensure that k = O(logn) and

6

]T£_i |V(P,)| = 0(\V(P)\). Kirkpatrick [13] selected p = 12; Lipton and Miller [14] (and
independently Edahiro et al. [10]) showed that p — 7 is equally applicable.

Intersection is preserved through projection, so that plane/polyhedron and line/polyhedron
intersections can be tested on their projections onto a plane orthogonal to the given plane or
line, respectively. We let P ^ denote the orthogonal projection (a polygon) of polyhedron
P onto an arbitrary plane H. If we can easily construct - where H is now the plane
orthogonal to the query line or plane - then linejqueries and plane_queries become much
simpler two-dimensional problems. IN reality, need not be explicitly constructed in its
entirety; all that is needed is the portion of P ^ relevant to the intersection detection. An
important property of the hierarchical representation of P is that it enables us to efficiently
construct the ” relevant portion” of P ^ ; in other words, an HR of P implicitly contains
p(H) for an arbitrary plane H.

Specifically, let Pl5 P2 , . . . , P* be an HR of a polyhedron P. The problem of detecting the
intersection of P with a linear variety S (a line or a plane) is transformed to the construction
of the sequence of separating pairs (pi, Si), (p2, s2), • • •> (Pk, $*), where, denoting by H a plane
orthogonal to 5 , pi G (P *)^ and s, G are a pair of points realizing the distance cr(P,-, S)
between P, and S. Given (p,+i, s1+i), the HR of P enables us to obtain (p,-, st) in time 0 (1).
Adapting the approach presented in [9], this is done as follows. On plane H , let /,+i be the line
normal to pi+IsT+T and passing by pt+1, and let lf+l and be the two halfplanes defined by
lm such that C lt+1. Thus* = ((P)W n /+ +1)U (P)(»> n i-+1) and a (P „S) =
a ((P ,) ^ , S) = m in (a ((P)W fl n l~+ u S)). Since <7((P) (H) n is
realized by (p,+i ,s t+i), what remains to be done is the construction of (P ,) ^ D li+l. This
is easily done from the HR of P. If (P ,) ^ fl lf+1 ^ 0, then at least one edge e' of (P /^ is
internal to (P ,) ^ (one such edge is either incident to p,+1 - if p,+1 is a vertex of (P ;+ i)^ -
or it contains pi+i in its interior). This edge e' is the projection onto H of an edge e of Ph u
incident with a facet / of p.+1 that is not a facet of P,-. By Property 5, facet / has a pointer
to a unique vertex v of P{\ to identify this vertex it is sufficient to also associate with e a
pointer, stamped with the integer i, to vertex v. In this manner each edge has at most two
pointers with the same stamp; it is immediate to select the correct one, by testing on which
side of the line containing e' the projection of the vertex pointed to lies. The projection v' of
v on H can therefore be found in time 0 (1). If v’ £ l̂ +11 then (P ,) ^ fl lj"+1 = 0 and we are
done, i.e., <t(P,-, S) = <7(Pt+i ,5) and (pt+i ,s t+i) = (pt*,st). Otherwise, e *r+i and we must
find the supporting lines from v' to (Pl+1) ^ in order to compute (P ,) ^ fl l~+1 (see Figure
4). Note that the supporting fines from v' to (Pt-+ i)^ will be projections onto H of the fines
containing two of the edges incident to v in Pt-, and recall that v is incident to at most p —l = 6
vertices of P,-+i. Therefore, the supporting fines from v' to (P ,) ^ (and thus (P ,) ^ fl l~+1)
can be computed in 0 (1) time. Once (P ,) ^ fl lf+1 hcis been found, cr((Pt-)(H) fl /JJ.i,5) and
consequently, a{{Pi)^H\ S) and a corresponding separating pair (pt-, st), can be be computed
in 0 (1) time.

7

Figure 4: The supporting lines from v' to (P ,+ i)^ determine the structure of (P ,) ^ fl lf+1.

It is easy to prove the claim that the additional edge-to-vertex pointer does not essentially
alter the size of the data structure. Recall that the surface of each Pt, i = 1 ,2 , . . . , fc, is
assumed to be triangulated. Each facet points to at most one vertex; therefore each facet
may give rise to at most three edge-to-vertex pointers. Since the total number of facets is
0(|V(P)|), the claim is established.

We can now give an overall description of a 3D parallel algorithm based on the above
ideas. We recall that a technique of Cole and Zajicek [4] can be used to build an HR
of a convex polytope in O(logn) time using n /lo g n processors on an EREW PRAM. A
hierarchical representation constructed in this manner will have k = O(logn).

T heorem 1: The convex hull of a set of n points in three-dimensional space can be computed
in 0 (log2 n) time using 0(n) processors on a CREW PRAM.

P roof: It suffices to consider the "merge” step of the divide-and-conquer convex hull algo
rithm by Preparata and Hong [15]; we are dealing here with two separated polytopes P and
Q , whose surfaces may be assumed to be triangulated. We can build HRs of P and Q in
O(logn) time using n /lo g n processors on an EREW PRAM [4], Using the serial technique
of Dobkin and Kirkpatrick [9] for each of the 0(\P\ -I- |Q|) edges of C H(P) and C H (Q),
we can perform the line and plane queries required to determine if that edge is part of the
seam of C H (P U Q) in 0(k) =0(log|P| + log|<5|) = 0 (log n) time using one processor on
a CREW PRAM. (We ne«d a CREW PRAM because the same HR of CH(Q) must be
accessed for each edge of C H (P), and analogously for the HR of CH(P)) . After we have
determined which edges belong to the seam their cyclic connection order can be determined
by a list-ranking process [12] in O(logn) time using 0(n) processors.

Once the cyclic connection order of the seam is determined, we can join CH(P) and
CH(Q) to form C H (P U Q) with a simple merging process in O(logn) time using 0(n)

8

processors as follows. Assume that the edges of both the upper and lower seams have been
numbered in clockwise order with an edge receiving two indices if it is visited twice, and let
there be np and nq indices in the upper and lower seams, respectively. Using nq processors we
find the planes (and thus the faces) through edges ex and [enp/2J of the upper seam that are
tangent to the lower seam at vertices ut- and Uj, respectively, in 0 (1) time. We now note that
the planes through |_enp/ 4j and |_e3np/ 4j of the upper seam will be tangent to vertices u,/ and
vy of the lower seam, such that i' lies on the portion of the lower seam between i and j and
j ' lies on the portion of the lower seam between j and i. Thus, these planes can be found in
constant time by assigning (j — i) mod nq processors to [enp/ 4j and (¿ — j) mod nq processors
to [e3np/4J, for a total of nq processors. Continuing in this manner, the faces of C H { P U Q)
that contain an edge of the upper seam can be found in 0(log n) time (the faces that contain
an edge of the lower seam can be found analogously). Note that because the surfaces of
CH(P) and CH(Q) were triangulated, the surface of C H(P U Q) will be triangulated as
well. Thus, each stage of the divide-and-conquer process can be accomplished in O(logn)
time using 0(n) processors on a CREW PRAM. The fact that there are O(logn) stages,
each of complexity O(logn), establishes that the total complexity is 0 (log2n) time using
0(n) processors on a CREW PRAM. □

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel Computational
Geometry, Proc. 26th IEEE FOCS Symposium (1985), pp. 468-477.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel Computational
Geometry, Robotics Report No. 115, Courant Institute, New York University (1987).

[3] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel Computational
Geometry, Algorithmica 3 (1988), pp. 293-327.

[4] R. Cole and 0 . Zajicek, An Optimal Parallel Algorithm for Building A Data Structure
for Planar Point Location, Journal of Parallel and Distributed Computing, 8 (1990),
pp. 280-285.

[5] A. Chow, Parallel Algorithms for Geometric Problems, Ph.D Dissertation, Dept, of
Computer Science, University of Illinois, Urbana, Illinois, (1980).

[6] N. Dadoun and D. Kirkpatrick, Parallel Construction of Subdivision Hierarchies, Jour
nal o f Computer and System Sciences 39 (1989), pp. 153-165.

[7] D. Dobkin and D. Kirkpatrick, Fast Detection of Polyhedral Intersections, Lecture Notes
in Computer Science 140 (1982), pp. 154-165.

9

[8] D. Dobkin and D. Kirkpatrick, A Linear Algorithm for Determining the Separation of
Convex Polyhedra, Journal o f Algorithms 6 (1985), pp. 381-392.

[9] D. Dobkin and D. Kirkpatrick, Determining the Separation of Preprocessed Polyhedra
- A Unified Approach, ICALP (1990), pp. 400-413.

[10] M. Edahiro, I. Kokubo, and T. Asano, A New Point-Location Algorithm and its Prac
tical Efficiency - Comparison with Existing Algorithms, ACM Trans. Graphics 3(2)
(1984), pp. 86-109.

[11] H. Edelsbrunner, Computing the Extreme Distances between Two Convex Polygons,
Journal o f Algorithms 6 (1985), pp. 213-224.

[12] R. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines,
Handbook o f Theoretical Computer Science, North Holland, to appear.

[13] D. Kirkpatrick, Optimal Search in Planar Subdivisions, SIAM Journal on Computing
12(4) (1983), pp. 28-35.

[14] R. Lipton and R. Miller, A Batching Method For Coloring Planar Graphs, Inform.
Process. Lett. 7(4) (1978), pp. 185-188.

[15] F. Preparata and S. J. Hong, Convex Hulls of Finite Sets of Points in Two and Three
Dimensions, Comm. A C M 20 (1977), pp. 87-93.

10

