MU 0000888 2

06\7““ /

Classification of a point
with respect to a polyhedron vertex

Robert Juan
Alvar Vinacua
Pere Brunet

Report LSI-90-19



1. Introduction

The Extended Octrees (EQO), as introduced in [Ayala 85] and [Brunet 85], are
a generalization of the classical Octrees [Meagher 80] based on the inclusion of the
extended terminal nodes. In addition to the classical node types (White, Black and
Grey), the EO model incorporates Face, Edge and Vertex nodes. These new terminal
nodes contain a piece of the boundary of the modelled object. -

The extended nodes are defined [Ayala 85}, [Navazo 89] as follows,

— Face nodes are crossed by a single face of the object. They are coded by the node
type and the oriented equation of the plain which supports the face.

— Edge nodes contain only two neighboring faces together with a part of their com-
mon edge. They are coded by the node type, the oriented equations of the plains
which support the faces and the configuration of the node that is defined either,
as the faces’ semi-spaces intersection when the edge is convex or as the faces’
semi-spaces union if the edge is concave.

— Vertex nodes contain only one vertex of the object and part of the edges and faces
converging to it. They are coded by the node type and the configuration of the
node that is defined as the set of configurations of the cyclically ordered edges plus

the equations of the planes supporting the faces.

One of the major advantages of EQ scheme is that the algorithms for boolean
operations are simple [Ayala 85), [Navazo 86). Given two EQ, the desired boolean
operation is carried out by traversing both trees simultaneously and performing the
boolean operation on the nodes at the same tree depth level and in the same spatial
location [Meagher 80], [Oliver 83], [Ayala 85], [Navazo 89]. . .

It is well known [Tilove 80], [Tilove 81} that algorithms for boolean operations
are strongly based on classifying points with respect to solids and there are several
algorithms in the literature addressed to solve the point-in-polyhedron problem. Some
of them, [Kalay 82], [Lane 84], [Horn 89], are devised to classify a point with respect to
a polyhedron represented by means of a Boundary Representation scheme. In the case
of polyhedral solids represented as EO one only needs to classify points with respect to
extended terminal nodes [Ayala 85), [Brunet 85], [Navazo 89). To classify a point with
respect to a Face node or Edge node is straightforward. Dealing with extended Vertex
nodes is a little more difficult, and the general approach would be too expensive.

Other algorithms operateon polyhedra represented via Constructive Solid Geom-
etry (CSG) and use the divide-and-conquer paradigm [Tilove 80), [Voelcker 78]. As EO
does not actually store CSG trees except for the edges, this kind of algorithms do not
apply.

This work describes an algorithm to classify an arbitrary point in an extended
Vertex node with respect to the polyhedral region defined by the piece of solid boundary
inside the node. The algorithm takes advantage of the EQ data structure in order to
reduce the computations. Furthermore, the algorithm is simple and does not suffer
from singularities.

2. The solution proposed

In this paper we propose to solve this problem using the kinetic framework of
Guibas et al. [Guibas 83]. To do this, we will reduce the problem to an equivalent
problem in 2D; this two-dimensional problem will be of a kind not directly addressable
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by Guibas’ method, and hence we will suitably extend it. Finally we will show that this
solution can be computed directly in three-dimensional space, without ever needing to
“go down” to 2D.

Diirst and Kunii have also studied this problem in [Diirst 89b]. There, they mention
that their first approach was also to extend the kinetic framework of Guibas et al., but
the resulting algorithm was cumbersome because it has to use several tables, although
they do not give any hint as to exactly how they do this. Note that our algorithm does
no suffer from this need. In fact the solution we propose here has been implemented
and thoroughly tested, as was reported in [Brunet 90).

Let’s first set up some notation. Let z be the point we want to classify with respect
to a solid P, and let v be the vertex of P in the same octree node as .

A first idea might be to consider a small ball centered at v, and to look at the
intersection of the surface of that ball with P, and the central projection from v of
z onto this surface. The classification problem is thus reduced to a two dimensional
problem, but extending the exclussive or algorithm to this case is non-trivial, because
of the different topology of the sphere and the plane.

Figure 1: Plane x that supports a face f through a vertex v.

Instead, we will follow the steps below (see Figure 1 and Figure 2):

1- Find a plane 7 through v not containing z. Note that this can always be done
unless z = v. However not all the feasible ways of doing this are appropriate for
the ensuing steps. This question is further discussed in the following section.

2— Consider a plane 7 parallel to 7 but closer to z than . Let P be the (possibly
multiply connected and unbounded) polygon resulting from the intersection of P
with the new plane. Let T be the central projection of z onto 7 from v. Then
classifying  with respect to P is equivalent to classifying Z with respect to P.
Note that in some cases this may be extremely simple, as it is possible that P be
empty if 7 separated P and z. P may also be all of #. Note also that how much
we shift = is immaterial, as long as we do not move it so much that it sweeps
past another vertex of P. In fact, since P is locally star-shaped, all the resulting
intersections would be homothetically equivalent, where the center of the homotecy
is the projection of v onto 7 in the direction of the normal to 7.

3— In section 5 we will show how the kinetic framework can be adapted to this case,
and how the resulting expression to be evaluated can be computed directly in

2



three-dimensional space, without needing to intersect P and 7, nor project  onto
.

3. Finding the splitting plane

We call the plane 7 a splitting plane because the strategy outlined above amounts
to discarding all of PN#_. The plane 7 used in the first step of section 2 can be rather
arbitrary. It need only satisfy two conditions:

a. The vertex v is on m, and
b. The point z is not on =.

These are very easy to fulfill. For instance the plane of the points y such that (y —v)-
(z —v) = 0 is a possible choice (unless v = z in which case we are done anyway). In
fact let us call this choice Option 1.

Another possibility is to loop over the planes of the faces incident on the vertex
v, and choose the first one that satisfies condition b. above (since they all obviously
satisfy condition a). Let this be Option 2.

Option 1 is clearly very inexpensive computation-wise. Option 2 is instead more
costly (since it implies a traversal of the list of faces converging to v). Its strength —at
first sight— may lie in that it has a chance of producing a separating plane in the case
of a convex vertex. Thus, if the solids are expected to have a very large proportion of
convex vertices, it may prove worthwhile to spend the extra processing at this stage.
For general and very complicated bodies it may not. As all heuristic matters, this one
will require in each case some experimentation to assess the best strategy, although
not very great differences are to be expected, since the ensuing computation is not
exceedingly intricate.

More important, however, is the fact that Option 2 allows a smoother extension
of the kinetic framework to the present problem, and thus we adopt it: in what follows
we will assume that a plane = satisfying both conditions a. and b. above has been
determined along the lines of Option 2. Furthermore, we will assume that all of the
solid P with respect to which we want to classify z lies on the same side of 7 as z itself.
If this were not true, it would be enough to take as the new solid P the regularized
intersection of the solid P and the hemispace defined by 7 that contains z (denoted
here 7). Classifying z with respect to P is equivalent to classifying it with respect to
P, since both solids do not differ in the hemispace with respect to 7 to which z belongs.
Note that P may be empty, but this ends the question of classifying z: it is necessarily
out, since we have found a plane that separates it and the solid.

4. Boiling it down to 2D

Now let us return to our problem: we have a vertex node Q of an extended octtree,
and a point in it, and wish to determine whether the point is ¢n, on or outside the solid.
The answer to this problem is not modified —obviously— if we change the solid outside
the node. Let us then erase all of the solid outside the octree node, and substitute it
with the cone emanating from v whose edges are the continuation of the edges in the
node, and whose faces are the continuation of the faces in the node.

Formally, for each point y, let £, denote the semi infinite line
£, = {zlz =v+AMy—v),A> 0}.
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Furthermore, let Pg denote the portion of the solid P contained in the node we are
considering. Then instead of solving the problem of classifying z with respect to P, we
purport to solve the problem of classifying = with respect to P = Uyep, £y- These two

problems are equivalent because clearly by construction we have PN Q = PN Q and
by hypothesis z € Q.

Let 7 be the plane parallel to 7 that contains . Then P = PN is a nonempty
collection of disjoint polygons. Note that these polygons will be unbounded, since P
has edges on 7. (see Figure 2).

”‘ L]

Figure 2: Splitting P near a vertex v.
Now by construction z € # (Figure 2). Then

zinP < (z,E,X for some connected component X of P),

and a similar statement holds for a point on P.

Now the problem has been reduced to an equivalent one in two dimensions. The
kinetic framework of Guibas et al. cannot yet be applied because the component poly-
gons of P are unbounded: A simple extension can, however, be defined for this case.
This we do in the next section.

5. Extending the kinetic framework to our problem

A different approach of constructing boolean formulas defining 2D polygonal re-
gions using information at polygon vertices is given in [Guibas 83]). The approach is
stated in the following way. Let L;(z) be a boolean predicate being true for all those
points = inside the ha]fspace defined by the line supporting edge e; of the polygon P.
Let Si(z) be Li(z) A Ly, (z) if the vertex defined by edges (ei,ei+1) is convex and
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Li(z) A Li41(z) otherwise where the index i +1 is taken modulo the number of polygon
vertices n and L' denotes the complement of L. Then
Theorem 1.- The point z is inside the simple polygon P if and only if the exclusive
or So(z) ® S1(z) @ - - ® Sp—1(z) yields false. .

Although a formula of this style is not desirable as a solid modelling representation,
it is trivial to write down and provides an efficient test for wether a point z is inside a
simple polygon [Guibas 83).

Figure 3: A simple bi-infinite polygonal chain.

As it has been said above, our polygonal regions are unbounded so they are not
simple polygons and therefore, the theorem does not apply. Let us refer to the boundary
of any unbounded simple polygonal region like that showed in Figure 3 as a simple bi-
infinite polygonal chain [Dobkin 88]. Such a chain is terminated by two semi-infinite
rays and in between contains an arbitrary finite number of sides. The only three possible
types of unbounded polygonal regions produced when intersecting a octree vertex node
with the plane 7 are those depicted in Figure 4 because unbounded polygonal regions
like those showed in Figure § would mean that the two vertex faces which produce on
the plain = the two semi-infinite edges do not converge to the original vertex in the
extended octree node.

Figure 4: Pos;ible bi-infinte polygonal chains. a) Convex in the
large. b) Concave in the large. ¢) Parallel.

The extension to unbounded polygonal regions of the kinetic framework of Guibas
et al. is easy to obtain. Let us consider first a convex in the large unbounded polygonal
region as the one showed in Figure 6. Given an arbitrary point z it is always possible
to find a ball centered in z which contains all the bi-infinite polygonal chain vertices.
It is easy to see that the virtual vertex v, on the right semi-infinite edge contributes to
the winding number [Guibas 83] with Aw, = 1 if point z is outside the halfspace which
supports edge e, and Aw, = 0 otherwise.



Figure 5: Impossible bi-infinite polygonal chains.

Figure 6: Convex  in the large unbounded polygonal region and
enclosing ball for an arbitrary point z.

On the other hand, there is no way of sweeping past point z in the turn at the
virtual vertex v; so Aw; = 0.

Let us consider now the concave in the large polygonal region, shown in Figure 7.
Reasoning in the same way as before leads us to state that Aw, = 1 if point z is outside
the halfspace supporting e,, Aw, = 0 otherwise and Aw; = 0.

The rule obviously works when semi-infinite edges in the polygonal chain are par-
allel. So if {vo,v1,...,va—1} are the vertices of the unbounded polygonal region, we
have shown the following

Theorem 2.- The point z is inside the simple unbounded polygonal region P if and
only if the following exclusive or yields false, So(z) @ S1(z) @ - -+ D Sn—1(z) & L(z).

Notice that changing the choosen orientation in the polygonal chain just inter-
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Figure 7: Concave in the large unbounded polygonal region and
' enclosing ball for an arbitrary point z.

changes both the Aw, and Aw; winding number contributions at the virtual vertices
and the role played by L, and L,.

It should be noted here that the whole preceding construction is necessary to reduce
the problem to the known plane case, but the resulting method can be applied in 3D
directly without ever needing to compute the intersection of the polihedron with 7,
nor carrying out any other computation on that plane. In fact, each of the terms in
expression is either of the form I; A L:- 41 OF L; A Liy,, or L:.. Note however that L;
is the intersection of the plain =; supporting a face with ¥, and by our construction
necessarily

- L.’(.‘l:) = 1l','(:b')

and therefore this expression can be completely evaluated in 3D replacing all L’s by
n’s. This leads to the algorithm in the following section.

Some implementations of EO define also a quasi-vertex node to further reduce the
complexity of the representation. These nodes contain several edges converging to a
vertex, although the vertex itself lies outside (see [Diirst 89a] and [Brunet 90]). Since
the P constructed from this information will only differ from the P associated to the
vertex outside of the node, the same solution is valid in the case of point in quasi-vertex
node classification.

6. The resulting algorithm
Here we present pseudo-code for the algorithm proposed.



function point.in.vertex (z : point, v : vertez) returns {on, in, out}
{ Returns the appropriate classification of z, either on, in or out of v}
Search for the first plane x of a face converging to v such that z ¢ =
if there is no such =
then return on
else
if z is not on the positive side 74 of =
then change the sign of the coefficients of =
endif
Form a list of all the edges of v that lie in the half-space x .
(but are not contained in )
if the list is empty
then return the classification of z with respect to the original plane =
(that is before changing signs)
else
Split the list in lists of consecutive edges
while there are lists to process
{let us say that the current list is {e1,...,ex} }
{Furthermore, let x; be the plane spanned by e; and ¢;4; }
{Also let mo be the plane of the face containing e; }
{and eo(€ 7_)}
if z on L., then non:=1
else non :=0
endif
if z not in L., then nin:=1
else nin :=0
endif
for i :=1 to k do ,
if e; is convex then dl := classif (z, n; N x; +1)
else ol := classif (z, w:- Nxig1)
endif
case cl of
on:non:=non+1
in:nin:=nin+1
endcase
endfor
if non mod 2 =1 then return on endif
if nin mod 2 = 0 then return in endif
endwhile
{ It is not on or in any component, so...}
return out
endif
endif
endfunction

At most, the algorithm processes the list of the node faces three times: one in the
search for the splitting plane, one for forming the list of faces in half-space 74+ and one
more to split the list in lists of consecutive edges. The first and second list traversal can
be subsumed in just one. This results in a complexity of O(n), where n is the number
of faces connected to the vertex.

7. Conclusions

We have presented a simple and robust algorithm for point_in_vertex classification
which represents an extension of the kinetic framework of Guibas et al. to this 3D
problem. The algorithm has been succesfully implemented and thoroughly tested. It is
specially well suited for application in EO.
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