The rectangle enclosure and point-dominance
problems revisited

Prosenjit Gupta*! Ravi Janardan*! Michiel Smid?
Bhaskar Dasguptalt

August 22, 1995

Abstract

We consider the problem of reporting the pairwise enclosures among a set of n
axes-parallel rectangles in IR?, which is equivalent to reporting dominance pairs
in a set of » points in IR*. For more than ten years, it has been an open problem
whether these problems can be solved faster than in O(nlog® n + k) time, where
k denotes the number of reported pairs. First, we give a divide-and-conquer
algorithm that matches the O(n) space and O(nlog®n + k) time bounds of the
algorithm of Lee and Preparata [LP82], but is simpler. Then we give another
algorithm that uses O(n) space and runs in O(nlognloglogn+k loglogn) time.
For the special case where the rectangles have at most a different aspect ratios,
we give an algorithm that runs in O(anlogn + k) time and uses O(n) space.

1 Introduction

The problem of computing intersections in a set of rectangles has received much atten-
tion. (See Chapter 8 of [PS88].) There are several variants of the problem depending
on the notion of “intersection” that is used. In this paper, we consider the following
version of the problem:

Problem 1.1 Given a set R of n azes-parallel rectangles in the plane, report all pairs
(R', R) of rectangles such that R encloses R'.

*Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, U.S.A. E-
mail: {pgupta,janardan}@cs.umn.edu.

IThe research of these authors was supported in part by NSF grant CCR-92-00270. Part of this
work was done while PG was visiting the Max-Planck-Institut fir Informatik. PG thanks the MPI
and the International Computer Science Institute for partial support.

{Max-Planck-Institut fiir Informatik, Im Stadtwald, D-66123 Saarbriicken, Germany. E-mail:
michiel@mpi-sb.mpg.de. This author was supported by the ESPRIT Basic Research Actions Pro-
gram, under contract No. 7141 (project ALCOM II).

§DIMACS, Rutgers University, Piscataway, NJ 08855, U.S.A. E-mail:
bhaskar@dimacs.rutgers.edu.

This problem finds applications in the computer-aided-design of VLSI circuits [LP82].

By mapping each rectangle R = [I,r] x [b,t] to the point (I,b,—r,—t) in IR?,
we can formulate this problem as a dominance problem: If p = (p1,p2,ps,ps) and
q = (q1,92,93,q4) are points in IR*, then we say that p dominates q if p; > ¢; for
all 7, 1 <1 < 4. We call the pair (p,q) a dominance pair. Using this terminology,
Problem 1.1 is transformed—in linear time—into the following one:

Problem 1.2 Given a set V of n points in IR*, report all dominance pairs in V.

In fact, a result of Edelsbrunner and Overmars [EO82] implies that Problems 1.1
and 1.2 are equivalent, i.e., in linear time, Problem 1.2 can also be transformed into
Problem 1.1.

Let k denote the number of pairs (R’, R) of rectangles such that R encloses R', or,
equivalently, the number of dominance pairs in V. In 1982, Lee and Preparata [LP82]
showed how Problem 1.1 and, hence, also Problem 1.2, can be solved in O(nlog®n+k)
time and O(n) space. They mention as an open problem whether this can be im-
proved. Also Bentley and Wood [BW80], Preparata and Shamos [PS88] and Bistiolas
et al.[BST93] mention this open problem. To our knowledge, the algorithm of Lee and
Preparata has never been improved.

In this paper, we first give a divide-and-conquer algorithm that achieves the same
running time as in [LP82] but which is simpler.

Then, we give an alternative algorithm having a running time of O(n log nlog log n+
kloglogn) and using O(n) space. This algorithm first normalizes the points of V in
the sense that for each ¢, 1 < ¢ < 4, the ¢-th coordinate of each point is replaced
by its rank among all i:-th coordinates. This gives a set S of n points in U*, where
U =40,1,2,...,n — 1}. Dominance pairs in V are in one-to-one correspondence with
dominance pairs in S. We solve the problem for the set S by means of a divide-and-
conquer algorithm. In the merge step of this algorithm, we have to report red-blue
dominances in a set of red and blue points in U®. This problem is solved using a
sequence of non-trivial sweep steps: In a first sweep, we remove all red points that are
not dominated by any blue point, and all blue points that do not dominate any red
point. We call this the cleaning step. Assume wlog that after this step the number of
red points is at least equal to the number of blue points. Then we perform a reporting
step, in which we sweep again and find all red-blue dominance pairs (r,b) where b is
maximal in the set of blue points. Because of the cleaning step, we are guaranteed
to find a number of dominance pairs which is at least proportional to the number of
red and blue points that remain after the cleaning step. Hence, we can charge the
time for this reporting step to the number of reported dominance pairs. Since we have
found all dominance pairs in which the maximal elements of the blue points occur,
we can remove them. Then, we perform the cleaning step on the remaining red and
blue points and, afterwards, we perform a reporting step again. We repeat this until
either there are no red points left or there are no blue points left. At the end of the
algorithm, we will have reported all red-blue dominance pairs.

Since the points have coordinates from a finite universe, we can use van Emde Boas
trees [VEBT77a, vEB77b] in order to search among them in O(log log n) time rather than
O(log n) time. In this way, the merge step of the divide-and-conquer algorithm takes

-

Figure 1: The maximal layer of a planar point set S forms a contour. The point p is
inside the contour, whereas the point ¢ is outside. Note that ¢ does not belong to S.

O((n+k')log log n) time, where k' is the number of dominance pairs that are reported
in this step.

In the final part of the paper, we consider Problem 1.1 for the special case where
the rectangles have at most a different aspect ratios, where the aspect ratio of a
rectangle is defined as the ratio of its height to its width. We give a simple plane
sweep algorithm that solves this case of the problem in O(anlog n+ k) time and O(n)
space. (Previously, no results were known for this special case.)

1.1 Preliminaries

In the rest of this paper, we will mainly consider Problem 1.2. We will need some
terminology. Let S be a set of n points in IR?, where d > 2. Point p dominates point ¢
if p; > g;foralli, 1 <:<d. A point of S is called mazzmal in S if it is not dominated
by any other point of S. The mazimal layer of S is defined as the subset of all points
that are maximal in S.

If S is a set of points in the plane, i.e., if d = 2, then the maximal points, when
sorted by their z-coordinates, form a staircase, also called a contour. See Figure 1.
The ordering of the maximal points by z-coordinate is the same as the ordering by
y-coordinate. Consider the contour of S. Let p be any point in the plane. We say that
p is wnside the contour if it is dominated by some point of the contour. Otherwise, we
say that p is outside the contour.

2 A divide-and-conquer algorithm

Let V be a set of n distinct points in IR*. We want to find all pairs p,q € V such
that p is dominated by ¢g. It turns out to be useful to first normalize the points of

3

V. In this way, we have to solve the problem for points with integer coordinates in
{0,1,2,...,n—1}. In the next subsection, we show how to normalize the set V. Then
we give a divide-and-conquer algorithm that solves our problem.

2.1 The normalization step

For each 7, 1 <1 < 4, we sort the vectors in the set

{(pi7p17' ce9Pi—1yDit1,-- -7P4) : (P17P27P37P4) € V}

lexicographically. Then we replace the :-th coordinate of each point of V by its rank
in this ordering. We denote the resulting set of points by S. The following lemma can
easily be proved.

Lemma 2.1 The normalization step takes O(nlogn) time. It produces a set S C
{0,1,2,...,n — 1}* of n points such that (p,q) is a dominance pair in V iff the corre-
sponding pair in S is also a dominance pair. Moreover, for each ¢, 1 <1 <4, no two
points of S have the same 1-th coordinate.

2.2 The algorithm

Let S be the set of n points from Lemma 2.1. Note that during the normalization
we can obtain the points of S sorted by their third coordinates. Our algorithm for
finding all dominance pairs in S follows the divide-and-conquer paradigm. Since in
each recursive call the number of points decreases, but the size of the universe remains
the same, we introduce the latter as a separate variable u. Note that in our case
u = n—the initial number of points. However, to keep our discussion general, we will
derive our bounds in terms of both w and n and finally substitute n for u to get our
main result, namely Theorem 3.2.

Hence, S is a set of n points in U*, where U = {0,1,2,...,u — 1}. No two points
of S have the same ¢-th coordinate for any ¢, 1 < ¢ < 4, and the points are sorted by
their third coordinates. The algorithm is as follows:

1. Compute the median m of the fourth coordinates of the points of S. By walking
along the points of S in their order according to the third coordinate, compute
the sets S1 ={p € S :ps <m} and S; = {p € S : p» > m}. Both these sets are
sorted by their third coordinates.

2. Using the same algorithm recursively, solve the problem for S; and S;.

3. Let R (resp. B) be the set of “red” (resp. “blue”) points in U® obtained by
removing the fourth coordinate from each point of S; (resp. S2). Compute all
dominance pairs (r,b), where r € R and b € B.

It is clear that this algorithm correctly solves the dominance reporting problem
on S. The main problem is how to implement the third step. In the next section,
we show how this three-dimensional red-blue dominance problem can be solved by a
simple sweep algorithm.

2.3 The merge step

We use z, y and z to denote the coordinate axes in U3. In the merge step, we sweep a
plane parallel to the zy-plane downward along the z-direction. (Note that the points
are already sorted by their third coordinates.) During the sweep, we maintain a radix
priority search tree (PST), see [McC85], for the projections onto the sweep plane of all
points of B that have been visited already. If the sweep plane visits a point (b;,b,,b.)
of B, then we insert (b,,b,) into the PST. If a point (r,,7,,7,) of R is encountered,
we query the PST and find all points (b,,b,) such that b, > r, and b, > r,. For each
such point, we report the corresponding pair in R x B, or, in fact, in 57 X S5.

It is easy to see that this sweep algorithm correctly solves the problem. The query
algorithm for a PST takes time proportional to logw plus the number of reported
points. Also, the PST can be updated in O(logu) time. Therefore, if kgrp denotes
the number of red-blue dominance pairs in B X B, then the algorithm takes time
O(nlog u + krp).

Now we can analyze the 4-dimensional divide-and-conquer algorithm: Let T'(n,u)
denote the running time on a set of n points in U® that are sorted by their third
coordinates. Here, we do not include the time for reporting the dominance pairs.
Then T(n,u) = 2T(n/2,u) + O(nlog u), which solves to T'(n,u) = O(nlog nlogu) =
O(nlog®n). If k denotes the total number of dominance pairs in the set S, then the
entire algorithm takes time O(nlog®n + k). It is easy to see that the algorithm uses
O(n) space.

Now consider our original set V of n points in IR*. Since the normalization step
takes O(nlog n) time, we can solve the dominance problem on this set in O(nlog® n+k)
time and O(n) space.

We remark that this algorithm is simpler than the algorithm given in [LP82, PS88].
Because of the normalization step, we can use a radix PST [McC85], which is a simple
data structure not requiring any rebalancing. Immediately after the normalization
step, we build a radix PST T in time O(u + n) = O(u). Subsequently, during the
rest of the algorithm, we insert and delete in the same tree T' and perform queries on
it. After every merge step, we take care to delete all remaining elements from 7', so
that it can be reused. (Note, however, that the normalization step is not crucial in
obtaining the O(nlog®n + k) running time; even without this step, the same running
time can be obtained by using a balanced PST.)

In the next section, we give an alternative algorithm for the three-dimensional red-
blue dominance problem, taking O(nloglogu + kgrploglog u) time. This will lead to
an O(nlognloglogn + kloglogn) time algorithm for finding the k& dominance pairs
in V. To obtain this running time, the normalization step is necessary.

3 Red-blue dominance reporting in three dimen-
sions

Recall the problem: We are given a set R of red points and a set B of blue points in
U®, and we have to find all dominance pairs (r,b) where »r € R and b € B. The points
in both sets R and B are sorted by their third coordinates.

In the final algorithm, we first construct an empty van Emde Boas tree (vEB-tree)
on the universe U. (See [vEB77a, vEB77b].) During the entire algorithm, elements will
be inserted and deleted in this tree and we will perform queries on it. Its construction
time is O(u), its query and update times are O(loglog u) and it uses O(u) space. In
the rest of this section, we assume that we have this tree available.

First we give two subroutines that will be used in the final algorithm. The final
algorithm itself is given in Section 3.3.

3.1 The cleaning step

One of the essential steps in our algorithm is one that removes points that do not
participate in any dominance. That is, we remove all red points that are not dominated
by any blue point, and all blue points that do not dominate any red point. We denote
this as the “cleaning” of the red (resp. blue) set w.r.t. the blue (resp. red) set.

In [KO88|, Karlsson and Overmars give an O(nloglogu) time and O(u) space
algorithm, which given n points in U3, computes the maximal elements. We modify
this algorithm to report all red points that are not dominated by any blue point, within
the same time and space bounds:

We sweep a plane parallel to the zy-plane downward along the z-direction, stopping
at each point. (The points are already available sorted by z-coordinate.) During
the sweep, we maintain the contour of the two-dimensional maximal elements of the
projections (onto the sweep plane) of the blue points already seen. We store these
maximal elements in the initially empty vEB-tree, sorted by their z-coordinates. When
the sweep plane visits a blue point b, we update the contour and the vEB-tree, as
follows: We search in the vEB-tree with the z-coordinate of b and determine if b’s
projection is inside or outside the blue contour. If it is outside, then we delete from
the vEB-tree all blue points on the contour whose projections are dominated by b’s
projection and we insert b as a new contour point. Note that the points to be deleted
can easily be found since they are contiguous in the vEB-tree. (See Figure 2.)

On visiting a red point r, we query the vEB-tree with the z-coordinate of » and
determine if r’s projection lies inside or outside the blue contour. If it is inside, we
insert r into an initially empty set R;.

At the end of the sweep, we delete all elements from the vEB-tree. The empty tree
will be used later on in the algorithm.

Lemma 3.1 At the end of the algorithm, we have

Ry ={r € R:3b€ B such that r is dominated by b}.
Moreover, the algorithm takes O(nloglogu) time and uses O(u) space.

Proof. Let R' denote the set on the right-hand side. Let r be a point of R that is
dominated by a blue point b. Then the sweep plane visits b before it visits ». Consider
the moment when point r is visited. If, at this moment, b is on the contour, then r is
inserted into R;. Otherwise, there is a point &’ on the contour such that 4! > b, and
b, > b,. Since b, > 7, and b, > ry, it follows that r’s projection lies inside the blue
contour and, hence, r is inserted into R;. This proves that R’ C R;. It can be proved

Figure 2: Updating the blue contour when the sweep plane visits the point b. Points
t, 7 and k are deleted and point b is inserted.

in a similar way that R; C R'. The bounds on the running time and space follow from

the complexity of the vEB-tree. (See [VEBT77a, vEB77b].) U

The given algorithm cleans the red set R w.r.t. the blue set B. To clean B w.r.t.
R, we use the mapping F that maps the point (a,b,c) in U® to the point (v — 1 —
a,u—1—b,u—1—c)in U3 This mapping reverses all dominance relationships. Also,
the mapping F is equal to its inverse. We run our sweep algorithm on the sets F(R)
and F(B), maintaining a red contour and querying with the blue points. As a result,
we get a set By C F(B), where each point in By is dominated by some point in F(R).
Then the set By = F(By) satisfies

B, = {b € B:dr € R such that b dominates r}.

Lemma 3.2 Let R and B be sets of points in U® that are sorted by their third coor-
dinates, and let w = |U| and n = |R| + |B|. Assume that n < u. Also, assume we are
given an empty vEB-tree on the universe U. In O(nloglogu) time and using O(u)
space, we can compute sets Ry C R and B; C B such that

Ry ={r € R:3b€ B such that r is dominated by b}.

and

B, ={b € B:3dr € R such that b dominates r}.

The procedure that cleans the red set R w.r.t. the blue set B and returns the set
R; will be denoted by Clean(R, B). The set By is obtained as F(Clean(F(B),F(R))).

7

Remark 3.1 Observe that it does not matter whether we first clean R w.r.t. B and
then clean B w.r.t. R, or vice versa. In either case, we get the same clean sets R; and

B;.

3.2 The sweep and report step

Let R; and B; be the sets of Lemma 3.2. For the purpose of the discussion, let us
assume that |[R;| > |Bi|. Let B] denote the three-dimensional maxima of B;. The
procedure Sweep (R, By), which will be described in this section, reports all red-blue
dominance pairs (r,b), where » € R; and b € Bj. Note that because of the cleaning
step, there are at least |R;| such pairs. (If |R;| < |Bi|, then we invoke the procedure

Sweep(f(B1), f(Rl)))

Step 1: We sweep along the points of B; downwards in the z-direction and determine
the set Bj: During the sweep, we maintain the contour of the 2-dimensional maximal
elements of the projections of the points of B; already seen. These maximal elements
are stored in the initially empty vEB-tree, sorted by their z-coordinates. We also
maintain a list M, in which we store all updates that we make in the vEB-tree.

When the sweep plane visits a point b of By, we add b to an initially empty list
L iff b’s projection lies outside the current contour. In this case, we also update the
contour by updating the vEB-tree, and we add the sequence of updates made to the
list M.

At the end of the sweep, the list L contains the set B]. (See Lemma 3.3 below.
Also, we will see that the during the sweep the contour changes iff the sweep plane
visits a point of Bj.)

Step 2: We now sweep along the points of R; U B] upwards in the z-direction. Using
the list M, we reconstruct the contour of the projections of the points of B; that are
above the sweep plane. With each blue point b on the contour, we store a list C, C R;
of candidate red points.

Initially, the sweep plane is at the point having minimal z-coordinate and the vEB-
tree stores the final contour from Step 1. For each blue point b on this contour, we
initialize an empty list (.

When the sweep plane reaches a blue point b of Bj, we do the following:

2.1. Using M, we undo in the vEB-tree the changes we made to the two-dimensional
blue contour when we visited b during the sweep of Step 1. Call each blue point
which now appears on the contour a new point; call all remaining blue points on
the contour old. Note that the new points form a single continuous staircase.

2.2. For each r € C}, we report (r,b) as a dominance pair.

2.3. For each new blue point ¢ on the contour, we have to create a list (;: We look
at all points of Cy. For each such point r, we search with its z-coordinate in the
vEB-tree. If r’s projection is inside the new contour, then we find the leftmost
blue point p of the new contour that is to the right of r. Starting at p we walk
right along the contour. For each blue point ¢ encountered such that ¢ is new,

we insert r into the list C,. We stop walking as soon as we find a blue point
g whose projection does not dominate r’s projection or we reach the end of the
contour. (See Figure 3.)

When the sweep plane reaches a red point r, we search with its z-coordinate in the
vEB-tree and determine if its projection is inside or outside the current contour. If it
is inside, we start walking along the contour from the point immediately to the right
of r and insert r into the list C; for each blue point ¢ on the contour, until we reach a
blue point whose projection does not dominate r’s projection or we reach the end of
the contour.

Note that at the end of Step 2, the vEB-tree is empty.

Lemma 3.3 At the end of Step 1, the list L contains the set B; of three-dimensional
mazima of By.

Proof. Let b € L and assume that b is not maximal in B;. Then there is a point &'
in B; that dominates b. During the sweep, ' is visited before b. Since 4!, > b, and
b, > by, b’s projection lies inside the contour when the sweep plane reaches b. (Note
that at that moment, ' does not necessarily belong to the contour.) Hence, b is not
inserted into L. This is a contradiction and, hence, L C Bj.

Conversely, let b € Bj. Consider the moment when the sweep plane reaches b.
Assume that b’s projection lies inside the contour. Then there is a point &' on the
contour such that b, > b, and b, > b,. Since the sweep plane has visited b’ already,
we must have b, > b,. Hence, V' dominates b, which implies that b ¢ B]. This is a
contradiction. We have shown that when the sweep plane reaches b, the projection of
this point lies outside the contour. Therefore, b is inserted into L. This proves that

B/ CL. O

Remark 3.2 It follows from the proof that Bj is the set of all points of B; that are
added to the contour during Step 1. Note that once a point has been added, it may
be removed again from the contour later on during the sweep in Step 1.

Lemma 3.4 In Step 2 of the algorithm, all dominance pairs (r,b), where r € Ry and
b € B], are reported. Moreover, only such pairs are reported.

Proof. Suppose that (r,b) is reported. Then, r € R; and b € B;. Also, r € C, when
b is reached and so r, < b,. Also, by construction of (Y, b’s projection dominates r’s
projection. Thus b dominates r.

Now let r € R; and b € Bj such that b dominates r. We prove that the pair (r,b)
is reported. At the moment when the sweep plane reaches b, this point is removed
from the contour. We have to show that r is contained in (4 at this moment.

When the sweep plane reaches r, we insert this point into the lists U, for all points
g that are on the contour at that moment and whose projection onto the zy-plane
dominate r’s projection. If b is one of these points, then we are done, because r stays
in Cy until the sweep plane reaches b. Otherwise, b’s projection lies inside the contour.
Let ¢ be the point with smallest z-coordinate that is on the contour at the moment
when the sweep plane reaches » and whose projection onto the zy-plane dominates b’s

L 0
P
o e
B
© X
X P RS EALat STRTEEE
o T L,Q
0 |
o} e T
o

Figure 3: IHlustrating Step 2.3. Point r is inserted into the lists Cp, Uy and Cyp.

projection. Then, r is inserted into C;. Note that b, > ¢,, because otherwise b would
be dominated by g, contradicting the fact that b belongs to Bj.

When the sweep plane reaches ¢, point r is inserted into the lists C), for all points
p that appear on the contour at that moment and whose projections dominate r’s
projection. If b is one of these points, then we are done. Otherwise, let p be the point
with smallest z-coordinate that is on the contour at the moment when the sweep plane
reaches ¢ and whose projection onto the zy-plane dominates b’s projection. Point
is inserted into C,. We have b, > p,. Now we consider the moment when the sweep
plane reaches point p, and repeat the same argument. Continuing in this way, and

observing that point b must appear on the contour, it follows that » will be inserted
into . O

Lemma 3.5 Let kgp be the number of dominance pairs (r,b) such that r € Ry and
b € B;. Algorithm Sweep(Ry, B1) takes O(krploglogu) time and uses O(u) space.

Proof. Let n = |R;|+ |By|. First note that the points of R; and B; are sorted already
by their third coordinates. Step 1 of the algorithm takes O(nloglog u) time. Consider
Step 2. The total time for updating the contour in Step 2.1 is upper-bounded by the
time for Step 1. The total time for Step 2.2 is obviously ®(kgp). It remains to estimate
the time for updating the C-lists in Step 2.3. Let » € () be a red point to be added to
the C-lists of the new contour points that appear as a result of undoing the changes at b
in Step 2.1. Deciding whether r’s projection lies inside or outside the two-dimensional
contour takes O(loglog u) time. If it lies outside, then we charge this cost to the pair
(r,b) just reported in Step 2.2. The total number of such charges due to all red points
is O(kgrp loglog u). If r lies inside the contour and if it is inserted into m C-lists (m will

10

be at least one), then the time taken is O(m + loglog u) = O(mloglog u). We charge
O(log log u) to each of the m instances of r thus inserted. Likewise, when we encounter
a red point r in the upward sweep, if r’s projection is inside the current contour, then
we use a similar charging scheme. It follows that each red point r accumulates at most
two charges for being inside the contour, for each dominance pair involving it that
is output. If the projection of the red point is outside the current contour, then we
charge the O(log log u) cost incurred in determining this to the point itself. Since this
point is never seen again during Sweep(R;, Bi), the total charge thus accumulated is
O(nlog logu).

Therefore the algorithm takes O((n + krp)loglogu) time. We know that krp >
|Ry|. Also, since |R;| > |Bi|, we have n < 2|R;| < 2kgp. This proves the bound on
the running time. It is clear that the algorithm uses O(u) space. (Note that the list
M has size O(n).) U

3.3 The three-dimensional red-blue dominance algorithm

The algorithm for reporting all red-blue dominance pairs in R X B is given in Figure 4.
This algorithm uses the procedures Clean and Sweep that were given in Sections 3.1
and 3.2, respectively. Also recall the mapping F that was defined in Section 3.1. We
assume that we have constructed already the empty vEB-tree on the universe U.

Lemma 3.6 At the end of the (i — 1)-st iteration of the while-loop, 1 > 1, the set B;
(resp. R;) is clean w.r.t. R; (resp. B;).

Proof. The proof is by induction on 7. For ¢ = 1, the claim is true. Assume B; is clean
w.r.t. R; and R; is clean w.r.t. B;. Suppose that the “if” part of the “if~then—else”
statement is executed. It is clear that R;y; is clean w.r.t. B;;;. To prove that B,
is clean w.r.t. R; 1, let b € B;y;. Then b € B; and, hence, there is a point r in E;
that is dominated by b. Since b € B;;; = H, the procedure Clean(R;, H) produces a
set R;1; which contains the point r. Thus each point in B;;; dominates some point
in R;1; and hence B;,; is clean w.r.t. R;;;. If the “else” part is executed, then it is
clear that B;.; is clean w.r.t. R;y; = F(H). Similarly, we can prove that R;.; is clean
w.r.t. B;y;. O

Lemma 3.7 Algorithm 3Ddom(R, B) terminates and reports all dominance pairs (r,b),
where r € R and b € B. Moreover, if a pair (r,b) is reported, then it is a red-blue
dominance pair.

Proof. The algorithm terminates because after each iteration of the while-loop either
Bia| = |B; \ Bl < |Bi| (since |B| > 0) or |Reps| = |F(F(R)\ RY)| < |Ri| (since
|R.| > 0). We now prove that (r,b) is reported iff b dominates r.

Suppose that (r,b) is reported. Since a report happens only during one of the calls
to Sweep, it follows from the correctness of this procedure (see Lemma 3.4) that b
dominates 7.

Conversely, suppose that b dominates r. Note that a point is discarded in algorithm
3Ddom(R, B) either during a call to Clean or right after that call to Sweep during
which it becomes a three-dimensional maximal element. Since b dominates r, it follows

11

Algorithm 3Ddom(R, B)
(* R and B are sets of points in U3; the algorithm reports all pairs (r,b) such
that » € R, b € B and b dominates r *)

begin

R, := Clean(R, B);
B, := F(Clean(F(B),F(R)));

1= 1;

while R; #) and B; # 0
do if |R;| > |B;|
then Sweep(R;, B;);

(* this procedure computes the set B! of three-dimensional maxima
of B; and reports all dominances (r,b) where r € R; and b € B! *)

H := B;\ B};
R, ;1 := Clean(R;, H);
Bi_|_1 = H

(* B;y1 is clean w.r.t. R;;q; see Lemma 3.6 *)

else Sweep(F(B;), F(R;));

fi;

(* this procedure computes the set R! of three-dimensional maxima
of F(R;) and reports all dominances (r,b) where r € F(R!)
and b € B; ¥*)

H = F(R)\ R}

Biy1 := F(Clean(F(B;), H));

Ri_|_1 = f(H)

(* R;41 is clean w.r.t. B;;1; see Lemma 3.6 *)

1:=14+1

od

end

Figure 4: The three-dimensional red-blue dominance reporting algorithm.

12

that if neither r nor b has been discarded just before one of the calls to Clean within
the while-loop then neither will be discarded during that call. (Similarly, if neither r
nor b has been discarded just before the two calls to Clean outside the while-loop, then
neither will be discarded during those two calls.) Moreover, at least one of » and b will
be discarded sometime during the algorithm since the algorithm terminates. Wlog, as-
sume that b is discarded. Then it follows that b becomes a three-dimensional maximal
element before r becomes one (if ever). Let b become a three-dimensional maximal
element in Step 1 of Sweep(R;, B;) for some i. Thus, when Step 2 of Sweep(R;, B;)
commences, r € R,. By the correctness of the Sweep routine, (r,b) is reported as a
dominance pair. [

Theorem 3.1 Let R and B be two sets of points in U® that are sorted by their third
coordinates. Assume we are given an empty vEB-tree on the universe U. Let u = |U|
and n = |R| + |B|, and let k' be the number of dominances (r,b), where r € R and
b e B. Assume thatn < u. In O((n+ k')loglog u) time and using O(u) space, we can
find all these dominance pairs.

Proof. Let n; = |R;| + |B;| and let k; be the number of dominance pairs that are
reported during the ¢-th iteration. Because of the cleaning step and because we dis-
tinguish between the cases where |R;| > |B;| and |R;| < |B;|, we have n; < 2k;. Also,
since during each iteration, we output different dominance pairs, we have >, k; = k'.
The initial cleaning of R and B takes O(nloglogu) time. By Lemmas 3.2 and 3.5, the
i-th iteration takes time O((n; + k;)loglog v), which is bounded by O(k; loglog). It

follows that the entire algorithm takes time

O(nloglogu + > kiloglogu) = O((n + k') log log u).

The algorithm uses space O(n + u), which is bounded by O(w). U

3.4 Analysis of the four-dimensional dominance reporting
algorithm

Consider again our divide-and-conquer algorithm of Section 2.2 for solving the four-
dimensional dominance reporting problem on the normalized set S C U*. We imple-
ment Step 3—the merge step—using algorithm 3Ddom. Assume we have constructed
already the empty vEB-tree on the universe U.

Let T'(n,u) denote the total running time on a set of n points in U*, that are sorted
by their third coordinates. Recall that it is assumed that n = u (however, the sizes
of the sets in the recursive calls will be smaller than u). We do not include in T'(n,u)
the time that is charged to the output.

Step 1 of the algorithm takes O(n) time, and Step 2 takes 27(n/2,u) time. By
Theorem 3.1, Step 3—except for the reporting—takes O(nloglogu) time. Hence,
T(n,u) = O(nloglogu) 4+ 2T (n/2,u), which solves to T'(n,u) = O(nlognloglogu).
For each dominance pair, we spend an additional amount of O(loglogu) time. Since
each such pair is reported exactly once, the total running time of the divide-and-
conquer algorithm is bounded by O(nlog nloglogu + kloglog u), where k denotes the
number of dominance pairs in S. Moreover, the algorithm uses O(u) space.

13

Our original problem was to solve the dominance reporting problem on a set V
of n points in IR*. In O(nlogn) time, we normalize the points, giving a set S of
n points in U* = {0,1,...,n — 1}*. Then, in O(n) time, we construct an empty
vEB-tree on the universe U. Finally, in T'(n,n) + O(kloglogn) time we find all k
dominance pairs in S. This gives all £ dominance pairs in V. The entire algorithm
takes O(nlog nloglogn + kloglogn) time and it uses O(n) space. This proves our
main result:

Theorem 3.2

1. Let V be a set of n points in IR* and let k be the number of dominance pairs in
V. In O(nlognloglogn + kloglogn) time and using O(n) space, we can find
all these dominance pairs.

2. Let R be a set of n azes-parallel rectangles in IR? and let k be the number of pairs
of rectangles (R', R) such that R encloses R'. In O(nlognloglogn + kloglogn)

time and using O(n) space, we can find all these pairs of rectangles.

4 A faster algorithm for a special case

Let R be the set of n axes-parallel rectangles. Let the aspect ratio of a rectangle be
its height divided by its width. Assume that there are only a different aspect ratios
in R, where a is a constant. This is a reasonable assumption in practice and it yields
a simple and more efficient solution than Theorem 3.2, part 2. Specifically, we give an
O(anlog n+k)-time and O(n)-space sweepline algorithm to enumerate the k enclosing
pairs of rectangles.

By a diagonal of a rectangle we mean the line-segment joining its SW and NE
corners. Clearly, there are o different slopes among the diagonals in R. For some
such slope p, let R’ C R consist of the rectangles whose diagonals have slope p. Let
R = [l,7] x [b,t] and R’ = [l',7'] x [b/,t] be rectangles in R and R', respectively.
(Throughout, we view rectangle sides as closed line segments, i.e., endpoints are in-
cluded.) The following lemma is shown easily:

Lemma 4.1 Let L be a line with slope p which moves over the plane from the north-
west to the southeast. Consider the moment at which L coincides with the diagonal of

R'. If L intersects R, then one of the following holds:

1. L meets the left and top sides of R. In this case, we have R C R iff ' > 1 and
t' <t.

2. L meets the left and right sides of R. In this case, we have R' C R iff ' > | and

r <.

3. L meets the bottom and top sides of R. In this case, we have R' C R iff b’ > b
and t' < t.

4. L meets the bottom and right sides of R. In this case, we have R' C R iff b/ > b
and r' <.

14

Note that L meets the corners of R in a specific order, namely, NW, NE, SW, SE
(resp. NW, SW, NE, SE), depending on whether R’s diagonal has slope less (resp.
greater) than p. The NE and SW corners will be met simultaneously if R’s diagonal
has slope p; this case is covered by Lemma 4.1 since rectangle sides are closed line
segments.

4.1 The algorithm

For each diagonal-slope p we do the following;:

We project all the rectangle corners in R onto a line I normal to L and sort them in
non-decreasing order (ties are broken arbitrarily). Note that the SW and NE corners
of each rectangle in R’ projects to the same point on L. We treat these two points as
a composite point.

Using L, we sweep over L from —oo to +00, maintaining four balanced priority
search trees, PST;, 1 < ¢ <4. (PST; will handle condition i of Lemma 4.1.) Let v be
the current event point. The following actions are taken:

1. v corresponds to the NW corner of R = [I,r] x [b,t]. We insert (/,¢) into PST;.

2. v corresponds to the NE corner of R = [I,7] x [b,t]. If the SW corner of R has
not been seen so far then we delete ({,¢) from PST; and insert ({,7) into PST>.
Otherwise, we delete (b,t) from PST3 and insert (b,7) into PST,.

3. v corresponds to the SW corner of R = [[,r] x [b,¢]. If the NE corner of R has
not been seen so far then we delete (I,¢) from PST; and insert (b,t) into PST's.
Otherwise, we delete (I,7) from PST, and insert (b,7) into PST.

4. v corresponds to the SE corner of R = [I,7] x [b,t]. We delete (b,r) from PST,.

5. v corresponds to the SW and NE corner of R’ = [I', 7] x [b/,¢] € S’. We query
PST, with (I';¢') and report all points (/,¢) in it such that I’ > [and ¢’ < ¢.
Similarly, we query PST, with (I',7'), PST3 with (¥,t'), and PST, with (&',7).
Then we delete (I',t') from PST; and insert (b',7') into PST,.

Theorem 4.1 Given a set R of n azxes-parallel rectangles in IR* with at most o dif-
ferent aspect ratios, where o is a constant, all k pairs of rectangles (R', R) such that
R encloses R' can be reported in O(anlogn + k) time and O(n) space.

Proof. When L coincides with the diagonal of R’ (Case 5), then one of the cases of
Lemma 4.1 holds w.r.t. L and R. Therefore, one of the queries done in Case 5 will
discover the pair (R', R).

For each slope p, there is one sort, followed by O(n) queries and updates on PSTs of
size O(n). Hence the total time is O(nlogn + k,), if k, pairs are output. The claimed
time bound follows. The space used is O(n) per sweep and this can be re-used. U

15

5 Concluding remarks

We have given an algorithm for solving the rectangle enclosure reporting problem,
or, equivalently, the four-dimensional dominance reporting problem, that runs in
O(nlog nloglogn + kloglog n) time, where k is the number of reported pairs. Previ-
ously, the problem had been solved in O(nlog® n-+k) time by Lee and Preparata [LP82].

We leave open the question of whether the problem can be solved in O(nlogn + k)
time. It seems very difficult to remove the loglog n term that occurs in the “reporting”
part of our running time.

We have given a new technique to solve the three-dimensional red-blue dominance
reporting problem. Using the same approach we can solve the two-dimensional version
of this problem, where the red and blue points are sorted by their z-coordinates,
optimally, i.e., in O(n + k) time.

References

[BW80] J.L. Bentley and D. Wood. An optimal worst-case algorithm for reporting
intersections of rectangles. IEEE Transactions on Computers, 29:571-577,
1980.

[BST93] V. Bistiolas, D. Sofotassios and A. Tsakalidis. Computing rectangle enclo-
sures. Computational Geometry: Theory & Applications, 2: 303-308, 1993.

[EO82] H. Edelsbrunner and M.H. Overmars. On the equivalence of some rectangle
problems. Information Processing Letters, 14:124-127, 1982.

[KO88] R.G. Karlsson and M.H. Overmars. Scanline algorithms on a grid. BIT,
28:227-241, 1988.

[LP82] D.T. Lee and F.P. Preparata. An improved algorithm for the rectangle
enclosure problem. Journal of Algorithms, 3:218-224, 1982.

[McC85] E.M. McCreight. Priority search trees. SIAM Journal on Computing,
14:257-276, 1985.

[PS88] F.P. Preparata and M.I. Shamos. Computational Geometry — An Introduc-
tion. Springer—Verlag, Berlin, 1988.

[vEBT77a] P. van Emde Boas, R. Kaas and E. Zijlstra. Design and implementation of
an efficient priority queue. Mathematical Systems Theory, 10:99-127, 1977.

[vVEB77b] P. van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Information Processing Letters, 6:80-82, 1977.

16

