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Abstract: A set of planar objects is said to be of type m if the convex hull of any
two objects has its size bounded by 2m. In this paper, we present an algorithm based
on the marriage-before-conquest paradigm to compute the convex hull of a set of n
planar convex objects of fixed type m. The algorithm is output-sensitive, i.e. its time
complexity depends on the size h of the computed convex hull. The main ingredient
of this algorithm is a linear method to find a bridge, i.e. a facet of the convex
hull intersected by a given line. We obtain an O(nS(h,m)log h)-time convex hull
algorithm for planar objects. Here 3(h,2) = O(1) and B(h, m) is an extremely slowly
growing function. As a direct consequence, we can compute in optimal ©(nlogh)
time the convex hull of disks, convex homothets, non-overlapping objects. The
method described in this paper also applies to compute lower envelopes of functions.
In particular, we obtain an optimal ©(nlog h)-time algorithm to compute the upper
envelope of line segments.
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Un algorithme adaptatif pour le calcul de I’enveloppe
convexe d’objets planaires

Résumé : Un ensemble d’objets planaires est de type m si la taille de ’enveloppe
convexe de deux objets est bornée par 2m. Dans ce rapport, nous présentons un
algorithme basé sur le paradigme mariage-avant-conquéte pour calculer 1’enveloppe
convexe d’un ensemble de n objets planaires de type m (m fixé). L’algorithme est
adaptatif, c’est-a-dire que son temps de calcul dépend & la fois de la taille des en-
trées mais aussi de la taille de ’enveloppe convexe. Le principal ingrédient de cet
algorithme est une méthode linéaire pour calculer un pont, c’est-a-dire une facette
de l'enveloppe convexe coupant une droite donnée. Nous obtenons un algorithme
dont la complexité est O(nB(h,m)logh). Ici B(h,2) = O(1) et F(h,m) est une
fonction qui croit extrémement lentement. Il en découle que nous pouvons calcu-
ler en temps optimal ©(nlogh) I’enveloppe convexe de disques, d’objets convexes
homothétiques, d’objets non-recouvrants. La méthode décrite dans ce papier peut
s’appliquer également au calcul de ’enveloppe supérieure de fonctions. En particu-
lier, nous obtenons un algorithme optimal en ©(nlogh) pour calculer ’enveloppe
supérieure de segments.

Mots-clé :  Géométrie algorithmique, Enveloppe convexe, Enveloppe supérieure,
Algorithmes adaptatifs.
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1 Introduction

Convex hull has been of main interest for years in computational geometry. Many
articles have considered the case of points where general paradigms have been used
or purposely developed. Worst-case optimal space and time algorithms have been
established for sets of points in dimension d [Cla87, Cha91, Brs95]. However, the
convex hull of n points in general position in a d-dimensional space ranges from
the d-simplex with (d + 1)! faces to maximal polytopes of size O(nL%J) (see [Grii67,
McM70]). We are interested in designing algorithms whose time complexity depends
on both the input and output sizes: the so-called output-sensitive algorithms.

Optimal output-sensitive algorithms for points are known only in dimensions 2
and 3 by the time being. D.G. Kirkpatrick and R. Seidel [KS82, KS86] gave the
first optimal output-sensitive algorithm in dimension 2. Their algorithm is based
on a new paradigm: marriage-before-conquest. H. Edelsbrunner and W. Shi [ES91]
gave an O(nlog2 h)-time algorithm to compute the h facets of the convex hull of
n points of E3 using the same paradigm. K.L. Clarkson and P.W. Shor [CS89]
described an output-sensitive randomized algorithm for computing the convex hull
of a set of points in dimension 3. The expected complexity of their algorithm is
optimal. Their algorithm uses as a basic primitive the deterministic algorithm of
D.G. Kirkpatrick and R. Seidel and was derandomized later on by B. Chazelle and
J. Matousek [CM92].

In higher dimensions (d > 4), for a long time the best known solution was
the algorithm of R. Seidel [Sei86] which after an O(n?)-time preprocessing step

, finds the facets of a convex hull in a shelling order at a logarithmic cost per
+e

2

facet. The preprocessing step was reduced later on to O (n Lgl+1 for any
€ > 0, see [Mat93, MS92]. Recently, T. Chan et al. [CSY95] have investigated the
case of points in four dimensions, achieving an O((n + h) log? h)-time algorithm for
computing the convex hull of a set of n points where h denotes the output-size. In
higher dimensions, T. Chan [Cha95] realized many improvements on the convex hull
computations and related problems, combining the gift-wrapping method of D.R.
Chand and S.S. Kapur [CK70] and G.F. Swart [Swa85] with recent results on data
structures for ray shooting queries in polytopes (developed by P.K. Agarwal et J.
Matousek [AM93] and refined by J. Matousek and O. Schwarzkopf [MS93]).

Computing the convex hull of a set of curved objects has been much less inves-
tigated. Computing the convex hull of a single planar object bounded by curves
has been carefully studied (see [BK91, SV87, DS90]) and several authors have ge-

neralized linear-time algorithms for computing the convex hull of a simple planar
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4 F. Nielsen , M. Yvinec

polygon [BEG84, MAT79, SW86, GY83]. In the case of a family of n planar disks, op-
timal ©(nlogn)-time convex hull algorithms have been designed [Rap92, BCD92].

We consider the following problem: given a collection @ = {O4q,...,0,} of n
convex objects, compute in an output-sensitive manner the convex hull CH(O), i.e.
the smallest convex object containing (0. In the general case, the usual way to
compute the convex hull of O is to compute the lower and the upper envelopes
of O and to consider the unique object bounded by these envelopes. Then, one
can apply to this single planar object one of the convex hull algorithms mentioned
above. A classical output-sensitive algorithm to compute the convex hull CH(O) is
Jarvis’s march [Jar73] which runs in O(nh) where h denotes the output-size. In this
paper, we generalize the marriage-before-conquest approach of R. Seidel and D.G
Kirkpatrick [KS86] in the case of planar objects.

Independently, T. Chan [Cha95] gave a simple algorithm for computing the
convex hull of a set of planar points. His algorithm can be adapted to handle
the case of convex objects (although this is not described in [Cha95]) within the
same time bounds . Nevertheless, our algorithm is different and is interesting in its
own right. It relies on an O(nlogh + 6h)-time algorithm to compute the convex
hull of n objects of fixed type m such that any object intersects at most 6 others,
where h denotes the output-size. Thus, we obtain immediately an optimal ©(n log h)
algorithm if we consider that the objects satisfy the hard-sphere model [HO94| or
have only a few intersections (in that case, our algorithm is simpler than T. Chan’s
one [Cha95]). Moreover, we solve the problem of computing in linear time a bridge,
i.e. a facet of the convex hull intersecting a given oriented line.

Computing the convex hull of general planar convex objects differs from the case
of points because the convex hull of two points p; and po is the straight segment
[p1p2] whereas the complexity of the convex hull of two planar convex objects O;
and O, depends on the nature of these objects. We call arc a maximal piece of
the boundary of CH(QO) that is included in the boundary dO; of an object O; of O.
The boundary of CH(O) is an alternating sequence of arcs and bitangent segments
(Figure 1). In the following, the arcs of CH(O) and its bitangent segments are called
facets. In this paper, we shall consider sets of convex objects with the property that
the convex hull of any two objects has bounded complexity (if the objects are non-
convex and have fixed descriptive complexity, we can first compute their convex
hulls in linear time). More precisely, a set of objects O is said to be of type m if
the convex hull of any two objects of O has at most m arcs (or 2m facets). Let
|CH(O)| denote the size of the convex hull CH(O), i.e. the number of facets (convex
arcs and bitangent segments) of its boundary CH(Q). Then, O is of type m if

INRIA
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a bitangent segment

The convex hull CH(O)

/

Figure 1: A convex hull of disks (m = 2).

an arc

Vi,j € [1,n], |CH(O;,0;)| < 2m. For example, points have type 1, disks, convex
homothets and non-overlapping objects have type 2, ellipsis have type 4, etc... Note
that if O is of type m then the boundaries of any two convex objects of O cannot
intersect in more than m points. Moreover, if ¢ denotes the maximum number of
intersection points between the boundaries of two distinct convex objects of O, then
m = max{2,q}. Moreover, if the objects are bounded by closed convex curves then
m is even.

Throughout this paper, we suppose that the type of set O is fixed. Moreover,
each object in O is assumed to have a bounded descriptive size (for instance, the
boundary of each object is a curve of bounded degree) : in particular, this means
that we can find in constant time the two supporting lines of an object with a given
slope. Furthermore, we assume that the convex hull of two objects in O can be
computed in constant time, where the constant depends on the type m.

This paper is organized as follows:

In section 2, we bound the complexity of the convex hull of n objects of type m.
In section 3, we extend to the case of a set of convex objects of type m, the
algorithm of D.G. Kirkpatrick and R. Seidel (cf. [KS82, KS86]) to compute a bridge,

i.e. the facet of the convex hull intersecting a given oriented line. Our algorithm
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6 F. Nielsen , M. Yvinec

is based on the searching-and-pruning paradigm and achieve an optimal ©(n) time
complexity to compute a bridge of a set of n convex objects of type m.

In section 4, we present the scheme of the marriage-before-conquest approach.
This scheme amounts to computing a bridge at a given oriented line, uses this bridge
to filter the objects and to divide the problem into two independent sub-problems
which are recursively solved.

In section 5, we refine the marriage-before-conquest algorithm in the case of a set
partitionned into k subsets of non-overlapping objects, i.e. a set O = U,Lkzlpi where
each P;, i € [1,k], is a collection of non-overlapping objects. The time complexity
of the algorithm is O(nlogh + hk). This algorithm is used as a basic primitive in
the final algorithm. We also derive an O(nlogh + 6h)-time algorithm to compute
the convex hull of n objects of fixed type m where h denotes the output-size and 6
is the maximal number of objects that an object can intersect.

In section 6, we describe the algorithm in the general case. We design an
O(nB(h,m)log h)-time convex hull algorithm where n is the number of objects,
h denotes the output-size and B(h,m) is a very slowly growing function related to
the maximum length A(n, s) of a (n, s)-Davenport-Schinzel sequence [ASS89, Sha87,
Sha88]. More precisely, 3(h,2) = O(1) and B(h,m) = O(2*"™) if m > 2, where
¢m is an integer depending on m and «(-) is the functional inverse of Ackermann’s
function. The algorithm is close to optimal with respect to both the input and
output sizes since Q(nlogh) is a lower bound [KS86].

In section 7, we adapt the method for computing upper envelopes of functions
intersecting pairwise in at most m points and obtain an O(nf(h, m + 2) log h)-time
algorithm. We improve slightly the algorithm in case of k-intersecting “segments”,
i.e. partially functions that intersect pairwise in at most k& points. In that case, we
obtain an O(nfB(h, k-+1) log h)-time algorithm which is ©(nlog h) for line segments.

Finally, in section 8, we conclude and give several guidelines for future research.

2 Complexity of the convex hull of convex objects of
type m
We bound the complexity of the convex hull of convex objects of type m as follows:

Theorem 1 In the worst-case, the complexity E(n, m) of the convez hull of n planar
convez objects of type m is O(n) if m < 2 and O(A(n,m + 2)) otherwise.

Let A be the vertical oriented y-axis and p* the point (0,+c0) (resp. p~ be
the point (0,—0c0)). Let us call upper conver hull (respectively lower convez hull)

INRIA
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A
A

o,
|

|
20 0:
iﬁ ' 4 fi
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1 }l@

O?’ = 0,‘+ nNo;~

Figure 2: Defining O;" and O;™, and function f;.

of O the convex hull CH(0) = CH(O,p ) (resp. CH™(O) = CH(O,p")). We
denote by O;" (resp. O; ) the object CH(O;,p~) (resp. CH™(O;,pT)). Let OF =
{010, € O} and O~ = {O; |O; € O} (see Figure 2). Then, CH(0) = CH(O™),
CH™(0) =CH(O™) and CH(O) = CH(OT)NCH(O7).

Proof of Theorem 1: Since the boundaries 9CH(O™) and CH(O™) of respectively
CH(O™T) and CH(OT) intersect in at most two points, the size |CH(O)| of the convex
hull is at most [CH(O™)| + [CH(O™)|. We therefore focus on the upper bound of
|[CH(OT)|. Since the convex hull CH(O") is an alternating sequence of bitangent
segments and arcs, we count the maximal number of arcs that can appear on the
boundary of CH(OT), i.e. 3CH(OT). Let 3(UOT) denote the boundary of the union
UOT of all the objects of OT. We call arc of the union UOT a maximal portion
of an object 0;" € OT appearing on the boundary d(UO™). The boundary of the
union UOT is a sequence of such arcs. Let | U O | denote the number of arcs of the
union UO™. Consider an arc a of (UOT). a is a portion of the boundary of an
object A € OF. This arc cannot give rise to more than one arc of CH(OT) since
the objects are convex. Indeed, suppose that arc a gives rise to more than one arc
of OCH(O™T), then take two consecutive subarcs of a belonging to 3CH(OT), i.e. a1
and ag such that there is no subarc of a appearing on OCH(O™) between a; and
as. Consider the part s of the boundary of the convex hull 3CH(O™) joining a3 and
as. Either s is a bitangent segment or it contains an arc which is not a subarc of
a (since aj and as are two consecutive subarcs of a on CH(OT)). Let ajo denote

RR n°2575



8 F. Nielsen , M. Yvinec

A
CH(OT)

! [ "

Figure 3: Illustration of CHT(0) = CH(OT), for a set O of disks.

the subarc of a between the subarcs a; and ay. If s is a bitangent segment of the
convex hull, linking one extremity of a; to another extremity of as, then its affine
hull must support the convex hull. Because of the convexity of A, a3 is above this
supporting line so that the affine hull of s cannot support CH™(OT) and we get the
contradiction. If s contains a subarc from another arc of (UOT) then the object
that gives rise to it must cross a so that a it not an arc of (UOT). Thus, each arc of
the union UOT participates to at most one arc of the boundary of the convex hull.

To bound the complexity of CH(OT), it suffices to bound | U O], the number
of arcs of the union UO™.

Let z(O) denote the z-range of an object O, i.e. the projection of O onto the
z-axis. We associate to each object O;T € OT,i € [1,n] with z(O;T) = [a;,b;], a
continuous function f; defined as follows (Figure 2 depicts the f;’s):

e on [a;, b;], the graph of f; coincides with the boundary 80;" of O;%.

e on | — 00, a4, fi is a half line of slope o where « is an arbitrary large positive
real.

e on |b;,+oo|, f; is a half line of slope —a.

Given two distinct functions f; and f;, the number of intersection points between
fi and f; is bounded by m+2. Each vertex of the boundary of the union UO™ maps
to a vertex of the upper envelope of {f;,7 € [1,n]}. So that the size of the boundary of
the union UO™ is less than the size of the upper envelope of the f;’s, i.e. the number

INRIA
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Table 1: Lower and upper bounds of A(n,m). «(n) is the functional inverse of
Ackermann’s function.

m\A(n, m) | Lower Bound Q Upper Bound O

1 n n

2 2n —1 o — 1

3 Q(n x a(n)) O(n x a(n))

4 Q(n x 2°™) O(n x 22(™)

25 +1 Q(n x 20 ) | O(n x a(n)0@™ ™)
2s + 2 Q(n x 20((n))) O(n x 20(a(m)"))

of its arcs and of its vertical segments. The complexity of the upper envelope of f is
bounded by the length of a Davenport-Schinzel sequence on an alphabet of n letters
with at most m + 2 repetitions, a so-called (n, m+ 2)-Davenport-Schinzel sequences
(see Table 1 for tight bounds of A(n,m) and [ASS89, Sha87, Sha88] for further
information on such sequences). The number of arcs of CH(O") is thus bounded by
A(n,m+2) and therefore |[CH(OT)| < 2A(n,m+2). Finally, |CH(O)| < 4\(n,m+2).

This bound is not tight for m = 2. K. Kedem et al. [KLPS86| have proved that
the complexity of the union of objects of type 2 is ©(n). As a direct consequence,
the descriptive complexity of the convex hull of n planar convex objects of type 2 is

O(n). a

Computing upper envelopes of real functions (defined over R) that can mu-
tually intersect in at most ¢ points is a problem which has been extensively stu-
died [SCK'86, EGS89, WS8S]. A divide-and-conquer approach yields
an O(A(n,q)logn)-time complexity algorithm. Therefore, one can compute the up-
per envelope of the functions defined by objects in O in time O(A(n,m + 2)logn)
if set O is of type m. If the arcs of this upper envelope are bounded by algebraic
curves with bounded degree, C. Bajaj and M. S. Kim [BK87b, BK91] gave a linear
time algorithm to compute the convex hull of this object (that object has at most
A(n,m+2) arcs) so that there exists a deterministic algorithm to compute the convex

RR n°2575



10 F. Nielsen , M. Yvinec

hull of a set O of n objects of type m, in time O(A(n,m + 2)logn). Alternatively,
the convex hull CHT(O) can also be computed using the randomized incremental
construction of Clarkson [Cla88] and Clarkson and Shor [CS88]| in expected running
time O(A(n,m + 2)logn).

3 Bridge of a convex hull

3.1 Definition and notations

The bridge of O at A is the unique facet of CHT(O) that is intersected by A.
The bridge at A is either an arc or a bitangent segment of CH(Q). This section is
devoted to the computation of the bridge at an oriented line A of a set of planar
convex objects of fixed type m. The bridge facet is easily determined if one knows
the line which supports CH(O) at the point A N ICH(O) where A intersects the
boundary of CH(O). Indeed, if this line is a supporting line for at least two objects
in O then the bridge is a bitangent segment whereas if this line is a supporting line
of a single object O; € O then the bridge is an arc of CH(O) included in J0;. In
both cases, the two endpoints of the bridge can be found in linear time once this
supporting line is known. Thus, we focus on the determination of the supporting
line of CH(O) at point ANACH(O). Hereafter, this line is called the supporting line
of the bridge at A.

Computing the supporting line of the bridge at A of n convex objects is a ge-
neralized linear program [SW92, MSW92, Ame93, Ame94] and can therefore be
computed by a randomized algorithm in expected é(n) time. Moreover, we can
use the derandomized algorithm of B. Chazelle and J. Matousek [CM93] in order to
obtain a linear deterministic algorithm. Hereafter we give a more direct algorithm
to compute in linear time the bridge at A. In [KS86], D.G. Kirkpatrick and R.
Seidel gave a deterministic optimal ©(n) algorithm that computes a bridge for a set
of n points using a searching-and-pruning procedure. We extend this algorithm to
convex objects of fixed type m.

In order to follow the steps of this searching-and-pruning method, we first extend
the main theorem of [KS86] for computing the bridge of points to the case of convex
objects that can be separated by a line parallel to A. Then, we introduce the vertical
decomposition in order to obtain convenient sets of convex objects. We finally give
the overall algorithm and analyze its time complexity.

INRIA
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3.2 The case of convex objects

Recall that we consider that the direction of A is the direction of the y-axis, called
the vertical axis. We denote by z(p) the abscissa of point p. Kirkpatrick and Seidel
proved the following lemma for a set O of points:

Lemma 2 (3.2, pp. 291 [KS86]) Let p,q be a pair of points of O with z(p) <
x(q), let sy be the slope of the supporting line of the bridge of O at A and let s be
the slope of the straight line through p and q. If s > sp then p cannot be a point of
the bridge of CH(O) at A. If s < s, then q cannot be a point of the bridge at A.

Two objects O1 and O3 are said to be z-separated if they can be separated by a
line parallel to A. Note that z-separated objects can be ordered along the z-axis.
In the following, we note z(O) the z-range of an object O, i.e. the projection of O
onto the z-axis. Let (O1,02) be a pair of z-separated objects. If O is to the left
of an oriented vertical line separating O and Oz then we note #(01) < 2(O2) and
O1 (resp. O2) is called the left (resp. right) object of the pair (O1,032). An object
O € O is said to participate to the bridge at A if the supporting line of CH™(O) at
ANICHT(O) is a supporting line of object O. We extend lemma 2 to the case of
z-separated objects. Observe that if O1 and O3 are a pair of z-separated object, the
boundary of the upper convex hull CH™ (01, 02) has a unique bitangent segment.

Lemma 3 Let (O1,02) be a pair of x-separated objects with (O1) < z(Oz2), let s be
the slope of the unique bitangent segment of OCH ™' (O1,02) and let sy be the slope of
the bridge of O at A. If s > sy then the left object O1 of the pair cannot participate
to the bridge at A. If s < sy then the right object O2 of the pair cannot participate
to the bridge at A.

Proof (Figure 4): We only give the proof in case of s > s; (the other case is
obtained by symmetric considerations). Let I be the intersection point between a
separating line A’ parallel to A and the affine hull L of the unique bitangent segment
of 3CHT(01,03) (see Figure 4). Let s be the slope of L and define L' as the line
passing through I with slope s;. Let Li(sp) be the tangent line to Oy with slope sp.
Li(sp) and L' are parallel lines (and can therefore be ordered along A’). Because
of the convexity of Oy, if s > s then y(L'NA") = y(LNA") > y(Li(sp) N A’) and
L1(sp) is below L'. But the contact point Th(s) = L N Oq is strictly above L' if
s > sp. Therefore, point T5(s) is above Lj(sp) so that O cannot participate to the
bridge at A O

RR n° 2575



12 F. Nielsen , M. Yvinec

L' with slope s

Ll(sb\) T~ L with slope s

T w0y T Z2(03)
Figure 4: Discarding O; when s > sp.

3.3 Vertical decomposition

The vertical decomposition will give rise to a set of x-separated convex objects.

Let O = {01, ...,0,} be a set of n planar convex objects of type m and CH*(O)
its upper convex hull. We decompose this upper convex hull by striping CH™(O).
To stripe CHT(0O), we draw through each vertex of OCH™(O) a line parallel to A.
These parallel lines induce a decomposition of each object O; of O into sub-objects,
called tiny objects in the following (see Figure 5). We only keep the tiny objects
whose boundary participates to the boundary of the convex hull 0. Note that each
tiny object is defined from a single object and two vertical lines, and that two tiny
objects arising from this decomposition are z-separated.

3.4 Algorithm
Let L be the line which supports CH(O) at point A N CHT(O). Line L is a

supporting line for some of the objects in . Our goal is to select from O the
objects that touch L.

We pair up the convex objects of O into pairs (O;,0;). For each pair (0O;,0;),
we first compute CH"'(O@,O]'), the upper convex hull of O; and O; and apply the

INRIA
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— Tiny objects of a cluster (O;,0;)
1 Tiny objects removed directly from the set of candidates

Figure 5: Vertical decomposition of a pair of convex objects of type 2.

vertical decomposition to CH™ (O;, O;). We discard from this decomposition all the
tiny objects that do not have an arc of 3CH™(O;,0;) on their boundaries. Indeed,
as these tiny objects do not appear on the boundary of CH™(O;,0;), they also do
not appear on the boundary of CH™(0) and therefore cannot participate to any
bridge of CH™(O) (Figure 1).

We call cluster the set of remaining tiny objects of a pair. As each pair is of
type at most m since O is of type m, we can deduce that there are at most (m+ 1)
convex tiny objects in a cluster. Then, we pair up all the tiny objects within a
cluster into at most L%‘HJ tiny pairs. Note that we pair up only the tiny objects
within a cluster since, as they are z-separated, they have type 2 whereas two tiny
objects of different clusters have type m. In the following, we shall use lemma 3 to
reduce the number of tiny objects in the clusters. As the slope s of the supporting
line of CH(O) at AN ACHT(O) is of course unknown, the trick is to resolve tests
like s < sp or s > sp using transitivity. A cluster is said to be reduced if it has only
one remaining tiny object. The algorithm consists in an initzal step where we pair
up the objects in order to get non-reduced clusters and several rounds of selecting
and clustering where we eliminate, round after round, the tiny objects. We describe
the algorithm below:

Initial step. We pair up the objects and compute for each pair its vertical decom-

position. This step gives rise to clusters of tiny objects. If an object O; of
a pair (0;,0;) is included in O; then the cluster generated by this pair is
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reduced. In that case, we discard O; and pair O; again until all clusters are
non-reduced.

Selecting and Clustering. A round:

e Selecting.

— Pair up the tiny objects inside each cluster.

— Compute the median s,, of the slopes of the bitangent segments of
pairs of tiny objects (use the median algorithm of
Blum et al. [BFP172]).

— Let O’ be the subset of objects which contribute to the current collec-
tion of tiny objects. Then, find the supporting line L(s,,) of CH1(O")
with slope s, and locate the contact points L(sy,) N CHT(O') with
respect to A. To find the supporting line of CH*(O') with a given
slope s, we find the object(s) which maximize max;_; o/ {yi—sme:}
where point (z;,y;) is the contact point of the supporting line of O;
with slope s,,. In general, there is one or two such objects and the-
refore one or two contact points but there can be possibly more.

— Discard tiny objects:

x If there are contact points located in both sides of A then s, = s;.
The supporting line of CH(O) at ANGCH T (O) is fully determined
by a tiny pair whose bitangent segment has slope s,;,.

x If all the contact points are located at the left side of A then
Sm > Sp. We consider all tiny pairs with slope s > s, and
discard the left tiny object ¢ of these pairs.

x If all the contact points are located at the right side of A then
sm < sp. We consider all tiny pairs with slope s < s, and discard
the right tiny object t2 of these pairs.

e Clustering. This stage is required in order to obtain a set of non-reduced
clusters for the next round. For each reduced cluster, we consider the
original object O € O which gave rise to the single tiny object of this
cluster. We pair up these objects and compute for each pair its vertical
decomposition. This step gives rise to new clusters. If an object O; of a
pair (0;,0;) is included in Oj; then the cluster generated by this pair is
reduced. In that case, we discard O; and pair O; again until all clusters are
non-reduced. In the next round, we consider these new clusters together
with the non-reduced clusters remaining from the selecting step.
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The algorithm halts whenever it finds a tiny pair whose slope equals the slope s
of the supporting line of the bridge at A or if it remains only one tiny object. In the
former case, the bridge is a bitangent segment and we find its two endpoints in linear
time. In the latter case, there are two subcases: either the remaining tiny object
does not intersect A and CH(O) N A = 0 or it defines the object whose boundary
contains the bridge arc. In the latter subcase, the endpoints of the arc can be found
in linear time.

3.5 Complexity analysis

Theorem 4 The above algorithm computes the bridge of a set of n planar convex
objects of fized type m in optimal ©(n) time and storage.

Proof: Once we know the supporting line of the bridge at A, we can determine, in
linear time, the nature of the bridge (arc or segment) and compute its two endpoints
in linear time for a fixed type m. We therefore focus on the analysis of the searching-
and-pruning algorithm.

Let [ and k be respectively the number of tiny objects and the number of clusters
(they are all non-reduced) present at the beginning of some round of the selecting
and clustering step. Then, we denote by ¢(l, k) the cost of the algorithm from that
stage. Let I’ and k' be respectively the number of tiny objects and the number of
non-reduced clusters at the end of that round, i.e. after the clustering step. We
have the following recursive equation:

_fo@) ifk<1
c(l,k) = { al + Bk — k') +c(l',k') otherwise, M

where o and = 3(m) are some constants.

Let r denote the number of clusters reduced during the selecting phase. Since we
pair up the r reduced clusters to create new clusters, we have k' = k—r+ |5]. In the
second part of equation (1), ol is the cost of the selecting phase, 35 = B(k — k') the
cost of the clustering phase of the round and c(I, k') the total cost of the remaining
rounds. Each vertical decomposition of the convex hull of two objects costs F(m) =
if type m is fixed.

If £ = 1 there is only one cluster of tiny objects. We can compute the convex
hull of the at most two objects which give rise to the set of its tiny objects in time
O(1) = y(m) = v if type m is fixed.

Let 81 (|S1] = 1}) be the set of remaining tiny objects after the selecting phase
of the current round and Sz (|S2| = I5) the set of tiny objects created during the
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clustering phase. Let 8’ (|S’| = I'|) be the set of tiny objects at the beginning of the
next round, i.e. 8’ = &1 W Sy. Clearly, we have ' = I} + 1},.

We prove that I} < %l:

Assume that among the k clusters present at the beginning of the current round,
ko clusters have an odd number of tiny objects (say the first k, clusters) and thus
remain with an unpaired tiny object after the pairing of tiny objects while the (k—k,)
other clusters have all their tiny objects paired. Finally, denote by a; the number of
pairs of tiny objects in the i-th cluster. We have the following equation:

ko
1= (2a;+1)+ ZZaz—(ZQaz)+k (2)
=1

i=k,+1

The selectmg process removes a tiny object from half of the tiny pairs, so that
I <i-3 EZ 1 a;. Using equation (2), we obtain !j < 31+ % . As the number of
tiny obJects l is at least 2k + k, and k, ranges over [0, k|, we have l > 3k,. Thus,
I <3

Now, consider the number of created tiny objects during the clustering step.
Clearly, I, < (k— k')(m+1). I is therefore upper-bounded by gl +(E—K)Y(m+1).

Then, it follows by induction on vector (k,l) ordered lexicographically that
c(l,k) <61+ (B+6(m+ 1))k +~ for any 6 > 60

Initially, I < [§](m+1) and k < [§] so that the complexity of all the rounds of
the selecting and clustering step is upper bounded by O(n) for any fixed type m.

The cost of the initial step is also O(n). Thus we obtain an ©(n)-time algorithm
to compute the bridge O

4 Marriage-before-conquest algorithm

In this section, we present the marriage-before-conquest strategy to compute the
convex hull CH(O) of a set of n convex objects O. We consider w.l.o.g. the com-
putation of the upper convex hull since the boundary of CH(O) is obtained in O(1)
time from the boundaries of CH'(O) and CH™(O). As before, A is the vertical
y-axis. Each object in O has two supporting lines parallel to the y-axis, called
walls. Each wall is oriented as the y-axis. Let W be the set of walls and denote by
[W| = w = 2n its cardinality. Let R be a range, i.e. an interval on the z-axis. We
define a slab as the portion of the euclidian plane F? between two lines parallel to A.
The upper convex hull CH™(O) can be described as an z-ordered sequence of facets.
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The following algorithm MarriageBeforeConquest(WV, O, R) computes a subsequence
MBC(W, O, R) of the facets of CHT(0O) included in the slab B = R x (—c0,+00).

Termination. If w = 0 then MBC(W, O, R) = 0. Return MBC(W,O,R).

Divide. Find the median W, of the walls WW. Split W into two balanced subsets
W, ={W e W|z(W) < 2(W,,)} and W, ={W € W|z(W) > (W)}

Merge. Compute the bridge b at the median oriented line W,,.

Filter. Let W; (respectively Wh) be the subset of the walls of W] (resp. W)
that do not intersect b. Let wi and wo denote respectively the cardinalities
of sets Wy and Wh. Let :132‘ and z, be respectively the abscissze of the right
and left endpoints of b. Let Ry = R N (—o0,z; ), Bi = R1 X (—00,+00),
Ro=RN (zf,+00) and By = Ry x (—00,+00). Let O1 (resp. O2) be the set
of objects in O that intersect slab By (resp. slab B2). Compute Wi, Wa, R1,
Ra2, B1, Bz, O1 and Os. Let ny = |01 and ng = |Os].

Conquest. Call recursively MarriageBeforeConquest(Ws, 01, R1) and
MarriageBeforeConquest(W2, O2, R2) and return the ordered sequence of facets
MBC(Wh,01,R1) U{b} UMBC(Ws,02,Rs).

We denote by ¢(n,w, h) the complexity of the algorithm MarriageBeforeConquest
running inside range R if there are w walls in B, n objects intersecting B and h
computed facets of CH'(O) in B. Each computed facet is intersected by at least
one wall of W, so that A < [WW|. We obtain the following equation:

(o) ith<1
elnsw;h) = { c(n1, w1, k1) + c(n2,ws, h2) + O(n) otherwise )

The algorithm ensures that w; + w2 < w and wi,we < [§] but it does not
control nj nor ny (n1,n2 < n) so that its worst-case running time is O(nh). At
the end, we are left with an z-ordered alternating sequence of computed facets
and empty slabs (i.e. slabs that do not contain any wall of W). We can find the
whole upper convex hull using Jarvis’s algorithm inside each empty terminal slab.
In the following section, we study a special case where we can bound the number
of objects that participate to the upper convex hull inside a slab (parameter n; and
ngy of equation (3)). We will use this “special” case as a basic primitive in the final
algorithm.
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5 The case of a non-overlapping partition

Let O be a set of n objects of fixed type m. If we know that there exists a partition
lﬂlepi of set O of fixed type m into k subsets such that each subset P;, for i € [1, k],
is a set of non-overlapping convex objects then we can derive an O(nlog h + hk)-time
complexity algorithm to find the convex hull of O. This result holds, for example if
O is a set of non-overlapping convex objects, since in that case k = 1 and m = 2.
Let B be a vertical slab where we want to compute the upper convex hull. Among
the objects of O intersecting B, we distinguish two mutually exclusive categories:

Category 1: The objects that have a wall inside B.

Category 2: The objects that intersect B but do not have a wall inside B: these
objects are called the spanning objects hereafter.

Algorithm MarriageBeforeConquest is slightly modified, taking into account these
two categories of objects inside each slab B (with associated range R), as follows:

e We bound the number of objects to consider in slab B by selecting among the
spanning objects, at most one object of each family P;. Indeed, R is included
in the z-range of each spanning object. Thus, the spanning objects which
belong to a given family P; can be ordered along any vertical line included in
B and only the topmost object can contribute to the upper convex hull in B.

e We stop the recursive calls as soon as w < k and run Jarvis’s march in each
resulting slab on the set of objects Op relevant for this slab. We have |Op| <
2k since there are at most k spanning objects and k objects of category 1.
This Jarvis’s march is initialized from the computed facet which intersects the
rightmost vertical line limiting B and stopped when the leftmost vertical line
limiting B is reached.

Theorem 5 Let O be a set of n planar convex objects of fized type m partitionned
nto k subsets of non-overlapping convex objects, then the convex hull of O can be
computed in O(nlogh + hk) time, where h is the size of the convez hull of O.

Proof:
Let ¢(n,w, h) denote the complexity of the above algorithm. We have:
_ | O(hk) fw<k
e(n,w, h) = { c(ni, w1, h1) + ¢(na,wa, ha) + O(n) otherwise (4)
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with w1 + w2 < w, w1, w2 < [§], n1 < w1 +k and ny < wa + k since we keep, in
each sub-slab Bj, B2, at most k spanning objects and there are at most w; objects
(resp. wa objects) that have a wall in slab B; (resp. Ba).

We consider the recursive time complexity equation (4) and link parameters n
and w using the inequality: n < w+k; thus ¢(n,w,h) < c(w+k,w, h) and from now
on, we simply note ¢(w, h) for ¢(w + k,w, h). Bounding n by w + k in equation (4),
we obtain:

(w, h) = ahk ifw<k (5)
A= e(wr, ha) + e(ws, he) + B(w + k) otherwise

where o« and 3 are some constants.
Note that wi < [5], we < [5] and h = h1 + ha + 1. We prove by induction on
w that e(w, h) < y(wlogh + kh) for a suitable constant ~:

e If w < k then c¢(w, h) = akh by equation (5). So that ¢(w,h) < y(wlog h+kh)
ify > a.

e Suppose that c¢(w', h) = y(w'logh + kh) for 0 < w' < w and consider ¢(w, h)
with w > k. Using equation (5), it follows that:

c(w, h) = y(wy log hy + khy + walog ho + kha) + B(w + k)

with wi,w2 < % and hy + ha + 1 = h. Note that log(h1hz) is maximized for
h1 = hy = %1, thus:

2

h
e(w,h) < (5 log - + kh) + B(w + k),

c(w,h) < y(wlogh + kh —w) + f(w + k).
But k < w by hypothesis, so that
c(w,h) < y(wlogh + kh) + (26 - 7)w,
and c(w, h) < y(wlogh + kh) for suitable v > 26.

This proves that ¢(w,h) < y(wlog h + kh) for constant vy = max{23, a}. Initially,
w = 2n (each of the n initial objects has two walls) so that the complexity of the
algorithm is O(nlog h + kh). a

RR n° 2575



20 F. Nielsen , M. Yvinec

As a direct consequence, we obtain a ©(nlog h)-time algorithm for computing the
convex hull of non-overlapping convex objects. Note that our algorithm requires to
know the partition of O into subsets of non-overlapping objects. We can define for a
family of n objects its intersection graph G defined as follows: for each object O; € O
we create a node and two different nodes are linked iff their corresponding objects
intersect. If § is the maximum degree of the nodes of G, we know from the graph
theory that there exists a partition of O into p subsets of non-overlapping objects
such that p < § + 1. We can slightly modify our algorithm in order to take into
account the paramater 6 without knowing a partition into subsets of non-overlapping
objects: choose a vertical line inside the slab and select from the spanning objects
the object O that has the uppermost intersection point with that line. Then, we
discard all the spanning objects that do not intersect O (this means that we only
keep the spanning objects intersecting O). It is trivial to prove that all the spanning
objects that do not intersect O are below O and therefore cannot participate to the
upper convex hull. Thus, we obtain an O(nlogh + 6h)-time algorithm to compute
the upper convex hull of n objects of fixed type m where 6 is the maximal number of
intersection of any object with the others. For example, we can compute the convex
hull of n hard-disks [HO94| in ©(nlog k) (a family of disks in the hard-sphere model
has the property that each disk intersects at most O(1) others, i.e. § = O(1)). We
also obtain an optimal ©(nlog h)-time algorithm if § < O(g(l::i:)).

Note that the above algorithm computes the upper convex hull inside each ter-
minal slab using Jarvis’s march. If we skip this last phase of the algorithm, we
are left with a subsequence of the facets of the convex hull. There is a terminal
slab intersecting at most 2k objects between each pair of consecutive facets in the
subsequence. Then, the algorithm is called PartialMBC and its complexity is still
O(nlog h + kh) but h is, here, the number of computed bridges (and not the total
number of facets of the upper convex hull).

6 The general case

In this section, we first present a convex hull algorithm assuming we know a good
estimate h. of the output-size h. To obtain a good estimate of the output-size, we
have to compare the size h of the convex hull with some given value p; we show in
section 6.2 how to perform such comparisons. The final algorithm is given in section
6.3.
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6.1 Given an estimate of the output-size

Let h. be an estimate of the output-size h = |CHT(0O)|. The algorithm includes
two steps: the first step computes from O a set 7 of objects partitionned into non-
overlapping subsets such that CH"(0O) = CH'(T). Then, in a second step, we
apply the marriage-before-conquest algorithm of section 5 on 7. We describe the
algorithm below:

Grouping. Group the n objects into |—,:L—C'| groups of size h.. For each group, we
compute the vertical decomposition of the convex hull of its objects. Thus, we
obtain from the groups a set 7 of O([;-]E(he,m)) tiny objects partitionned
into [hl,j subsets of at most E(h., m) non-overlapping tiny objects.

Marriage-before-conquest. Let VW be the set of walls corresponding to the tiny
objects of 7. Let R be the z-range (—oo, +00).
Return MarriageBeforeConquest()V,7,R) (see algorithm section 5).

Let us now analyze the complexity of the two steps:

Grouping. Computing the vertical decomposition of the upper convex hull of a
group of h, objects requires O(E(he,m)logh,) time: we first compute the
upper envelope of the h. objects by a divide-and-conquer algorithm and then
run a walk-like convex hull algorithm on the upper envelope [BK91]. The upper
envelope has worst-case size Z(h., m). Thus, the time required to compute the
vertical decomposition of a group is O(E(he,m) log he). Since there are [4+]

groups, the total time complexity of this first step is O(nE(hh;c’m) log h).

Marriage-before-conquest. We run the marriage-before-conquest algorithm of
section 5 onto the set of O(%) tiny objects partitionned into [ 7-] subsets
of non- overlappmg objects. From the complexity analysis of section 5 this step
requires O(n M log h + "h) time.

The  total time complex1ty of the algorithm is  therefore
O ( “(he m) (log he +1log h) + ) Thus, if he = h then the time required to com-

pute the convex hull CH1(0) is O(n% log h).

6.2 Comparing the output-size with a given value

In order to find a good estimate of h, we will need to determine if our current
estimate (say p) is good (this means that p roughly equals to h) or not, i.e. to
answer tests like p > h ,p="h or p < h.
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Lemma 6 There exists a deterministic algorithm that given an integer p, answers
whether h > p or not in O(n@ logp) time.

Proof: We design an algorithm which does not differ too much from the marriage-
before-conquest algorithm of section 5: the idea is to group the objects into [2]
groups of p objects and then run the marriage-before-conquest algorithm PartialMBC
on the f%} subsets of non-overlapping tiny objects resulting from the vertical decom-
position of each group. We use algorithm PartialMBC in order to keep the terminal
slabs empty. Finally, we bound the number of facets computed by Jarvis’s marches
inside the terminal slabs. More precisely, we run Jarvis’s march inside each “termi-
nal” slab (a slab with at most % walls) until we have computed a total of min{p,h}
facets. We describe the algorithm below:

Let a = 0 (a denotes the number of computed facets).

Grouping. Group the n objects into [%] groups of size p and compute the vertical

decompositions of their convex hull. We obtain a set 7 of O(nE(p+m)) tiny

objects partitionned into f%] non-overlapping subsets.

Marriage-before-conquest. Apply algorithm PartialMBC on the set 7 until each
slab has less than [%] walls, incrementing a each time we compute a bridge.
If a > p stop and return YES, i.e. A > p.

Jarvis’s march. Fill the terminal slabs by running Jarvis’s march inside each slab
on a set of O(%) objects (at most |—%-| spanning objects and |—%-| objects that
have a wall inside the slab), incrementing a and testing if a > p each time we
compute a new facet. If a > p at some step then we stop the algorithm and
return YES, i.e. h > p.

Default case. At this stage, we have computed the whole upper convex hull and
a = h, the number of computed facets is less or equal to p. We return NO.

The overall cost of the grouping step is O(nM log p) as in section 6.1. The

P
cost of the marriage-before-conquest algorithm is bounded by O(n% log p) since

we stop the recursion process if the slab has less than [%] walls. Indeed, we split
into two balanced parts the walls of the tiny objects of 7 at each recursive call of the
procedure. So that dividing the number of walls inside each slab by a factor E(p, m)
amounts to computing at most E(p,m) bridge facets. Thus, the cost of running

PartialMBC is bounded by O(n@ log E(p,m)) + n@ = O(n@ log p) since
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log E(p,m) = O(log p) and @ = O(logp). Let ¢(n,p) denote the time complexity

of this algorithm. Then, c(n,p) = O(n@ logp) + O(%a') where o’ is the number
of computed facets during the Jarvis’s march (a’ < a). Clearly, a’ < p so that

m)

e(n,p) = O(nE(pT’ log p). This proves the lemma. O

6.3 The overall algorithm

The scheme of the algorithm is to find a good estimate h. of h, that is an estimate
such that h < h, < h2, and to run the algorithm of section 6.1 with that estimate.
The final algorithm is described below:

Initializing. Let ¢ =0 and p = 22" = 2.
Estimating. While (p < h) do p < min{n,p?} (this means that i «— i + 1 and
p=2%)

Computing. Compute the upper convex hull using p = h, = 92’ (note that h? >
p > h).

Note that we use the algorithm of section 6.2 to perform tests like p < h in the
while-loop.
Let ¢(n,h) be the cost of the algorithm, we obtain:

=(92! ) =
c(n,h) =0(1)+ O Z nMT +0 (nw log he> .

Let B(p,m) be an upper bound of the ratio @ that satisfies B(p%,m) =
O(B(p,m)) like B(p, m) < O(2*®)™) with ¢, an integer depending on m (this upper-
bound is deduced from the maximal length of (n,s)-Davenport-Schinzel sequences,

see Table 1). We bound ¢(n, h) as follows:
[loglogh] .
c(n,h) <O | nB(h,m) Y 20| +0 (np(h* m)logh?),
=0

¢(n,h) = O(nB(h,m)logh).
This yields the desired upper-bound ¢(n, h) = O(ngB(h, m)logh).
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Theorem 7 There exists a determanistic algorithm that computes the upper convex
hull of n planar convezr objects of fized type m in time O(nB(h,m)logh) using
O(nfB(h,m)) storage.

This bound is very close to optimal since Q(nlogh) is a lower bound [KS86].
In case of convex objects of type 2 (like disks, convex homothets, non-overlapping
objects, etc..), the algorithm is truly optimal since @ = O(1) (see [KLPS86]). If
m > 2 we do not know if our algorithm is optimal. We cannot reach the Q(nlogh)
lower bound (proved in [KS86]) with this method. Indeed, when grouping the objects
into groups and computing their vertical decomposition, we create a set of tiny
objects which is slightly supra-linear with respect to the original set of objects.
This remark gives rise to the problem of the lower bound as soon as m > 2. Is
Q(n%’m) log h) a better lower bound for the convex hull problem? Can we group
the objects in a better way so that the number of tiny objects obtained from the
convex decomposition of the groups is less than O(n#) for a p-grouping?

In the following section, we show how this method can be used to compute upper
envelopes of functions and line segments. In the later case, we can improve the
grouping step of the inputs so that we achieve an optimal ©(nlog h)-time algorithm

in the case of line segments.

7 Computing upper envelopes

Let F = {f1,..., fu} be a collection of n mono-variate, possibly partially defined,
functions, all algebraic of some constant maximum degree. We denote by Er its
upper envelope, i.e. the pointwise maximum of the f;’s:
Er(z) = max {fi(z)},
i€{l,...,n}

where f;(z) is the value of the function f; at abscissa # or —oco if # does not belong to
the domain of definition of f;. Throughout this paper, we will use the term function
for the mathematical object itself or its graph. Thus, in term of graph, the upper
envelope of functions can be seen as the part of the graphs of the f;’s visible from
viewpoint (0,+0c0). If the functions are partially defined, then the observer (which
stands at point (0,400)) may see the point (0, —oc0), i.e. there exists vertical rays
emanating from (0,4oc0) that do not collide with the function graphs. In order to
unify the definition of the mathematical object upper envelope in case of partially
defined functions, we add an extra function f_ () such that f_(z) = —oco,Vz € R.
Thus,
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Er(z) = max {fi(z),f-=(x)} = max {fi(z),—oco}.
i€{l,...n} 1€{l,....n}

The upper envelope is a sequence of maximal visible portions of the original
functions. Hereafter, we call facet of the upper envelope each maximal visible portion
of the original functions. A facet is fully determined by the function whose graph
coincides with, and its two endpoints. The size of the upper envelope Er of F,
denoted by |Ex|, is the number of facets of the upper envelope.

Set F is said of type m if any two functions of F intersect in at most m points.
Line segments are of type 1, parabole are of type 2, ... A family of objects is
classified by means of the number of pairwise intersection points.

Since the functions have a bounded descriptive size (algebraic functions of fixed
degree), F is of fixed type m.

We can use the theory of Davenport-Schinzel [ASS89, Sha87, Sha88] to bound
the complexity of the upper envelope Er of 7. We map the functions of F to the
symbols of an alphabet of n letters, then the upper envelope is described as a word
corresponding to the left-to-right sequence of symbols of its facets, where each facet
receives the symbol of its coinciding function. The word obtained by “reading” the
upper envelope is subject to two constraints:

e No symbol appears in two consecutive positions in the word (it is the trivial
translation of facet, i.e. a maximal visible portion).

e The longest alternating subsequence of two symbols (i.e. subsequence of type
a...b...a...b...a...) has length at most m+ 3 if the functions are partially defined
or m + 1 otherwise (if they are functions defined over R).

Any word satisfying the above two constraints is called a Davenport-Schinzel
sequence or (n, m+2)-DS sequence (and (n, m)-DS sequence in case of totally defined
functions) for short. The maximal length of a (n, m + 2)-DS sequence is denoted by
A(n,m+2). The maximal length A(n,m+2) of an (n, m+ 2)-DS sequence is almost
linear in n for fixed m [ASS89, Sha87, Sha88|.

For example, line segments are partially defined functions intersecting pairwise
in at most one point. Thus, the size of the upper envelope of n line segments is
A(n,3) = O(na(n)). Here a(n) is the extremely slowly growing functional inverse
of Ackermann’s function [WS88]. This bound is tight: M. Sharir and A. Wier-
nik [WS88] built a set of n line segments such that the size of their upper envelope
is Q(na(n)). However for practical implementation, it is worth noting that a(n) < 4
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Figure 6: Type of functions and correspondence of the upper envelope with words.

for n < tower(65536) where tower(i) is a tower of 2 of length 7, i.e. tower(l) = 2
and tower(i + 1) = gtower(i),

The methodology previously described for computing convex hulls can be applied
for computing upper envelopes. We briefly recall the main steps. Computing the
bridge at a given oriented line A, i.e. the facet of EFr intersected by A, can be done
almost trivially in linear time: first, we select the function which has the highest
intersection point with A. Let f be that function. Then, in a second step, we
find the two endpoints (to the left and right of A ) limiting the bridge facet. As
type m is fixed, we can compute the two endpoints in linear time. We can also
design a linear-time-per-facet algorithm (an analogous algorithm of Jarvis’s march).
Then we consider the case of a set of functions partitionned into k subsets of pairwise
nonintersecting subsets. We obtain a O(nlog h+kh)-time upper envelope algorithm.

We define the vertical decomposition of a group of functions as the partially
defined functions induced by striping vertically the upper envelope. We follow the
same steps as those of the convex hull algorithm and obtain an O(ng(h, m)log h)-
time O(nB(h,m))-storage algorithm with B(h,m) = O(2*"W™) where ¢, = 5]
if the functions are partially defined and ¢, = [%] — 1 otherwise (see Table 1).
Note that the complexity of the upper envelope depends on both the number of
intersection points and if the functions are partially or totally defined.
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Figure 7: Upper envelope of 200 line segments. Facets are shown in bold.
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Thus, for the case of line segments we obtain an O(na(h)log h)-time algorithm.
We show in the following section how we can reach the optimal bound Q(nlogh) by
adapting the technique due to J. Hershberger [Her89]. The main idea is to group the
the line segments efficiently. A family of functions is said to be k-intersecting if the
functions are partially defined (this means that their graph have two endpoints) and
if they intersect pairwise in at most k& points. A set of line segments is 1-intersecting.

7.1 An improved algorithm for k-intersecting segments

W.l.o.g we consider the case of line segments. The generalization of the result to
k-intersecting segments is straightforward. The main idea is to create groups so that
the size of the vertical decomposition of each group remains linear. We first compute
a lazy interval tree as follows: consider the 2n endpoints of the line segments and
compute by recursive application of the median algorithm [BFPT72| a partition
P = {Pi,...,Pp} of the 2n endpoints so that each sheaf P; has size 27" and the
sheaves are z-ordered, i.e. z(P;) < @(P;) for all j > i. We consider the following
p — 1 reference abscisse and p x-ranges:

e For each sheaf P;, we associate the z-range X; of the points p; € P;. Note that
all the z-ranges of the sheaves are disjoint.

e Between two successive sheaves, we choose an abscissa a; so that X; < a; <
X1, i.e an abscissa between two consecutive z-ranges of sheaves.

We build an interval tree Z7 upon these 2p — 1 abscissae: each leaf of the interval
tree corresponds to the xz-range of a sheaf and each internal node to an abscissa se-
parating the sheaves (see Figure 8). Then, we allocate the n line segments according
to the lowest common ancestor of their two endpoints. At this step, all the segments
are located into two kinds of sets:

e Those staying at a leaf of 77 . This means that the z-range of each of these
line segments is included in the xz-range of the sheaf. We say that these line
segments are unclassified.

e Those lying in an internal node of Z7 . This means that all the line segments,
whose lowest common ancestor of the abscisse of their endpoints is the abscissa
a;, cross the vertical line x = a;. Their upper envelope is linear in the number
of line segments. We say that these segments are classified.
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Following the communication of J. Hershberger [Her89], we notice that the upper
envelope of the line segments allocated into a same internal level of Z7 is linear in
the number of line segments. Indeed, the upper envelope of the segments allocated
to a given internal node is linear (see [Her89]) because all these segments cross a
vertical line and the segments of two nodes of a same internal level are separated by a
vertical line by virtue of the interval tree. Let n; denote the number of line segments
at level 7, 1 < i < [logp]|. By grouping the line segments of each internal level of
the interval tree into groups of size p and computing for each group the vertical
decomposition of their upper envelope, we obtain an O(% + log p)-coloration, i.e. a

partition of the original set of n line segments into Eilzogm |—"7‘-| = O(%+log p) subsets
of pairwise non-intersecting line segments resulting from the vertical decomposition
of their upper envelope. We also color the unclassified line segments (those staying
at a leaf of the interval tree) as follows: to the i-th line segment attached to a given
leaf of the interval tree, we give it the color (7,2). Here, 2 means the unclassified line
segments. Note that ¢ < [2]. Moreover, two line segments with color (7,2) do not
intersect since they belong to two different sheaves and are therefore z-separated.

Thus, globally, after an O(nlog p)-preprocessing time required for building the
lazy interval tree, we obtain a O(% + log p)-coloration of a new created set of O(n)
line segments which has the same upper envelope as 0. We run the O(nlog h + kh)-
time algorithm upon this new set. Since k = 27"+10g p, we obtain an O(nlog h+ 27"h)—
time algorithm as long as plogp < n. Otherwise, plogp > n and we run the
O(nlogn) = O(nlogp) algorithm of J. Hershberger. We use the classical technic
of iterative approximation of h in order to reach the final ©(nlog h)-time algorithm
(cf. previous sections). Note that we can achieve linear storage if A < nz ¢ for any
€> 0.

For the case of k-intersecting segments, we note that the complexity of the n; k-
intersecting segments at the i-th level of the interval tree is O(A(n;, k+1)) [Her89]. It
follows that the complexity of the upper envelopes (one upper envelope per group)
of the n k-intersecting segments is O(nfB(h,k — 1)). Thus, we can compute the
upper envelope of k-intersecting segments in time O(nB(h,k — 1)log h). The space
requirement has also been reduced to O(ngB(h,k—1)) if h < nz ¢ Thus, in the case
of line segments, we obtain an optimal ©(nlog h)-time algorithm and linear storage
ifh<ni . A challenging problem is to design an algorithm that computes the
upper envelope of n functions intersecting pairwise in at most m points in less than
O(A(n,m + 1)logn) operations. Probably, if a better result is found, it may yield
straightforwardly to a better output-sensitive algorithm since the crucial step of our
method is to compute partitionned sets.
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Y

Figure 8: Building the lazy interval tree.

As a final remark, to underline the power of the grouping scheme, we show
how in the case of line segments we can obtain again an O(nlog h)-time algorithm
using ray shooting procedures. As before, we create f%] groups of size p, compute
their upper envelopes and preprocess these upper envelopes (which can be viewed
as simple polygons) for ray shooting. For each group, the time for computing its
upper envelope and preprocess it for ray shooting is O(pa(p) logp) [CEGT91]. Thus,
the total time for the preprocessing step is O(na(p)logp). The ray shooting query
time of a group is O(logp). Then, the procedure loops from ¢ = —c0 to 2 =
as follows: consider that the algorithm at some stage has found a portion of the
upper envelope (a line segment) and therefore knows (by the rightmost endpoint e
of that facet) which line segment s will support the following portion of the upper
envelope. Then, for each group (in fact each simple polygon), we shoot a ray from
the endpoint e following the direction of s. Finally, among the % terminations, we
choose the one that shorten the most the line segment s... The cost of this algorithm
is O(na(p) logp + (% logp + %)h). If p = h then the algorithm has time complexity
O(na(h)logh). We use again the technic of approximation in order to achieve that
bound. Moreover, we can still apply the previous grouping algorithm in order to
obtain an optimal ©(nlog h)-time algorithm.
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8 Concluding remarks

We have applied the marriage-before-conquest paradigm to the computation of the
convex hull of n planar convex objects of fixed type m. We first described a linear-
time algorithm to compute the bridge of the convex hull at a given oriented line.
Then, we investigated the case where the family of objects consists of k subsets
of non-overlapping objects. For that case, we designed an O(nlogh + kh)-time
algorithm where h denotes the output-size. As a byproduct, we obtain an optimal
O(nlog h)-time algorithm for computing the convex hull of a set of non-overlapping
objects. Moreover, if each object cannot intersect more than é others then we
design an O(nlogh + 6h)-time algorithm. Finally, we transformed the problem of
computing the convex hull of O to computing the convex hull of a set 7 such that
CH(O) = CH(T) (we use nonoutput-sensitive algorithms in order to get 7) . The
size of the partition of 7, i.e. the number of non-overlapping subsets, depends on
the size of the output. Since we do not know the output-size, we iteratively estimate
it. We finally choose a good estimate to compute the convex hull of a set of n
planar convex objects of fixed type m in O(nB(h,m)logh) time where B(h,m) is an
extremely slowly growing function. We can follow the same scheme for computing
the upper envelope of possibly partially defined functions. In that case, the bridge
at a given oriented line is the maximal piece of the lower envelope intersected by
that line.

All these algorithms can be easily parallelized onto EREW PRAM
multi-computers, following the algorithm of S. Akl [Akl84, AkI85]. D.G. Kirkpa-
trick and R. Seidel [KS86] proved that Q(nlogh) is a lower bound for computing
the convex hull of a set of n points where h is the number of hull vertices. Can we
improve that lower bound in the case of convex objects of fixed type m? It would
also be interesting to find other applications of this method and to generalize it to
higher dimensions.
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Figure 9: The upper envelope of 100 line segments. The upper left drawing depicts
the upper envelope of 100 line segments. Then from left to right, and top to bottom,
we first compute groups of size 10, 20, ...,90 and apply the marriage-before-conquest
algorithm on the set of line segments resulting from the vertical decompositions of
their upper envelopes.
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