K nuth \{Bendix for groups w ith in nitely many rules

D avid Epstein
PaulSanders

A pril 12, 2024

K eyw ords: A utom atic G roups, K nuth $\{B$ endix P rocedure, F inite State A utom ata, W ord R eduction
M athem atics Subject C lassi cation: Prim ary 20F10, $20\{04$, 68Q 42;
Secondary 03D 40, 20F 32.

A bstract
W e introduce a new class of groups w ith solvable w ord problem, nam ely groups speci ed by a con uent set ofshort-lex-reducing K nuth \{ Bendix ruleswhich form a regular language. T his sim ultaneously generalizes short-lex-autom atic groups and groups w ith a nite con uent set ofshort-lex-reducing rules. W e describe a com puter program which looks for such a set of rules in an arbitrary nitely presented group. O urm ain theorem is that our com puter program nds the set of rules, if it exists, given enough tim e and space. (This is an optim istic description of our result| for the m ore pessim istic details, see the body of the paper.)

The set of rules is em bodied in a nite state autom aton in two variables. A central feature of our program is an operation, which we call welding, used to combine existing rules w th new rules as they are found. W elding can be de ned on arbitrary nite state autom ata, and we investigate this operation in abstract, proving that it can be considered as a process w hich takes as input one regular language and outputs another regular language.

In our program swe need to convert severalnon-determ in istic nite state autom ata to determ in istic versions accepting the sam e language. W e show how to im prove som ew hat on the standard subset construction, due to special features in our case. W e axiom atize these special

[^0]features, in the hope that these im provem ents can be used in other applications.

The K nuth $\{B$ endix process norm ally spends m ost of its tim e in reduction, so its e ciency depends on doing reduction quidkly. Standard data structures for doing this can becom e very large, ultim ately lim iting the set of presentations of groups which can be so analyzed. W e are able to give a m ethod for rapid reduction using our much sm aller two variable autom aton, encoding the (usually in nite) regular language of rules found so far. Tim e taken for reduction in a given group is a sm all constant tim es the tim e taken for reduction in the best schem es known (see [ī]), which is not too bad since we are reducing w ith respect to an in nite set of rules, whereas know n schem es use a nite set of rules.

W e hope that the m ethod described here m ight lead to the com putation of autom atic structures in groups for which this is currently in feasible.

C ontents

To help readers nd their way around the inevitably com plex structure of this paper, we start w ith a brief description of each section.

1. Introduction. This brie y sets som e of the background for the paper and describes the m otivation for this work.
2. Our class of groups in context. W e de ne the class of groups to which this paper is devoted and prove various relations w ith related classes of groups. G roups in our class satisfy our m ain theorem (' '---- ofour ofm inim al short-lex reducing rules is regular, then our program succeeds in nding the nite state autom aton which accepts these rules.
3. W elding. H ere we describe one of the m ain new ideas in this paper, nam ely welding. This process can be applied to any nite state autom aton. In our case it is the tool whidn enables us perform the apparently im possible task of generating an in nite set of K nuth \{B endix nules from a nite set. W elding has good properties from the abstract language point of view
 features. Firstly, if an autom aton starts by accepting only pairs (u;v) such that $u=v$ in G, then the same is true after welding. Secondly, the welded autom aton can encode in nitely m any distinct equalities, even ifthe original only encoded a nite num ber. T hirdly, the welded autom aton is usually m uch sm aller than the original autom aton. At the end of this section we show that any group determ ined by a regular set of rules is nitely presented.
4. Standard K nuth $\{B$ endix. In this section, we describe the standard K nuth (B endix process for string rew riting, in the form in which it is norm ally used to analyze nitely presented groups and monoids. W e need this as a background against which to describe our m odi cations.
5. O ur version of K nuth $\{B$ endix. W e give a description of our K nuth $\{$ Bendix procedure. W e describe critical pair analysis, minim ization of a rule and give som e brief details of our m ethod of reduction using a two-variable autom aton which encodes the rules.
6. C orrectness of our K nuth $\{B$ endix P rocedure. W e prove that our K nuth \{Bendix procedure does what we want it to do. The proof is not at all easy. In part the di culty arises from the fact that we have to not only nd new rules, but also delete unwanted rules, the latter in the interests of com putationale ciency, or, indeed, com putational feasibility. O ur m ain

---cept, we have not seen elsew here its system atic use to understand the progress of K nuth $\{B$ endix with tim e. O ne hazard in program m ing K nuth \{Bendix is that som e clever m anoeuvre changes the T hue equivalence relation. T he key
 which carefully analyzes the e ect of various operations on T hue equivalence. In fact it provides m ore precise control, enabling other hazards, such as continual deletion and re-insertion of the sam e rule, to be avoided. It is

---- -applied to a group de ned by a regular set of m inim al short-lex rules, then, given su cient tim e and space, a nite state autom aton accepting exactly these rules w ill eventually be constructed by our program, after which it w ill loop inde nitely, reproducing the sam e nite state autom aton (but requiring a steadily increasing am ount of space for redundant inform ation).
7. Fast reduction. W e describe a sunprisingly pleasant aspect of our data structures and procedures, nam ely that reduction w ith respect to our probably in nite set of nules can be carried out very rapidly. G iven a reducible word w, we can nd a rule (;), such that w contains as a subword, in a tim ewhich is linear in the length of w. Fast algorithm s in com puter science are often achieved by using nite state autom ata, and the current situation is an exam ple. W e explain how to construct the necessary autom ata and why they work.
8. A m odi ed determ in ization algorithm. Here we describe a m odication of the standard algorithm, to be found in every book about com puting algorithm s , that determ inizes a non-determ inistic nite state autom aton. O ur version saves space as com pared w ith the standard one. It is well suited
to our special situation. W e give axiom swhich enable one to see when this im proved algorithm can be used.
9. M iscellaneous details. A num ber ofm iscellaneous points are discussed. In particular, we com pare our approach to that taken in klom ag (sæe [i4]).

1 Introduction

W e give som e background to our paper, and describe the class of groups of interest to us here.

A celebrated result of N ovikov and B oone asserts that the w ord problem for nitely presented groups is, in general, unsolvable. This means that a nite presentation of a group is known and has been w ritten dow n explicitly, w ith the property that there is no algorithm whose input is a word in the generators, and whose output states w hether or not the w ord is trivial. G iven a presentation of a group for which one is unable to solve the word problem, can any help at allbe given by a com puter?

The answer is that som e help can be given with the kind of presentation that arises naturally in the work ofm any m athem aticians, even though one can form ally prove that there is no procedure that w ill alw ays help.

There are two general techniques for trying to determ ine, w ith the help of a com puter, whether two words in a group are equal or not. O ne is the Todd \{C oxeter coset enum eration process and the other is the K nuth \{B endix process. Todd-C oxeter is m ore adapted to nite groups which are not too large. In this paper, we are m otivated by groups which arise in the study of low dim ensional topology. In particular they are usually in nite groups, and the num ber of w ords of length n rises exponentially w ith n. For this reason, Todd\{C oxeter is not much use in practioe. W ell before Todd\{C oxeter has had tim e to work out the structure of a large enough neighbourhood of the identity in the C ayley graph to be helpful, the com puter is out of space.
$\mathrm{O} n$ the other hand, the K nuth $\{\mathrm{B}$ endix process is m uch better adapted to this task, and it has been used quite extensively, particularly by Sim s, for exam ple in connection w ith com puter investigations into problem s related to the Bumside problem. It has also been used to good e ect by H olt and Rees in their autom ated searching for isom orphism s and hom om onphism s betw een
 for a short-lex-autom atic structure on a group, Holt was the rst person to realize that the K nuth \{B endix process m ight be the right direction to choose (see [了ָ-1]). K nuth \{Bendix will run for ever on even the m ost innocuous hyperbolic triangle groups, which are perfectly easy to understand. H olt's successful plan was to use K nuth \{B endix for a œertain am ount of t im e, de-
cided heuristically, and then to intermupt K nuth $\{B$ endix and m ake a guess as to the autom atic structure. O ne then uses axiom-checking, a part of auto-
 If it isn't correct, the checking process w ill produce suggestions as to how to in prove the guess. Thus, using the concept of an autom atic group as a m echanism for bringing K nuth \{B endix to a halt has been one of the philosophical bases for the work done at W arw ick in this eld alm ost from the beginning. In addition to the w orks already cited in this paragraph, the readerm ay wish

For a short-lex-autom atic group, a minim al set of K nuth \{Bendix rules m ay be in nite, but it is alw ays a regular language (see hinecursive setsof '----In this paper, we carry this philosophical approach further, attem pting to com pute this nite state m achine directly, and to carry out as much of the K nuth \{B endix process aspossible using only approxim ations to thism achine.

Thus, we describe a setup that can handle an in nite regular set of K nuth $\{$ Bendix rew rite rules. For our setup to be e ective, we need to m ake several assum ptions. M ost im portant is the assum ption that we are dealing w ith a group, rather than with a m onoid. Secondly, our procedures are perhaps unlikely to be of much help unless the group actually is short-lex-

 constructing the nite state m achine which acoepts the (unique) con uent set of short-lex m inim al rules describing a group, if and only if this set of rules is a regular language.

P revious com puter im plem entations of the sem i-decision procedure to nd the short-lex-autom atic structure on a group are essentially specializations of the K nuth \{B endix procedure $\overline{\mathrm{T}}$] to a string rew riting context together w ith fast, but space-consum ing, autom aton-based m ethods of perform ing word reduction relative to a nite set of short-lex-reducing rew rite rules. Since short-lex-autom aticity of a given nite presentation is, in general, undecid$a b l e$, space-e cient approaches to the K nuth \{B endix procedure are desirable. O ur new algorithm perform sa K nuth \{Bendix type procedure relative to a possibly in nite regular set of short-lex-reducing rew rite rules, together with a com panion word reduction algorithm which has been designed w ith space considerations in m ind.

In standard K nuth $\{B$ endix, there is a tension between tim e and space when reducing words. Looking for a lefthand side in a word can take a long tim e, unless the left-hand sides are carefiully arranged in a data structure that traditionally takes a lot of space. O ur technique can do very rapid reduction w ithout using an inordinate am ount of space (although, for other reasons,
we have not been able to save as much space as we originally hoped). This is explained in 'osA modied deternization ajonitho section.

W e would like to thank Derek Holt for many conversations about this project, both in general and in detail. H is help has, as alw ays, been generous and useful.

2 Our class of groups in context

In this paper we study groups, together with a nite ordered set of m onoid generators, w th the property that their set of universally m inim al shortlex rules is a regular language. In this section, we explain what this rather daunting sentence m eans, and we set this class of groups in the context of various other related classes, investigating which of these classes is included in whidh. In the next section, we will prove that groups in this class are nitely presented.

Throughout we will work with a group G generated by a xed nite set A, and a xed nite set of de ning relations. Form ally, we are given a map A ! G , but our language will som etim es (falsely) pretend that A is a subset of G. The reader is urged to rem ain aw are of the distinction, rem em bering that, as a result of the insolubility of the word problem, it is not in general possible to tell whether the given map A! G is in jective. W e assum e we are given an involution : A ! A such that, for each x 2 A , (x) represents $x^{1} 2$ G. By A we mean the set of words (strings) over A. (Form ally a word is a function $f 1 ;::: ; n g$! A, wheren 0.$)$ W ealso write :A ! A for the form al inverse m ap de ned by $\left(x_{1}::: x_{p}\right)=\left(x_{p}\right)::$ (x_{1}).

W e assum ewe are given a xed totalorder on A. This allow sus to de ne the short-lex order on A as follows. W e denote by jujthe length ofu 2 A . If u;v 2 A , we say that $u<v$ if either juj< jijor u and v have the sam e length and u com es before v in lexioographical order. The short-lex representative ofg 2 G is the sm allest $u 2 \mathrm{~A}$ such that u represents g. This is also called the short-lex nom al form of g. If u A , we write $\bar{u} 2 \mathrm{G}$ for the elem ent of G which it represents. If u is the short-lex representative of \bar{u}, we say that u is in short-lex nom al form.

Suppose we have (G; A) as above. Then there m ay or m ay not be an algorithm that has a word u 2 A as input and as output the short-lex representative of $\bar{u} 2 \mathrm{G}$. The existence of such an algorithm is equivalent to the solubility of the word problem for G, since there are only a nite number of words v such that $v<u$.

A natural attem pt to construct such an algorithm is to nd a set R of replacem ent rules, also known as K nuth $\{B$ endix rules. In this paper, a
replacem ent rulew illbe called sim ply a rule, and we w ill restrict our attention to rules of a rather special kind. A rule is a pair (u;v) with $u>v G$ iven a rule (u;v), u is called the left-hand side and v the right-hand side. The idea of the algorithm is to start with an arbitrary word w over A and to reduce it as follow s : we change it to a sm aller word by looking in w for som e left-hand side u of some rule (u; v) in R. W e then replace u by v in w (this is called an elem entary reduction) and repeat the operation until no further elem entary reductions are possible (the repeated process is called a reduction). Eventually the process must stop with an R-irreducible word, that is a word which contains no subw ord whidh is a left-hand side of R.
2.1 T hue equivalence. G iven a set of rules R, we write $u!{ }_{R} v$ ifthere is an elem entary reduction from u to v, that is, if there arewords and over A and a rule (;) $2 R$ such that $u=$ and $v=$. Thue equivalence is the equivalence relation on A generated by elem entary reductions.

There is a multiplication in A given by concatenation. This induces a m ultiplication on the set of h he equivalence classes. W ew illw ork w th rules where the set of equivalence classes is isom onphic to the group G .

By no means every set of rules can be used to nd the short-lex norm al form of a word constructively. We now discuss the various properties that a set of rules should have in order that reduction to an irreducible alw ays gives the short-lex nom al form of a word. F irst we give the assum ptions that we w ill alw ays m ake about every set of rules we consider. W hen constructing a new set of rules, we w ill alw ays ensure that these assum ptions are correct for the new set.

2.2 Standard assum ptions about rules.

1. [C ondition] For each $x 2 \mathrm{~A}, \mathrm{x}$: (x) is Thue equivalent to the trivial word. The preceding condition is enough to ensure that the set of T hue equivalence classes is a group. If $r=s$ is a de ning relation for G, then r is T hue equivalent to s. This ensures that the group of T hue equivalence classes is a quotient of G.
2. [C ondition] If ($u ; v$) is a rule of R, then $u>v$ and $\bar{u}=\bar{v} 2 G$. This ensures that the group of T hue equivalence classes is isom orphic to G.
2.3 C on uence. [C ondition] This property is one which we certainly desire, but which is hard to achieve. G iven w, there m ay be di erent ways to reduce w. For exam ple we could look in w for the rst subw ord that is a left-hand side, or for the last subw ord, or just look for a left-hand side which
is some random subw ord of w. We say that R is con uent if the result of fully reducing w gives an irreducible that is independent of w hich elem entary reductions were used.
2.4 Lem ma. Lemma] If a set R of rules satis es the conditions of ${ }_{2}^{2-2}$ and ${ }_{2}$. tiplication corresponds to concatenation followed by reduction. U nder these assum ptions, an R-irreducible is in short-lex norm al form, and conversely; m oreover, each T hue equivalence class contains a unique irreducible.

Proof: The hom om onphism $A \quad \mathrm{G}$ is surjective and, by 'assum prions about nulesitem elem entary reduction does not change the im age in G. It follow s that the induced m ap from the set of irreducibles to G is surjective. Suppose u and v are irreducibles such that $\bar{u}=\bar{v} 2 \mathrm{G}$. Then $\bar{u}:(v)=\xi_{1}$. Therefore $u:(v)$ is equal in the free group generated by A (w ith
(x) equated to the form al inverse of x, for each $x 2 A$) to a word s which is a product of form al conjugates of the de ning relators. N ow u : (v) and s reduce to the sam e word, using only reductions that replace x : (x), where x 2 A, by the trivial word. By C ondition 2 , s can be reduced to. It follow s from C ondition '2.3' that u : (v) v can be reduced to v. It can also be reduced to u, using C ondition 2 involution. It follow s from C ondition 1

The description of the m ultiplication of irreducibles follow s from the fact that multiplication in A is given by concatenation and the fact that the m ap A ! G is a hom om orphism ofm onoids.

Since reduction reduces the short-lex order of a word, a word in short-lex least norm al form m ust be R-irreducible. C onversely, if u is R-irreducible, let v be the short-lex norm al form of \bar{u}. T hen v is also R-irreducible, as we have just pointed out, and u and v represent the sam e elem ent of G. Since the m ap from irreducibles to G is in jective, we deduce that $u=v$. Therefore u is in short-lex norm al form.

To show that each Thue equivalence class contains a unique irreducible, we note that if there is an elem entary reduction of u to v, then, in case of con uenœ, any reduction of u gives the sam e answer as any reduction of v.

2 .5 R ecursive sets of rules. [C ondition] A nother im portant property (lacked by som e of the sets of rules we discuss) is the condition that the set of rules be a recursive set. A s opposed to the usual setup when discussing rew rite system S, we do not require R to be a nite set of rules| in fact, in this paper R will nom ally be in nite. To say that R is recursive m eans that
there exists a Turing m achine which can decide whether or not a given pair (u;v) belongs to R .
$2.6 \mathrm{De} n$ ition. \mathbb{D} e nition] W e denote by U the set of all nules of the form (u;v), where $u>v$ and $\bar{u}=\bar{v} 2 \mathrm{G} . \mathrm{U}$ is called the universal set of rules. N ote that a w ord is U -irreducible if and only if it is in short-lex norm al form.
2.7 Lem m a. The existence of a set of rules R satisfying the conditions of '2. $2,1,2$ in this case U de ned ini $2-5$ is such a set of rules.

P roof: O n the one hand, if we have such a set R, then we can solve the w ord problem by reduction | according to Lemma a 2. trivialword if and only if $\bar{w}=1_{G}$.

On the other hand, if the word problem is solvable, then the set U of D e nition 2. U.

U can be di cult to m anipulate, even fora very well-behaved group G and a nite ordered set A of generators, and we therefore restrict our attention to a m uch sm aller subset, nam ely the set of U m inim al rules, which we now de ne.
2.8 De nition. De nition] Let R be a set of rules for a group G with generators A. W e say that a nule (u;v) $2 R$ is R-m inim al ifv is R-irreducible and if every proper subw ord of u is R-irreducible.

2.9 P roposition. [P roposition]

1. The set of U in im al rules satis es the conditions on particular they are con uent.
2. Let (u;v) be a $U-m$ inim alrule and let $u=u_{1}::: u_{n+r}$ and $v=v_{1}::: v_{n}$. Then the follow ing m ust hold: $0 \quad r \quad 2$; if $n>0, u_{1} v_{1}$; if $n>0$, then $u_{n+r} \in v_{n}$; if $r=0$ and $n>0$, then $u_{1}>v_{1}$; if $r=2$ and $n>0$, then $u_{1}<v_{1}$ and $u_{2}<\left(u_{1}\right)$; if $r=2$ and $n=0$, then $u_{1} \quad\left(u_{2}\right)$ and $\mathrm{u}_{2} \quad\left(\mathrm{u}_{1}\right)$.
3. The set of $U-m$ inim al rules is recursive if and only if G has a solvable word problem .

Proof: If w is U reducible, let u be the shortest pre x of w which is U reducible. T hen every subw ord of u which does not contain the last letter is U -irreducible. Let v be the shortest su x of u which is U -reducible. Then every proper subw ord of v is U-irreducible. Let s be the short-lex norm al form for v. Then ($v ; s$) is a U minim al rule. Replacing v in w by s gives an elem entary reduction by a U m inim al rule. It follow s that reduction of w using only U m inim al rules eventually gives us a U-irreducible word, and this m ust be the short-lex norm al form of . Therefore the conditions of ${ }^{2} \underline{2}_{2}^{\prime}$ and '2. 2 '3' are satis ed by the set of m inim al nules.

W e now prove ${ }^{1} \overline{2} . \overline{9} \overline{2}$. Since $u>v$ in the short-lex order, juj jjj. So $r 0$. If $r>2$, then $\overline{\bar{u}}=\bar{v}$ gives rise to $\overline{u_{2}::: u_{n+r}}=\overline{\left(u_{1}\right) v_{1}::: v_{n}}$. Therefore $u_{2}::: u_{n+r}$ is not in short-lex norm al form. It follow s that $u_{2}::: u_{n+r}$ is $U-$ reducible. Therefore (u; v) is not U m inim al. Sim ilar argum ents work for the other cases. This com pletes the proof of

C learly $U \mathrm{~m}$ inim ality of a rule can be detected by a Turing m achine if the word problem is solvable. C onversely, if the set of U m inim al rules is recursive, then the word problem can be solved by reduction using only U m inim al rules.

N ow we have a uniqueness result for the set ofm inim al rules.
2.10 Lem m a. Let R satisfy the conditions of and rule of R is $R-m$ inimal. T hen R is equal to the set of $U m$ in \dot{m} al rules.

P roof: By Lem m a ' $2 . \Phi^{\prime}$ ', the R-irreducibles are the sam e as the w ords in shortlex norm al form. Let (u;v) be a rule in R. Then v is R-irreducible and therefore in short-lex norm al form . A lso every proper subword of u is in short-lex norm al form. Therefore $(u ; v)$ is in U and is $U-m$ inim al.

C onversely, suppose (u; v) is U m inim al. Then v is the short-lex norm al form of \bar{u}. By Lemma' 2.4 ' for R, u must be R reducible. Every proper subw ord of u is already in short-lex norm al form. It follow sthat there is a rule ($u ; w$) in R. Since this rule is $R \mathrm{~m}$ inim al, w is R-irreducible. Therefore w is the short-lex nom al form of $\overline{\mathrm{u}}$. It follow s that $\mathrm{v}=\mathrm{w}$. Therefore every U m inim al rule is in R .

W e are interested in those pairs (G; A), where G is a group and A is an ordered set of generators, such that the set of $U \mathrm{~m}$ inim al nules is not only recursive, but is in fact regular. W e now explain what we m ean by regular in this context.

W e recall that a subset of is called regular if it is equal to L (M), the

where nite state autom ata are discussed.) W e need to form alize what it m eans for an autom aton to accept pairs of words over an alphabet A. If the pair of words is (abb; codc), then we have to pad the shorter of the two words to m ake them the sam e length, regarding this pair as the word of length four $(a ; c)(b ; c)(b ; d)(\$; c)$. In general, given an arbitrary pair of words (u;v) 2 A A , we regard this instead as a word of pairs by adjoining a padding symbol\$ to A and then \padding" the shorter of u and v so that both words have the sam e length. W e obtain a word over A [f\$g A [f\$g. The alphabet A [$f \$ g$ is denoted A^{+}and is called the padded extension of A. The result of padding an arbitrary pair (u;v) is denoted (u;v) ${ }^{+}$. A word w $2\left(A^{+}\right) \quad\left(A^{+}\right)$is called padded ifthere existsu;v2A with $w=(u ; v)^{+}$ (that is, at m ost one of the two com ponents of w ends w ith a padding sym bol and there are no padding sym bols in the m iddle of a word).
A set R of pairs of words over A is called regular if the corresponding set of padded words is a regular language over the product alphabet $A^{+} \quad A^{+}$. W e say that R is accepted by a two-variable nite state autom aton over A.
2.11 Theorem. Let G be a group and let A be a nite set of generators, closed under taking inverses. If (G;A) is short-lex autom atic, then the set of U minim al rules is regular.

H aving a nite con uent set of nules does not im ply short-lex autom atic. A counter-exam ple is given in $\stackrel{\underline{2}}{2}$, page 118]. So the converse of this theorem is not true.

P roof: Since we have a short-lex autom atic structure, the set L of shortlex norm al form s is a regular language. If x 2 A , the autom atic structure includes the multiplier M_{x}, which is a two-variable autom aton over A. T he language $L\left(M_{x}\right)$ is the set of pairs (u;v), such that $u ; v 2 L$ and $\overline{u x}=\bar{v}$. It is not hard to construct from the union of the M_{x} an autom aton whose language P is the set of (u;v) such that $\bar{u}=\bar{v} 2 G, u 2 L: A$ and $v 2 L$.
W e know that ($L: A \backslash A: L$)
(A $n L$) is a regular language. C learly, this is the set of lefthand sides of U minim al rules, since it is the set of U-reducible w ords such that each proper subw ord is U-irreducible. T he set of pairs $(u ; v) 2 P$, such that u is a left-hand side of a U minim al rule is easily seen to be the set of all U m in im al nules.
2.12 Q uestion. Suppose (G; A) has a nite con uent set R of short-lex reducing rules which de ne G. Then it is easy to construct from this a nite con uent set R^{0} of $R^{0}-m$ inim al rules de ning G. The m ethod is to use m inim ization, as described in 5.7 . This set of rules is equal to the set of

Suppose now that (G; A) has an in nite con uent set R of short-lexreducing rules de ning G, and this set is regular. Is the set of $U \mathrm{~m}$ inim al rules also regular? W e know that it is con uent and recursive by T----sets nulestheorem 2,9 since R provides a solution to the word problem.

IfR contains all U m inim alnules, then the answ er is easily seen to be yes. T he answer is not clear to $u s$ if R does not contain allm inim al nules. There is no loss of generality in m aking R sm aller so that each proper subw ord of each left-hand side is irreducible. But we see no way of changing R so as to ensure that each right-hand side is irreducible, while m aintaining R ' s property ofbeing regular.
2.13 O b jective. In this paper we present a procedure which, given a set of rules satisfying the conditions of '2 $2{ }^{2}$ ', changes the set of rules so that it becom es \m ore con uent". M ore precisely, the set of words for which all reductions give the sam e irreducible, and this irreducible is in short-lex norm al form, increases w th time. If we x attention on a single word this w ill eventually be included in the set. H ow ever, in general, because of the insolubility of the word problem, it is not in general possible to know when that tim e has been arrived at.

For a group where the set of allu m in'm al rules (see De nition ' 2. set of all pairs accepted by a two-variable m inim alPDFA M (these concepts are de ned in ' steps.

For many undecidable problem s , there is a \one-sided" solution. The technical language is that a certain set is recursively enum erable, but not recursive. For exam ple, consider a xed group forwhich the word problem is undecidable. G iven a w ord w in the generators, if you are correctly inform ed that $\bar{W}=1_{G}$, then this can be veri ed by a Turing m achine. All that you have to do is to enum erate products of conjugates of the de ning relators, reduce them in the free group on the generators, and see if you get w, also reduced in the free group. If w represents the identity then you will prove this sooner or later. If it's not the identity, the process continues for ever.

We know that there is no algorithm which has as input a nite presentation of a group and outputs whether the group is trivial or not (see $\left.{ }_{[19}^{9}\right]$). It follows easily that there is no algorithm which has as input a nite presentation and outputs either an FSA accepting the set of m inim al rules or correctly answ ers T here is no such FSA. For, in the case of the trivial group, the set of m inim al nules is nite| for each elem ent x 2 A , we have the rule $(x ;) \mid$ and so it is certainly regular.

But the situation is even worse than this. We do not even know of a one-sided solution to the problem of whether the set of U m inim al rules is
regular. If the set ofU m inim alnules is regular, our procedure w illeventually produce a candidate w th som e indication that it is correct, but we will not know for sure whether the answer is correct or incorrect.

W hat is at issue is whether there is an algorithm which has as its input a regular set of short-lex rules for a group and outputs whether or not the set of rules is con uent. For nite sets of rules the question of con uence is decidable by classical critical pair analysis which we describe in isistandard
---ence question is, in general, undecidable. E xam ples exh ibiting undecidability are given in $\left[\frac{8}{-1}\right]$. They are length-reducing rew riting system s R which are regular in a very strong sense: R contains only a nite number of right-hand sides and for each right-hand side r, the set $f l:(1 ; r) 2 R g$ is a regular language. These exam ples are in the context of rew riting for m onoids. A s far as we know, there is no know n exam ple of undecidability ifwe add to the hypothesis that the m onoid de ned by R is in fact a group.

In the special case where (G;A) is short-lex autom atic, there is a test for con uence of a set of rules satisfying the conditions of checking procedure described in theory in $\left[\begin{array}{l}\text { h }\end{array}\right]$ and carried out in practice in D erek Holt's kbm ag program s $\stackrel{[}{4}]$.

3 W elding

[Section]
In this section we start with an exam ple which m otivates the operation of welding. W e then give a form alde nition, and prove that the operation gives rise to a function from the set of regular languages to the set of regular languages. We then de ne the concept of a nule autom aton| this is a nite state autom aton in two variables which can recognize when certain words in the generators are equal in the associated group. W e show that a welded rule autom aton is also a rule autom aton.
3.1 A m otivating exam ple. We will use the standard generators x, y, and their inverses X and Y for the free abelian group on two generators. W e will im pose di erent orderings on this set of four generators, and, as described in '2.13', see what kind of con uent sets of rules em erge.

C onsider the alphabet $A=f x ; X ; y ; Y g w$ th the ordering $x<X<y<$ Y , and denote the identity of A by. Let R be the rew riting system on A de ned by the set of nules

It is straightforw ard to see that R is a con uent system.
W e now change the ordering of the set of generators to $\mathrm{x}<\mathrm{y}<\mathrm{X}<\mathrm{Y}$ and correspondingly interchange the sides of the sixth rule getting ($\mathrm{X} y ; \mathrm{YX}$) and an order reducing set ofrules. O nœe again the rules de ne the free abelian group on two generators. But this time there can be no nite con uent set of rules. To see this, we consider the set of words fxy X : n 2 Ng . N one of these is in short-lex norm alform . B y words is reducible relative to any con uent set of rules. On the other hand, each proper subw ord of one of the words $x y^{n} X$ is clearly in short-lex norm al form and is therefore irreducible. It follow s that a con uent set of rules m ust contain each of the words $x y^{n} \mathrm{X}$ as a left-hand side. In this situation, the
 w ill never term inate, and the sam e is true for any m ethod of w hich generates only a nite number of rules at each step.

W ew ill now introduce a new procedure, which we call welding. This can produce an in nite set of rules from a nite set of rules in a nite number of steps. W elding is central to the m ain procedure of the com puter program described in this paper.
F irst we need to give som e standard de nitions.
3.2 De n ition. De nition] A nite state autom aton (abbreviated FSA) M over a nite alphabet A is a nite graph with directed edges and the follow ing additional properties. E ach edge (called an arrow in this context) is either labelled with an elem ent of A or is unlabelled. Unlabelled arrow s are som etim es labelled w th , which stands for the em pty word, and are called transitions. The vertioes of the graph are called states. Som e of the states are labelled as initial states and some as nal states. T he language L M) accepted by M is the set of words over A which are traced out by paths of arrow swhich start at som e initial state and end at some nal state. An FSA is said to be partially determ inistic (abbreviated PDFA) if it has no transitions, if there is exactly one initial state and if, for each state s and each $\times 2 \mathrm{~A}$, there is at m ost one arrow from s with label x . An FSA is said to be trim if, for each state s, there is a path of arrow s which starts at an initial state, and ends at a nal state, w ith s lying on the path. The reversal ofa nite state autom aton is the sam e graph w ith the sam e labelling, but w th each arrow reversed, w th each initial state changed to be a nal state and each nalstate changed to be an initialstate. A non-determ in istic autom aton NFA is an autom aton with transitions and/or some states s having m ore than one arrow from s having the sam e label.
3.3 De nition. An FSA is called welded if it is partially determ inistic, trim and has a partially determ inistic reversal. T hese conditions im ply that, given x $2 A$ and a state t, there is at m ost one x-arrow w ith target t and also that there is exactly one initial state and one nalstate.

G iven a trim non-em pty FSA M, we can form a welded autom aton from it as follow s. G iven any -arrow (s; ; t), wem ay identify $s w$ ith $t . G$ İven distinct initial states s_{1} and s_{2}, we may identify s_{1} with s_{2}. Given distinct nal states t_{1} and t_{2}, we m ay identify t_{1} w ith t_{2}. G iven distinct arrow $s\left(s ; x ; t_{1}\right)$ and $\left(s ; x ; t_{2}\right)$, we m ay identify $t_{1} w$ ith t_{2}. G iven distinct arrow $s\left(s_{1} ; x ; t\right)$ and $\left(s_{2} ; x ; t\right)$, we m ay identify $s_{1} w$ ith s_{2}. Im mediately after any identi cation of two states, we change the set of arrow s accordingly, om litting any -arrow from a state to itself. Since the num ber of states continually decreases, this process m ust com e to an end, and at this point the autom aton is welded.
3.4 W elding in our exam ple. Let us see how this works on the exam -
 our procedure, that is, that the new rules that welding produces are valid rules; we w ill just carry out the procedure to show how it works. Justi cation com es from the consideration of nule autom ata| see i3.ḡ̄ ēding in our "exampletheorem ${ }^{3}-\overline{9}$.

W e consider the rule $r_{n}=\left(x y^{n} X ; y^{n}\right)$ for som en 2 N. The corresponding padded word r_{n}^{+}gives rise to an $(n+3)$-state PD FA M (r_{n}) whose accepted language consists solely of the nule r_{n}. For $n>2$ this PDFA is show n in Figure

Figure 1. The PDFA M $\left(r_{n}\right)$ for $n>2$.

Continuing the discussion of the rules for a frege abelian group on two generators, we de ne M_{n} to be the disjoint union $\quad \mathrm{IM}\left(r_{1}\right) ;::: ; M\left(r_{n}\right) g$ of the autom ata $M\left(r_{1}\right)$;:: :; M $\left(r_{n}\right)$, w ith set of initial (nal) states equal to the collection of initial (nal) states for the various $M\left(r_{i}\right)$. If $n>1$ then W eld $\left(M_{n}\right)$ is isom onphic to the PD FA given in Figure i^{i}, \bar{i}, and the accepted language of this PD FA is the set of nules $f r_{i}$: i 2 Ng . This is independent of n if $n>1$.

So in this exam ple, after only tw o steps, the w elding procedure provides us w ith a PD FA whose accepted language consists of an in nite set of identities betw een words in the free abelian group. M oreover, by using this PD FA to de ne a suitable reduction procedure, each of the words $x y^{n} X$ w ith $n 2 \mathrm{~N}$ can be reduced to the short-lex norm al form .

For this group w ith the given ordering on the generators, it is not hard to show that by welding the originalde ning rules for the group together w ith the 4 rules $f(x y X ; y) ;\left(x y^{2} X ; Y^{2}\right) ;(y X Y ; X) ;\left(y X{ }^{2} Y ; X^{2}\right) g$, we obtain a PD FA whose accepted language is a con uent set of nules (provided we adjust the autom aton to ensure that only padded pairs of words (u;v) ${ }^{+}$are accepted, w ith $u>v$). A ny reduction procedure using this in nite set of rules w ill reduce any word to its short-lex norm al form.

The next theorem is a general result about the welding of nite state autom ata which need have nothing to do w ith groups. It's a result which is reassuring, but, logically, it is entirely unnecessary for understanding other parts of this paper. R eaders pressed for tim e should skip it.
3.5 Theorem . Given a trim non-em pty FSA M , all welded autom ata obtained from it as above (no m atter in what order the states and arrows are identi ed to each other) are the sam e, except that the nam es of the states m ay be di erent. The autom aton Q thus obtained is a m inim alPDFA and Q depends only on the language $L(M)$, up to changing the nam es of the states. It follows that welding can be regarded as an operation on regular languages, independent of the autom aton used to encode them.

Proof: For each x 2 A, let x^{1} be its form al inverse and let $A{ }^{1}$ be the set of these form al inverses. W e form from M an autom aton over A [$A{ }^{1}$ by adjoining an arrow of the form $\left(t ; x^{1} ; s\right)$ for each arrow $(s ; x ; t)$ of M, and adjoining an arrow (t; ; s) for each arrow (s; ; t) unless it's already there. W e also adjoin ($s_{1} ; ~ ; S_{2}$) if s_{1} and s_{2} are eitherboth initialstates orboth nal states, unless these arrow s are already there. W e denote this new autom aton by N. N has the same initial and nalstates as M.

Figure 2. A PD FA isom orphic to W eld $\left(M_{n}\right) ; n>1$.

Let F be the free group generated by A . W e de ne a relation on the set of states of N by $s \quad t$ if there is a path of arrow s from s to t in N whose label gives the identity elem ent of F . T his is clearly an equivalence relation. Let Q be the autom aton de ned as follow s. Each state of Q is one of the equivalence classes above. The unique initial state of Q is the unique equivalence class containing all initial states of N. The unique nal state of Q is the unique equivalence class containing all nal states of N. Let S be one equivalence class and T another, and let x $2 \mathrm{~A} . \mathrm{W}$ e have an arrow $x: S!T$ in Q if there is an $s 2 S$ and at $2 T$ and an arrow $x: s!t$ in M. It is easy to see that Q is welded, and it follow s that it is a partial determ inistic autom aton.

If M starts out by being welded, then it is easy to see that $Q=M$, up to the nam ing of states.
C onsider the identi cations of states and arrows m ade during welding (se the passage follow ing $\mathrm{M}_{0} ; \mathrm{M}_{1} ;::: ; \mathrm{M}_{\mathrm{k}}$ be the sequence of autom ata obtained by identifying at each step only one state w ith another state or deleting one arrow labelled x from a state s to state t if there are several arrow s labelled x from s to t or deleting one -arrow from a state to itself. H ere M_{k}, the last autom aton in the list, is a welded autom aton.

We assign to each state s of M_{i} the set of all states of the original autom aton M which are identi ed to m ake s. A state q of $Q\left(M_{i}\right)$ is a set of states of M_{i}, and this is a set of subsets of the state set ofM. By taking the union, we can instead regard q as a set of states of M. T his loses som e of the structure, but only an irrelevant part.

W ith this interpretation, we see that the states of $\left(M_{i}\right)$ are identical to those of $Q\left(M_{i+1}\right) . M$ oreover, all arrows in $Q\left(M_{i}\right)$ are inherited from M via M_{i}. It follows that the autom aton $Q\left(M_{i}\right)$ is independent of i. So we have $Q=Q(M)=Q\left(M_{k}\right)=M_{k}$. This show sthat Q is independent of the order in which the identi cations are carried out. In fact Q can be characterized as the largest welded quotient of M.

W e claim that every elem ent of $L(Q)$ arises as follow s, and that only elem ents of $L(Q)$ arise in this way. Let ($\mathrm{w}_{1} ; \mathrm{w}_{2} ;::: ; \mathrm{w}_{2 \mathrm{k}+1}$) be a $(2 \mathrm{k}+1)$ tuple of elem ents of $L(M)$, where $k \quad 0 . N$ ow consider

$$
\mathrm{w}_{1} \mathrm{w}_{2}{ }^{1}::: \mathrm{w}_{2 \mathrm{k}}{ }^{1} \mathrm{w}_{2 \mathrm{k}+1} 2 \mathrm{~F} ;
$$

and write it in reduced form, that is, cancel adjacent form al inverse letters wherever possible. If the result is in A , that is, if after cancellation there are no inverse symbols, then it is in $L(Q)$.

To prove this clam, we proceed as follow. For each state sofm, we x a path of arrows p_{s} in M from an initial state to s and a path of arrow $s q_{s}$
from s to a nalstate. If s is an initial state, we de ne p_{s} to be the trivial path. If s is a nalstate, we de ne q_{s} to be the trivial path.

Start with an arbitrary elem ent w 2 L (Q). W em ust show that w can be produced in the way described above. N ow w is the label of a path of arrow s in Q, starting from the initial state of Q and ending at the nal state of Q. Recalling the de nition of a state of Q, we can replace this path by a path of arrow s in N, which altemately traverses a path of arrow s in N labelled by a word over A [A ${ }^{1}$ [$f \mathrm{~g}$ which reduces to the identity elem ent in F, and an arrow of N labelled by a letter in w. The path in N starts at an initial state of N and ends at a nalstate of N. We write the path as a com posite of arrow $s u_{i}$ in N.

If $u_{i}: s$! t is an arrow in M, we replace it by $p_{s}{ }^{1}\left(p_{s} u_{i} q_{t}\right) q_{t}{ }^{1}$. O therw ise, if the inverse of $u_{i}: s$! t is an arrow of M, we replace u_{i} by $q_{s} q_{s}{ }^{1} u_{i} p_{t}{ }^{1} p_{t}$. (W e consider the inverse of an -arrow to be an -arrow.) O therw ise s and t are both initial states or both nal states and u_{i} is an -arrow and we leave u_{i} unaltered.

Each expression w ithin parentheses in the preceding paragraph therefore give either som $\mathrm{ew}_{\mathrm{i}} 2 \mathrm{~L}(\mathrm{M})$ (possibly em pty) or the form alinverse of such a word. O utside these parentheses we obtain expressions like , $q^{1}{ }^{1} q_{s}, p_{s} p_{s}{ }^{1}$, $p_{s} q_{s}$ or $q_{s}{ }^{1} p_{s}{ }^{1}$. In the rst three cases, we om tit the expressions. In the last tw o cases, the expression represents either $w_{i} 2 \mathrm{~L}(M)$, or the form al inverse of such a word. The path starts at an initial state of N and ends at a nal state. So, if the set of initialstates is disjoint from the set of nalstates, then the expression of w as a product in the free group F of elem ents of $L(M)$ and their form al inverses m ust have an odd num ber of factors. If the set of initial states m eets the set of nal states, then the trivial word is an elem ent of $L(M)$, and we can use this to m ake sure that the num ber of factors is odd. T his com pletes the claim in one direction.

C onversely, suppose we are given the $\mathrm{w}_{\mathrm{i}} 2 \mathrm{~L}(\mathrm{M})$ as in the claim. Then W_{i} is the label on a path of arrow s in M from an initial state to a nalstate. By inserting -arrows in N to join initialstates or to join nalstates, we nd that $W_{1} W_{2}{ }^{1}::: W_{2 k}{ }^{1} W_{2 k+1}$ is the label of a path of arrow s in N from an initial state to a nal state. A n elem entary cancellation in F corresponds to the fact that two states of N give rise to the sam e state of Q. C arrying out all the elem entary cancellations possible, if we are left only with a w ord over A, we have de ned a path of arrows in Q from the initial state of Q to the nal state of Q. So we have found an elem ent of $L(Q)$, as claim ed.

A welded autom aton ism in im al. For let s and tbe distinct states, and let u and v be words over A which lead from s and t respectively to the unique nal state. Then u does not lead from t to the nal state and v does not lead from s to the nal state (otherw ise s and t would be equal). It follow s
that s and t rem ain distinct in the m inim ized autom aton.
If M is a non-em pty trim FSA, we denote by W eld (M) the PDFA obtained from it by welding. To com pute W eld (M) e ciently, we rst add \backw ard arrow s" to M. That is, for each arrow ($s ; x ; t$) in M, inchuding -arrow S , we add the arrow (t ; x ; s), where x^{0} represents a backw ards version of x. W e also add -arrow s to connect the initial states, and -arrow s to connect the nal states. W e then m ake use of a slightly m odi ed version of the coincidence procedure of Sim s given in tī10, 4.6]. W hen this stops we have a welded autom aton.

In practioe, in the autom ata which we want to weld, backw ard arrow s are needed in any case for som e algorithm s which we need. The procedure described in the preceding paragraph therefore ts our needs particularly well.

For the welding procedure to be used in a general K nuth $\{$ B endix situation, we need to show that any rules obtained are valid identities in the corresponding monoid. W e now show that if the monoid is a group (the situation we are interested in), any rules obtained are valid identities.
3.6 Denition. De nition] Let A be a nite inverse closed set of m onoid generators for a group G and, as before, denote im ages under the surjection $\left(A^{+}\right)!G$ by overscores. A rule autom aton for G is a two-variable FSA $M=\left(S ; A^{+} \quad A^{+} ; ; F ; S_{0}\right)$ together w th a function $m: S!G$ satisfying

1. $\mathrm{F} ; \mathrm{S}_{0}$; .
2. If s is an initial or nalstate then ${ }_{m}(s)=1_{G}$.
3. For any s;t2 S and $(\mathrm{x} ; \mathrm{y}) 2 \mathrm{~A}^{+} \mathrm{A}^{+} \mathrm{w}$ th $(\mathrm{s} ;(\mathrm{x} ; \mathrm{y}) ; \mathrm{t}) 2$ we have $\mathrm{M}(\mathrm{t})=\overline{\mathrm{X}}^{1}{ }_{\mathrm{M}}(\mathrm{s}) \overline{\mathrm{Y}}$.
4. For any s;t2 S with (s ; ; t$) 2$ we have $\mathrm{m}(\mathrm{s})=\mathrm{m}(\mathrm{t})$.
3.7 Example. IfA is a nite inverse closed set ofm onoid generators for a group G and $r=(u ; v) 2 A$ A satis es $\bar{u}=\bar{v}$ then, as in F igure ${ }^{-1}$, w riting r^{+}as a word ($\left.u_{1} ; v_{1}\right) \quad n ;\left(u_{n}\right) 2\left(A^{+} A^{+}\right)$, we obtain an ($\left.n+1\right)$-state rule autom aton $M(r)=\left(f s_{0} ;::: ; \mathrm{s}_{\mathrm{n}} \mathrm{g} ; \mathrm{A}^{+} \quad \mathrm{A}^{+} ; ~ ; \mathrm{fs}_{0} \mathrm{~g} ; \mathrm{fs}_{\mathrm{n}} \mathrm{g}\right)$ for G where the arrow s are given by

$$
\left(s_{i} ;\left(u_{i+1} ; v_{i+1}\right)\right)=s_{i+1} ; 0 \quad \text { i } n \quad 1:
$$

The function $=\mathrm{M}(r)$ assigning group elem ents to states is de ned inductively by $\quad\left(\mathrm{s}_{0}\right)=1_{\mathrm{G}}$ and $\left(\mathrm{s}_{\mathrm{i}}\right)={\overline{\mathrm{u}_{\mathrm{i}}}}^{1} \quad\left(\mathrm{~s}_{\mathrm{i} 1}\right) \overline{\mathrm{V}_{\mathrm{i}}}$ for $1 \quad$ i n . As usual, the padding sym bol is sent to 1_{G}. The fact that $\overline{\mathrm{u}}=\overline{\mathrm{v}}$ ensures that C ondition 2 of $\overline{3}$.ow ing in our exam pletheorem ${ }^{3}$ in is satis ed.
3.8 R em ark. For a two-variable FSA M which is a nule autom aton, the PD FA P obtained by applying the subset construction to the (non-em pty) set of initialstates ofM (and the sets that arise), is also a rule autom aton for G, where them ap p is induced from \quad. The fact that this m ap is well-de ned follow s from C onditions $2 ; 3$ and 4 of 13 . 6 elding in our exam pletheorem and the fact that P is connected (by construction).

T he sam e rem ark applies to the m odi ed subset construction described in Section
3.9 P roposition. Let A be a nite inverse closed set ofm onoid generators for a group G and suppose that M is a rule autom aton for G. T hen

1. Every pair (u;v) $2 \mathrm{~L}(\mathbb{M}$) gives a valid identity $\bar{u}=\bar{v}$ in G.
2. W eld (M) is a rule autom aton for G.

C onsequently every accepted rule (that is, an accepted pair (u;v) such that $u>v)$ of W eld (M) is a valid identity in G.
 write the padded word (u;v) as $\left(u_{1} ; v_{1}\right) \quad n ;\left(u_{n}\right)$. Then in the PDFA P obtained from M (as in $\overline{12}$.8W elding in ourexam phetheorem ${ }^{-1} .8$), there exists a sequence of states $s_{0} ;::: ; s_{n}$ off, such that s_{0} is the initialstate, s_{n} a nal state, and, for each $i ; 1 \quad i \quad n$, there is a arrow from s_{i} to s_{i} labelled by $\left(u_{i} ; v_{i}\right) . H$ ence, from C ondition 3 of $\overline{3}$. $\overline{\mathrm{W}}$ elding in our exampletheorem ${ }^{2} \cdot \bar{a}$, we have

$$
P_{i}\left(s_{i}\right)={\overline{u_{i}}}^{1} \quad \overline{1} \overline{u_{1}} \quad \bar{i} ; \text { for alliw ith } 0 \quad \text { i } n:
$$

 e. It follow s that $\frac{n}{u_{1}}$ n $\bar{v}_{1} \quad n$, mand therefore the nule r is valid in G.

To prove 2 , we need only show that w hen any of the operations described
 ton M, we continue to have a rule autom aton. This is obvious. The nal statem ent is now im m ediate.
3.10 C orollary. Let A be a nite inverse closed set of m onoid generators for a group G and suppose that $r_{1} ;::: ; r_{m} 2 A \quad A$ give valid identities in G. Then any rule accepted by W eld $\left(M\left(r_{1}\right) ;::: ; M\left(r_{m}\right)\right)$ also gives a valid identity in G.

Proof: For 1 k m let M $\left(r_{k}\right)$ be the rule autom aton ${ }_{S}$ for G as in
 is also a rule autom aton for G and so the result follow s by 'i3.
3.11 Rem ark. G iven a rule autom aton M for a group G, the $m a p m$ m ay not be in jective. In order to think of the m atter constructively, we specify the values of m by representing them as words in the generators. The undecidability of the word problem implies that the in jectivity of m m ight be im possible to decide, though som etim es we are in a position to know whether m is in jective or not. Even if m is not in jective, the rule autom aton M can stillbe usefulfor nding equalities in the group $G . M$ ay not tell the whole truth, but it does tell nothing but the truth. H ow ever, if $M_{m}(s)=M^{\prime}(t)$ and we can som ehow determ ine that this is the case, then we can connect s to t by an -arrow, and we still have a rule autom aton. If we then weld, s and twillbe identi ed. In this way, with su cient investigation, we can hope to m ake m in jective in particular cases, even though we know that in general this is an im possible task.
3.12 Theorem. Let G be a group and let A be a nite set of generators, closed under taking inverses. IfG is determ ined by a regular set of short-lexreducing rules, then G is nitely presented.

Proof: Let M be the nite state autom aton acaepting the rules in our regular set. Then M can be given the structure of a rule autom aton, associating
 each arrow ($x ; y$): s ! tin M gives rise to a relation ofthe form $M^{(t)}=\bar{X}^{1}{ }_{M}(s) \bar{y}$. There are only a nite number of these, and they can clearly be combined to prove that $u=v$ for any (u;v) accepted by M. It follow s that this nite set of relators is a de ning set for G.

4 Standard K nuth $\{B$ endix.

[Section]

W e recall the classical K nuth \{B endix procedure. Later we w ill explain how ourprocedure di ers from it. W e continue to restrict to the short-lex case and to groups. Suppose G is a group given by a nite set of generators and relators. W e de ne A to be the set of generators together w their form al inverses. O ur initial set of rules consists of all rules of the form ($\mathrm{x}:(\mathrm{x}$);) for
x 2 A , together w th all rules of the form (r ;), where r varies over the nite set of de ning relators for G.

A fter running the K nuth $\{$ Bendix procedure (which we are about to describe) for som e time, we will still have a nite set R of nules. A s always, we assum e that R satis es C onditions $\underline{2}_{2}$ 2̄.

To test for con uence of a nite set of rules, we need only do critical pair

Suppose R is not con uent. Let w be the short-lex least word over A for which there are two di erent chains of elem entary reductions giving rise to distinct irreducibles. Since w is shortest, it is easy to see that the rst elem entary reductions in the two chains m ust overlap.

4.1 C riticalpair analysis. A pairofrules (1 ; 1) and (2 ; 2) can overlap

 in two possible ways. First, a non-em pty word $z m$ ay be a su x of ${ }_{1}=s_{1} z$ and a pre x of ${ }_{2}=\mathrm{zs}_{2}$ (or vioe versa). Second, 2 m ay be a subw ord of 1 (or vice versa) and we write ${ }_{1}=S_{1}{ }_{2} S_{2}$.These cases are not disjoint. In particular, if one of s_{1} and s_{2} is trivial in the second case, it can equally well be treated under the rst case w ith z equal either to 1 or to 2 .
4.2 First case of critical pair analysis. In the rst case, there are two elem entary reductions of $u=s_{1} z s_{2}$, nam ely to ${ }_{1} s_{2}$ and to $s_{1}{ }_{2}$. Further reduction to irreducibles either gives the sam e irreducible for each of the tw o com putations, or else gives us distinct irreducibles v and w. From C onditions '2̄2' we deduce that v and w represent the sam e elem ent of G. So, if v and w are distinct, we augm ent R w ith the rule (v;w) ifw < vorw ith (w ;v) if $\mathrm{v}<\mathrm{w} . \mathrm{C}$ learly C onditions $\mathrm{I}_{2}^{2}-1$ are m aintained.

N ote that it is important to allow $(1 ; 1)=\left({ }_{2} ; 2\right)$ in the case just discussed, provided there is a z which is both a proper su x and a proper pre x of ${ }_{1}=2$.
4.3 Second case of critical pair analysis. In the second case, there are two elem entary reductions of $u={ }_{1}=S_{1} 2_{2} S_{2}$, nam ely to 1 and to $S_{1}{ }_{2} S_{2}$. If ${ }_{1}$ and $S_{1}{ }_{2} S_{2}$ reduce to distinct irreducibles v and w, we augm ent R w ith either (v ; w) orwith (w ; v), depending on whether $\mathrm{v}>\mathrm{w}$ orw $>\mathrm{v}$.
4.4 O m itting rules. In practice, it is im portant to rem ove rules which are redundant, as well as to add rules which are essential. Om itting rules is unnecessary in theory, provided that we have unlim ited tim e and space at our disposal. In practice, ifwe don't om it nules, we are liable to be overw helm ed by unnecessary com putation. M oreover, nearly all program s in com puta-
tional group theory su er from exœessive dem ands for space. Indeed this is one of the reasons for developing the algorithm s and program s discussed in this paper. So it is im portant to throw aw ay inform ation that is not needed and doesn't help.

For this reason, in K nuth \{B endix program s one looks from tim e to tim e at each rule (;) to see if it can be om itted. If a proper subw ord of the left-hand side can be reduced, then we are in the situation ofit. If the two reductions m entioned in i4 the set of rules. If the two reductions lead to di erent irreducibles, then we augm ent the set of rules as described in in ind and again om it (;). We also investigate whether the right-hand side of a rule (;) is reducible to ${ }^{0}$. If so, we can om it (;) from R and replace it w th the rule (; ${ }^{0}$).

It is easy to see that such om issions do not change the T hue equivalence classes. The process of analyzing criticalpairs and augm enting ordim inishing the rule set w hilem aintaining the conditions oft $\overline{2}$ 2' is called the K nuth \{B endix P rocess.

If the K nuth \{B endix process term inates, every left-hand side having been checked against every left-hand side in critical pair analysis w thout any new rule being added, we know that we have a nite con uent system of rules. U sually it does not term inate and it produces new rules ad in nitum.
4.5 D e nition. De nition] It is im portant that the process be fair. By this we m ean that if you x your attention on two rules at any one tim e, then either their left-hand sides m ust have already been, or m ust eventually be, checked for overlaps; or one or both of them m ust eventually be om itted. If the process is not fair, it m ight concentrate exclusively on one part of the group: for exam ple, in the case of the product of two groups, the process m ight pay attention only to one of the factors.
4.6 T he lim it of the process. A s the K nuth \{Bendix process proceeds, R changes and the set of R-reducibles steadily increases. This is obvious when we add a rule as in a rule| we need only check that if we om it (;) from R as in i $\overline{4} .4$, then rem ains reducible.

Now let us x a positive integer n. Eventually the set of reducibles of length at m ost n stops increasing w th tim e, and the set of irreducibles of length at m ost n stops decreasing. Since the word problem is in general insoluble, we will in general not know for sure at any one tim e or for any
xed n whether the set of reducibles has stopped increasing. It m ay look as though it has perm anently stabilized and then suddenly start increasing again.

O nce stabilized, we know by 4 reductions of a given w ord of length at m ost n will give the sam e irreducible (otherw ise a new rule would be added at som e time, creating one of m ore new reducibles of length at m ost n). It follow s that if we take the lim it of the set of rules (the set of rules which appear at som e tim e and are never subsequently om 䜣ed), then we have a con uent set ofnules. W e deduce from 2.4 on uencetheorem 2.4' that, after stabilization of the set of reducibles of length at m ost n, any irreducible of length at m ost n is in short-lex norm al form. In fact, at this point, the set of rules w th left-hand side of length at m ost n coincides w ith the set of U min al nules in U (de ned in (2.8).
4.7 K nuth $\{B$ endix pass. O ne procedure for carrying out the K nuth $\{$ Bendix process is to divide the nite set S of rules found so far into three disjoint subsets. T he rst subset, called Considered, is the set of rules whose left-hand sides have been com pared w ith each other and w ith them selves for overlaps. The second set of rules, called Now, is the set of rules waiting to be com pared w th those in Considered. The third set, called New, consists of those rules m ost recently found. H ere we only sketch the process. Fuller details of our m ore elaborate form of K nuth $\{B$ endix are provided in "version of

The K nuth \{B endix process proceeds in phases, each of which is called a K nuth\{Bendix pass. Each pass starts by looking at each rule in Considered and seeing whether it can be deleted as in 'A. 4 i. C onsideration of an existing rule in Considered can lead to a new rule, in which case the new rule is added to New .

N ext, we look at each rule r in N ew to see if it is can be om itted or replaced by a better rule, a process which we call m inim ization. The details of our m inim ization procedure will be given in $\overline{5} . \overline{7} .7$. If the m inim ization procedure changes a rule, the old rule is either deleted or m arked for future deletion. The new rule is added to Now. Eventually New is em ptied.

W e then look at each nule in N ow. Its left-hand side is com pared w ith itself and with all the left-hand sides of rules in Considered, looking for overlaps as in 'in . A ny new rules found are added to N ew. Then r is m oved into Considered. Eventually N ow becom es em pty.

W e then proceed to the next pass.

5 O ur version of K nuth $\{B$ endix.

[Section]

In this section we consider a rew riting system which is the accepted language of a rule autom aton for some nitely presented group. We call the autom aton Rules. W e describe a K nuth \{Bendix type algorithm for such a system. In light of the undecidability results m entioned in 'in 13 , our algorithm does not provide a test for con uence. We can however use our procedure together w ith other procedures which handle short-lex-autom atic groups, to prove con uence by an indirect route, provided the group is short-lex-autom atic. D etails of the theory of how this is done can be found in [ī1]. The practical details are carried out in program sby D erek H olt| see tīi].

W ew ill introduce the concept ofA ut-reduction, that is, reduction using a tw o-variable autom aton, which we call R ules, encoding our possibly in nite set of rules. W e prove som e results about how reducibility m ay change w th time.
5.1 P roperties of the rule autom aton. Them ost im portant data structure is a sm all tw o-variable P D FA which we call R ules. R oughly speaking, this acoepts all the rules found so far. It has the follow ing properties.

1. Rules is a trim nule autom aton.
2. Rules has one initial state and one nalstate and they are equal.
3. Rules and its reversal Rev (R ules) are both partially determ inistic.
4. A ny arrow labelled $(x ; x)$, w ith either source or target the in itial state, has source equal to target. has source the initial state. Ifthis condition is not ful lled, we can identify the source and target of the appropriate (x ; x) -arrow S , and then weld. W ew illstillhave a rule autom aton. Later on (see Lem m as ī identi cations and welding) we can om it such arrow sw thout loss, and, in fact, w ith a gain given by im proved com putationale ciency. A part from the passages proving these lem mas, we will assume from now on that there are no arrow s labelled ($x ; x$) w ith source or target the initial state of R ules.

The rst three conditions imply that Rules is welded. Since Rules is
 L (R ules) gives a valid identity $\mathrm{u}=\mathrm{v}$ in G .
5.2 The autom aton SL2.The autom aton R ules m ay accept pairs (u;v) such that u is shorter than $v . W$ e cannot consider such a pair as a rule and so we want to exchude it. To this end we introduce the autom aton SL2.
T his is a ve state autom aton, depicted in F igure ${ }_{1}^{2} \overline{3}_{-1}$, which accepts pairs (u;v) 2 A A , such that u and v have no com m on pre x, u is short-lexgreater than v and jvj juj jjj+ 2. By combining SL2 with Rules, we obtain a regular set of rules Set (Rules), which is possibly in nite, nam ely L (Rules) \L (SL2). An autom aton accepting this set can be constructed as follow s. Its states are pairs $(s ; t)$, where s is a state of $R u l e s$ and t is a state of S L 2. Its unique initial state is the pair of initial states in R ules and SL2. A nal state is any state $(s ; t)$ such that both s and t are nalstates. Its arrow s are labelled by (x;y), where x $2 A$ and y $2 A^{+}$. Such an arrow corresponds to a pair of arrow s, each labelled w ith ($x ; y$), the rst from R ules and the second from SL2.

Figure 3. The autom aton S L 2. Solid dots represent nalstates. Rom an letters represent arbitrary letters from the alphabet A and the labels on the arrows indicate m ultiple arrow s. For exam ple, from state 2 to itself there is one arrow for each pair in A A.
5.3 R estrictions on relative length.s. The follow ing discussion is closely connected w th j$j+2$ needs som e explanation. The point is that if we have a rule w ith juj> jvj+ 2, then we have an equality $u=v$ in G. W e write $u=u x$, where $x 2$ A. The form alinverse X of x is also an elem ent of A. W e therefore have a pair of words ($u^{0} ; v X$) which represent equal elem ents in G. If our set of rules were to contain such a rule, then $u=u^{0} x$ would reduce to $v X x$, and this reduces to v, m aking the rule (u;v) redundant. This leads to an obvious technique for transform ing any rule we nd into a new and better rule w ith j̀j juj j$j \dot{j}+2$. Since we take this into account when constructing the autom aton R ules, we are justi ed in m aking the restriction.
$T h$ is analysis can be carried further. Let $u=u_{1} \quad r+b^{u}=u^{0} u_{r+2}=u_{1} u^{\infty}$
and let $v=v_{1} \quad r$. $\operatorname{Tff} u_{1}>v_{1}$, then the rule ($u ; v$) can be replaced by the better rule ($u^{0} ; \mathrm{vu}_{\mathrm{r}+2}{ }^{1}$). If $\mathrm{u}_{2}>\mathrm{u}_{1}{ }^{1}$, then (u;v) can be replaced by ($u^{\infty} ; \mathrm{u}_{1}{ }^{1} \mathrm{v}$). W e do in fact carry out these steps when installing new rules. The extra inform ation could have been included in the FSA SL2. H ow ever, it seem S that th is would involve m ore com plicated coding at various points, probably w ithout any gain in e ciency.

W e could consider the steps just described as an attem pt to force our structures to de ne a set of rules which conform s to known properties (see
 for the de nition of U). The m ost im portant reason for insisting on these additional restrictions on our rules is to keep down the size of our data structures.
5.4 The basic structures. The basic structures used in our procedure are:

1. A two-variable autom aton R ules satisfying the conditions laid dow n in '5. I'. W hen we want to specify that we are working w the the ules autom aton during the nth K nuth $\{B$ endix pass (see i4 . \% for the de nition of a K nuth \{Bendix pass), we will use the notation Rules [n]. W e extract explicit rules from R ules [n] by taking elem ents of the intersection $\operatorname{Set}(\mathbb{R}$ ules $[\mathrm{n}])=\mathrm{L}(\mathrm{R}$ ules [$[\mathrm{n}]) \backslash \mathrm{L}(\mathrm{SL} 2)$. The two-variable autom aton SL 2 was de ned in Section '
2. A nite set S of rules, which is the disjoint union of several subsets of rules : Considered, Now, New and Delete. O ne point of the separate subsets is to avoid constantly doing the sam e critical pair analyses. A nother point is to ensure that our K nuth \{B endix process is fair (see
 D elete list, rather than delete them im m ediately, is to m ake reduction m ore e cient. This will be explained further in ${ }^{5} .8$
S will continually change, while Rules is constant during a K nuth $\{$ Bendix pass. We change R ules at the end of each K nuth $\{B$ endix pass. W e will perform the K nuth \{Bendix process, using the rules in S for critical pair analysis, as described in 'î
3. Considered is a subset of S such that each rule has already been com pared w ith each other rule in Considered, including w ith itself, to see whether lefthand sides overlap. The consequent critical pair analysis has also been carried out for pairs of rules in Considered. Such rules do not need to be com pared w ith each other again.
4. Now is a subset of S (em pty at the beginning of each K nuth \{Bendix pass) containing rules which we plan to use during this pass to com pare for overlaps w ith the rules in Considered, as in ' 14.2 . These rules are
 again.
5. New is a subset ofS containing new nules which have been found during the current pass, other than those which are output by them inim ization routine (see '5. T. for the m eaning of $\backslash m$ inim ization"). R ules which are output by the m inim ization routine are added to Now .
6. Delete is a subset of S containing rules which are to be deleted at the end of this pass.
7. The two-variable autom aton W D i contains all the states and arrow s of R ules [n], and possibly other states and arrows. It satis es the conditions of' nules which are output by the m inim ization routine. As rules are considered during the K nuth $\{B$ endix pass, states and arrow sofW D i are m arked as needed. At the end of the pass, other states and arrow s are rem oved, and W Di becom es the new Rules autom aton $\mathrm{Rules}[\mathrm{n}+1]$.
8. A PDFA P (Rules) form ed from Rules by a certain subset construction. This autom aton accepts words which are Aut-reducible, that is, words which contain a left-hand side of a rule in Set(R ules). The autom aton is used as part of our rapid reduction procedure (see iF-āst "---- reductionsection in . M ore details ofP (R ules) are provided in in.
9. A PDFA Q (R ules) which accepts the reversals ofleft-hand sides of nules in $\operatorname{Set}(\mathrm{R}$ ules). This is also form ed from R ules by a subset construction and is also used for rapid reduction. M ore details of Q (R ules) are provided in 'تَ.".
5.5 In itialarrangem ents. Before describing them ain K nuth \{B endix process, we explain how the data structures are initially set up. Let R be the original set of de ning relations together w ith special rules of the form (x : (x);) which m ake the form al inverse (x) into the actual inverse of x.
W e rew rite each relation ofR in the form of a relator, which we cyclically reduce in the free group. W e assum e that each relator has the form l : (r), where l and r are elem ents of and $(l ; r)$ is accepted by SL2.

For each rule ($;$; r), including the special nules (x : (x);), we form a rule autom aton, as explained in 13.7 . These autom ata are then welded together
to form the two-variable rule autom aton W D i satisfying the conditions of ' 5 .j.'. E ach state and arrow ofW D i is m arked as needed. E ach of these nules is inserted into New. Considered, Now and Delete are initially em pty. Set Rules[1]=WDi.
5.6 Them ain loop | a K nuth $\{B$ endix pass. W enow describe the procedure followed during the course of a single K nuth \{B endix pass.

A signi cant proportion of the tim e in a K nuth \{B endix pass is spent in applying a procedure which we term m inim ization. Each rule encountered during the pass is input (often after a delay) to this procedure and the output is called a m in im al rule. T he details of this process are given in sections '5.7. and '5.

1. At the beginning of a K nuth $\{$ Bendix pass, Now is empty. If $\mathrm{n}>$ 0 , save space by deleting previously de ned autom ata P (\mathbb{R} ules $[n]$), Q (Rules [$n]$) and R ules [$n]$. Increm ent n. The integer n records which K nuth $\{$ Bendix pass we are currently working on.
2. [Step] For each nule (;) in Considered, m inim ize (;) as in' 5 . handle the output nule ($1 ; 1$) as in '5. 'd. This m ay a ect S and W D i .
3. [Step] For each rule (;) in New , m inim ize (;) as ini $5 .$. and handle the output as in '5.
Since rules added to N ew during m inim ization are alw ays strictly sm aller than the rule being m in im ized (see ' 5.1 exam ining rules in N ew does not continue inde nitely. A s a result, we can be sure that our process is fair (see'
4. For each rule (;) in Now:
(a) D elete the rule from Now and add it to Considered.
(b) [Step] For each rule $\left(1 ;{ }_{1}\right)$ in Considered:

Look for overlaps between and 1_{1}. That is we have to nd each su x of which is a pre x of 1 and each su x of 1 which is a pre x of. . Then Aut-reduce in two di erent ways as in 'Āב̄', obtaining a pair of words (u;v) w th u v. (R oughly speaking, Aut-reduction m eans the use of rules in Set(R ules). M ore precision is provided in '51.1.) If $u>v,(u ; v)$ is inserted into $N e w, ~ u n l e s s ~ i t ~ i s ~$ already in S.

N ote that we m ay have to allow = 1 in order to deal w ith the case w here two di erent rules have the sam e lefthand side. In this case, both the pre x and su x ofboth left-hand sides is equal to $=1$.
5. W D i was possibly a ected in 5
 W ith WDi in its present form, delete from WDi all arrows and states which are not m arked as needed. C opy W D i into R ules [n + 1] and m ark all arrow s and states of W Di as not needed.
6. Delete the rules in Delete.
7. This ends the description of a K nuth \{Bendix pass. N ow we decide whether to term inate the K nuth $\{B$ endix process. Since we know of no procedure to decide con uence of an in nite system of rules (indeed, it is probably undecidable), this decision is taken on heuristic grounds. In our context, a decision to term inate could be taken sim ply on the grounds that W Di and R ules [n] have the sam e states and arrows. In other words, no new word-di erenœes or arrow s between word-di erences have been found or deleted during this pass. If the K nuth $\{$ B endix process is not term inated, go to $15 \cdot \overline{1} \cdot \mathbf{1}$.
5.7 Den ition. De nition]W enow provide the details of them inim ization routine. This processes a rule so as to create from it a minim al nule (see
 is de ned using the current set of rules. Since the set of nules is changing, this is a bit di cult to pin down. So instead we m ake the follow ing de nition, which ism ore precise, though the underlying concept is the sam e. Let (u;v) 2 A $\quad A$ and let $u=u_{1} \quad p$ and $v=v_{1} \quad q$, where $u_{i} ; v_{j} 2 A . W$ e say that ($u ; v$) is a m in im alrule if $u v, u=v$ in G and the follow ing procedure does not change (u;v). The procedure is called the m in im ization routine. W e alw ays start the m inim ization routine w ith $u>v$, though this condition is not necessarily m aintained as u and v change during the routine. H ere the m eaning of a \m inim al rule" changes with tim e: a rule m ay be m inim al at one tim e and no longer minim al at a later time.

1. Aut-reduce (that is, reduce using the rules of Rules) the maxim al proper pre $x u_{1} \quad p$ of u obtaining u. Reduction m ay result in rules being added to N ew as described in 1 to $u u_{p}$ and go to Step ${ }^{15}$.
2. Aut-reduce the m axim alproper su $x u_{2} \quad p$ off u obtaining u^{∞}. Reduction m ay result in new rules being added to N ew. Replace u by $u_{1} u^{\infty}$.
3. If u has changed since the original input to the m inim ization routine, then Aut-reduce u as explained in '1. 14 '. This m ay result in rules being added to New as described in
4. [Step] [Step] Aut-reduce v.
5. If $v>u$, interchange u and v.
6. If (a) $p>q+2$ or (b) if $p=q+2, q>0$ and $u_{1}>v_{1}$ or (c) if $p=2$, $q=0$ and $u_{1}>\left(u_{2}\right)$, replace (u;v) by ($u_{1} \quad p \quad u ; v_{1} \quad q \quad\left(u_{p}\right)$) and repeat this step untilwe can go no further.
7. If $p=q+2$ and $u_{2}>\left(u_{1}\right)$, replace ($\left.u ; v\right)$ by ($\left.u_{2} \quad p ; u\left(u_{1}\right) v_{1} \quad q\right) . v$
8. If $q>0$ and $u_{1}=v_{1}$, cancel the rst letter from u and from v and repeat this step.
9. If $q>0$ and $u_{p}=v_{q}$, cancel the last letter from u and from v and repeat this step.
10. If (u;v) has changed since the last tim e Step '5.7. Step
11. O utput (u;v) and stop.

N ote that the output could be (;), which means that the rule is redundant. O therw ise we have output (u;v) with $u>v$. N ote that the m in im ization procedure keeps on decreasing (u;v) in the ordering given by using rst the short-lex-ordering on u and then, in case of a tie, the short-lex-ordering on v. Since this is a well-ordering, the m inim ization procedure has to stop.
5.8 H andling m in m ization output. Suppose the input to m in m ization is $(;)$ and its output is $(1 ; 1)$.

1. If $\left({ }_{1} ;{ }_{1}\right)(;)$, inconporate (by welding) $\left(1 ;{ }_{1}\right)$ into the language accepted by W D i . Insert (${ }_{1}$; 1) into Now if it was not already in Now or Considered. Rem ove it from New , if it was there previously.
2. If som e proper subw ord of is Aut-reducible, then this w ill be discovered during the rst few steps of m inim ization. $\left(\left({ }_{1} ; 1\right)=(;)\right.$
tums out to be a special case of this, as we w ill see in '5.11. $1 . \overline{1}$.$) In this$ case, delete (;) from S immediately the minim ization procedure is otherw ise com plete.
3. If, at the tim e of m inim ization, all proper subw ords of were Autirreducible and if (;) was not m inim al, m ove (;) to the D elete list. The reason for this possibly surprising policy of not deleting im m ediately is that further reduction during this passm ay once again produce as a lefthand side by the methods of $\overline{1}$ and $1 \mathbf{i} . \overline{\mathrm{C}} . \mathrm{W}$ e want to avoid the work involved in nding the right-hand side by the m ethod which will be explained in 1 left-hand side equal to see'ī'
5.9 D etails on the structure ofW D i . At the beginning of Step 5 each state s of W Di is associated to a word $\mathrm{w}_{\mathrm{s}} 2$ A which is irreducible with respect to $\operatorname{Set}(\mathrm{R}$ ules [n]). W D i is a rule autom aton: the rule autom aton structure is given by associating the elem ent $\overline{\mathrm{W}_{s}} 2 \mathrm{G}$ to the state s . W henever a m inim al rule r is encountered during the nth pass, it is adjoined to the accepted language of W Di by welding and the corresponding states and arrow s are m arked as needed. State labels are calculated as and when new states and arrow s are added to W D i .

At the end of the nth K nuth $\{B$ endix pass, W Di is an autom aton which represents the word-di erences and arrow s between them encountered during that pass. At this stage the word attached to each state is irreducible w ith respect to the rules in $\operatorname{Set}(\mathrm{R}$ ules [$[\mathrm{n}])$ but not necessarily w ith respect to the rules im plicitly contained in W Di . Before starting the next pass, we Aut-reduce the state labels of W Di with respect to Set(W Di). If W Di now contains distinct states labelled by the sam e w ord we connect them by epsilon arrows and replace W Di by W eld (W Di). We then repeat this procedure until all states are labelled by distinct w ords w hich are irreducible w ith respect to Set (W D i). Ifduring this procedure a state or arrow manked as needed is identi ed w th another which m ay or m ay not be m arked as needed, the resulting state or arrow is m arked as needed.
5.10 Aut-reduction and inserting rules. G iven a word w, we look for an Aut-reducible subword such that all proper subwords of are Autirreducible, by looking in $\operatorname{Set}(\mathrm{Rules})$. Later ((iFast reductionsection. Z_{1}) we will describe how to do this quidkly, but, at the m om ent, the reader can just think of a non-determ inistic search in the autom aton giving the shortlex rules recognized by R ules. H aving found a reducible subword of w, w ith no reducible subw ord, we do not autom atically use the corresponding
right-hand side, found from the exploration of R ules, because this naive approach is com putationally ine cient. Instead we look in S to see if there is a rule (;). If there is such a rule, then we can nd it quickly given , and we proceed w th our reduction, replacing the subw ord in w w ith •

It m ay how ever tum out that we can nd an Aut-reducible subword of w , w ith no Aut-reducible subw ords, and yet there is no rule of the form (;) in S. In this case, we have to spend time nding such a rule in Set (Rules). O nœe found, we im m ediately insert it into S, otherw ise the logic of the K nuth \{ B endix procedure can go wrong.

In this w ay, reduction of a single w ord can result in the insertion ofseveral new rules into S.

It follow s from the above description that the Aut-reducibility of a w ord w depends only on Rules. Since Rules does not change during a K nuth \{ B endix pass, exactly the sam e subset of A w illbe A ut-reducible throughout such a pass. H ow ever, because we m ay use rules in the changing set S, the result of Aut-reduction m ay change during a pass.

A nother, m ore conventional, source of rules to insert into S com efrom

M inim ization also results in nules being added to S, both directly, as the output of the m inim ization procedure, but also indirectly because m inim ization uses reduction, and, as we will see in '7in'. reduction can add rules to S. It is im portant to note that any rules added to S during the m inim ization of a rule (;) are strictly sm aller than (;), if we order such pairs by using rst and then in case of tie. W e used this fact when discussing ${ }^{5}-\overline{6}{ }^{-1} \mathrm{~T}^{-1}{ }^{-1}$ --- - - m ain jopop a
5.11 D eleting rules. D eletion of rules happens only at the end of each m inim ization step, and at the end of each pass, when rules m arked for deletion are actually deleted. D uring a K nuth \{B endix pass, deletion does not occur after the beginning of Step $15 . \overline{5}$. m ization of $(;) 2 S$ is $(1 ; 1)$.

1. [C ase] If every proper subw ord of is Aut-irreducible, then 1 is a nontrivial sulbw ord of . This follow s by going through the successive steps
 These change and , while maintaining the inequality $>$. In particular ${ }_{1}>{ }_{1}$, so that ${ }_{1} \in$. If $\left(1_{1} 1_{1}\right) \in(;)$, then we delete (;) after a delay. The m echanism is to m ark 进for deletion by moving it to the D elete list and actually delete it only at the end of the current K nuth $\{$ B endix pass (Step $15 . \overline{0} . \overline{1} \mathbf{- 1})$.
2. [C ase] If som e proper subw ord of is reducible, then (;) is im mediately deleted from S at Step $15 . \overline{5}-\overline{2}, \overline{1}$ at the end of the m inim ization procedure. (A ut-reducibility of som e proper subw ord of is discovered at Step '5.
5.12 Lem ma. Suppose that, for somen 2 N , there is a rule (;) 2 S during the n-th K nuth $\{$ Bendix pass, before the beginning of Step 15.6 .4 . T hen there is a non-trivial subw ord of such that som e rule (;) is output from som e instance of the m inim ization procedure during the n-th pass. If $=$, then \quad The rule (;) is a rule in S at the beginning of the $(n+1)$-st pass and is accepted by R ules $[n+1]$.

P roof: By exam ining ' im ization routine at som e tim e during the n-th pass. (W e check the four possibilities, nam ely that it is in Considered, N ow , New or D elete, one by one. If it is in D elete, it m ust have been the input to the m inim ization procedure at som e earlier stage during the n-th pass.)

We rst deal w th the case where some proper subword of is Autreducible during the n-th pass. D uring the rst three steps ofm inim ization (SiThe main jop-a nuthicendix passtheorem subw ord of is found, w ith the property that all the proper subw ords of are Aut-irreducible. M inim ization then either nds a rule of the form (;) already in S, or such a rule is added to New by the reduction process| see in. In any case, it w ill either be m inim ized during this pass, or it has already been m inim ized (and possibly m oved to the D elete list.

At the m om ent when (;) is m in im ized during the n-th pass, we must be in C ase 1.11 .1 . So the output $(1 ; 1)$ from the m in im ization procedure with input (;) gives the required rule. 1 is a subword of and is a proper subw ord of .

A ltematively, all proper subw ords of are A ut-irreducible during the nth pass, in which case we set (;) to be the output from m inim ization of (;). By,
5.13 Lem m a. Suppose that, for somen 2 N , there is a rule (;) 2 S during the n-th K nuth \{Bendix pass, after the beginning of Step 5.6. there is a non-trivial subw ord of such that som e rule (;) is output from som e instance of the m inim ization procedure during the $(n+1)$-st pass. If

$$
=\text {, then }
$$

Proof: If (;) is in the D elete list, then it m ust have been input to the m inim ization procedure at som e earlier tim e during the nth pass. By '----Aut-irreducible during the n-th pass. Let (${ }^{0} ;{ }^{0}$) be the output from m inim ization. By , 11 and, if ${ }^{0}=$, then $0^{0}<$ Now (0) is in S at the beginning of the ($\mathrm{n}+1$)-st pass. W e apply 5 ($n+1$)-st pass.

If (;) is not on the D elete list, then it m ust be in S at the beginning of the $(n+1)$-st pass. O nœ again, we can apply '5.12Dēeng nuestheorem .

The follow ing result is often applied w ith $w=$.
5.14 P roposition. Letw 2 A be a word which contains the left-hand side of a rule (;) input to the m inim ization routine during the n-th K nuth $\{$ Bendix pass. Then, for m, w contains the left-hand side of a rule which is input to the m in \dot{m} ization procedure during the m th K nuth \{Bendix pass. M oreover w is Aut-reducible for m > n.

Proof: We assum e inductively that if $m>n$ then w contains a subw ord , such that a rule of the form (;) is input to the m inim ization procedure during the (m 1)-st pass. Since m inim ization happens only before the beginning of Step '5. 6 such that is a non-trivial subw ord of . M oreover, (;) is m inim alduring the (m 1)-st pass and is contained in S at the beginning of the m-th pass. T herefore (;) is input to the m inim ization procedure during the m th pass, as required.

The rule (;) is welded into W D i during the (m 1)-st pass and is therefore accepted by R ules [n]. It follow s that w is Aut-reducible during the m th pass. Inductively this is true for allm $>n$.

6 C orrectness of our K nuth $\{B$ endix P rocedure

In this section we w illprove that the procedure set out in Section '5.1 does w hat we expect it to do. O ne hazard in program m ing K nuth $\{B$ endix is that som e seem ingly clever m anoeuvre changes the T hue equivalence relation. T he key

which carefully analyzes the e ect of our various operations on T hue equivalence. In fact it provides m ore precise control, enabling other hazards, such as continual deletion and re-insertion of the sam e rule, to be avoided. It is
 ---- -- ofour is applied to a group de ned by a regular set of m inim al rules, then, given su cient tim e and space, a nite state autom aton accepting exactly these nules w illeventually be constructed by our program, after w hich the program w ill loop inde nitely, repeatedly reproducing the sam e nite state autom aton (but requiring a steadily increasing am ount of space for redundant inform ation).
6.1 De nition. \mathbb{D} e nition] For a discrete time t, we denote by $S(t)$ the rules in S at time t in our K nuth | Bendix procedure. W e take t to be the number of elem entary steps since the start of the program, assum ing the program is expressed in som e sort of pseudocode. A ny other sim ilarm easure of tim e would do equally well.
6.2 De n ition. A quintuple ($\mathrm{t} ; \mathrm{s}_{\mathrm{i}} ; \mathrm{S}_{2}$; ;), where t is a time, and $\mathrm{s}_{1}, \mathrm{~s}_{2}$, and are elem ents of A, is called an elem entary $S(t)$-reduction $u!s_{(t)} v$ from u to v if (;) is a rule in $S(t), u=s_{1} s_{2}$ and $v=s_{1} s_{2} . W$ e call (;) the rule associated to the elem entary reduction.

W e now de ne the main technical tool that we will use in this section.
6.3 De nition. Let t 0. By a tim e-t T hue path between tw o words w_{1} and w_{2}, we m ean a nite sequence ofelem entary $S(t)$-reductions and inverses of elem entary $S(t)$-reductions connecting w_{1} to w_{2}, such that none of the rules associated to the elem entary reductions is in Delete at tim et. W e talk of the words which are the source or target of these elem entary reductions as nodes. The path is considered as having a direction from w_{1} to w_{2}. The elem entary reductions in our path w ill be consistent w ith this direction and w ill be called rightw ard elem entary reductions. The inverses of elem entary reductions in our path w ill be in the opposite direction and will be called leftward elem entary reductions.

A ll our insertions and deletions of rules have been organized so that the follow ing result holds.
6.4 P roposition. Let hA $=\mathrm{R}$ i be the nite presentation of a group G at the start of the K nuth \{B endix process. T hen the group de ned by subjecting the free group generated by A to all relations of the form $=$ as (;) varies over $S(t)$ is at all tim es t isom onphic to G with the isom onphism being induced by the unchanging m ap A! G.
6.5 P roposition. Let $t \quad 0$ and suppose that we have a T hue path from u to v in $S(t)$ with m axim um node w. Then for any times t, there exists a tim e-s T hue path from u to v with each node less than or equal to w.

P roof: N ote that, given a Thue path, we may assum e, if we wish, that no node is repeated, because we could shorten the path to avoid repetition. W e show by induction on s that, if at some time $t \quad s$ there is a Thue path betw een words u and v w ith all nodes no bigger than $m a x(u ; v)$, then there is also such a Thue path at times. So suppose that we have proved this statem ent for all tim es $s^{0}<s$.

W e rst consider the special case where $r_{0}=(u ; v)$ is a rule being input to the m inim ization routine (sed De nition, $\left.5 . \overline{T_{1}}\right)$ at time t, and s is the time at the end of the subsequent invocation of the m inim ization handling routine ,5. F . There is a T hue path (oflength one) from u to v at timet. By induction we are assum ing that at times 1 there is a Thue path from u to $v w i t h$ m axim um node u. W em ust show that there is such a T hue path at times.

O ne possibility is that r_{0} is already m inim al, in which case there is a T hue path of length one from u to v, both at the beginning and at the end of m inim ization. So we assum e that r_{0} is not m inim al. T hen the last step in ' 5.8 . 1 ' is that either r_{0} is placed in the D elete list or else r_{0} is sim ply deleted im m ediately.

W hat we need to show therefore is that the T hue path p from u to v, which exists at times 1 , does not use an elem entary reduction com ing from r_{0}. It is part of our inductive hypothesis that the largest node occurring on p is u, and we have already pointed out that we can assum e there is no repetition of nodes along p .

Each step of m inim ization takes an input pair of words and outputs a possibly di erent pair of words which is used as the input to the next step. The intial input is $r_{0}=(u ; v)$ and the nal output is either $r_{n}=(;)$ or a minim al nule $r_{n}=\left(u^{0} ; v^{0}\right)$. Let $r_{0} ; r_{1} ; r_{2} ;::: ; r_{n}$ be the sequence of such inputs and outputs in the m inim ization of ($u ; v$). By considering each step ofm inim ization in tum, we will show that for each $i, 1$ i n, if there is a tim e-s T hue path between the two sides of $r_{i} w$ ith m axim um node no bigger than either side of r_{i}, then there is a time-s T hue path between the two sides of $r_{i} 1 w$ th m axim um node no bigger than either side of $r_{i} 1$. W e then obtain the desired tim e-s T hue path between u and v by using descending induction on i. This is a subsidiary induction to our m ain induction on s. T he base case $i=n$ is true, since at tim e s the rule r_{n} has been installed in S.

To m ake the task of checking the proofeasier, we use the sam e num bering and notation here as in D e nition

1. At the end of the current step, there is a sequence of elem entary reductions from $u_{1}::: u_{p} 1$ to u^{0}, but this m ay not constitute a T hue path since som e of the associated rules m ay be in D elete. H ow ever, any such nule (;) in D elte will, at som e tim e $s^{0}<s$, have been in S but not in D elete. Therefore, by our induction on s, at times 1 there is a Thue path p from to w th maximum node. Now $u_{1}::: u_{p}<u$ and so is sm aller than the left-hand side of r_{0}. Therefore r_{0} cannot be used in p. So p continues to be a Thue path at times. This com pletes the dow nw ard induction step on i in this case.
2. This step is analogous to the previous step.
3. The sequence of Aut-reductions of u to the current left-hand side does not use the rule r_{0} and so the required T hue path exists by induction on s.
4. Let v^{0} be the Aut-reduction of v. Im m ediately after this step there is a T hue path from v to $v^{0} w$ th m axim $u m$ node v which does not use r_{0}. By the induction hypothesis on s, there is such a T hue path at time s 1. Since it does not use r_{0}, it continues to be a T hue path at time s. Hence a time-s T hue path from u to $v^{0} w$ th m axim um node either u or $v^{0} y$ ields a tim e-s T hue path from u to $v w$ th m axim um node u or v. (Recall that, because of previous steps which m ay shorten u, u m ay be sm aller than v at this point.) This com pletes the dow nw ard induction step on i in this case.
5. If there is a T hue path from u to $v w i t h m$ axim um node either u or v, then the reverse of this path is a T hue path from v to u.
6. Suppose that the input to this step is (u$\left.{ }^{0} x ; v\right)$. Then the output is either the sam e as the input or is equal to (u^{0}; v : (x)), w ith $u^{\prime}>v$: (x). In the rst case there is nothing to prove. In the latter case, we have by our dow nw ard induction on i a tim e-s Thue path from u^{0} to v : (x) w th m axim um node u^{0}. Thiswill give a tim e-s Thue path from $u^{0} x$ to v : (x$) \mathrm{x}$ w ith m axim um node ux. Furtherm ore, at the beginning of the K nuth \{B endix process, there was a T hue path of length one from (x) x to w ith m axim um node equal to (x)x. Therefore, by our induction hypothesis, there is such a path at times 1, just before possible deletion of r_{0}. N ow $u^{0} x>v$: (x) x (x) x. So the tim e-(s 1) Thue path from $(x) x$ to cannot use ε_{r}, and it rem ains a T hue path at time s. It follows that there is a T hue path from $u x$ to $v w i t h ~ m a x i m ~ u m ~$ node $u^{0} x$ at times.
7. T his step is analogous to the previous step.
8. If the input to this step is $\left(x u^{0} ; x v^{0}\right)$ then the output is $\left(u^{0} ; v^{0}\right)$. A tim e-s T hue path from u^{0} to $v^{0} w$ th m axim $u m$ node $u^{0} y$ yields a tim e-s T hue path from $x u^{0}$ to $\mathrm{xv}^{0} \mathrm{w}$ th m axim um node $\mathrm{xu}{ }^{0}$.
9. This step is analogous to the previous step.

This com pletes the induction on s for the special case where $r_{0}=(u ; v)$ is a rule being input to the m in im ization routine (see De nition '1. and s is the tim e at the end of the subsequent invocation of the m in im ization handling routine $1.5 . \mathrm{Z}$. N ow consider the general case, again assum ing the induction statem ent true at times 1 . The only reason why a Thue path at times 1 between u and v will not work at times is if som e elem entary reduction used in this path has an associated rule (;) in $S\left(\begin{array}{ll}\text { (} & \text { whidh is }\end{array}\right.$ deleted at tim es. Since deletion only takes place as a result ofm inim ization, we know that what must be happening is that we are right at the end of m inim izing (;), w ith m inim ization com pleting exactly at tim es. But the special case already proved show sthat there is a tim e-s T hue path betw een and w th no node bigger than . Therefore the tim e-(s 1) Thue path can alw ays be replaced by a tim e-s T hue path w thout increasing the m axim um node.
6.6 Lem m a. If a word is $S(t)$-reducible, it is $S(s)$ reducible for all $s>t$.

Proof: Ifu is $S(t)$-reducible, there is an elem entary $S(t)$-reduction $u!s(t) v$. T his m eans that $v<u$. By Proposition ' 6 T hue path from u to $v w$ th m axim um node u. The rst elem entary reduction in this path has the form u ! w at times. This proves the result.
6.7 Lem m a. At any time $t, S(t)$ is a list of rules which contains no duplicates. If a rule is deleted from S, it will never be re-inserted. (H ere we m ean actual deletion, not just placing the rule on the D elete list for future deletion.)

P roof: The rst statem ent follow sby looking through '5. insertions ofnules take place. W e alw ays take care not to insert a rule a second time if it is already present.

Let (;) be a rulew hich is deleted at tim es. W e assum eby contradiction that it is re-inserted at a later timet. W e choose m and n so that times
occurs during the m-th K nuth \{Bendix pass and tim et during the n-th. T hen m n.

W e note that all proper subw ords of are Aut-irreducible during the m th pass. For otherw ise $\overline{5} 14 \mathrm{D}$ ejetin nulestheorem $\overline{5} 4 \mathrm{i}$ shows that is Aut-reducible during the n-th pass. But no rule with left-hand side could then be introduced during the n-th pass, a contradiction.

It follow s that we are in C ase '5.1'. Therefore (;) was input to the m inim ization procedure during the m-th pass and was then m oved to D elete. The actual deletion took place at the end of the m th pass. It follow s that $\mathrm{n}>\mathrm{m}$. The output from them inim ization procedure was a rule (;), where
is a subword of . The rule (;) is welded into W Di and is acoepted by Rules $[m+1$]. As in the preceding paragraph, we see that cannot be a proper subword of , and so $=$ and $<$.Wewrite $\mathrm{m}_{1}=$ and m $=$.

P roceeding in this way, we see that between tim es s and t, rules of the form (; i 1) (m i n) are input to the m inim ization procedure during the i-th K nuth \{Bendix pass, with output (; i) where i i i_{i} and $\mathrm{m}<$ m 1. The rule ($; ~ i)$ is produced during the i-th K nuth $\{$ Bendix pass and is accepted by R ules [i+ 1] form i n.

It follow s that is Aut-reducible during the n-th pass. T herefore no rule w ith left-hand side could be introduced into S as a result of critical pair analysis. W e see from '5. is introduced into S as a result of Aut-reduction during the n-th pass must be of the form (;), where \quad $<$. This com pletes the proof of the contradiction.
6.8 De n ition. W e say that a word u is perm anently irreducible if there are arbitrarily large tim es t for which u is $S(t)$-irreducible. By Lem ma ī. $\overline{6}$ this is equivalent to saying that u is $S(t)$-irreducible at all tim est 0 . A rule (;) in S is said to be perm anent if and every proper subw ord of is perm anently irreducible.
6.9 Lem m a. A perm anently irreducible word is perm anently A ut-irreducible. A perm anent rule of S is never deleted. A perm anent rule is accepted by Rules $[n+1]$ provided it is present in S when the n-th K nuth $\{B$ endix pass begins; it is then accepted by R ules [n] for allm $>n$.

Proof: Let u be perm anently irreducible. Aut-reduction of u can only take place if, im m ediately after the Aut-reduction, u is S-reducible, conceivably
as a result of som e rule being added to S during the Aut-reduction. But this is im possible by hypothesis.

A rule (;) is deleted only as a result ofbeing the input to the m inim ization procedure. By Lemm a ${ }^{\prime} \overline{6} \cdot \underline{-1}$, there would have to be a T hue path from
to with largest node. The rst elem entary reduction must therefore be rightw ard (see De nition ' is a perm anent rule of S. Since every proper subword of is perm anently irreducible, it is perm anently Aut-irreducible, as we have just seen. So this rst elem entary reduction m ust be associated to a rule (;).

Ether $=$, in which case the rule (;) has not been deleted, or else, when (;) was input to the m inim ization routine, was Aut-reducible. H ow ever, it is perm anently Aut-irreducible which is a contradiction.

It follows that if (;) is present in S at the start of the n-th K nuth $\{$ Bendix pass, it willbe sew n into W D i at som epoint during the n-th K nuthBendix pass and accepted by R ules [n + 1]. Since (;) is a perm anent rule, it w ill subsequently rem ain in S and will be presented form inim ization during each pass. The sam e rulew illbe output and used to m ark states and arrow s of W D i as needed. Therefore, (;) is accepted by R ules [m] for each m n.
6.10 Lem m a. Let u be a xed word. Then there is a \ddagger depending on u, such that, for allt t_{0}, each elem entary $S(t)$-reduction of u is associated to a perm anent rule. If all proper subw ords of u are perm anently irreducible, then, for $t \quad t_{0}$, there is at m ost one elem entary reduction of u, and this is associated to a perm anent rule (u;w).

P roof: There are only nitely m any subw ords of u. So we need only prove that, given any word v, there is a t_{0} such that for all t t_{0}, each rule in $S(t) w$ th left-hand side v is perm anent. If there is a proper subw ord of v which is not perm anently irreducible, then at som e tim e s_{0} it becom es $S\left(s_{0}\right)$ -
 it becom es Aut-reducible at the beginning of the next K nuth $\{B$ endix pass after s_{0}. D uring this pass all rules with lefthand side v will be deleted. A lso, since this proper subw ord of v is now perm anently Aut-reducible, no nule w ith left-hand side equal to v w illever be inserted subsequently. In this case, the result claim ed about v is vacuously true.

So we assum e that each proper subw ord of v is pem anently irreducible, and that v itself is S-reducible at som e tim et. A rule (v;w) willbe perm anent if w is perm anently irreducible. O therw ise it w ill disappear as a result of

perm anent rules ($\mathrm{v} ; \mathrm{w}_{1}$) and ($\mathrm{v} ; \mathrm{w}_{2}$) with $\mathrm{w}_{1}>\mathrm{w}_{2}$. For critical pair analysis would produce a new nule ($\mathrm{w}_{1} ; \mathrm{w}_{2}$) during the next K nuth $\{$ Bendix pass, and so w_{1} would not be perm anently irreducible.
6.11 T heorem . Letu be a xed word in A and let v be the sm allestelem ent in its T hue congruence class. Then, for large enough tim es, there is a chain of elem entary reductions from u to v each associated to a perm anent rule. A fter enough tim e has elapsed, Aut-reduction of u always gives v. (Recall that v is the short-lex representative of \bar{u}.)

P roof: W e start by proving the rst assertion. By hypothesis, we have, for each time t, a tim e-t T hue path p_{t} from u to v, and we can suppose that p_{t} contains no repeated nodes by cutting out part of the path if necessary. The only reason why we couldn't take p_{t+1} to be p_{t} is if some rule (;), used along the T hue path p_{t}, is deleted at tim et. By Lem m a' ${ }^{\prime} \overline{-} \cdot \overline{-} \cdot \mathbf{\prime}$ we can, how ever, assum e that each node of p_{t+1} is either already a node of p_{t} or is sm aller than som e node of p_{t}.

Let h_{0} be the largest node on p_{0}, and suppose that we have already proved the theorem for all pairs u and v which are connected by a T hue path w ith largest node sm aller than h_{0}. By induction on t, using
 node on p_{t} for all time t . If $\mathrm{v}=\mathrm{h}_{0}$ then since v is the sm allest elem ent in its congruence class, there are no elem entary reductions starting from v, and we m ust have $u=v$ in this case.

By Lem m a' that, for allwords $w \quad h_{0}$ and for allt t_{0}, allelem entary S (t)-reductions of w are associated to perm anent rules which are accepted by R ules [n] provided n is su ciently large.

Let $h_{0}=t t_{t}$! $\mathrm{S}(\mathrm{t}) \quad \mathrm{t} t \mathrm{t}$ be the rightw ard elem entary reduction of
 our construction also ensures that, if $t+1=t$, then $t+1 \quad t$. The rule ($t ; t)$ is therefore independent of t for large values of t. Then ($t ; t$) is perm anent and t is Aut-reducible for large enough t. If $u h_{0}$, the sam e argum ent applies to the unique elem entary leftward reduction w th source h_{0} at tim e t.

If $h_{0}=u$, let u ! $s(t) w$ be the rst rightw ard elem entary reduction for large values of t. By our induction hypothesis, there is a T hue path of elem entary reductions from w to v, each associated to a perm anent rule, and
w ith no node larger than w, and so we have the required T hue path from u to v .

Suppose now that $h_{0} u$, so that we get two perm anent rules, associated to the leftward and rightw ard elem entary reductions of h_{0}. If the two elem entary reductions are identical, that is, if the two perm anent rules are equal and if their left-hand sides occur in the sam e position in h_{0}, then p_{t} contains a repeated node which we are assum ing not to be the case. So the tw o elem entary reductions occur in di erent positions in $h_{0} . N$ ow choose t to be large enough so that the two rules concemed have already been com pared in a critical pair analysis in Step '5. 5 . 4 . pass.

If these tw o rules have left-hand sides which are disjoint subw ords of h_{0}, then we can interchange their order so as to obtain a T hue path from u to v where allnodes are strictly sm aller than $h_{0} \mid \sec F$ igure of the theorem then follow s by the induction hypotheses in this particular case.

Figure 4. Rem oving the node h_{0} when the leftw ard and rightw ard reductions are obtained from nules having disjint left-hand sides.

If the two lefthand sides do not correspond to disjoint subw ords of h_{0} then, by assum ption, there is som e time $t^{0}<t$, such that a critical pair ($u^{0} ; v^{0} ; w^{0}$) was considered. Here $u^{0}!s\left(t^{0}\right) v^{0}$ and u^{0} ! $s\left(t^{0}\right) w^{0}$ are elem entary $S\left(t^{0}\right)$-reductions given by the tw o rules, and u^{0} is a subw ord of h_{0}. A fter the critical pair analysis, at time $t^{\infty} \quad t$, the Thue paths ilhustrated in F igure are possible. A s a consequence of 's-5Coctness of wurn
i--v^{0} and w^{o} can be connected by a tim e-s T hue path in which all nodes are no larger than the largest of v^{0} and w^{0}. In particular, this applies at time
t so that the targets of the two elem entary $S(t)$-reductions from h_{0} can be connected by a tim et T hue path in which all nodes are strictly sm aller than $h_{0} . T$ his com pletes the inductive proof of the rst assertion of the theorem.

W e have arranged that t is large enough so that, for allw u, allelem entary $S(t)$-reductions of w are associated to perm anent rules, and such $a \mathrm{w}$ can be perm anently Aut-reduced to the least elem ent in its Thue congruence class. It follow s that such a w is Aut-irreducible if and only if it is minim al in its T hue class. In particular Aut-reduction of u m ust give v.

F igure 5. W hen the leftward and rightw ard reductions from h_{0} are obtained from mules $(1 ; 1)$ and ($2 ; 2$) having overlapping lefthand sides, this diagram show s the tim e-t $t^{\infty} T$ hue paths that exist after the resulting critical pair analysis.
6.12 C orollary. (i) The set ofperm anent rules in Aut is con uent. (ii) The set of such rules is equal to $P=t \mathrm{~s}_{\mathrm{t}} \mathrm{S}(\mathrm{s})$. (iii) A word u is $s m$ allest in its T hue congruence class if and only if it is perm anently irreducible and this is equivalent to being in short-lex norm al form. (iv) Each perm anent rule is a $U-m$ inim al rule and each $U-m$ inim alrule is accepted by R ules $[n]$ for n su ciently large.

P roof: The rst and third statem ents are obvious from T heorem $1 \overline{6} \overline{1} \overline{1} 1$. . For the second statem ent, each perm anent nule is contained in P by Lem m a' $\overline{6}$.

C onversely, if we have a rule r in S which is not perm anent, then for all su ciently large times s either its right-hand side or a proper subw ord of its lefthand side is $S(s)$-reducible. Theorem ' i . $1.1 \overline{1}$ ' ensures that this reducible word is Aut-reducible for all su ciently large tim es s. T herefore r will be m inim ized and deleted from S. H ence from Lem m a ${ }^{\text {' }} \mathbf{- 7} \mathrm{V}_{1}$ we see that r is not contained in P.

To prove the fourth statem ent, suppose (;) is U minim al. By "---rectness our nuth to w ill eventually be generated by our K nuth \{Bendix procedure and each elem entary reduction in the path w ill be rightw ard and associated to a perm anent rule. The rst elem entary reduction m ust have the form (; ${ }^{0}$), because each proper subword of is perm anently irreducible. But then
 [---But then (; ${ }^{-1}$) would not have been a perm anent nule. Therefore (;) is a perm anent rule.

C onversely, suppose that (;) is a perm anent nule. This m eans that and every proper subw ord of is perm anently irreducible. By $6.11 \mathcal{1 d o r}^{-1}$
------ rectnessof our nuth \bar{B} endix Proeduretheorem $6.1 \bar{i}$, this m en that and every proper subw ord of are in short-lex norm alform. It follow sthat (;) is U m in m al.

The next result is the m ain theorem of this paper.
6.13 Theorem. [Theorem] Let G be a group with a given nite presentation and a given ordering of the generators and their inverses. Suppose that the set of $U-m$ inim al rules is regular (for exam ple if (G; A) is short-lex-autom atic). Then the procedure given in "5. $\overline{6} \mathrm{w}$ ill stabilize at som e n_{0}
 C----op tain two-variable nite state autom aton and the autom aton can be explicitly constructed. (Unfortunately we do not have a m ethod of know ing when or whether we have reached n_{0}.)

P roof: By hypothesis there is a two-variable autom aton accepting the set of all U m inim alrules. By welding, we obtain a tw o-variable rule autom aton M . By am algam ating states, we m ay assum e that each state of M corresponds to a di erent word-di erence.

G iven any arrow in M, there is a U m inim al nule (;) which is accepted

Proceduretheorem .6.12. (;) is a perm anent rule which is eventually generated by our K nuth $\left\{B\right.$ endix procedure. By ${ }^{\prime} 6$
'---only a nite num ber of arrows in M, we se that, for large enough n, each $(;)$ in this nite set of nules m ay be traced out in R ules [n]. W e record the states and arrow s reached as being required by this nite set of rules.

W em ay also assum e that the states in R ules [n] which have been recorded as just explained, are all associated to di erent w ord-di erences. To see this, rst note that any equality of word-di erences between di erent states is eventually discovered according to ' ${ }^{6} 11 \mathrm{Con}$
'--gam ated. It follow s that, for n large enough, there is a copy of M inside Rules [n].

Subsequently, arrow s and states lying outside M will not be used in Autreduction. They will not be m arked as needed and w ill be deleted. It follow s that Rules $[\mathrm{n}]=\mathrm{M}$ for n su ciently large.
F inally, know ing M, we can easily change it to a nite state autom aton accepting exactly the m inim al rules| this involves m aking sure that if (u;v) is accepted, then $u>v, v$ is irreducible and every proper subw ord of u is irreducible.

7 Fast reduction

[Section]
In this section, we show how to rapidly reduce an arbitrary w ord, using the rules in $\operatorname{Set}(\mathrm{Rules})$ together w ith the rules in $S . W$ e assum e the properties m ade explicit in ${ }^{\prime} \overline{5} \overline{1} \mathbf{I}$. The time taken to carry out the rst reduction is bounded by a sm all constant tim es the length of the word. This e ciency is possible because of the use of nite state autom ata to do the reduction.
7.1 Rules forwhich no pre x or su x is a rule. At them oment, it is possible for an elem ent (u; v) ${ }^{+}$of Set(R ules) to have a pre x or su x which is also a nule. This is undesirable because it m akes the com putations we w ill have to do bigger and longer w ithout any com pensating gain .

Recall that the autom aton recognizing $\operatorname{Set}(\mathrm{R}$ ules) is the product ofR ules w ith SL2, the initial state being the product of initial states and the set of nal states being any product of nalstates. By '던', there is only one initial and one nal state ofR ules; these are equal and the state is denoted by s_{0}.

W e rem ove from Rules any arrow labelled ($x ; x$) from the initial state to itself. W e then form the product autom aton, as described above, w ith two
restrictions. Firstly, we om it any arrow whose source is a product of nal states. Secondly, we om it the state with rst com ponent equal to s_{0}, the initial state of Rules, and second com ponent equal to state 3 of SL2 (see Figure ' ${ }_{-1}^{1}$ ') and any arrow whose source or target is this om itted state. W e call the resulting autom aton R ules ${ }^{0}$.
7.2 Lem m a. The language accepted by $R u l e s^{0}$ is the set of labels of accepted paths in the product autom aton, starting from the product of initial states and ending at a product of nal states, such that the only states along the path with rst com ponent equal to s are at the loeginning and end of the path.

P roof: First consider an accepted path in R ules ${ }^{0}$. The only arrow s in R ules ${ }^{0}$ w ith source having rst com ponent s_{0} are those w ith source the product of in itial states. In SL2 it is not possible to retum to the in itial state. It follow S that has the required form.

C onversely any such path in the product autom aton also lies in $\mathrm{Rules}{ }^{0}$ because it avoids all om itted arrow s.
7.3 Lem ma. The language accepted by Rules^{0} is the subset of $\operatorname{Set}(\mathrm{Ru}$ ules) which has no proper su x or proper pre x in $\operatorname{Set}(\mathrm{Ru}$ ules).

Proof: If is an accepted path in Rules, then it is clearly in $\operatorname{Set}(\mathrm{Rules})$. M oreover if it had a proper su x or proper pre x which was in $\operatorname{Set}(\mathbb{R} u$ les), there would be a state in the m iddle of w ith rst com ponent $s_{0} . W$ e have seen that this is im possible in Lem m a

C onversely, we must show that if is an accepted path in the product autom aton such that no proper pre x and no proper su x of would be accepted by the product autom aton, then no statem et by , apart from its two ends, hassion asa rst com ponent. Let $=\left(\left(s_{0} ; 1\right) ;\left(u_{1} ; v_{1}\right) ; q_{1} ;::: ;\left(u_{n} ; v_{n}\right) ; q_{h}\right)$,
F irst suppose $u_{1}\left\langle v_{1}\right.$. Since is accepted by SL2, juj> jvjand we m ust have $\mathrm{v}_{\mathrm{n}}=\$$. Let $\mathrm{r}<\mathrm{n}$ be chosen as large as possible so that the rst com ponent of q_{r} is s_{0}. Then $\left(u_{r+1} ; v_{r+1}\right):::\left(u_{n} ; v_{n}\right) w$ ill be accepted by Rules and will be accepted by SL2 because $\mathrm{v}_{\mathrm{n}}=\$$. Since this cannot be a proper su x of by assum ption, we m ust have $r=0$. Hence q_{i} has a rst com ponent equal to s_{0} if and only if $i=0$ or $i=n$.

N ext note that we cannot have $\mathrm{u}_{1}=\mathrm{v}_{1}$. This is because there is no arrow labelled ($\mathrm{u}_{1} ; \mathrm{u}_{1}$) in SL2 w ith source the in itial state, so would not be accepted by the product autom aton.
N ow suppose that $u_{1}>V_{1}$ and let $r>0$ be chosen as sm all as possible so that the rst com ponent of q_{r} is s_{0}. Since $u_{1}>v_{1}$, the second com ponent of
 we m ust have $r=n$. Hence q_{i} has a rst com ponent equal to s_{0} if and only if $i=0$ or $i=n$.

So we have proved the required result for each of the three possibilities.

Reduction w ith respect to Set (R ules) is done in a num ber of steps. F irst we nd the shortest reducible pre x of w , if this exists. Then we nd the shortest su x of that which is reducible. T his is a left-hand side of som e rule in Set (R ules). Then we nd the corresponding right-hand side and substitute this for the left-hand side which we have found in w. This reduces w in the short-lex-order. W e then repeat the operation until we obtain an irreducible word. T he process is explained in m ore detail in in 14 .

Our rst objective is to nd the shortest reducible pre x of w , if this exists. To achieve this, we must determ ine whether w contains a subw ord which is the left-hand side of rule belonging to Set (R ules).

Let R ules ${ }^{\infty}$ be the autom aton obtained from Rules ${ }^{0}$ (see Lem m as'ī ${ }^{2}$ and 'I.

W e construct an FSA Rble (R ules) in one variable by replacing each label of the form ($x ; y$) on an arrow of Rules ${ }^{\infty}$ by x. Here $x 2 A$ and y 2 A^{+}. The nam e of the autom aton R blev (R ules) refers to the fact that the autom aton accepts reducible words, and does so non-determ inistically. We obtain an FSA w th no -arrow s. H ow ever therem ay bem any arrow s labelled x w ith a given source. Let LHS (R ules) be the regular language of lefthand sides of rules in Set (R ules) such that no proper pre x or proper su x of the nule is itself a rule.

7.4 Lem ma.A :LHS (Rules)=L(Rble (Rules)).

P roof: Because of the extra arrow s labelled (x ; x) from initial state to initial state, inserted into $R u l e s^{\infty}$, the inclusion A :LHS (Rules) $\quad L$ (R blev (R ules)) is clear.

C onversely, if u is accepted by R ble e_{N} (R ules), there is a corresponding pair (u;v) accepted by Rules ${ }^{\infty}$. We nd a maxim al comm on pre $x p$ of u and v, so that $u=p u^{0}$ and $v=p v^{0} . R u l e s^{\infty}$ rem ains in the intitial state while reading ($\mathrm{p} ; \mathrm{p}$). Since the initial state of $S L 2$ is not a nal state, ($u^{0} ; v^{0}$) must be non-em pty. Since there is no way of retuming to the initial state of S L 2, oncR u les ${ }^{\infty}$ starts reading $\left(u^{0} ; v^{0}\right)$, it can never retum to the initial state, and therefore ($u^{0} ; v^{0}$) m ust be accopted by Rules ${ }^{0}$. Therefore $u^{0} 2$ LHS (R ules), as clain ed.
7.5 The autom aton P.To nd the shortest reducible pre x of a given word w we could feed w into the FSA Rble (Rules). However, reading a word with a non-determ inistic autom aton is very tim e-consum ing, as all possible altemative paths need to be followed.

For this reason, it m ay at rst sight seem sensible to determ inize the autom aton. H ow ever, determ inizing a non-determ inistic autom aton potentially leads to an exponential increase in size. T he states of the determ inized autom aton are subsets of the non-determ inistic autom aton, and there are potentially $2^{\text {n }}$ of them if there were n states in the non-determ inistic autom aton.

For this reason, we use a lazy state-evaluation form of the subset construction. The lazy evaluation strategy (com m on in com piler design | see for exam ple [ini]) calculates the arrow s and subsets as and when they are needed, so that a gradually increasing portion P (R ules) of a determ inized version $R \mathrm{bl}$ (R ules) of Rble (R ules) is all that exists at any particular tim e.

Lazy evaluation is not autom atically an advantage. For exam ple, if in the end one has to construct virtually the whole determ inized autom aton Rbleb (R ules) in any case, then nothing would be lost by doing this im me diately. In our special situation, lazy evaluation is an advantage for two reasons. First, during a single pass of the K nuth $\{B$ endix process (see i only a com paratively sm all part of the determ inized one-variable autom aton $R \mathrm{bleb}$ (R ules) needs to be constructed. In practioe, this phenom enon is particularly m arked in the early stages of the com putation, when the autom ata are far from being the \right" ones. Second, this approach gives us the opportunity to abort a pass of K nuth \{B endix, recalculate on the basis of what has been discovered so far in this pass, and then restart the pass. If an abort seem s advantageous early in the pass, very little work w ill have been done in m aking the structure of a determ inized version of R ble (R ules) explicit.

At the start of a K nuth \{B endix pass we let P (R ules) be the one-variable autom aton containing only one state and no arrows. The state is an initial state of P (R ules) which is a singleton set whose only elem ent is the ordered pair of initial states ofR ules and SL2. At a subsequent tim e during the pass, P (Rules) m ay have increased, but it w ill always be a portion of R blep (R ules). Each state of P (R ules) is a set of pairs ($s ; t$), where s is a state of Rules and t is a state of SL2.

The transition w ith source s, a state in P (R ules), and labelx 2 A m ay or m ay not already be de ned. If it is de ned, we denote by ($\mathrm{s} ; \mathrm{x}$) the target of this arrow.

Suppose now that we wish to nd the shortest pre x of the word $\mathrm{w}=$ $\mathrm{x}_{1} \mathrm{n} \& \mathrm{~A}$ which is Set(Rules)-reducible. Suppose that $\mathrm{s}_{0} ; \mathrm{s}_{1} ;::: ; \mathrm{s}_{\mathrm{k}}$ are states of P (Rules), where $0 \quad k \quad n \quad 1$, that s_{0} is the start state of
P (Rules), and that, foreach iw ith 1 i k, the arrow w ith source $s_{i} 1$ and label x_{i} has been constructed, w th target $\left(s_{i} ; x_{i}\right)=s_{i}$. Suppose that the target of the arrow w th source s_{k} and label x_{k+1} has not yet been de ned.
T he conventional subset construction applied to the state s_{k} ofP (R ules) under the alphabet sym bol x_{k+1} yields a set, whidh we denote by ${ }_{1}\left(s_{k} ; x_{k+1}\right)$. This is how ${ }_{1}\left(s_{k} ; x_{k+1}\right)$ is de ned. Foreach $\left(s^{0} ; t^{0}\right) 2 s_{k}, w e$ look forallarrow s in R ble (R ules) labelled $x_{k+1} w$ ith source ($s^{0} ; t^{0}$). If $(s ; t)$ is the target ofsuch an arrow, then ($s ; t$) is an elem ent of ${ }_{1}\left(S_{k} ; x_{k+1}\right)$. N ote that this subset is alw ays non-em pty, because the initial state of R ble ${ }_{\mathrm{N}}$ (R ules) is an elem ent of each S_{i}.

In the standard determ inization procedure one would now look to see whether there is already a state $\mathrm{s}_{\mathrm{k}+1}$ ofP (Rules) which is equalto ${ }_{1}\left(\mathrm{~s}_{\mathrm{k}} ; \mathrm{x}_{\mathrm{k}+1}\right)$. If not, one would create such a state s_{k+1}. O ne would then insert an arrow labelled $\mathrm{x}_{\mathrm{i}+1}$ from s_{k} to $\mathrm{s}_{\mathrm{k}+1}$, if there wasn't already such an arrow. A new state is de ned to be a nal state ofP (R ules) if and only if the subset containsa nalstate ofR ble (R ules). O fcourse, one does not need to determ ine the subset ${ }_{1}\left(\mathrm{~s}_{\mathrm{k}} ; \mathrm{x}_{\mathrm{k}+1}\right)$ if there is already an arrow in P (R ules) labelled $\mathrm{x}_{\mathrm{k}+1}$ w ith source s_{k}, because in that case the subset is already com puted and stored.

In our procedure we im prove on the procedure just described. T he point is that ${ }_{1}\left(\mathrm{~s}_{\mathrm{k}} ; \mathrm{x}_{\mathrm{k}+1}\right) \mathrm{m}$ ay contain pairs which are not needed and can be rem oved. From a practical point of view this has the advantage of saving space and reducing the am ount of com putation involved when calculating subsequent arrow s. Speci cally, we rem ove a pair ($p ; q^{0}$) from ${ }_{1}\left(s_{k} ; x_{k+1}\right)$ if q^{0} is state 3 of S L 2 (see Figure ' i_{-1}^{\prime} ') and ${ }_{1}\left(s_{k} ; x_{k+1}\right)$ also contains the pair ($p ; q$) where q is state 2 of L 2 (sam e p as in ($\mathrm{p} ; \mathrm{q}^{\mathrm{q}}$)) Rem oving all such pairs ($\mathrm{p} ; \mathrm{q}^{0}$) yields the set ${ }_{P}\left(s_{k} ; x_{k+1}\right)$ and we add the corresponding arrow and state to P (Rules), creating a new state ifnecessary. W em ake the state a nalstate if the subset contains a nal state of R ble e_{N} (Rules). The validity of this modi cation follow from Theorem ' 18 2 2 , and we see that som e pre x of w arrives at a nal state ofP (R ules) if and only if w is Set (R ules) reducible.

W hen nding the corresponding left-hand side of a nule inside w, we need never com pute beyond a nal state of P (R ules). A s a space-saving and tim e-saving m easure our im plem entation therefore replaces each nal state of P (R ules), as soon as it is found, by the em pty set of states. A s re-
 an em pty set of states, so there is no possibility of confusion.

Reading w can be quite slow ifm any states need to be added to P (R ules) while it is being read. H ow ever, reading w is fast when no states need to be built. In practice, fairly soon after a K nuth $\{B$ endix pass starts, reading becom es rapid, that is, linear w th a very sm all constant.
7.6 Finding the left-hand side in a word.W e retain the hypotheses of Section in in. N am ely, we have a two-variable autom aton R ules satisfying
 w ish to reduce it. In the previous section we showed how to nd the m inim al reducible pre $\mathrm{x} \mathrm{w}^{0}=\mathrm{x}_{1} \quad \mathrm{~m} \Delta \mathrm{w}$ w ith respect to the rules im plicitly speci ed by Rules. W e now wish to nd the minimalsu x of $w{ }^{0}$ which is a left-hand side of som e rule in $\operatorname{Set}(\mathrm{R}$ ules). The procedure is quite sim ilar to that of the previous section.

W e w ill now give the basic construction. H ow ever, the details w ill later need to be m odi ed so as to achieve greater com putationale ciency in nding the associated right-hand side, if this is necessary. O ur reason for inchuding the sim pler version is to lead the reader m ore gently and with m ore understanding to the actualm ore com plex version.

W e form the two-variable autom aton R ev (R ules), which we com bine w th Rev (SL2). The rst autom aton is, by hypothesis, partially determ inistic. If we determ inize the second autom aton, we obtain another PD FA. Figure ' show s the determ inization of Rev (SL2), where the subsets of states of S L 2 are explicitly recorded.

Figure 6. This PD FA arises by applying the accessible subset construction to Rev (SL2) in the case where the base alphabet has m ore than one elem ent. Each state is a subset of the state set of Rev (SL2) and nal states have a double border. This PD FA, when reading a pair (u;v) from right to left, keeps track of whether u is bonger than v or not, which it discovers im m ediately since padding sym bols if any m ust occur at the right-hand end of v. N ote that this autom aton is m inm ized.

We take the product of the two autom ata Rev (Rules) and Rev (SL2). A new state is a pair of old states. An arrow is a pair of arrows w th the
sam e label ($\mathrm{x} ; \mathrm{y}$). T he initial state in the product is the unique pair of initial states. A nal state in the product is a pair of nal states.

To form the one-variable non-determ inistic autom aton $R e v e v_{N}$ (LH S (R ules)) w ithout -arrow S , we use the sam e states and arrow s as in the product autom aton, but replace each label of the form ($x ; y$) in the product autom aton by the labelx. T he determ in istic one-variable autom aton $R e_{D}$ (LH S (R ules)) can then be constructed using the subset construction.

A s we have already wamed the reader, we use not the construction just described, but a related construction which we describe below. T he point of what we do m ay not becom e fully apparent until we get to in.
7.7 R eversing the rules. We rst describe a tw o-variablePDFA M which accepts exactly the reverse of each rule (;) ${ }^{+}$in Set(Rules) such that no
 W e assum e that we have a two-variable autom aton R ules satisfying the conditions of P aragraph

A state of M is a triple ($s ; i ; j$), where s is a state of $R e v$ (R ules), i 2 $\mathrm{f0} ; 1 ; 2 \mathrm{~g}$ and $\mathrm{j} 2 \mathrm{f}+; \mathrm{g}$. The intention is that in a state ($\mathrm{s} ; \mathrm{i} ; \mathrm{j}$), i represents the number of padded symbols occurring in any path of arrows from the in itial state of M to $(s ; j ; j)$. By 15.3 , the padded symbols m ust be of the form ($x ; \$$), where x 2 A . There are zero, one or tw o padded sym bols in any rule, and, if padded sym bols appear, they are at the right-hand end of a nule. This means that they are the rst sym bols read by M. The j com ponent is intended to represent whether an arrow is perm itted with source ($s ; i ; j$) and label a padded sym bol. W e take $j=+$ if a padded sym bol is perm itted, and $j=\quad$ if a padded sym bol is not perm ilted.
M has a unique initial state ($s_{0} ; 0 ;+$) where s_{0} is the unique in itial state of R ev (R ules). In addition, M has three nal states $\mathrm{f}_{0}=\left(\mathrm{s}_{0} ; 0 ;\right) ; \mathrm{f}_{1}=$ $\left(S_{0} ; 1 ;\right)$ and $f_{2}=\left(S_{0} ; 2 ;\right)$. We do not allow states of M of the form $\left(s_{0} ; i ; j\right)$, except for the initial state and the three nalstates just m entioned. W ew ill construct the arrow sofM to ensure that any path of arrow s accepted by M has rst com ponent equal to s_{0} for its initial state and its nal state and for no other states. (C om pare this w ith Lem main ain.)
T he follow ing conditions determ ine the arrow s in M.

1. E ach arrow of M is labelled with some $(x ; y)$, where $x 2 A$ and y $2 A^{+}$.
2. $(s ; i ; j)^{(x ; s)}$ is de ned ifand only if1) $t=s^{(x ; s)}$ is de ned in $R e v(R u l e s)$, and 2 a$)(\mathrm{s} ; \mathrm{i} ; \mathrm{j})=\left(\mathrm{s}_{0} ; 0 ;+\right)$, the initial state, or 2 b$)(i ; j)=(1 ;+)$. In case 2a) the target is ($\mathrm{t} \boldsymbol{1} \mathbf{1} ;+$), unless t is the nal state of R ev (R ules), in which case the target is $f_{1}=\left(s_{0} ; 1 ;\right)$. In case 2 b$)$, the target is
(t; 2 ;) , which m ay possibly be equal to f_{2}. The nal state f_{1} arises in case 2a) when we have a rule (x;), which m eans that the generator x of our group represents the trivial elem ent. The nal state f_{2} arises in case 2 b) when we have a rule ($\mathrm{x}_{1} \mathrm{x}_{2}$;). This kind of rule arises when x_{1} and x_{2} are inverse to each other, usually form al inverses.
3. For $i=0 ; 1 ; 2$, there are no arrow $s w$ th source f_{i}.
4. Suppose $(s ; i ; j)$ is not a nal state. Then $(s ; i ; j)^{(x ; y)}$ with $x ; y 2 A$ is de ned if and only if 1) $t=s^{(x ; y)}$ is de ned in $R e v(R u l e s)$, and 2) if $t=s_{0}$ then 2a) $i=0$ and $x>y$ or $2 b$) $i>0$ and $x y . W e$ then have $(s ; i ; j)^{(x ; y)}=(t ; i ;)$. This condition corresponds to the requirem ent that (u;v) can only be a rule if a) u and v have the sam e length and $u_{1}>v_{1}$, where these are the rst letters of u and v respectively, or b) if u is longer than v and $u_{1} v_{1}$.
7.8 Lem m a. The language accepted by M is the set of reversals of rules (;) ${ }^{+} 2$ Set(Rules) such that no proper su x and no proper pre x of (;) is in $\operatorname{Set}(\mathrm{Rules})$.

The proof of th is lem m a is much the sam e as the proofs of Lem m as'ī2' and 'īn. We therefore om it it.

U sing the above description of M , we now describe how to obtain a non-determ inistic one-variable autom aton $R \operatorname{ev}_{\mathrm{N}}$ (LHS (Rules)) from M in an analogous m anner to that used to obtain R blef (Rules) from $R u l e s{ }^{\infty}$ in Section ${ }_{1} \bar{i}_{1} . \mathrm{Rev}_{\mathrm{N}}$ (LHS (R ules)) accepts reversed lefthand sides of rules in Set (R ules) which do not have a proper pre x or a proper su x which is in Set(Rules). $R e_{\text {N }}$ (LH S (Rules)) has the sam e set of states as M and the sam e set of arrow s. H ow ever, the label ($\mathrm{x} ; \mathrm{y}$) with x 2 A and y $2 \mathrm{~A}^{+}$of an arrow in M is replaced by the label x in $R e_{N}$ (LH S (Rules)) The two autom ata, M and $\mathrm{Rev}_{\mathrm{N}}$ (LHS (Rules)), have the sam e initial state and the sam e nal states. H ence $R \operatorname{ev}_{\mathrm{N}}$ (LH S (R ules)) accepts all reversed left-hand sides ${ }^{R}$ of rules (;) whose reversals ($\left.\left.;\right)^{+}\right)^{R}$ are accepted by M.
7.9 The autom aton Q. The one-variable autom aton $Q(R$ ules) is form ed from R ev V_{N} (LH S (R ules)) by a m odi ed subset construction, using lazy evaluation. Q (Rules) is part of the one-variable PDFA $R \operatorname{ev}_{D}$ (LH S (Rules)), the determ inization of R ev (LH S (Rules)). A s we shall see, a word is accepted by Q (R ules) only if its reversal is the lefthand side of a rule in $\operatorname{Set}(\mathrm{R}$ ules) and no proper subw ond of has this property.
7.10 N ote. In order to construct states and arrows in Q (Rules), one only needs to have access to R ev (R ules), that is, neitherM norR ev V_{N} (LHS (Rules)) has to be explicitly constructed.
7.11 The algorithm for nding the left-hand side. Suppose we have a word $x_{1} \quad n$ \& A and we know it has a su x which is the left-hand side of some rule in Set(Rules). Suppose no proper pre x of $x_{1} \quad n$ kas this property. W e give an algorithm that nds the shortest such su x.
W e read the word from right to left, starting w ith x_{n}. W e assum e that $\mathrm{x}_{\mathrm{k}+1} \mathrm{X}_{\mathrm{k}+2} \quad \mathrm{n}$ kas been read so far and that as a result the current state of Q (Rules) is S_{k}, where S_{k} is a state of (R ules) (so S_{k} is a subset of the set of states of $\mathrm{Rev}_{\mathrm{N}}$ (LH S (Rules))).

W e start the algorithm w ith $\mathrm{k}=\mathrm{n}$ and the current state of Q (Rules) equal to the singleton $f\left(s_{0} ; 0 ;+\right) g$ whose only elem ent is the intial state of M, where s_{0} is the initial state of $R e v(R u l e s)$. Q (Rules) has three nal states, nam ely the singleton sets $f f_{i} g$ for $i=0 ; 1 ; 2$.
T he steps of the algorithm are as follow s :

1. R ecord the current state as the k-th entry in an array of size n, where n is the length of the input word.
2. If the current state is not a nalstate, go to Step state is a nal state, then stop. N ote that the initial state of Q (R ules) is not a nal state, so this step does not apply at the beginning of the algorithm. If the current state is a nal state, then the shortest su x of $x_{1} \quad n$ which is the left-hand side of a rule in $\operatorname{Set}(\mathrm{Rules})$ can then be proved to be $\mathrm{x}_{\mathrm{k}+1} \mathrm{x}_{\mathrm{k}+2} \quad \mathrm{n} \cdot \mathrm{x}$
3. If the arrow labelled x_{k} w ith source the current state is already dened, then rede ne the current state to be the target of this arrow and decrease k by one.
4. If the preceding step does not apply, we have to com pute the target T of the arrow labelled $\mathrm{x}_{\mathrm{k}} \mathrm{w}$ th source the current state S_{k}. W e do th is by looking for allarrow s labelled x_{k} in $R e_{\mathrm{N}}$ (LH S (R ules)) w ith source in S_{k}. W e de ne T to be the set of all targets of such arrow s. N ote that this set of targets cannot be em pty since we know that some su x of $\mathrm{x}_{1} \quad \mathrm{n}$ is accepted by $\mathrm{Rev}_{\mathrm{N}}$ (LHS (Rules)).
5. There are two m odi cations which we can m ake to the previous step.
(a) Firstly, if the set of targets contains som e nal state f_{j}, then we look for the largest value of $i=0 ; 1 ; 2$ such that $f_{i} 2 \mathrm{~T}$ and rede ne
T to be $\mathrm{ff}_{\mathrm{i}} \mathrm{g}$. W e then insert into Q (R ules) an arrow labelled x_{k} from S_{k} to this nalstate. Ifwe have found that T is a nalstate, we set $S_{k} \quad$ equal to T, decrease k by one, and go to Step 1
(b) Secondly, if, while calculating the set T , we nd that a state s of $R e v(R u l e s)$ occurs in m ore than one triple ($s ; i j j$), then we only include the triple w ith the largest value of i. For this to be well-de ned, we need to know that ($\mathrm{s} ; \mathrm{i} ;+$) and ($\mathrm{s} ; \mathrm{i} ;$) cannot both come up as potential elem ents of $\mathrm{T} \mid$ this is addressed in the proof of T heorem 'in 1 m odi cations.
6. H aving found T, see if it is equal to som e state T^{0} of Q (R ules) which has already been constructed. If so, de ne an arrow labelled x_{k} from S to T^{0}.
7. If T has not already been constructed, de ne a new state of Q (Rules) equal to T and de ne an arrow labelled x_{k} from S to T.
8. Set the current state equal to T and decrease k by one. Then go to Step
7.12 Theorem . Suppose $\mathrm{x}_{1} \quad \mathrm{n}$ kas a su x which is the lefthand side of a rule in Set(Rules) and suppose no pre x of $x \quad n$ kas this property. Then the above algorithm correctly com putes the shortest such su x.

Proof: W e rst show that the m odi cation in Step the sense that triples ($\mathrm{s} ; \mathrm{i}_{\mathbf{i}}+$) and ($\mathrm{s} ; \mathrm{i} ;$) cannotboth occurw hile calculating T. The reason for this is that the third com ponent can only be + if either none of $x_{1} \quad n$ kas been read, in which case the only relevant state is ($\mathrm{s}_{0} ; 0 ;+$), or else only x_{n} has been read, in which case the possible relevant states are $(f ; 1 ;),(s ; 1 ;+)$ with $s \notin$, and $(s ; 0 ;)$. So a state of the form ($s ; i ; j$) with a given s occurs at m ost once in a xed subset w th the maxim um possible value of i.

The e ect of Step 7 m ination occurs as soon as a nal state of $R e v(R u l e s)$ appears in a calculated triple. Since we know that $\mathrm{x}_{1} \mathrm{n}$ montains a lefthand side of a rule in $\operatorname{Set}(R$ ules) as a su x we need only show that the introduction of Step i7. 1 tom aton. This w ill be a consequence of T heorem ' $\overline{8} \mathbf{Z}_{2}^{\prime}$ ', as we now proceed to show.

C onsider a triple $t=(s ; i ; j)$ arising during the calculation of a subset T, and suppose that s is a non- nal state of $R e v$ (R ules). If $j=+$ then T cannot contain both ($\mathbf{s} ; \mathbf{0} ;+$) and $(s ; 1 ;+)$ and so t will not be rem oved from T as a result of Step 7.1 case $j=$. For $k=0 ; 1 ; 2$, let L_{k} A A be the language obtained by m aking ($s ; k ;$) the only initial state of M, and observe that there can be no padded arrow s in any path of arrow sfrom ($\mathrm{s} ; \mathrm{k}$;) to a nal state of M. N ow by considering the de nition of the non-padded transitions in M given in ī7. $\overline{7} . \overline{4}$, it is straightforw ard to see that $L_{0} \quad L_{1}=L_{2}$. Therefore, since $\mathrm{Rev}_{\mathrm{N}}$ (LHS (Rules)) has no -arrow S, we have just shown that the hypotheses of T heorem ' does not a ect the accepted language of Q (R ules).

Aswith P (R ules), reading a word into Q (R ules) from right to left can be slow in the initial stages of a K nuth \{B endix pass, but soon speeds up to being linear w ith a sm all constant.
7.13 Finding the right-hand side of a rule. W e retain the hypotheses ofSection 'S. welded and satis es various otherm inor conditions. W e are given a word w = $\mathrm{x}_{1} \quad \mathrm{n}$, xend we w ish to reduce it relative to the rules im plicitly contained in Rules. So farwe have located a lefthand side which is a subw ord of w. In this section we show how to construct the corresponding right-hand side.

W e rst go into m ore detailas to how we propose to reduce w . In outline we proceed as follow s.

7.14 Outline of the reduction process.

1. Feed w one sym bol at a tim e into the one-variable autom aton P (R ules) described in Section ${ }_{1} \mathbf{i}_{1}$, storing the history of states reached on a stack.
2. If a nal state is reached after some pre $\mathrm{x} u$ of w has been read by P (R ules), then u has som e su x which is a left-hand side. M oreover, this procedure nds the shortest such pre x .
3. Feed u from right to left into Q (Rules). A nal state is reached as soon as Q (R ules) has read the shortest su x of u such that there is a nule (;) $2 \operatorname{Set}(\mathrm{Rules}) . \mathrm{W}$ e now have $u=p$ and $w=p \mathrm{q}$, where p;q2 A , every proper pre x of p and every proper su x of is Set(R ules)-irreducible.
4. F ind , the sm allest word such that there is a rule (;) in S (see, $\overline{4} \cdot \bar{\prime}$). If there is no such rule in S, nd by a m ethod to be described in such that is the sm allest word such that (;) $2 \operatorname{Set}(\mathrm{R}$ ules).
5. If (;) is not already in S, insert it into the part of S called N ew.
6. Replace with in w and pop $j j$ levels o the stack so that the stack represents the history as it was im m ediately after feeding p into P (Rules).
7. Rede new to bep q. Restart at Step 1 as though p has just been read and the next letter to be read is the rst letter of . T he history stack enables one to do this.
N ote that other strategies m ight lead to nding rst som e left-hand side in w other than . M oreover, there m ay be several di erent right-hand sides with (;) $2 \operatorname{Set}(\mathrm{Rules})$. A rule (;) in $\operatorname{Set}(\mathrm{R} u$ les) gives rise to paths in Rules, SL2 and $\mathrm{Rev}_{\mathrm{D}}$ (SL2).W ew ill nd the path forwhich right-hand side is short-lex-least, given that the left-hand side is equal to .
Let $=y_{1} \quad \mathrm{~m} \cdot \mathrm{y}$ Recall that a state of the one-variable autom aton Q (R ules) used to nd is a set of states of the form ($\mathrm{s} ; \mathbf{i} ; j$), where s is a state of Rules;i2 f0;1;2g and j $2 \mathrm{f}+$; g . W hen nding we kept the history of states of Q (R ules) which were visited (see Step be the set of triples ($s ; i ; j$) com prising the state of $Q(R u l e s)$ after reading the word $y_{k+1} \quad m$ from right to left. $Q_{0}=f f_{i} g=f\left(s_{0} ; i_{j}\right) g$ where s_{0} is the unique initial and nal state of R ules, and i is the di erence in length between and the that we are looking for.
7.15 R ight-hand side routine. Inductively, after reading $\mathrm{y}_{1} \quad \mathrm{k}$ wew ill have determ ined $z_{1} \quad{ }_{k}$, the pre x of. Inductively we also have a triple $\left(s_{k} ; i_{k} ; j_{k}\right)$, where s is a state of Rules, i_{k} is 0 or 1 or 2 and j_{k} is + or . N ote that we alw ays have $m \quad k \quad i_{k}$.
8. If $m \quad k=i_{k}$, then we have found $=z_{1} \quad k$ and we stop. So from now on we assume that $m>i_{k}+k$. This m eans that the next sym bol $\left(y_{k+1} ; z_{k+1}\right)$ of (;) does not have a padding sym bol in its right-hand com ponent.
9. W e now try to $n d z_{k+1}$ by running through each elem ent $z 2 \mathrm{~A}$ in increasing order. Set z equal to the least elem ent of A.
10. If $k=0$ and $i_{0}=0$, then and $w i l l$ be of equal length, so the rst sym bol of (;) m ust be ($y_{1} ; z_{1}$), where $y_{1}>z_{1}$. So at this stage we
can prove that we have $y_{1}>z$, since we know that there m ust be som e right-hand side corresponding to our given lefthand side.
If $k=0$ and $i_{0}>0$, then the rst symbol of $(;)^{+}$is $\left(y_{1} ; z_{1}\right) w$ th $z_{1} 2 A$ and $y_{1} \in z_{1}$. If $k=0, i_{0}>0$ and $y_{1}=z$, we increase z to the next elem ent of A.
11. H ere we are trying out a particular value of z to see whether it allow s us to get further. W e look in Rules to see if $s_{k}^{\left(V_{k+1} ; z\right)}=s_{k+1}$ is de ned. If it is not de ned, we increase z to the next elem ent of A and go to Step 17.15
 which is the source of an arrow labelled ($\mathrm{y}_{\mathrm{k}+1} ; \mathrm{z}$) in the autom aton M , de ned in Section ī. i . ote that, by the proof of
---- elem ent whose rst coordinate is s_{k+1}. A s a result, the search can be quid.
12. If ($\mathrm{s}_{\mathrm{k}+1} ; \mathrm{i}_{\mathrm{k}+1} ; \mathrm{j}_{\mathrm{k}+1}$) is not found in Step 1 elem ent of A and go to Step 17.15
13. If $\left(s_{k+1} ; \dot{i}_{k+1} ; j_{k+1}\right)$ is found in Step 1 go to Step 1

The above algorithm willnot hang, because each triple ($\mathrm{s}_{\mathrm{k}} ; i_{k} ; j_{k}$) that we use does com e from a path of arrow sin M which starts at the initial state of M and endsat the rst possible nalstate ofM . Therefore allpossible righthand sides such that (;) $2 \operatorname{Set}(\mathrm{R} \mathrm{ules})$, are im plicitly com puted when we record the states ofQ (R ules) (see Step 1 our search, we will always nd the shortest possible ,with j j j jbeing equal to this constant value of i_{k}. Since we always look for z in increasing order, we are bound to nd the lexicographically least .

8 A m odi ed determ in ization algorithm

[Section]
In this section we discuss a usefulm odi cation to the usual determ inization algorithm fortuming an NFA into a DFA. Let N be an NFA. The usual proofthat N can be determ inized, is to form a new autom aton M each state of which is a subset of the set $S(\mathbb{N})$ of states of N such that is -closed. T hat is to say, if s $2 \quad S(\mathbb{N})$, then each -arrow with source s also has
target in . The initial state of M is the closure of the set of all initial states in N. Thee ect of an arrow labelled x 2 A on is to take each s 2 , apply x in all possible ways, and then to take the -closure of the subset of $S(\mathbb{N})$ so obtained. A nal state of M is any subset of $S(\mathbb{N})$ containing a nal state of N .

In practioe, to nd M, we start with the -closure of the set of initial states of N and proced inductively. If we have found a state s of M as a subset of the set of states of N , we x somex 2 A, and apply x in allpossible ways to all $t 2$ s, where t is a state of N. We then follow with arrows to form an -closed subset of states of N. This gives us the result of applying x to s. The m odi cation we wish to m ake to the usual subset construction is now explained and justi ed.
W ewill denote by M^{0} the m odi ed version of M thus obtained. M^{0} is a D FA which accepts the sam e language as M and N, but the structure of M^{0} m ight be sim pler than that of M.

Suppose p is a state of the NFA N. Let N_{p} be the same autom aton as N , except that the only initial state is p . Suppose p and q are distinct states of N and that $L\left(\mathbb{N}_{p}\right) \quad L\left(\mathbb{N}_{q}\right)$. Suppose also that the -closure of q does not include p. U nder these circum stances, we can m odify the subset construction as follow s. A s before, we start w ith the -closure of the set of initial states of N. W e follow the sam e procedure for de ning the arrow s and states of ${ }^{0}{ }^{0}$ as for M, except that, whenever we construct a subset containing both p and q, we change the subset by om itting p.
8.1 R equ ired conditions. The situation can be generalized. W e suppose that we have a partial order de ned on the set of states of N, such that, if $p<q$, then $L\left(\mathbb{N}_{p}\right) \quad L\left(\mathbb{N}_{q}\right) . W$ e assum e that if $p<q, p^{0}<q^{0}$ and p^{0} is contained in the -closure of q, then $p=q$.
W e follow the sam e procedure for de ning the arrow s and states of ${ }^{0}$ as for M, except that, whenever we construct a subset containing both p and q w th $p<q$, we change the subset by om itting p.
8.2 T heorem . U nder the above hypotheses, $L\left(M^{0}\right)=L(\mathbb{N})$.

Proof: C onsider a word w $=\mathrm{x}_{1} \quad \mathrm{n}$ स A which is accepted by N via the path of arrows in N
T his m eans that, for each $i w$ ith 0 i n, there is an x_{i}-arrow in N from u_{i} to v_{i} and u_{i+1} is in the closure of $v_{i} . M$ oreover v_{0} is an intial state and u_{n+1} is a nalstate.

O ur proofw ill be by induction on i. The i-th statem ent in the induction is that we have states $s_{0} ;::: ; s_{i}$ of M^{0} such that s_{0} is the initial state and, for each j w ith $0<j<i$, there is an arrow $x_{j}: S_{j 1}!S_{j}$ in $M{ }^{0}$, so that, after reading $x_{1} \quad{ }_{i} x_{1} M^{0}$ is in state s_{i}. O ur induction statem ent also says that we have a path of arrows in N
such that $u_{i}^{i} 2 s_{i}{ }_{1}$ and u_{n+1}^{i} is a nal state of N.
The induction starts with $i=1$ and s_{0} the initial state of ${ }^{0}$. We form s_{0} by taking all initial states of N, and taking their -closure. If this subset of states of N contains both p and $q w i t h p<q$, then p is om itted from s_{0}, the initial state of M^{0}. If $u_{1} z s_{0}$, then we must have $u_{1}=p$, w th $q 2 s_{0}$ and $p<q$. So qmust be a m axim alelem ent of $s_{0} w$ ith respect to the partial order. N ow $w 2 L\left(\mathbb{N}_{p}\right) \quad L\left(\mathbb{N}_{q}\right)$. It follows that we can take u_{1}^{1} in the closure of q and then de ne the rest of the path of arrow sfor the case $i=1$. Since $q 2 s_{0}$ and u_{1}^{1} is in the -closure of q, it is not the case that there is a q^{0} such that $u_{1}^{1}<q^{0} 2 s_{0}$, according to ' 18 . 1.1 . So $u_{1}^{1} 2 s_{0}$ (that is, it is not om ilted in our construction) and the induction can start.

N ow suppose the induction statem ent is true for i. W e prove it for $i+1$. we have a path of arrows
in N such that $u_{i}^{i} 2 s_{i}$ and u_{n+1}^{i} is a nal state of N. We de ne s_{i} from $s_{i} 1$ in the m anner described above. F irst we apply x_{i} in all possible ways to all states in s_{i}, obtaining v_{i}^{i} as one of the target states, and then take the -closure, obtaining u_{i+1}^{i} as one of the targets of an -arrow. F inally, if s, contains both p and q, w th $p<q$ then p is deleted from s_{i} before s_{i} becom es a state of ${ }^{0}$.

It now follows that either $u_{i+1}^{i} 2 s_{i}$, or else, for somep $<q, u_{i+1}^{i}=p$, $q 2 s_{i}$ and $p z s_{i}$. In the rst casewe de ne $u_{j}^{i+1}=u_{j}^{i}$ and $v_{j}^{i+1}=v_{j}^{i}$ for $j>i$ and the induction step is com plete. In the second case, using the fact that $x_{i+1} \quad n \mathbb{Z} L\left(\mathbb{N}_{p}\right) \quad L\left(\mathbb{N}_{q}\right)$, we see that we can take u_{i+1}^{i+1} in the -closure of q and then de ne the rest of the path of arrows. Since $q 2 s_{i}$ and u_{i+1}^{i+1} is in the -closure of $q, \overline{8} \cdot 1$ show s that it is not possible to have of $2 s_{i}$ and $u_{i+1}^{i+1}<q^{0}$. Therefore $u_{i+1}^{i+1} \sum_{i}^{-} s_{i}$. This com pletes the induction step.

At the end of the induction, M^{0} has read all of w and is in state s_{n}. W e also have the nal state $u_{n+1}^{n+1} 2 s_{n}$, so that w is accepted by $M{ }^{0}$.

C onversely, suppose w is accepted by M^{0}. It follow s easily by induction that if M^{0} is in state s_{i} after reading the pre $\mathrm{x}_{1} \quad{ }_{i}$ of w , then each state u $2 s_{i}$ can be reached from some intitial state of N by a sequence of arrow s
labelled successively $\mathrm{x}_{1} ;::: ; \mathrm{x}_{\mathrm{i}}$, possibly interspersed with -arrows. N ow s m ust contain a nal state, and so w is accepted by N.
8.3 Rem ark. The practicalusage of this theorem clearly depends on having an e cient way of determ ining when the condition $L\left(\mathbb{N}{ }_{p}\right) \quad L\left(\mathbb{N}_{q}\right)$ is satised. In this paper we have seen several exam ples of such tests which cost virtually nothing to im plem ent but have the potential to save an appreciable am ount ofboth space and time.

9 M iscellaneous details

In this section we present a number of points which did not seem to t elsew here in this paper.
9.1 A b orting. It is possible that we com e to a situation where the procedure is not noticing that certain words are reducible, even though the necessary inform ation to show that they are reducible is already in som e sense known. It is also possible that reduction is being carried out ine ciently, w ith several steps being necessary, whereas in som e sense the necessary inform ation to do the reduction in one step is already known. A n indication that our procedure is not proceeding as well as one hoped m ight be that W Di is constantly changing, with states being identi ed and consequent welding, or w ith new states or arrow s being added. In this case it m ight be advisable to abort the current K nuth $\{B$ endix pass.

To see if abortion is advisable, we can record statistics about how much W D i has changed since the beginning of a pass. If the changes seem excessive, then the pass is aborted. A convenient place for the program to decide to do this is just before another rule from N ew is exam ined at Step 15.

Ifan abort is decided upon then allstates and arrow sofW D i arem arked

9.2 P riority rules. A well-known phenom enon found when using K nuth \{ Bendix to look for autom atic structures, is that rules associated with nding new word di erences or new arrows in W Di should be used m ore intensively than other rules. Further aspects of the structure are then found m ore quidkly. This is not a theorem | it is observed behaviour seen on exam ples which happen to have been investigated.

A new rule associated w ith new word di erences or new arrow s in W D i is m arked as a priority nule. W hen a priority nule is m inim ized, the output is also m arked as a priority rule. If a priority rule is added to one of the lists

Considered, N ow or New , it is added to the front of the list, whereas rules are norm ally added to the end of the list. Just before deciding to add a priority rule to New , we check to see if the rule is m inim al. If so, we add it to the front of N ow instead of to the front of New .

W hen a rule is taken from N ow at Step $15 .-\overline{4}$ during the m ain loop, it is norm ally com pared w th all rules in Considered, looking for overlaps betw een lefthand sides. In the case of a priority rule, we com pare left-hand sides not only w th rules in Considered, but also w th all nules in Now. If a norm al nule (;) is taken from Now and com parison w ith a rule in Considered gives rise to a priority rule, then the rule (;) is also marked as a priority rule. It is then com pared w ith all rules in Now, once it has been com pared w ith all nules in Considered.

Treating som e rules as priority rules m akes little di erence unless there is a mechanism in place for aborting a K nuth \{Bendix pass when W Di has su ciently changed. If there is such a m echanism, it can m ake a big di erence.
9.3 Ane ciency consideration. D uring reduction we often have a state s in a two-variable autom aton and an x 2 A, and we are looking for an arrow labelled ($x ; y$) w th certain properties, where y $2 \mathrm{~A}^{+}$. It therefore m akes a big di erence if the arrow sw ith souroe s are arranged so that we have rapid access to arrow s labelled ($\mathrm{x} ; \mathrm{y}$) once x is given.
9.4 The present. M any of the ideas in this paper have been im plem ented in $C++$ by the second author. But some of the ideas in this paper only occurred to us while the paper was being w ritten, and the procedures and algorithm s presented in this paper seem to us to be substantialim provem ents on what hasbeen im plem ented so far. A n unfortunate result ofthis is that we are unable to present experim entaldata to back up our ideas, although m any of our ideas have been explored in depth w ith actualoode. O ur experim ental w ork hasbeen essential in enabling us to com e to the better algorithm swhich are presented here.
9.5 C om parison w ith kbm ag. Here we describe the di erences betw een our ideas and the ideas in D erek H olt's kbm ag program s 畝]. T hese program s try to com pute the short-lex-autom atic structure on a group. O ur program is a substitute only for the rst program in the kbm ag suite of program s.

In kbm ag, fast reduction is carried out using an autom aton w th a state for every pre x of every lefthand side. In our program we also keep every nule. H ow ever, the space required by a single character in our program is less by a constant multiple than the space required for a state in a nite
state autom aton. M oreover, com pression techniques could be used in our situation so that less space is used, whereas com pression is not available in the situation of kbm ag.

The other large ob jects in our set-up are the autom ata P (R ules [n]) dened in autom aton like P (R ules $[n]$), and it is possible to arrange that this autom aton is only constructed after the K nuth \{B endix process is halted. In kbm ag there is no analogue of our Q (R ules [$n]$). So these are advantages of kbm ag.

In klom ag, reduction is carried out extrem ely rapidly. H ow ever, as new rules are found, the autom aton in kbm ag needs to be updated, and this is quite tim e-consum ing. In our situation, updating the autom ata is quidk, but reduction is slower by a factor of around three, because the word has to be read into two or three di erent autom ata. M oreover we som etim es need to use the m ethod of Section '173' which is slower (by a constant factor) than sim ply reading a word into a determ in istic nite state autom aton.

In kbm ag, there is a heuristic, which seem s to be inevitably arbitrary, for deciding when to stop the K nuth $\{B$ endix process. In our situation there is a sensible heuristic, nam ely we stop if we nd R ules [$\mathrm{n}+1]=\mathrm{Rules}[\mathrm{n}]$.

In the case of kbm ag, there are occasional cases where the process of nding the set of word di erences oscillates inde nitely. T his is because redundant rules are som etim es unavoidably introduced into the set of rules, introducing unnecessary word di erences. Later redundant rules are elim inated and also the corresponding word di erences. This oscillation can continue inde nitely. Holt has tackled this problem in his program s by giving the user interactive m odes of running them.

In our case, the results in Section ', $\overline{-1}$, show that, given a short-lex-autom atic group, the autom aton R u les [n] w illeventually stabilize, asproved in 6 . 13 chen
 space.

W e believe that the m ain advantage of our approach for com puting autom atic structures will only becom e evident (if it exists at all) when looking at very large exam ples. W e plan to carry out a system atic exam ination of short-lex-autom atic groups generated by Je W eeks' SnapP ea program | see伃商] in order to carry out a system atic com parison.

R eferences

[1] A.V. A ho, R . Sethi, and J.D.U lm an. C om pilers, P rinciples, Techniques, and Tools. A ddison-W esley P ublishing C om pany, 1986.
[2] D B A.Epstein, J.N . Cannon, D F.Holt, S.V F.Levy, M S.Paterson, and W P. T hurston. W ord P rocessing in G roups. A K . Peters, N atick, M ass, 1992.
[3] D B A. Epstein, D F. Holt, and SE. Rees. The use of K nuth Bendix m ethods to solve the word problem in autom atic groups. Joumal of Sym bolic C om putation, 12:397\{414, 1991.
[4] D F. Holt. K BM AG (K nuth Bendix in M onoids and G roups), Version 2. Software package, 1996. A vailable by anonym ous fly from flop m aths.w arw ick ac.uk in directory people/dfh/kbm ag2.
[5] D F. H olt. The W arw ick A utom atic G roups Softw are. In G eom etrical and com putationalperspectives on in nite groups (M inneapolis, $M N$ and New B runsw ick, N J, 1994), volum e 25 of $\mathbb{I M}$ ACS Ser. D iscrete M ath, T heoret. C om put. Sci., pages 69\{82. Am er. M ath. Soc., P rovidence R I, 1996.
[6] D F.H olt and SE.Rees. Softw are for autom atic groups, isom onphism testing and nitely presented groups. In Geom etric group theory, Vol. 1 (Sussex 1991), volum e 181 of Londin M ath. Soc. Lecture N ote Ser., pages 120 \{125, C am bridge, 1993. C am bridge U nív. P ress.
[7] D E.K nuth and P B. Bendix. Sim plew ord problem sin universalalgebra. In J. Leech, editor, C om putational problem s in abstract algebras, pages 263\{297. P ergam on P ress, 1970.
[8] C. O D unlaing. In nite regular Thue system s. Theoret. C om put. Sci., 25:171\{192, 1983.
[9] M .O .R abin. Recursive unsolvability ofgroup theoretic problem s. A nnals of M athem atics, (2)67:172\{194,1958.
[10] C harles C . Sim s. C om putation w ith nitely presented groups. C am bridge U niversity P ress, 1994.
[11] JR.W eeks. SnapPea: a com puter program for studying hyperbolic 3 m anifolds. F reely available from www geom .um n .edu.

D BA.Epstein
M athem atics Institute, U niversity of W arw idk
C oventry CV 4 7A L, UK
dbae@maths.warwick.ac.uk

P J. Sanders
M athem atics Institute, U niversity of W arw ick
Coventry CV 4 7AL, UK
pjs@maths.warwick.ac.uk

[^0]: Funded by EPSRC grant no. GR/K 76597

