arXiv:math/0001035v1 [math.GR] 6 Jan 2000

K nuth {Bendix for groups
wih In nitely m any ruks

D avid Epstein Paul Sanders

Aprill2, 2024

K eyw ords: A utom atic G roups, K nuth{Bendix P rocedure, F Inite State A u-
tom ata, W ord R eduction
M athem atics Sub ect Classi cation: Primary 20F 10, 20{04, 68Q 42;
Secondary 03D 40, 20F 32.

A bstract

W e Introduce a new class of groups w ith solvable word problm ,
nam ely groupsspeci edby acon uent set of short-Jlex-reducing K nuth {
Bendix ruleswhich form a regular language. T his sim ultaneously gen—
eralizes short-lex-autom atic groups and groupsw ith a niee con uent
set of short-lex-reducing rules. W e describe a com puter program w hich
looks for such a set of rules in an arbitrary niely presented group.
Ourm ain theorem isthat our com puterprogram ndsthe sst ofrules,
if it exists, given enough tim e and space. (T his is an optim istic de—
scription of our resu]t| for the m ore pessin istic details, see the body
of the paper.)

The st of mules is embodied n a nite state autom aton in two
variables. A central feature of our program is an operation, which we
call welding, used to com bine existing rules w th new rules as they
are found. W elding can bede ned on arbitrary nite state autom ata,
and we Investigate this operation in abstract, proving that it can be
considered as a process w hich takes as input one reqular language and
outputs another regular language.

In ourprogram swe need to convert severalnon-determ inistic nite
state autom ata to determ Inistic versions acospting the sam e lJanguage.
W e show how to in prove som ew hat on the standard subset construc—
tion, due to special features in our case. W e axiom atize these special

Funded by EP SRC grant no. GR /K 76597

http://arxiv.org/abs/math/0001035v1

features, In the hope that these in provem ents can be used In other
app lications.

The Knuth{Bendix process nom ally goends m ost of is tine in
reduction, so its e ciency depends on doing reduction quickly. Stan—
dard data structures for doing this can becom e very large, ultin ately
Iin ting the set of presentations of groups which can be so analyzed.
W e are ablk to give a m ethod for rapid reduction using our much
an aller two variable autom aton, encoding the (usually n nie) requ—
lar Janguage of rules found so far. T In e taken for reduction in a given
group is a sn all constant tin es the tin e taken for reduction In the
best schem es known (see E]]), which is not too bad since we are re—
ducing w ith respect to an in nite set of rules, w hereas know n schem es
usea nie setofrules.

W e hope that the m ethod described here m ight lad to the com -
putation of autom atic structures in groups for which this is currently
nfeasble.

C ontents

To help readers nd their way around the nevitably com plex structure of
this paper, we start w ith a brief description of each section.

1. Introduction. This brie y sets som e of the background for the paper
and describbes the m otivation for thiswork.

2. Our class of groups in context. W e de ne the class of groups to
which this paper is devoted and prove various relations w ith related classes

of groups. G roups In our class satisfy ourm ain theoram (16.13C orrectness

ofm inim al short—ex reducing rules is regular, then our program succeeds in
nding the nite state autom aton which acospts these rules.

3. W elding. Here we describe one of the m ain new ideas in this paper,

nam ely welding. T his process can be applied to any nite state autom aton.

In our case it is the tool which enables us perform the apparently in pos—

sble task of generating an in nite sst of Knuth{Bendix ruls from a nie

s=t. W elding has good properties from the abstract Janguage point of view

features. Firstly, if an autom aton starts by accepting only pairs (u;v) such
that u = v In G, then the sam e is true after welding. Secondly, the welded
autom aton can encode in nitely m any distinct equalities, even ifthe original
only encoded a nitenumber. T hirdly, the welded autom aton isusually m uch
an aller than the originalautom aton. At the end ofthis section we show that
any group detem ned by a regular set of rules is nitely presented.

4. Standard K nuth{B endix. In this section, we describe the standard
K nuth {B endix process for string rew riting, In the orm in which it isnom ally
used to analyze nitely presented groups and m onoids. W e need this as a
background against which to describe ourm odi cations.
5. Our version of K nuth {Bendix. W e give a description of our K nuth {
Bendix procedure. W e describe critical pair analysis, m inin ization ofa rule
and give som e brief details of our m ethod of reduction using a two-variable
autom aton which encodes the rules.
6. Correctness of our K nuth {Bendix P rocedure. W e prove that our
Knuth{Bendix procedure does what we want i to do. The proof is not at
alleasy. In part the di culy arises from the fact that we have to not only
nd new mnules, but alo delete unwanted rules, the latter .n the interests
of com putational e ciency, or, indeed, com putational feasibility. O urm ain

cept, we have not seen elsew here its system atic use to understand the progress
of Knuth{Bendix with tim e. O ne hazard In program m Ing K nuth {Bendix is
that som e clever m anceuvre changes the T hue equivalence relation. T he key

whith carefully analyzes the e ect of various operations on Thue equiva—
lence. In fact it provides m ore precise control, enabling other hazards, such
as continual deletion and re-nsertion of the sam e rule, to be avolded. It is
also the m ost in portant step In proving ourm ain resul, 6.13C orrectness of
+ ____ourKnuth{Bendi P roceduretheoram .6.13. This says that if our program is
applied to a group de ned by a regular set of m inim al short-lex rules, then,
given su cient tin e and space, a nite state autom aton accepting exactly
these rules w ill eventually be constructed by our program , affer which it will
Joop inde nitely, reproducing the sam e nite state autom aton (pout requiring
a steadily increasing am ount of space for redundant inform ation).
7. Fast reduction. W e describe a surprisingly plasant aspect of our data
structures and procedures, nam ely that reduction w ith resoect to our prob—
ably In nite set of rules can be carried out very rapidly. G Iven a reducble
wordw,wecan ndarlk (;), such thatw contains asa subword, In a
tin e which is linear in the length ofw . Fast algorithm s in com puter science
are often achieved by using nite state autom ata, and the current situation
isan exam ple. W e explain how to construct the necessary autom ata and why
they work.
8. A modi ed detemm inization algorithm . Here we describe a m odi —
cation of the standard algorithm , to be found in every book about com put—
Ihg algorithm s, that determm hnizes a non-determm inistic nite state autom aton.
O ur version saves space as com pared w ith the standard one. It iswell suited

to our special situation. W e give axiom s which enable one to see when this
In proved algorithm can be us=d.

9. M iscellaneous details. A num ber ofm iscellaneous points are discussed.
TIn particular, we com pare our approach to that taken in kkm ag (see H)).

1 TIntroduction

W e give som e background to our paper, and describbe the class of groups of
Interest to us here.

A cekbrated result ofNovikov and Boone asserts that the word problem

for nitely presented groups is, in general, unsolvable. This m eans that a

nite presentation ofa group is known and hasbeen w ritten down explicitly,
w ith the property that there is no algorithm whose nput is a word In the
generators, and w hose output statesw hether or not the word istrivial. G iven
a presentation ofa group for which one is unabl to solve the word problam ,
can any help at allbe given by a com puter?

The answer is that som e help can be given w ith the kind of presentation
that arises naturally in the work ofm any m athem aticians, even though one
can form ally prove that there is no procedure that w illalways help.

T here are two general techniques for trying to detem ine, w ith the help
of a com puter, whether two words In a group are equal or not. O ne is the
Todd {C oxeter coset enum eration process and the other is the K nuth {Bendix
process. Todd-C oxeter is m ore adapted to nite groups which are not too
large. In this paper, we are m otivated by groups which arise in the study of
low dim ensional topology. In particular they are usually In nite groups, and
the num ber of words of length n rises exponentially w ith n. For this reason,
Todd{C oxeter is not much use in practice. W ell before Todd{C oxeter has
had tim e to work out the structure of a Jarge enough neighbourhood of the
dentity in the Caylky graph to be helpfii], the com puter is out of space.

O n the other hand, the K nuth {B endix process ism uch better adapted to
this task, and i has been used quite extensively, particularly by Sin s, for
exam ple In connection w ith com puter investigations into problem s related to
the Bumside problam . Tt has also been used to good e ect by Holt and Rees
In their autom ated searching for isom orphisn s and hom om orphisn sbetween
two given nitely presented groups (see [B]). In connection with searching
for a short—Jex-autom atic structure on a group, Hol was the st person
to realize that the Knuth{Bendix process m ight be the right direction to
choose (see B]) . Knuth{Bendix w illrun for ever on even the m ost lnnocuous
hyperbolic triangle groups, which are perfectly easy to understand. Hol's
successfiil plan was to use Knuth{Bendix for a certain am ount of tin e, de—

cided heurstically, and then to interrupt K nuth {Bendix and m ake a guess as
to the autom atic structure. O ne then uses axiom -checking, a part of auto-
m atic group theory (see B, Chapter 6]), to see whether the guess is correct.
If it isn't correct, the checking process w ill produce suggestions as to how to
In prove the guess. T hus, using the concept ofan autom atic group asam ech—
anian fPorbringing K nuth {Bendix to a halt hasbeen one ofthe philosophical
bases for the work done at W amw ick In this eld aln ost from the beginning.
In addition to the works already cited In thisparagraph, the readerm ay w ish
to Jook at [§]and [].

For a short-lex-autom atic group, a m inin al set of K nuth{Bendix rules

In this paper, we carry this philosophical approach fiirther, attem pting to
com pute this nite state m achine directly, and to carry out asmuch of the
K nuth {B endix process aspossible using only approxin ations to thism achine.

T hus, we describe a setup that can handk an in nite regular set ofK nuth {
Bendix rew rite rules. For our sstup to be e ective, we need to m ake ssv—
eral assum ptions. M ost im portant is the assum ption that we are dealing
with a group, rather than with a monoid. Secondly, our procedures are
perhaps unlkely to be of much help unless the group actually is short—lex—

constructing the nite state m achine which accepts the (unigque) con uent
st of short-lex m inim al rules describbing a group, if and only if this set of
rules is a regqular Janguage.

P revious com puter in plem entations ofthe sam idecision procedureto nd
the short-lex-autom atic structure on a group are essentially specializations of
the K nuth {Bendix procedure 1] to a string rew riting context together w ith
fast, but space-consum ing, autom aton-based m ethods of perform ing word
reduction relative to a nite set of shortJlex—reducing rew rite rules. Since
short-lex-autom aticity of a given nite presentation is, In general, undecid—
able, spacee cient approachesto the K nuth {B endix procedure are desirable.
Our new algorithm perform s a Knuth{Bendix type procedure relative to a
possbly in nie reqular set of short-lex-reducing rew rite rules, together w ith
a oom panion word reduction algorithm which hasbeen designed w ith space
considerations In m ind.

In standard Knuth{Bendix, there is a tension between tin e and space
when reducing words. Looking for a keft-hand side In a word can take a long
tin e, unless the keft-hand sides are carefillly arranged In a data structure that
traditionally takes a lot of space. O ur technique can do very rapid reduction
w ithout using an nordinate am ount of space (although, for other reasons,

we have not been able to save asmuch space as we originally hoped). This

W e would like to thank D erek Holt for m any conversations about this
proct, both in generaland In detail. H ishelp has, as alw ays, been generous
and useful.

2 Our class of groups in context

In this paper we study groups, together wih a nie ordered set ofm onoid

generators, w ith the property that their set of universally m inin al short—

kx rules is a regular language. In this section, we explain what this rather

daunting sentence m eans, and we set this class of groups in the context of

various other related classes, investigating which of these classes is included

In whith. In the next section, we will prove that groups In this class are
nitely presented.

Throughout we willwork with a group G generated by a xed nite set
A,and a xed nie st ofde ning relations. Fom ally, we are given a m ap
A ! G,butour language w ill som etim es (falsely) pretend that A isa subsst
0f G . The reader is urged to rem ain aware of the distinction, rem em bering
that, as a result of the insolubility of the word problam , it is not in general
possble to tellwhether the given map A ! G is nfctive. W e assume we
are given an nvolution :A ! A such that, oreach x 2 A, (x) represents
x 12 G.ByA wemean the set of words (strings) over A. Fomally a
word isa function f1;:::;ng! A,wheren 0.) Wealoowrite :A ! A
forthe orm alinversemap de ned by (% :::x) = (%) 110 (®).

W eassumewe aregiven a xed totalorderon A . Thisallow susto de ne
the shortlex orderon A asfllows. W e denoteby jijthe length ofu 2 A
Ifu;v2 A ,wesay that u < v if either 1j< Fjor u and v have the
sam e length and u com es before v In lexicographical order. The shortlex
representative ofg2 G isthesnallestu 2 A such that u representsg. This
is also called the shortex nomalform ofg. fu2 A ,wewriteu 2 G for
the elem ent 0of G which it represents. Ifu is the short-lex representative of
U, we say that u is in shortlex nomm al form .

Suppose we have G ;A) as above. Then there may or m ay not be an
algorithm that has a word u 2 A as input and as output the short—ex
representative ofu 2 G . The existence of such an algorithm is equivalent to
the solubility ofthe word problem f©rG , sihce there areonly a nite number
ofwords v such that v< u.

A natural attem pt to construct such an algorithm is to nd a st R
of replacam ent ruls, also known as Knuth{Bendix ruls. In this paper, a

replacem ent rule w illbe called sin ply a rulk, and we w ill restrict our attention
to rules of a rather specialkind. A ruk is a pair (u;v) with u > v G Iven
a rnuke (u;v), u is called the kfthand side and v the righthand side. The
dea of the algorithm is to start wih an aritrary word w over A and to
reduce it as follows: we change it to a snaller word by looking In w for
som e eft-hand side u of some rule (U;v) m R. W e then replace u by v in
w (this is called an elem entary reduction) and repeat the operation untilno
further elem entary reductions are possible (the repeated process is called a
reduction). Eventually the process must stop with an R -irreducibke word,
that is a word which contains no subword which is a left-hand side ofR .

2.1 Thueequivalence.G iven a sstofrulesR ,wewriteu ! g v ifthere is
an elem entary reduction from u to v, that is, if there arewords and over
A andaml (;)2 R such thatu = and v = . Thue equivalence
is the equivalence relation on A generated by elem entary reductions.

There is a multiplication n A given by concatenation. This induces a
m ultiplication on the set of T hue equivalence classes. W e w illwork w ith rules
where the set of equivalence classes is isom orphic to the group G .

By no means every set of rules can be used to nd the short—ex nom al
form ofa word constructively. W e now discuss the various properties that a
st of mules should have In order that reduction to an irreducilble always gives
the short—lex nom al form of a word. F irst we give the assum ptions that we
will always m ake about every set of mules we consider. W hen constructing a
new st ofrules, we w illalways ensure that these assum ptions are correct for
the new set.

2.2 Standard assum ptions about rules.

1. Condition] For each x 2 A, x: (x) is Thue equivalent to the trivial
word . The preceding condition is enough to ensure that the st of
T hue equivalence classes is a group. Ifr = s is a de ning relation for
G, then r isThue equivalent to s. T his ensures that the group of T hue
equivalence classes is a quotient of G .

2. Condition] If @;v) samlk ofR,thenu > vandu= v 2 G. This
ensures that the group of T hue equivalence classes is isom orphic to G .

2.3 Con uence. Condition] This property is one which we certainly de—
sire, but which is hard to achieve. G iven w, there m ay be di erent ways to
reduce w . For example we could ook n w for the rst subword that is a
Eft-hand side, or for the last subword, or just look for a kft-hand side which

is som e random subword ofw. W e say that R is con wuent if the result of
fully reducing w gives an irreducibble that is independent ofwhich elem entary
reductions were used.

24 Lemma. Lemma] If a sst R of ruks satis es the conditions of, 2.2
and 2.3 then the set of R —irreducibles is m apped bifctively to G and mulk
tiplication corresponds to concatenation followed by reduction. Under these
assum ptions, an R —irreducilblk is in short-kex nom al form , and conversely;
m oreover, each Thue equivakence class contains a unigue irreducibke.

Image n G . &t Pllow s that the nduced m ap from the set of irreducihbles to
G issurpctive. Suppose u and v are irreducibles such thatu = v2 G . Then
u: (v) = Lk .Therforeu:) isequalin the free group generated by A (W ith

(x) equated to the form al nverse of x, oreach x 2 A) to a word s which
is a product of form al conjigates of the de ning relators. Now u:) and
s reduce to the sam e word, using only reductions that replace x:), where
x 2 A, Dby the trivialword . By ConditioniZ21], s can be reduced to . It
ollow s from Condition 2.3 that u: (v)v can be reduced to v. T can also be
reduced to u, usihg Condition 221 again, and the fact that :A ! A isan
involution. Tt Hllow s from Condition 2.3 that u = v, as required.

T he description ofthe m ultiplication of irreducibles follow s from the fact
that multiplication In A is given by concatenation and the fact that the
mapA ! G isahomomormhisn ofm onoids.

Since reduction reduces the shortex order ofa word, a word In short—-lex
Jast nom al form must be R —irreducible. Conversly, if u is R -irreducible,
ket v be the short—lex nom al form ofu. Then v is also R <irreducible, aswe
have just pointed out, and u and v represent the sam e elem ent 0of G . Since
them ap from irreducblesto G is npctive, we deduce that u = v. T herefore
u is in short—lex nomm al form .

To show that each Thue equivalence class contains a unique irreducible,
we note that if there is an elem entary reduction ofu to v, then, In case of
con uence, any reduction of u gives the sam e answer as any reduction ofv.

2.5 Recursive sets of rules. [Condition] Another im portant property
(lacked by som e of the sets of rmules we discuss) is the condition that the st
of rnules be a recursive sst. A s opposed to the usual setup when discussing
rew rite system s, we do not require R to be a nie setofru]es| In fact, n
thispaperR w illnom ally be in nite. To say that R is recursive m eans that

there exists a Turing m achine which can decide whether or not a given pair
(u;v) belongsto R .

2.6 De nition. De niion]W e denote by U the st ofall muls of the fom
(u;v), whereu > vandu = v 2 G. U is called the universal set of ruks.
N ote that a word is U —irreducibl ifand only if it is in short—ex nomm alfom .

2

2. Lemm a. The existence of a set of rules R satisfying the conditions of
2.2,2.3 and 2.5 is equivalent to the solubility of the word probkm in G and

in this case U de ned in; 2.6 is such a set of rukes.

P roof: On the one hand, ifwe have such a sest R, then we can solre the word
problem by reduction| according to Lemma 24 a word w reduces to the
trivialword ifand only ifw = 1; .

On the other hand, if the word problem is solvable, then the st U of
D e nition 2.6 is recursive. T he various conditions on a set of rules ollow for
U.

U canbedi culttom anipulate, even fora very welkbehaved group G and
a nite ordered sst A of generators, and we therefore restrict our attention
to amudh an aller subset, nam ely the set of U-m Inim al rules, which we now
de ne.

2.8 De nition. De niion] Let R be a st of rulks for a group G wih
generatorsA . W esay thata rule (u;v) 2 R isR-m inim al ifv isR -irreducble
and if every proper subword ofu is R —irreduchble. 2

2.9 P roposition. [P roposition]

1. The set of U-m inim al rukes satis es the conditions off 22 and,2.3. In
particular they are con uent.

2.Let U;v) keaU-minimalrukand tu= u; :::Upsrandv= vy :::V,.
Then the Plowingmusthod: 0 r 2;ifn> 0,u; 6 vi; ifn> 0O,
then Uy, . 6 v,,; ifr= 0 andn > 0, then u; > vy; ifr= 2 andn > 0O,
then u; < vy andu, < @); ifr= 2andn = 0, then u; (k) and
U @).

3. The set of U-m inim al ruks is recursive if and only ifG has a solvabke
word probkm .

Proof: If w is U-reduchl, kt u be the shortest pre x of w which is U-
reducible. Then every subword ofu which does not contain the last ketter is
U -irreducible. Let v be the shortest su x of u which is U-reducble. Then
every proper subword of v is U —irreducible. Let s be the short—ex nom al
form forv. Then (v;s) isa U-mininalmul. Replachg v n w by s gives
an elam entary reduction by a U-m inin al rule. &t follow s that reduction of
w usihg only U-m inin al rules eventually gives us a U —irreduchble word, and
thism ust be the shortJex nom alfom ofw . T herefore the conditions of2 2
and 2.3 are satis ed by the set of U-m inin al rules.

W e now prove 2.92. Since u > v In the shortZex order, 1j 3 So
r O0.Ifr> 2,thenu= vVgivesrsetoU, ::iUp: = @)V :::vy . Therefore
Uy :::Upy » i3S Not In short—lex nom al form . Ik follow s that u, Uy, ISU -
reducible. Therefore (U;v) isnot U-m inin al. Sin ilar argum ents work for the
other cases. This com pltes the proof of2.97.

C learly U-m inin ality of a rule can be detected by a Turing m achine if
the word problm is solvable. Conversely, if the sst of U-m Inim al rules is
recursive, then the word problem can be solved by reduction using only U —
m Inin al rules.

Now we have a unigqueness resul for the sst ofm inin al rules.

2.10 Lemm a. Let R satisfy the conditions of 2.3 and 2.3. Suppose every
ruk of R isR-minimal. Then R is equalto the set of U-m inim al rules.

Proof: By Lemm a 2 4, the R -ireducibles are the sam e as the words in short—
lex nomal form . Let @;v) bea mule In R. Then v is R —irreducible and
therefore in short-lex nom al orm . A lso every proper subword of u is in
short—lex nom al form . Therefore (U;v) isIh U and isU-m inin al.

Conversly, suppose (U;Vv) isU-m Inim al. Then v is the shortJdex nom al
orm of U. By Lemma 24 ©r R, u must be R-reducbl. Every proper
subword of u is already In short—ex nom al form . It follow s that there is a
rnul @;w) in R. Sihce thismuk isR-m inim al, w is R <irreducible. T herefore
w is the shortJlex nom al form ofu. Ik follow s that v= w . T herefore every
Umhmalmlkeisih R.

W e are Interested In those pairs (G;A), where G isa group and A isan
ordered set of generators, such that the set of U-m inin al rules is not only
recursive, but is In fact reqular. W e now explain what we m ean by regular
In this context.

W e recallthat a subset of A iscalled regular if it isequalto L M), the
language acospted by som e nite state autom aton overA . (SeeD e nition 32,

10

where nite state autom ata are discussed.) W e need to form alize what it
m eans for an autom aton to accoept pairs of words over an alphabet A . If
the pair of words is (aldo;ocdc), then we have to pad the shorter of the two
words to m ake them the sam e length, regarding this pair as the word of
length four (@;c) b;c) o;d) ($;¢). In general, given an arbitrary pair of words
(u;v) 2 A A , we regard this instead as a word of pairs by adpining a
padding symbol $ to A and then \padding" the shorter of u and v so that
both words have the sam e length. W e obtain aword overA [£5g A [£$g.
The alphabet A [£$g is denoted A" and is called the padded extension of
A . The result of padding an arbitrary pair (u;v) is denoted @;v)" . A word
w2 @) @A") iscalled padded ifthereexistsu;v2 A withw = (u;v)*
(that is, at m ost one ofthe two com ponents ofw endsw ith a padding symbol
and there are no padding symbols In the m iddle ofa word).

A s=t R ofpairsofwords overA is called regular if the corresponding set
of padded words is a regular language over the product alphabet A* A* .,
W e say that R is acoespted by a twovariablke nite state autom aton over A .

211 Theorem . Let G e a group and Et A ke a nite set of generators,
clsaed under taking inverses. If G ;A) is short-lex autom atic, then the set of
U-m inim al rules is regular.

Having a nie con uent set of mules does not in ply short—ex autom atic.
A ocounterexam pk isgiven in [, page 118]. So the converse of this theorem
is not true.

Proof: Since we have a short-lex autom atic structure, the sst L of short—
lex nom al form s is a regular language. If x 2 A, the autom atic structure
Includes the mulktiplier M ,, which is a twovarable autom aton over A . The
language L M) is the st of pairs @;v), such that u;v 2 L and uxX = V.
It is not hard to construct from the union of the M , an autom aton whose
language P isthe sst of (u;v) such thatu=v2 G,u2 LA andv2 L.

Weknow that LA \AL)\ @ nL) isa regular lJanguage. C larly,
this is the set of keft-hand sides of U-m inin al rmules, since it is the st of
U reducble words such that each proper subword is U —irreducibl. The st
of pairs (u;v) 2 P, such that u is a keft-hand side ofa U-m ininal rule is
easily seen to be the set 0fallU -m Inin al rules.

2.12 Question. Supposs G ;A) hasa nite con uent sst R of shortlex
reducing rules which de ne G. Then i is easy to construct from this a

nite con uent set R ° of R “m inin al rules de ning G . The m ethod is to use
m inin ization, as describbed in 5.F. This set of rules is equal to the set of

Suppose now that G;A) has an In nite con uent sst R of short-lex-—
reducing rules de ning G, and this set is reqular. Is the st of U-m lnin al

, ____setsofrulestheoram 2.9, since R provides a solution to the word problem .
IfR containsallU-m Inin alrules, then the answer is easily seen to be yes.
The answer is not clear to us if R does not contain allm inin al rules. T here
is no loss of generality in making R an aller so that each proper subword
of each ¥ft-hand side is irreduchble. But we see no way of changhg R so
as to ensure that each right-hand side is irreducible, while m alntaining R’s

property of being regular.

2.13 Obfpctive. In this paper we present a procedure which, given a sst
of rules satisfying the conditions of 24, changes the set of ruks so that
i becom es \m ore con uent". M ore precisely, the set of words for which
all reductions give the sam e irreducible, and this irreducible is n short—ex
nom al form , ncreases wih time. Iffwe x attention on a sihglk word this
w ill eventually be Included in the set. However, in general, because of the
Insolubility of the word problem , it is not in general possible to know when
that tin e has been arrived at.

Fora group w here the set ofallU -m inin alrules (seeD e nition 2.8) isthe
st of all pairs acospted by a twovariablem Inin alPDFA M (these conospts
are de ned in 32), our procedure gives rise to M after a nite number of
steps.

For m any undecidabl problem s, there is a \onesided" solution. The
technical Janguage is that a certain set is recursively enum erable, but not
recursive. Forexam ple, considera xed group forwhich the word problem is
undecidabl. G iven a word w In the generators, if you are correctly nform ed
that w = 1lg, then this can be verdi ed by a Turing m achine. A 1l that you
have to do is to enum erate products of conjugates of the de ning relhtors,
reduce them In the free group on the generators, and see if you get w, also
reduced in the free group. Ifw represents the identity then you will prove
this sooner or later. If it’s not the identity, the process continues for ever.

W e know that there is no algorithm which has as Input a nite presen—
tation of a group and outputs whether the group is trivial or not (see []).
It follow s easily that there is no algorithm which has as nput a nie pre-
sentation and outputs either an F SA acospting the set of U -m inin alrules or
correctly answers T here is no such FSA .For, In the case of the trivialgroup,
the set of U-m inin alrules is nite| foreach elment x 2 A, we have the rule

x;) | and so it is certainly regular.

But the situation is even worse than this. W e do not even know of a

one-sided solution to the problem of whether the set of U-m Inin al rules is

12

regular. Ifthe st of U -m inin alrules is reqular, ourprocedure w ill eventually
produce a candidate w ith som e indication that it is correct, but we willnot
know for sure whether the answer is correct or incorrect.

W hat is at issue is whether there is an algorithm which has as its lnput
a regular set of short—lex rules for a group and outputs whether or not the
st of mules is con uent. For nite sets of rules the question of con uence is

ence question is, in general, undecidabl. E xam pls exhibiting undecidability
are given in R]. They are length-reducing rew riting system sR which are reg—
ular In a very strong sense: R contains only a nite number of right-hand
sides and for each right-hand side r, the s=t f1 : (Lr) 2 Rg is a regular
language. These exam pls are In the context of rew riting for m onoids. A s
faraswe know , there is no know n exam ple of undecidability ifwe add to the
hypothesis that the m onoid de ned by R is in fact a group.

In the special case where G ;A) is short—lex autom atic, there is a test for
con uence ofa set of rules satisfying the conditions of2 J, nam ely the axiom —
checking procedure descrived in theory n P] and carried out in practice in
D erek Holt’s kbm ag program s {4].

3 W elding

Bection]

In this section we start w ith an exam ple which m otivates the operation
of welding. W e then give a form alde nition, and prove that the operation
gives rise to a function from the set of regular languages to the sst of reqular
languages. W e then de ne the concspt of a rule autom aton| thisisa nie
state autom aton in two variables which can recognize when certain words in
the generators are equal in the associated group. W e show that a welded rule
autom aton is also a rule autom aton.

3.1 A motivating exam ple.W e will use the standard generators x, vy,
and their inverses X and Y for the fiee abelian group on two generators.
W e will In pose di erent orderings on this sst of four generators, and, as
described in 2.13, see what kind of con uent sets of rules em erge.

Consider the alphabet A = fx;X ;y;Ygwih the orderng x < X < y <
Y , and denote the identity ofA by .LetR be the rew riting system on A
de ned by the s=st ofrules

T&X;) x5); @Y7)i Yyr)i yxixy); X iXy); @ x;xY); Y X;XY)g:

13

It is straightforward to see that R isa con uent system .

W e now change the ordering of the set of generatorstox < y< X <Y
and correspondingly interchange the sides of the sixth rule getting X y;yX)
and an order reducing set ofrules. O nce again the rulesde ne the free abelian
group on two generators. But this tin e there can be no nie con uent st
of nules. To see this, we consider the set of words fxy"X :n 2 Ng. None of

these is In short-lex nom alform . By 2.4Con_ uencstheoram 2 4, each ofthese
words is reducbl relative to any con uent set of rules. O n the other hand,
each proper subword of one ofthe words xy"X is clearly in short—ex nom al
form and is therefore irreducible. It ollow s that a con uent sst of rulesm ust
contain each of the words xy"X as a kft-hand side. In this situation, the
w ill never tem inate, and the sam e is true for any m ethod ofw hich generates
only a nite number of rules at each step.

W ewillnow Introduce a new procedure, which we callwelding. This can
produce an in nie sst of rules from a nite sst of rules in a nie number
of steps. W elding is central to the m ain procedure of the com puter program
describbed in this paper.

F irst we need to give som e standard de nitions.

32 De nition. De niion] A nite state autom aton (@bbreviated FSA)
M over a nite alphabet A is a nie graph with directed edges and the

follow Ing additional properties. Each edge (called an arrow in this context)

is either labelled with an elem ent of A or is unlabelled. Unlabelled arrow s
are som etin es hbelled with , which stands for the empty word, and are
called -tansitions. T he vertices of the graph are called states. Som e of the
states are labelled as initial states and some as nal states. The language
L M) acoepted by M is the set of words over A which are traced out by

paths of arrow s which start at som e initial state and end at som e nalstate.
An FSA is said to be partdally determ inistic @bbreviated PDFA) if it has
no -transitions, if there is exactly one initial state and if, for each state s
and each x 2 A, there is at m ost one arrow from s wih labelx. An FSA

is said to be trim if, for each state s, there is a path of arrow s which starts
at an Initial state, and ends at a nal state, w ith s lying on the path. The
reversal ofa nite state autom aton isthe sam e graph w ith the sam e labelling,
but with each arrow reversed, wih each initial state changed to be a nal
state and each nalstate changed to be an niial state. A non-determ inistic
autom aton NFA is an autom aton wih -transitions and/or some states s
having m ore than one arrow from s having the sam e label 2

14

33 De nition. AnFSA iscalled welded if it ispartially determ inistic, trim
and has a partially determm inistic reversal. T hese conditions in ply that, given
X 2 A and a state t, there isat m ost one x-arrow w ith target t and also that
there is exactly one initial state and one nal state. 2

G Iven atrimn non-empty FSA M ,wecan form awelded autom aton from it
asfollows. G ven any -arrow (s; ;t),wem ay identify sw ih t. G iven distinct
Initial states s; and s,, we may dentify s; wih s,. Given distinct nal
states g and t, wemay dentify § with . G Iven distinct arrow s (s;x;14)
and (s;x;%), wemay dentify § wih t,. G Iven distinct arrow s (s;;%x;t) and
(s0;%;t), we may dentify s; with s,. Inm ediately after any identi cation
of two states, we change the set of arrow s accordingly, om itting any -arrow
from a state to itself. Since the num ber of states continually decreases, this
process m ust com e to an end, and at this point the autom aton is welded.

34 W elding in our exam ple. Let us see how this works on the exam —
pl given in 3.0. For the m om ent we won't try to justify the correctness of
our procedure, that is, that the new rules that welding produces are valid
rules; we will just carry out the procedure to show how it works. Justi ca—

W econsiderthermule r, = &y'X ;y"') Prsomen 2 N. The corresponding
padded word r; givesrisstoan (h + 3)-state PDFA M (1,) whose acospted
language consists sokly of the mule r,. Forn > 2 this PDFA is shown In

Figurei.

Figure 1.The PDFA M (r,) forn > 2.

Continuing the discussion of the ruls for a ft%e abelian group on two
generators, we de ne M , to be the dispint union M (r);:::;M (r,)g of

the collection of initial (nal) states for the various M (r;). Ifn > 1 then
W eldM ,) is isom orphic to the PDFA given in Figure 2, and the accepted
language of this PDFA is the set of mules fr; : 12 Ng. This is ndependent
ofn ifn > 1.

15

So in thisexam ple, afteronly two steps, the welding procedure providesus
with a PDFA whose accepted Janguage consists ofan in nite set of dentities
between words In the free abelian group. M oreover, by using this PDFA to
de ne a suitable reduction procedure, each of the words xy"X wih n 2 N
can be reduced to the short-lex nom al form .

For this group w ith the given ordering on the generators, it isnot hard to
show that by welding the origihal de ning rules for the group together w ith
the 4 nules f (xyX ;v); &y°X ;¥?); /X Y;X); (X 2Y;X ?)g, we obtain a PDFA
whose acospted Janguage is a con uent set of mules (provided we adjust the
autom aton to ensure that only padded pairs of words (u;v)" are acoepted,
wih u > v). Any reduction procedure using this in nite set of rules will
reduce any word to is short—lex nom al form .

The next theorem is a general result about the welding of nite state
autom ata which need have nothing to do w ith groups. It's a result which is
reassuring, but, logically, it is entirely unnecessary for understanding other
parts of this paper. R eaders pressed for tim e should skip it.

3.5 Theorem . Given a trim non-empty FSA M , all welded autom ata ob—
tained from it as above (ho m atter in what order the states and arrows are

identdi e&d to each other) are the sam e, exaspt that the nam es of the states
maylkedi erent. The autom aton Q thus obtained isam inimalPDFA and Q

depends only on the language L (M), up to changing the nam es of the states.

It follow s that welding can ke regarded as an operation on regular lJanguages,

independent of the autom aton used to encode them .

Proof: Foreach x 2 A, ¥t x ! be its form al inverse and kt A ! be the st

of these form al nverses. W e form from M an automaton over A [A * by

adpining an arrow ofthe om (;x !;s) for each arrow (s;x;t) of M , and

adpining an arrow (&; ;s) for each arrow (s; ;t) unless it’s already there.
W ealsoadpin (s1; ;9) ifs; and s, areeitherboth nitial statesorboth nal
states, unless these arrow s are already there. W e denote thisnew autom aton

by N . N hasthe same initialand nalstatesasM .

Figure 2.A PDFA isomomphictoW eldM ,);n > 1.

16

Let F be the firee group generated by A. W e de ne a relation on the
st of states of N by st if there is a path of arrows from s to t in N
whose label gives the identity element of ¥ . This is clearly an equivalence
relation. Let Q be the autom aton de ned as ollow s. Each state ofQ isone
of the equivalence classes above. T he unique Initial state of Q is the unique
equivalence class containing all initial states of N . The unigque nal state
of Q is the unigque equivalence class containing all nal states of N . Let S
be one equivalence class and T another, and ket x 2 A . W e have an arrow
x:5! T hQ ifthereisans2 Sandat2 T andan arrow x :s ! t
InM . &t iseasy to see that Q iswelded, and it follow s that it is a partial
determm inistic autom aton.

IfM starts out by being welded, then it iseasy to sesethat Q = M , up
to the nam ing of states.

Consider the identi cations of states and arrow s m ade during welding

(see the passage Pllow ing 33A" m ofivating exam pEtheorem 33). LetM =
step only one state w ith another state or deketing one arrow labelled x from a
state s to state t if there are several arrow s labelled x from s to t or deleting
one -arrow from a state to itself. Here My, the last autom aton in the list,
is a welded autom aton.

W e assign to each state s of M ; the set of all states of the origihal au-
tomaton M which are identi ed tomake s. A state gofQ M ;) is a sst of
states ofM ;, and this is a set of subsets of the state st ofM . By taking the
union, we can Instead regard g as a set of states of M . This loses som e of
the structure, but only an irrelevant part.

W ith this nterpretation, we see that the states ofQ M ;) are identical to
those ofQ M 41 1). M oreover, allarrows n Q M ;) are inherited from M via
M ;. & Pollow s that the autom aton Q M ;) is lndependent of i. So we have
Q=0Q0M)=QMy)= M. This shows that Q is Independent of the order
In which the identi cations are carried out. In fact Q can be characterized
as the lJargest welded quotient of M .

W e clain that every element of L Q) arises as Pllows, and that only

tupk ofelementsof LM), wherek 0.Now consider
WiW, ! :::w2k1w2k+1 2 F;

and wrte it in reduced fomm , that is, cancel ad pcent fom al nverse letters
wherever possbl. Ifthe result is in A , that is, if after cancellation there
are no nverse symbols, then tisin L Q).

To prove this clain , we proceed as follow s. Foreach state s ofM ,we x
apath ofarrowsp; mn M from an Iniial state to s and a path of arrow s ¢

17

from s toa nalstate. If s is an Iniial state, we de ne pg to be the trivial
path. If s isa nalstate, we de ne gs to be the trivial path.

Start with an arbitrary elementw 2 L Q). W emust show that w can be
produced In the way described above. Now w is the lJabelofa path ofarrow s
In Q, starting from the mnitial state ofQ and ending at the nalstate ofQ .
Recalling the de nition of a state 0ofQ , we can replace this path by a path
ofarrow s In N , which altemately traverses a path ofarrows in N labelled by
awordoverA [A ! [f gwhich reduces to the identity element in F, and
an arrow of N labelled by a etter in w. The path n N starts at an niial
state of N and ends at a nalstate ofN . W e w rite the path as a com posite
ofarrtowsu; n N .

Ifu; :s! tisanarmow nM ,wereplceitbyp,' .uiq)q . O therw ise,
ifthe inverss ofu; :s! tisan arrow ofM ,we replace u; by g qslujptl Pr.
W e consider the nverse ofan -arrow tobean -arrow . Othemwise sand t
are both initial states orboth nalstatesand u; isan -armmow and we leave
U; unaltered.

E ach expression w ithin parentheses in the preceding paragraph therefore
give etthersomew; 2 L M) (possbly em pty) or the form al inverse of such a
word. O utside these parentheses we obtain expressions ke , q'q, pp, ',
P& orq, 'p, . In the rst three cases, we om it the expressions. In the last
tw o cases, the expression represents eitherw; 2 L (M), or the fom al inverse
of such a word. The path starts at an niial state of N and endsat a nal
state. So, ifthe set of initial states isdispint from the sst of nalstates, then
the expression of w as a product In the free group F ofelements of L M)
and their form al inverses m ust have an odd num ber of factors. If the set of
nitial states m ects the set of nal states, then the trivialword is an elem ent
of L M), and we can use this to m ake sure that the num ber of factors is odd.
T his com pltes the clain In one direction.

Conversly, suppose we are given thew; 2 L M) as in the clain . Then
w; isthe labelon a path ofarrows in M from an initialstate to a nalstate.
By hserting armowsih N to ph initialstatesorto pin nalstates, we nd
thatwiw, ! :::w2k1w2k+1 isthe Iabelofa path ofarrows In N from an iniial
state to a nal state. An elem entary cancelltion in F corresponds to the
fact that two states of N give rise to the sam e state of Q . Carrying out all
the elem entary cancellations possibble, ifwe are left only w ith a word overa ,
we have de ned a path ofarrows In Q from the niialstate ofQ to the nal
state ofQ . So we have found an elem ent of L. (Q), as clain ed.

A welded autom aton ism inin al. For ket s and t be distinct states, and lt
u and v be words over A which kad from s and t respectively to the unique

nal state. Then u does not kad from t to the nal state and v does not
lead from s to the nalstate (othemw ise s and t would be equal). It follow s

18

that s and t rem ain distinct n the m Inin ized autom aton.

IfM isanonenpty trim FSA, we denote by W eldM) the PDFA ocb-
tained from i by welding. To compute W eldM) e ciently, we st add
\backward arrows" to M . That is, for each arrow (s;x;t) in M , including

-arrow s, we add the arrow (t;¥¢; s), where x° represents a backw ards version
ofx.W ealow add -arrowsto connect the initial states, and -arrow s to con—
nect the nalstates. W e then m ake use of a slightly m odi ed version of the
coincidence procedure of Sin s given in [I{, 4.6]. W hen this stops we have a
welded autom aton.

In practice, In the autom ata which we want to weld, backward arrow s
are needed in any case for som e algorithm s which we need. The procedure
describbed In the preceding paragraph therefore ts our needs particularly
well.

For the welding procedure to be used In a general K nuth{Bendix situ-
ation, we need to show that any rules obtained are valid identities in the
corresponding monoid. W e now show that if the monoid is a group (the
situation we are interested in), any rules obtained are valid identities.

3.6 De nition. De nition] Let A be a nie inverse closed st of m onoid
generators for a group G and, as before, denote In ages under the surgction
@") ! G by overscores. A ruk autom aton for G is a two-variable F SA
M = ;A" AY; ;F;S) togetherwith a function :S ! G satisfying
1.F;So6 ;.
2. Ifs isan nitialor nalstatethen y (8) = 1; .

3.Forany s;t2 S and (x;y) 2 AY AY wih (s; X;y);8) 2 we have
w® =%y 7.

4.Forany s;t2 Swih (s; ;£)2 wehave y (8)= u . 2

3.7 Exam ple. IfA isa nite Inverse closed set of m onoid generators for a
group G andr= @;v) 2 A A satis esU= Vthen,ash Figure L, writihg
r* asaword (u;;vy) A) 2 @Y AY) ,wecbtah an b+ 1)-state
rule automaton M (r) = (fsp;:::;8.9;A7 AY; ;fsyg;fs.g) forG where
the arrow s are given by

(Si7 @i 17Vvir1)) = 81,0 1 n 1:

The function = |y) assigning group elem ents to states is de ned nduc-
tively by (s9) = 1z and (sy) = U3 ' s)i Prl 1 n.Asusual, the
padding symbol is sent to 15 . The fact that U = VvV ensures that C ondition 2

of 3.6W elding I our exam pltheoram .3 .4 is satis ed. 2

3.8 Rem ark. For a twowariable FSA M which is a rmuk autom aton, the
PDFA P obtained by applying the subsst construction to the (hon-em pty) set
of inttial statesofM (and the setsthat arise), isalso a rulk autom aton forG,
wherethemap p isihduced from y . The factthatthism ap iswellde ned

and the fact that P is connected (oy construction).
The sam e rem ark applies to the m odi ed subsst construction described
in Section §. 2

3.9 Proposition. Let A kea nite inverse closed set of m onoid generators
for a group G and suppose thatM is a rule autom aton for G . Then

1. Every pair u;v) 2 L M) givesa valid identity u= v in G .
2.WeldM) isa ruk autom aton for G .

C onsequently every acoepted ruke (that is, an acoepted pair (u;v) such that
u> v) ofW eldM) isa valid identity in G .

Proof: Toprove3.91,ktr= @;v)2 A A bean acogpted rule ofM and
w rite the padded word @;Vv)" as (ui;vi) ,i4,). Then n the PDFA P
obtalned from M (@sih 3.8W elding In our exam plktheoram 3.3), there exists

ce)=ww ' T Wy T oralliwithO0 i n:

Condition 2 of 3.6W elding In our exam pletheorem 3.6 tellsusthat p (s,) =

e. It follow s that U3 L v L ,8nd therefore themule r isvalid n G .
To prove 2, we need only show that when any ofthe operations described

ton M , we continue to have a rule autom aton. This is obvious. The nal
statem ent is now inm ediate.

3.10 Corollary. Let A ke a nite inverse closed set of m onoid generators
for a group G and suppose that ry; i, 2 A A give valid identities

dentity in G .

20

is also a rule autom aton ©rG and so the resul ollow sby 3.9.

3.11 Rem ark. Given a rmuk automaton M for a group G, the map y
may not be Inpctive. In order to think of the m atter constructively, we
soecify the values of y by rpresenting them as words in the generators.
T he undecidability of the word problm in plies that the infectivity of
m Ight be in possibl to decide, though som etin es we are In a position to
know whether , is ingctive or not. Even if y is not Inctive, the rule
autom aton M can stillbeuseful for nding equalities n thegroup G . M m ay
not tell the whole truth, but it does tell nothing but the truth. H owever, if
M (8)= u @) and we can som ehow determ ne that this is the case, then we
can connect s to tby an -arrow, and we still have a rule autom aton. Ifwe
then weld, s and tw illbe identi ed. In thisway, w ith su cient investigation,
we can hope tom ake y infctive in particular cases, even though we know
that in generalthis is an in possbl task. 2

3.12 Theorem . Let G ke a group and Bt A be a nie set of generators,
closed under taking inverses. IfG is determ ined by a regular set of short-lex—
reducing ruks, then G is nitely presented.

Proof: LetM be the nite state autom aton acospting the rules In our regu—
lar sst. Then M can be given the structure of a rule autom aton, associating

each arrow (x;y) :s ! tinM givesrisetoarelation oftheform 4 () = X ' v ©)Y.

There are only a nite number of thess, and they can clkarly be com bined
to prove that u = v forany (u;v) acospted by M . Ik follow s that this nie
st of relators isa de ning st orG .

4 Standard K nuth{Bendix.

[Section]

W e recall the classical K nuth{Bendix procedure. Later we w ill explain
how ourproceduredi ers from it. W e continue to restrict to the short—lex case
and to groups. Suppose G is a group given by a nite sst of generators and
relators. W e de ne A to be the st of generators together w ith their form al
Inverses. O ur Initial set of mules consists ofallmules of the form x: (x);) for

21

x 2 A, togetherw ith allrules ofthe form (r;), where r varies over the nite
st of de ning relators forG .

A ffer running the K nuth{Bendix procedure which we are about to de—
scribe) or some tine, we willstillhave a nite sst R ofrules. Asalways, we
assum e that R satis es Conditions 2 2.

To test or con uence ofa nite set of rules, we need only do critical pair

......

Suppose R is not con uent. Let w be the short-lex last word over A
for which there are two di erent chains of elem entary reductions giving rise
to distinct irreducibles. Since w is shortest, it is easy to see that the st
elem entary reductions in the two chainsm ust overlp.

4.1 Criticalpairanalysis. A pairofrules (;; 1) and (»;) can overlap
In two possbl ways. First, a non-empty word zmay beasu xof ;= 52z
and a pre x of , = zs, (orvice versa). Second, , may be a subword of
(orvice versa) and wewrite ;= s; ,S;.

These cases are not dispint. In particular, if one of s; and s, is trivial
In the second case, it can equally wellbe treated under the rst casewih z
equaleitherto | orto .

42 First case of critical pair analysis. In the rst case, there aretwo
elem entary reductions ofu = s;zs,, namely to ;s and to s; ,. Further
reduction to irreducibles either gives the sam e irreducible for each ofthe two
com putations, or else gives us distinct irreducibles v and w . From Condi-
tions 2.2 we deduce that v and w represent the sam e elem ent of G . So, ifv
and w aredistinct, we augm ent R w ith the rule (v;w) ifw < vorwih w;v)
ifv < w . Clearly Conditions2 4 are m aintained.

Note that i is Important to allow (1; 1) = (»; 2) In the case just
discussed, provided there is a z which is both a proper su x and a proper
prexof 1= ,.

4.3 Second case of critical pair analysis. In the second case, there are
two elem entary reductionsofu= ;= s; 2S,,namely to ; and to s; ,s;.
If ; and s; ;s, reduce to distinct irreduchbles v and w, we augm ent R w ith
etther (v;w) orwih @ ;v), depending on whetherv> w orw > v.

44 Om itting rules. In practice, it is In portant to rem ove rules which
are redundant, aswellas to add rules which are essential. Om itting rules is
unnecessary In theory, provided that we have unlin ied tin e and space at our
disposal. In practice, if we don’t om it rules, we are liable to be overwheln ed
by unnecessary com putation. M oreover, nearly all program s In com puta—

22

tional group theory su er from excessive dem ands for space. Indeed this is
one of the reasons for developing the algorithm s and program s discussed in
this paper. So it is In portant to throw away inform ation that is not needed
and doesn’t help.

For this reason, In K nuth {Bendix program s one looks from tine to tin e
at each mule (;) to see if it can be om itted. If a proper subword of the
left-hand side can be reduced, then we are in the situation of'4.3. If the two
reductionsm entioned in 4 3 kead to the sam e irreducble, weom i (;) from
the set of mules. If the two reductions Jlead to di erent irreducibles, then we
augm ent the set of rules as descrbbed 1 43 and again omit (;). W e also
investigate whether the right-hand side ofa rule (;) isreducblk to °. If
so,wecan omit (;) from R and replace it with therule (; 9.

Tt is easy to see that such om issions do not change the T hue equivalence
classes. T heprocess ofanalyzing criticalpairsand augm enting ordin inishing
the rule sst whilem aintaining the conditions of2 J is called the K nuth{B endix
P rocess.

Ifthe K nuth {B endix process temm inates, every keft-hand side having been
checked against every keft-hand side In critical pair analysis w ithout any new
rule being added, we know that we have a nite con uent system of rules.
U sually it does not tem inate and it produces new rulesad in nitum .

45 De nition. Pe nition] It is In portant that the processbe fair. By this
we m ean that if you x your attention on two rules at any one tim e, then

either their left-hand sides must have already been, or m ust eventually be,
checked for overlaps; or one or both of them must eventually be om itted. If
the process is not fair, i m ight concentrate exclisively on one part of the
group: for exam ple, In the case of the product of two groups, the process
m ight pay attention only to one of the factors. 2

4.6 The Im it of the process. A s the Knuth{Bendix process proceeds,
R changes and the sst of R reducbles steadily increases. This is obvious
when we add a ke as in 44 and 4 3. It is also easy to see when we om it
a rule| we need only check that ifweomi (;) from R as mnidd, then
rem ains reducible.

Now Xkt us x a positive integer n. Eventually the set of reducibls of
length at m ost n stops increasing w ith tim e, and the set of irreducibles of
length at most n stops decreasing. Since the word problem is In general
hsoluble, we will in general not know for sure at any one tim e or for any

xed n whether the st of reducibles has stopped increasing. It may look
as though it has pem anently stabilized and then suddenly start increasing
again.

23

reductions of a given word of length at m ost n w ill give the sam e irreducble
(othemw ise a new rule would be added at som e tim e, creating one of m ore
new reducbles of length at most n). Tt follow s that if we take the Iim it of
the set of rules (the set of rules which appear at som e tin e and are never
subsequently om ited), then wehave a con uent set ofrules. W e deduce from

length at m ost n, any irreduchble of length at m ost n is in short—lex nom al
form . In fact, at this point, the st of rules w ith left-hand side of length at
most n coincides w ith the set of U-m ninalrules in U (de ned :n 2.6 and

2.9).

4.7 Knuth{Bendix pass.One procedure for carrying out the Knuth({
Bendix process is to divide the nite sst S of rules found so far into three
dispint subsets. The rst subset, called Considered, is the set of rules whose
Eft-hand sides have been com pared w ith each other and w ith them selves for
overlbps. The ssoond set of rules, called Now, is the set of rules waiing to
be com pared w ith those in Consderad. The third set, called New, consists
of those rules m ost recently found. Here we only sketch the process. Fuller
details of our m ore elaborate form of K nuth {Bendix are provided in 50 ur

T he K nuth {Bendix process prooeeds In phases, each ofwhich is called a
Knuth{Bendix pass. Each pass starts by looking at each rule in Considerad
and seeing whether it can be deleted as .n 4 4. Consideration of an existing
rule in Considered can Jead to a new rule, In which case the new rule isadded
to New.

Next,we Jook ateach rule r n New to see if it is can be om itted or replaced
by a better rule, a process which we callm inim ization. The details of our
m inin ization procedure willbe given in 5.4. If the m inin ization procedure
changes a rule, the old rulk is either deleted or m arked for future deletion.
The new rul is added to Now . Eventually New is em ptied.

W ethen look ateach rule in Now . Its keft-hand side iscom pared w ith itself
and w ith all the eft-hand sides of rules In Considered, looking for overlaps
asin 4J. Any new rules ound are added to New . Then r ismoved into
Considered. Eventually Now becom es em pty.

W e then proceed to the next pass.

5 Our version of K nuth{Bendix.

Bection]

24

In this section we consider a rew riting system which is the acospted lan-—
guage of a rule autom aton for some nitely presented group. W e call the
autom aton Rules. W e descrbe a Knuth{Bendix type algorithm for such
a system . In light of the undecidability results m entioned in 2.13, our ak-
gorithm does not provide a test for con uence. W e can however use our
procedure together w ith other procedures which handle short-Jlex-autom atic
groups, to prove con uence by an indirect route, provided the group is short—
lex-autom atic. D etails of the theory of how this is done can be found In R].
T he practical details are carried out In program s by D erek H olt| see 1.

W e w ill ntroduce the concept of Aut—reduction, that is, reduction using a
tw o-variable autom aton, which we callRules, encoding our possibbly in nie
st of rules. W e prove som e resuls about how reducibility m ay change w ith
tin e.

5.1 P ropertiesofthe rule autom aton. Them ost In portant data struc—
ture isa an alltwovariable PDFA which we callRules. Roughly soeaking,
this acoepts all the rules found so far. Ik has the follow Ing properties.

1. Rules isa trm rule autom aton.
2. Rules has one initial state and one nal state and they are equal.
3. Rules and its reversal R ev R ules) are both partially detem inistic.

4. Any arrow labelled (x;x), w ith either source or target the Iniial state,
has source equal to target. has source the initial state. Ifthis condition
isnot fi1l Iled, we can identify the source and target of the appropriate
x;x)-arrow s, and then weld. W ew illstillhave a rule autom aton . Later
on (see Lemmas7J and 7.3) we will show that (after any necessary
denti cations and welding) we can om it such arrow sw ithout loss, and,
In fact, wih a gain given by In proved com putationale ciency. Apart
from the passages proving these lemm as, we willassum e from now on
that there are no arrow s labelled (X;x) w ith source or target the Iniial
state ofRules.

The rst three conditions mmply that Rules is welded. Since Rules is
a rule autom aton, P roposition 3.9 show s that each accepted pair @;v) 2
L Rules) givesa vald dentity u= vin G.

52 The autom aton SL2. The autom aton Rules m ay accept pairs (u;v)

such that u is shorter than v. W e cannot consider such a pair as a rule and
0 we want to exclude . To this end we Introduce the autom aton SL2.

25

This is a ve state autom aton, depicted In Figure 3, which accepts pairs
u;v) 2 A A , such that u and v have no comm on pre X, u is short-lex—
greater than v and Jvj J1j JJ+ 2. By combining SL2 with Rules, we
obtain a reqular st of mules SetRules), which is possbly In nite, namely
L Rules) \ L (SL2). An autom aton acospting this set can be constructed
as follow s. Tts states are pairs (s;t), where s isa state of Rules and t is a
state of SL2. ksunigque initial state is the pair of initial states In Rules and
SL2.A nalstate is any state (s;t) such that both s and t are nal states.
Tts arrow s are labelled by X;y), wherex 2 A andy 2 A" . Such an arrow
corresoonds to a pairofarrow s, each Iabelled w ith (x;vy), the rst from Rules
and the sscond from SL2.

X
- d ;%) R + ;%) -t
1@ 4 5
®;y)8 ;
< yﬁ 3 ;%)

Figure 3. The autom aton SL2. Sold dots represent nalstates. Rom an Etters
Epresent abirary ktters fiom the alhabet A and the Ebels on the anows
hdicate multiplk anows. For exam pl, fiom state 2 to iself there is one armow
foreachparm A A.

5.3 Restrictionson relative lengths. T he follow Ing discussion is closely
FJj+ 2 needs som e explanation. The point is that if we have a rule wih
19> i+ 2, then wehave an equaliyu= vin G .W ewrte u = u%, where
X2 A.The fomalinverse X ofx isalso an elem ent ofA . W e therefore have
a pair of words @%vX) which represent equal elem ents in G . If our set of
rules were to contain such a ruk, then u = u% would reduce to vX x, and
this reduces to v, m aking the rule (u;v) redundant. T his leads to an obvious
technique for transform ing any rule we nd into a new and better rule w ith
¥j i I+ 2. Since we take this into acoount when constructing the
autom aton Rules, we are Justi ed in m aking the restriction.

T his analysis can be carried further. Letu = u; ai= uly, . = uu®

26

and ket v= vy r-fu; > vp, then the mule (u;v) can be replaced by the
better mule @%vu,,). Ifu, > u; ', then @;v) can be replaced by @%u, 'v).
W e do In fact carry out these steps when installing new rules. The extra
Inform ation could have been inclided in the FSA SL2. However, it seam s
that thiswould invole m ore com plicated coding at various points, probably
w ithout any gain In e ciency.

W e ocould consider the steps just described as an attem pt to force our
structures to de ne a st of rules which conform s to known properties (see

2.9Recursive sets of mukstheorem 2.9) of the set of U-m lnin al rules (e 2.6
for the de nition ofU). The most In portant reason for insisting on these
additional restrictions on our rules is to kesp down the size of our data

structures.

54 The basic structures. T he basic structures used In our procedure
are:

1. A two—variabl autom aton R ules satisfying the conditions Jaid down in
5.1. W hen we want to specify that we are working w ith the Rules au-
tom aton during the nth K nuth {Bendix pass (see'4.] for the de nition
of a Knuth{Bendix pass), we will use the notation Rulesh]. W e ex—
tract explicit rules from Rulesh]by taking elem ents of the Intersection
SetRulesh]) = L Rulesh]) \ L (SL2). The twovariabl autom aton
SL2 wasde ned in Section 57 and is depicted i F igure 3.

2. A nie st S of rules, which is the dispint union of several subsets of
rules : Consdered, Now, New and Dekte. One point of the ssparate
subsets is to avoid constantly doing the sam e critical pair analyses.
A nother point is to ensure that our K nuth {Bendix process is fair (see

D ekte list, rather than delkte them inm ediately, is to m ake reduction
m ore e cient. This w illbe explained further in 3823,

S will continually change, whilk Rules is constant during a K nuth{
Bendix pass. W e change R ules at the end of each K nuth {B endix pass.
W e will perform the K nuth{Bendix process, usinhg the rules in S for
critical pair analysis, as described i '4.1.

3. Considered is a subset of S such that each rul has already been com —
pared w ith each other rule In Considered, including w ith itself, to see
whether left-hand sides overlap. The consequent critical pair analysis
has also been carried out forpairs of mules n Consderad. Such rules do
not need to be com pared w ith each other again.

27

4. Now is a subsst of S (@m pty at the beginning of each K nuth {Bendix
pass) containing ruleswhich we plan to use during thispass to com pare
for overlaps with the rules n Considered, as in 4 4. These rulks are
m inin al or the current pass (see'5.7) and so0 should not be m inin ized
agan.

5. New isa subset of S containing new rulesw hich have been found during
the current pass, other than those which are output by them inin ization
routine (see 5.} for the m eaning of \m Inin ization"). Rules which are
output by the m inin ization routine are added to Now .

6. Dekte is a subset of S containing rules which are to be deleted at the
end of this pass.

7. The twovarabl autom aton W Di ocontains all the states and arrow s
of Rulesh], and possibly other states and arrow s. It satis es the con—
ditions of5.1. This autom aton is used to accum ulate appropriate new
rules which are output by the m Inin ization routine. A s rules are con—
sidered during the K nuth {Bendix pass, statesand arrowsofW Di are
m arked as needed. At the end of the pass, other states and arrow s are
ram oved, and W Di becom es the new R ules autom aton Ruleshh + 1].

8.A PDFA P Rules) omed from Rules by a certain subsst construc-
tion. This autom aton accepts words which are Autreducble, that is,
words which contain a left-hand side ofa rule In SetRules). The au—

, reductionsection.]) . M ore details of P Rules) are provided in 7 5.

____________________ [Sgia-

9. A PDFA Q Rules) which acosptsthe reversals of keft-hand sidesofrules
In Set(Rules). Thisisalso form ed from R ules by a subset construction
and is also used for rapid reduction. M ore details of Q Rules) are
provided i 77.9.

5.5 1Initialarrangem ents. Before describbing them ain K nuth {B endix pro—
cess, we explain how the data structures are nitially sst up. Let R be
the origihal sst of de ning relations together w ith special rules of the fom
(x: x);) which m ake the form alnverse (x) Into the actual inverse of x.

W e rew rite each relation of R In the form ofa relator, which we cyclically
reduce In the free group. W e assum e that each relator has the form 1: (r),
where land r areelements of A and (L;r) is acospted by SL2.

Foreach rulke (;r), hcluding the special mules x: x);), we fom a rulk
autom aton, as explained in 3.}, These autom ata are then welded together

28

to form the twowvariablk rule automaton W D1 satisfying the conditions of
5.0i. Each state and arrow of W Di ism arked asneeded. Each ofthese rules
is inserted Into New . Considered, Now and Dekte are initially em pty. Set
Rules[l]= WD1i

5.6 Themain loop | a K nuth{B endix pass. W enow describe the pro—
cedure followed during the course of a singlke K nuth {B endix pass.

A signi cant proportion of the tin e In a Knuth{Bendix pass is spent in
applying a procedure which we term m inim ization. Each rule encountered
during the pass is input (often after a delay) to thisprocedure and the output
is called a m inim al rule. T he details of this process are given in sections 5.7

1. At the begihning of a Knuth{Bendix pass, Now is empty. Ifn >

0, save space by dekting previously de ned autom ata P Rulesh]),
Q Ruleshh]) and Rulesih]. Incram ent n. The integer n records w hich
Knuth{Bendix pass we are currently working on.

2. Btep]Foreach ruk (;) In Constdersd, m ininize (;) as n'5.¥ and
handle the output rule (;; ;) asin’5.8. Thismaya ectSand W D i

3. BteplForeach muk (;) nNew,miinize (;) asin'5.7 and handle
the output as.n 5.8. Thismay a ect Sand W D i

Since mulesadded toNew duringm Inin ization are alw ays strictly sm aller
than the rule being m inin ized (see 5.10), it Hlow s that the process of
exam Ining rules n New does not continue Inde nitely. Asa resul, we
can be sure that our process is ir (see 4 5).

4. Foreachruke (;) nNow:

(@) Delte the rule from Now and add it to Considered.
) Btep]Foreach rmule (1; ;) in Consider=d:

Look for overlaps between and ;. That is we have
to nd each su x of whith isapre x of ; and each
su xof ; whith isapre xof . Then Autreduce In two
di erent ways as .n 4 J, cbtaining a pair of words @;v)
wihu v. Roughly speaking, Aut+eduction m eans the
use of rules In SetRules). M ore precision is provided in
510) Ifu > v, (u;v) is inserted into New, unlss i is
already in S.

29

Note that wemay have to allow = ; In order to deal
w ith the case where two di erent rules have the sam e left—
hand side. In this cass, both the pre x and su x ofboth
left-hand sides isequalto = ;.

Wih WDi in its present form, delete from WDi all arrows and
states which are not m arked asneeded. Copy W Di Into Rulesh + 1]
and m ark allarrow s and statesof W D1 as not needed.

6. D ekte the rules In D ekte.

7. This ends the description of a Knuth{Bendix pass. Now we decide
w hether to tem inate the Knuth{Bendix process. Since we know of
no procedure to decide con uence of an in nie system of ruls (n—
deed, it is probably undecidable), this decision is taken on heuristic
grounds. In our context, a decision to termm inate could be taken sim -
ply on the groundsthat W D1 and Rulesh] have the sam e states and
arrow s. In other words, no new word-di erences or arrow s between
word-di erences have been found or dekted during this pass. If the
K nuth {Bendix process is not tem inated, go to 5.6 1.

5.7De nition. De nition]W e now provide the details ofthem inin ization
routine. This processes a rule S0 as to create from i a m Inimal rule (see

isde ned using the current set of rules. Since the st ofrules is changing, this
isa bi di culk to pin down. So instead we m ake the follow ing de nition,

which ism oreprecise, though the underlying concept isthe sam e. Let (u;v) 2

A A and ktu= u pand v= v qr Where uj;vy 2 AL W e say
that @;v) saminimalruk ifué v,u= vin G and the follow ing procedure
does not change (u;v). The procedure is called the m inim ization routine.
W e always start the m inim ization routine with u > v, though this condition
isnot necessarily m aintained asu and v change during the routine. H ere the
m eaning of a \m inin al rule" changes w ith tin e: a rule m ay be m inin al at
one tim e and no longerm nin alat a Jater tim e.

1. Autreduce (that is, reduce usihg the rules of Rules) the maximal
pProper pre x U; p» wofu obtaining u’. Reduction may result in

to uy, and go to Step 5.7 3.

30

2. Autreduce the m axin al proper su x U » p ofu obtaining u®. Re-
duction may result in new rules being added to New . Replace u by
uluw.

3. Ifu has changed since the original nput to the m inin ization routine,
then Aut—reduce u as explained in7.14. Thism ay result in rules being

added to New as descrdbed n'7.14 5.
4. [Step] Btep] Autzreduce v.
5. Ifv > u, interchange u and v.

6. If @ p> g+ 2o0r) ifp= g+ 2,g> 0Oandu; > vy or (c) ifp= 2,
g= O0andu; > (), eplace @;v) by 11, wvi 4 @) and
repeat this step untilwe can go no further.

7. Ifp= g+ 2andu, > (), rplace @;v) by U prufa)vy Qv

8.Ifg> 0 and u; = v;, cancel the st ketter from u and from v and

repeat this step.
9. Ifg> 0 and u, = vy, cancel the last letter from u and from v and
repeat this step.
10. If (u;v) has changed since the Jast tin e Step 5.7 4 was executed, go to
Step 5.74.
11. Output @u;v) and stop. 2
N ote that the output could be (;), which m eans that the rule is redun—

dant. O themw ise we have output (u;v) wih u > v. Note that them inin iza—
tion procedure keeps on decreasing (u;v) In the ordering given by using st
the short-lex-ordering on u and then, In case of a tie, the short-Jlex-ordering
on v. Since this is a weltordering, the m inin ization procedure has to stop.

5.8 H andlingm inim ization output. Suppose the Input tom inin ization
is(;)and itsoutputis (15 1)-

1. (1; 1) 6 (;), hoorporate by welding) (;; 1) into the language
acospted by WDi . Insert (;; 1) Into Now if it was not already in
Now or Considered. Rem ove it from New, if it was there previously.

2. If som e proper subword of is Autreducble, then this will be dis-
covered during the rst few steps of m inim ization. ((1; 1) = (;)

31

cass, dekete (;) from S Inm ediately the m inin ization procedure is
otherw ise com plete.

3. If, at the tine of m Inim ization, all proper subwords of were Aut-
mreducbl and if (;) wasnotm ininal, move (;) to theDekte list.
The reason for this possbly surprising policy of not deleting Inm edi-
ately isthat further reduction during thispassm ay once again produce

as a keft-hand side by the m ethods of it and 77.6. W e want to avoid
the work Involved In nding the right-hand side by the m ethod which
will be explained in 7.13. For this, we need to have a rule in S with

left-hand side equalto | seei.4 3.

5.9 D etailson the structure of W Di .AtthebegihningofStep5.635,
each state s of W Di isassociated to a word wy 2 A which is irreduchble
w ith repectto SetRulesh]). W D1 isa rule autom aton: the rule autom aton
structure isgiven by associating theelem entw, 2 G to the state s. W henever
aminimal rule r is encountered during the nth pass, it is adpined to the
acospted language of W D1 by welding and the corresponding states and
arrow s are m arked as needed. State labels are calculated as and when new
states and arrow s are added toW D i

Attheend ofthe nth Knuth{Bendix pass,W Di isan autom aton which
represents the word-di erences and arrow s between them encountered dur-
Ing that pass. At this stage the word attached to each state is irreducble
w ith respect to the rules in Set R ules]) but not necessarily w ith respect to
the rules in plicitly contained n W Di . Before starting the next pass, we
Autreduce the state Bbelsof WD1i wih respect to Set@W Di). IEW D1
now contains distinct states labelled by the sam e word we connect them by
epsilon arrows and replace WDi by W eldW Di). W e then repeat this
proocedure until all states are labelled by distinct words which are irreducible
w ith respect to SetW D i). Ifduring this procedure a state or arrow m arked
as needed is identi ed with another which may or m ay not be m arked as
needed, the resulting state or arrow ism arked as needed.

5.10 Autreduction and inserting rules.G iven a word w, we look for
an Autreducbl subword such that all proper subwords of are Aut—

w ill describe how to do this quickly, but, at the m om ent, the reader can
Just think of a non-determ inistic search in the autom aton giving the short-
lex rules recognized by Rules. Having found a reducble subword ofw,
w ith no reduchble subword, we do not autom atically use the corresponding

32

right-hand side , found from the exploration of Rules, because this naive
approach is com putationally Ine cient. Instead we look in S to see if there
isarl (;). Ifthere is such a mul, then we can nd it quikly given ,
and we proceed w ith our reduction, replacing the subword inw with

Tt may however tum out that we can nd an Autreducble subword of
w , w ith no Autreducble subwords, and yet there isno rule ofthe form (;)
In S. In this cass, we have to spend tine nding such a rule in SetRules).
O nce found, we In m ediately Insert it nto S, otherw ise the logic ofthe K nuth {
Bendix procedure can go w rong.

In thisway, reduction ofa single word can result in the insertion of several
new rules into S.

It follow s from the above description that the Aut-reduchbility of a word
w depends only on Rules. Since Rules does not change during a Knuth{
Bendix pass, exactly the sam e subset of A w illbe Aut—+educble throughout
such a pass. However, because we m ay use ruls In the changing set S, the
result of Autreduction m ay change during a pass.

A nother, m ore conventional, source of rules to insert nto S com e from

M inin ization also resuls In rules being added to S, both directly, as the
output of them inin ization procedure, but also indirectly because m inin iza—
tion uses reduction, and, aswe w ill see in 7 .13. reduction can add rulesto S.
It is In portant to note that any rules added to S during the m inin ization of
amnl (;)arestrictly analler than (;), ifwe order such pairsby using

5.11 D elting rules.Delktion of rules happens only at the end of each
m Inin ization step, and at the end of each pass, when rulesm arked for dele—
tion are actually dekted. During a Knuth{Bendix pass, dektion does not
occur after the beginning of Step 5.6 4. Suppose that the output from m Ini-
mizationof (;)2 Sis (15 1)-

1. Case] Ifevery proper subword of isAut-irreduchble, then ; isanon-—
trivialsubword of . This follow sby going through the successive steps

These change and ,whikemaintaining the inequality > . In par
ticular ;> j,sothat 16 .If(1; 1)6 (;),thenwedekte (;)
after a delay. The m echanian is to m ark it for dektion by m oving it
to the D ekte list and actually delete it only at the end of the current
Knuth{Bendix pass (Step'5.6.8).

33

2. Case] If som e proper subword of is reduchble, then (;) isnme-
diately deleted from S at Step 5.82 at the end of the m inin ization
procedure. Aut-reducibbility of som e proper subword of is discovered
at Step 5.7 or572.)

512 Lemm a. Suppose that, r somen 2 N, thereisa ke (;) 2 S
during the n-th K nuth{B endix pass, before the beginning of Step 5.6.4. Then
there is a non—trivialsulbword of suchthatsome ruke (;) isoutput from
som e instance of the m inim ization procedure during the n-th pass. If = ,
then . Theruke (;) isa ruk In S at the beginning ofthe h + 1)-st
pass and is acoepted by Rulesh + 11.

P roof: By exam ining 5.6, we see that (;) must be the put to the m in—
In ization routine at som e tim e during the n-th pass. W e check the four
possibilities, nam ely that it is in Considered, Now , New orD ekte, one by one.
If i is in Dekte, it m ust have been the Input to the m inin ization procedure
at som e earlier stage during the n-th pass.)

We st dealwih the case where som e proper subword of is Aut-
reducible during the n-th pass. D uring the rst three steps ofm inin ization

subword of isfound, wih the property that all the proper subw ords of
are Aut-irreducible. M inin ization then either nds a rule ofthe orm (;)
already In S, or such a rul is added to New by the reduction prooess| SEe
7145, I any case, i will efther be m inin ized during this pass, or i has
already been m inin ized (@nd possibly m oved to the D ekte list.
Atthemoment when (;) ism Inin ized during the n-th pass, we must

with input (;) gives the required rule. ; isa subword of and isa
proper subword of

A tematively, allproper subwords of are Aut-rreducible during the n—
th pass, In which case we st (;) to be the output from m inin ization of

(7).ByoSldlld, isanontrivialsubwordof .If = ,then

513 Lemm a. Suppose that, r somen 2 N, there isa ke (;) 2 S
during the n—th K nuth{Bendix pass, after the beginning of Step 5.6.4. Then

there is a non—trivialsulbword of suchthatsome ruke (;) isoutput from
som e instance of the m inim ization procedure during the (n + 1)-st pass. If
= , then

34

Proof: If (;) isin theDekte list, then it must have been nput to them ini-

m ization procedure at som e earlier tin e during then-th pass. By p.11.2D elett

h + 1)-st pass.
If (;) isnoton theDekte list, then it must be in S at the beginning of

T he follow ing resul is often applied with w =

5.14 P roposition. Letw 2 A ke a word which contains the keft-hand side

ofa ruk (;) Inputto the m inin ization routine during the n-th K nuth{
Bendix pass. Then, form n, w contains the kefi-hand side of a rule which
is input to the m inim ization procedure during the m -th K nuth{B endix pass.
M oreover w is Autreducibke form > n.

Proof: W e assum e Inductively that ifm > n then w contains a subword
such that a ruke of the form (;) is Input to the m nin ization procedure
during the m 1)-st pass. Since m Inim ization happens only before the

such that isa non-trivialsubword of .M oreover, (;) ism inin alduring
the (m 1)-stpassand is contained in S at the beginning of the m -th pass.
Therefore (;) isinput to them nim ization procedure during them -th pass,
as required.

Therl (;) iswelded nto W D1 durng the m 1)-st pass and is
therefore acospted by Rulesin]. It ollow sthat w is Aut+educible during the
m -th pass. Inductively this is true forallm > n.

6 Correctness of our Knuth{Bendix P roce-
dure

In this section we w illprove that the procedure set out in Section § doesw hat
we expect i to do. O ne hazard In program m ing K nuth {Bendix is that som e
Seem Ingly clever m anoeuvre changes the T hue equivalence relation. T he key

35

which carefully analyzes the e ect of our various operations on T hue equiv—
alence. In fact it provides m ore precise control, enabling other hazards, such
as continual deletion and re—insertion of the sam e rule, to be avoided. It is

also the m ost in portant step in proving our m ain resul, 6.13C orrectness

is applied to a group de ned by a regular set of m inin al rules, then, given
su cient tine and space, a nite state autom aton accepting exactly these
rules w illeventually be constructed by our program , after w hich the program
w il loop Inde nitely, repeatedly reproducing the sam e nite state autom aton
(out requiring a steadily Increasing am ount of space for redundant inform a-
tion).

6.1 De nition. De nidon] For a discrete tine t, we denote by S () the
rules in S at tine t in our Knuth| Bendix procedure. W e take t to be the
num ber of elem entary steps since the start of the program , assum ing the
program isexpressed in som e sort of pssudocode. Any other sin ilarm easure
oftim e would do equally well. 5

6.2 De nition. A quintuple (;$;s; ;), wheretisa tine, and s, s,

and are elements of A , is called an elmentary S (t)—reduction u ! g v
from utovif(;)isamkenSkt,u=g s,andv=s S.Wecall(;)
the ruk associated to the elm entary r=duction. 2

W e now de ne them ain technical toolthat we willuse In this section.

6.3 De nition. Lett 0. By a timet Thue path between two words w;,
andw,,wemean a nie ssquence ofelam entary S (t)-reductions and nverses
of elem entary S (t)-reductions connecting w; to w,, such that none of the
rules associated to the elem entary reductions isIn Dekte at tine t. W e talk
of the words which are the source or target of these elem entary reductions
as nodes. The path is considered as having a direction from w; tow,. The
elem entary reductions in our path willbe consistent w ith this direction and
w ill be called rightward elem entary reductions. The Inverses of elem entary
reductions In our path will be In the opposite direction and w ill be called
Eflward elem entary reductions. 2

A 1l our Insertions and deltions of rules have been organized so that the
follow Ing result holds.

6.4 P roposition. LetlA=Rile the nite presentation of a group G at the
start of the K nuth{B endix process. Then the group de ned by subfcting the
free group generated by A to all elations ofthe form = as (;) varies
over S (t) isatalltim es t isom orphic to G w ith the isom orphism lkeing inducsd
by the unchangingmap A ! G.

36

6.5 Proposition. Lett 0 and suppose that we have a Thue path from u
tovin S{) withmaxinum nodew. Then or any time s t, there exists a
tim e-s Thue path from u to v with each node lss than or equalto w.

P roof: Note that, given a Thue path, we may assum e, if we w ish, that no
node is repeated, because we could shorten the path to avoid repetition. W e
show by induction on s that, fat some tine t s there is a Thue path
between words u and v w ith all nodes no bigger than m ax (u;v), then there
is also such a Thue path at tine s. So suppose that we have proved this
statem ent for alltimes s°< s.

W e rst consider the special case where ryp = (U;Vv) is a rule being input
to the m inin ization routine (sse De nition 5.%) at tine t, and s isthe tine
at the end ofthe subsequent invocation ofthem inin ization handling routine
5.8. There isa Thue path (of length one) from u to v at tin e t. By induction
we are assum Ing that at tine s 1 there is a Thue path from u to v wih
maxinum nodeu.W emust show that there is such a Thue path at tin e s.

O ne possbility is that rp is already m inim al, In which case there is a
T hue path of length one from u to v, both at the beginning and at the end
ofm Inin ization. So we assum e that r; isnot m inim al. Then the last step
in 5.8 is that either r, isplaced in the D ekte list orelse 1, is sin ply deleted
Inm ediately.

W hatweneed to show therefore isthat the T huepath p from u tov, which
existsattines 1, doesnot use an elem entary reduction com ing from r,. &
is part of our inductive hypothesis that the Jargest node occurring on p isu,
and we have already pointed out that we can assum e there is no repetition
ofnodes along p.

Each step of m inin ization takes an nput pair of words and outputs a
possibly di erent pair of words which is used as the input to the next step.
The Initial Input is ry = @U;v) and the naloutput iseitherr, = (;) or
amiinalmle r, = @%v). Let ry;n;5; 15, be the sequence of such
Inputs and outputs in the m Inin ization of (u;v). By considering each step
ofm Inin ization n tum, we willshow that oreach i,1 1 n, ifthere isa
tin es T hue path between the two sides of r; with m axin um node no bigger
than either side of r;, then there is a tines Thue path between the two
sides of r; ; wih m axinum node no bigger than either side ofr; ;. W e then
obtain the desired tim es Thue path between u and v by using descending
Induction on i. This is a subsidiary nduction to ourm ain induction on s.
The base case i= n is true, since at tin e s the rule 1, hasbeen installed in
S.

Tom ake the task of checking the proofeasier, we use the sam e num bering
and notation here as in D e nition 5.%.

37

. At the end ofthe current step, there is a sequence of elem entary reduc-
tions from u; :::up 1 O u®, but this m ay not constitute a T hue path
since som e of the associated rulesm ay be in D ekte. H owever, any such

ke (;) nDektewill, at sometine €< s, have been in S but not in
Dekte. Therefore, by our induction on s, at tine s 1 there isa Thue
path p from to wih maxinum node . Now Uity 1 < u

and so is gan aller than the left-hand side ofr . T herefore ry cannot be
used in p. So p continues to be a Thue path at tim e s. T his com pletes
the downward induction step on i in this case.

. This step is analogous to the previous step.

. The sequence of Autreductions of u to the current left-hand side does
not use the rule ry and so the required Thue path exists by induction
on s.

. Let v’ be the Aut-reduction of v. Inm ediately after this step there is a
T hue path from v to v’ with m axinum node v which does not use r,.
By the induction hypothesis on s, there is such a Thue path at tine
s 1. Since it does not use rp, it continues to be a Thue path at time
s. Hence a tin es Thue path from u to v’ w ith m axinum node either
u or v’ yields a tin es Thue path from u to v with m axinum node u
or v. Recall that, because of previous steps which m ay shorten u, u
m ay be an aller than v at this point.) This com plktes the dow nward
Ihduction step on i n this case.

. Ifthere isa Thue path from u to v with m axin um node eitheru orv,
then the reverse of this path isa Thue path from v to u.

. Suppose that the input to this step is @%;v). Then the output is
either the sam e as the nput or isequalto @%v: &)),wihd> v:).
In the rst case there is nothing to prove. In the latter case, we have
by our downward induction on ia tines Thue path from u’to v: (x)
w ith m axin um node u’. Thiswillgive a tin es Thue path from u% to
v: ®)x wih maxinum node Ux. Furthem ore, at the beginning ofthe
Knuth{Bendix process, there was a Thue path of length one from x)x
to with maximum node equalto (x)x. Therefore, by our induction
hypothesis, there is such a path at tine s 1, just before possble
dektion of ry. Now u% > v: (x)x x)x. So the tine—(s 1) Thue
path from &)x to cannotuse g, and it rem ainsa Thue path at tin e
s. Tt ©llows that there is a Thue path from u% to v wih m axinum
node u% at time s.

38

7. This step is analogous to the previous step.

8. Ifthe input to this step is (xu%xv? then the output is @%v?.A tines
T hue path from u® to v’ with m axinum node u° yields a tin es Thue
path from xu’to xv®with m axinum node xu®.

9. This step is analogous to the previous step.

T his com pltes the induction on s forthe specialcasewhere ry = (u;v) is
a nule being input to them inin ization routine (seeDe nition 5.%) at tinet,
and s isthe tin e at the end ofthe subsequent invocation ofthem inin ization
handling routine 5.8. Now consider the general case, again assum ing the
Induction statement true at tine s 1. The only reason why a T hue path
attines 1between u and v willnot work at tim e s is if som e elem entary
reduction used in thispath hasan associated rule (;) n S(s 1) which is
deleted at tin e s. Since deketion only takesplace asa result ofm inin ization,
we know that what must be happening is that we are right at the end of
m Inin izing (;), wih m inin ization com plting exactly at tin e s. But the
special case already proved show s that there isa tin es T hue path between
and wih nonodebiggerthan . Thereforethetine—(s 1) Thue path can
always be replaced by a tin es T hue path w ithout increasing the m axin um
node.

6.6 Lemm a. Ifa word is S (t)reducible, it is S (s)r=educiblke for alls > t.

Proof: Ifu is S (t)reducible, there is an elam entary S (t)reduction u ! s¢) V.
Thism eans that v < u. By P roposition 6.5, for each tine s > t, there isa
Thuepath from utovwithmaxinum nodeu. The rstelam entary reduction
In thispath hasthe form u ! w attine s. Thisproves the resul.

6.7 Lemm a. Atany time t, S() is a list of rukes which contains no du—
plicates. If a ruke is dekted from S, it will never ke re-inserted. (Here we
mean actual delktion, not jast placing the rule on the Dekte list for fture
deletion.)

Proof: The rst statem ent ollow sby looking through 5.6 and checking w here
hsertionsofrulestakeplace. W e alwaystake care not to lnsert a mule a second
tin e if i is already present.

Let (;)bearulkewhich isdekted at tim e s. W e assum e by contradiction
that it is reinserted at a latertine t. W e choosem and n so that tine s

39

occurs during them -th K nuth {Bendix pass and tim e t during the n-th. Then
m n.

W e note that all proper subwords of are Autdrreducible during the
m -th pass. For otherwise 5.14D eleting rulestheoram 5.4 shows that is
Aut-reducble during the n-th pass. But no rule w ith lkft-hand side oould
then be Introduced during the n-th pass, a contradiction.

It ollows that we are .n Case 511 1. Therefore (;) was input to the
m Inin ization procedure during them -th pass and was then m oved to D ekte.
T he actual deletion took place at the end of the m -th pass. Ik follow s that
n > m . Theoutput from them inim ization procedurewasa rule (;), where

isasubword of . Therl (;) iswelded ntoW Di and is acospted

by Rulesin + 1]. As In the preceding paragraph, we see that cannot be

a proper subword of ,and so = and < . Wewrte , 1= and

P roceeding In this way, we see that between tim es s and t, rules of the
form (; ;1) M i n) are nput to the m inin ization procedure during
the i-th K nuth{Bendix pass, wih output (; ;) where ; ;1and , <

n 1. Therule (; ;) isproduced during the i-th Knuth{Bendix pass and
isacospted by Rulesfi+ 1] form i n.

It follow sthat is Autreducble during the n-th pass. T herefore no rule
with left-hand side oould be Introduced into S as a result of critical pair
analysis. W e see from 5.00 that any rule w ith left-hand side equalto which
is introduced Into S as a result of Autreduction during the n-th pass must
be of the form (;), where n < . This com plktes the proof of the
contradiction.

m

6.8 De nition. W e say that a word u is pemm anently irreducibke if there
are arbitrarily large tines t or which u is S (t)4rreducble. By Lemm a 6.6
this is equivalent to saying that u is S (t)—Hreducbl at alltimest 0. A
rule (;) In S issaid to bepem anent if and every proper subword of is
pem anently irreducible. 2

6.9 Lem m a. A perm anently irreducible word is perm anently Aut—irreducibl.
A pem anent ruk of S is never dekted. A pemn anent ruk is accepted by
Rulesh + 1] provided it is present in S when the n-th Knuth{Bendix pass
begins; it is then accepted by Rulesin] forallm > n.

P roof: Let u be pem anently irreducible. Autwreduction of u can only take
plce if, mm ediately after the Aut+reduction, u is S-reducible, conceivably

40

as a result of som e muke being added to S during the Aut+eduction. But this
is In possible by hypothesis.

A rul (;) isdekted only asa result ofbeing the nput to them Inin iza—
tion procedure. By Lemm a 6.5, there would have to be a Thue path from

to wih largest node . The st elem entary reduction must therefore
be rightward (sse De nition 63) ! g - We are assum ing that (;)
is a pem anent rule of S. Since every proper subword of is pem anently
irreduchble, it is pem anently Aut-irreducible, as we have just seen. So this
rst elem entary reduction must be associated toa rule (;).

Eiher =, In which case the ruk (;) has not been delkted, or
else, when (;) was hput to them Inin ization routine, wasAutreduchbl.
However, i is pem anently Aut-irreducible which is a contradiction.

It follows that if (;) is present In S at the start of the n-th Knuth({
Bendix pass, twillbesswn IntoW Di at som epoint during the n-th K nuth—
Bendix passand accepted by Rulesh+ 1]. Shee (;) isapem anent mule, it
w ill subsequently rem ain in S and w illbe presented form Inim ization during
each pass. T he sam e rule w illbe output and used tom ark statesand arrow sof
W Di asneeded. TherefPre, (;) isacoepted by Rulesin] oreach m n.

6.10 Lemm a. Letu be a xed word. Then there is a § depending on u,
such that, forallt 1, each elm entary S (t)-reduction of u is associated to
a pem anent ruk. If all proper sulowords of u are pem anently irreduciblk,
then, fort 1, there is at m ost one ekm entary reduction of u, and this is
associated to a pem anent rule (U;w).

Proof: There are only nitely m any subwords of u. So we neaed only prove
that, given any word v, there is a ty such that forallt t, each ruk in
S (t) with left-hand side v is pem anent. If there is a proper subword of v
which isnot pemm anently irreducible, then at sometin e sy becom es S (sp)—
reducbl. By Lemma 6.6, it is S (s)reducbk fors sp. By Lenma 5.14,
it becom es Autreduchble at the beginning of the next K nuth{Bendix pass
after sy. During this pass all rules wih lkft-hand side v will be deleted.
A Iso, since this proper subword of v is now pem anently Autteducible, no
rule w ith left-hand side equalto v w ill ever be inserted subsequently. In this
case, the result clain ed about v is vacuously true.

So we assum e that each proper subword of v is pem anently irreducible,
and that v itselfis S-reducblkat sometimet. A rule (v;w) w illbe pem anent
ifw is pem anently irreducble. O therw ise it w ill disappear as a result of
m inin ization and, by Lemma %.1, never reappear. There cannot be two

41

pem anent rules (v;w;) and (v;w,) with w; > w,. For crtical pair analysis
would produce a new rule Wi;w,) during the next K nuth{Bendix pass, and
so w; would not be pem anently irreducible.

6.11 Theorem . Letulea =xedwordinA and ktvlethe smalkstekment
in its Thue congruence class. Then, for large enough tim es, there is a chain
of elem entary raductions from u to v each associated to a pem anent rulke.
A fter enough tim e has elhpsad, Autreduction of u always gives v. (Recall
that v is the short-ex representative ofu.)

Proof: W e start by proving the rst assertion. By hypothesis, we have, for
each tine t, a tin et Thue path p. from u to v, and we can suppose that p:.
contains no repeated nodes by cutting out part of the path ifnecessary. The
only reason why we couldn’t take p 1 to be p. is if some rule (;), used
along the T hue path p, isdeleted at tine t. By Leanm a'6.5 we can, however,
assum e that each node ofpy; ; iseither already a node ofp: or is an aller than
som € node ofp;.

Let hy be the lJargest node on py, and suppose that we have already proved
the theorem for allpairs u and v which are connected by a Thue path w ih

node on p. foralltine t. Ifv = hy then since v is the an allest elem ent in
its congruence class, there are no elem entary reductions starting from v, and
wemust have u = v in this case.

By Lemm a'6.10, wem ay assum e that t, hasbeen chosen w ith the property
that, orallwordsw hy and forallt t, allelem entary S (t)—reductions of
w are associated to pem anent rulesw hich are acospted by R ulesh] provided
n is su ciently large.

Lethy= ¢t +tt! sp t ttbethe ridhtward elem entary reduction of

hy at timne t. Our construction of pr, 1 from pr, as In 16.5C orrectness of

construction also ensures that, if ;1= ¢, then 4, t. Therile (¢; +)
is therefore ndependent oft for large valuesoft. Then (; +) ispem anent
and . is Autreducbl for large enough t. Ifu 6 hy, the sam e argum ent
applies to the unique elem entary leflward reduction w ith source hy at tine
t.

Ifho = u, etu ! sy w be the rst rightward elem entary reduction
for Jarge values of t. By our induction hypothesis, there is a Thue path of
elem entary reductions from w to v, each associated to a pem anent rule, and

42

w ith no node larger than w, and so we have the required T hue path from u
tov.

Suppose now that hg u, so that we get two pem anent rules, associ—
ated to the kflward and rightward elem entary reductions ofhy. If the two
elem entary reductions are identical, that is, if the two pem anent ruls are
equal and if their left-hand sides occur in the sam e position in hg, then p.
contains a repeated node which we are assum ing not to be the case. So the
tw o elam entary reductions occur in di erent positionsin hy. Now choose tto
be large enough so that the two rules concemed have already been com pared

pass.
If these two rules have keft-hand sides which are dispint subwords ofhg,
then we can interchange their order so as to obtain a Thue path from u tov
w here allnodes are strictly an aller than hg | seFigure4. The rstassertion
of the theoram then follow s by the Induction hypotheses In this particular
case.

I ho I
| 1 2 |
| =— = m—
| X |
L — — - - == = X _X_XJX
9 X %
1 2 1 2
=— e = e
X x
X x
g X x
1 2
= =

Figure 4.Ran oving the node hy when the Efiward and rightward reductions are
obtanhed from riks having dispint Eefi-hand sides.

If the two kft-hand sides do not correspond to dispint subwords of hy
then, by assum ption, there is some tine t° < t, such that a critical pair
@%v%w? was considered. Here u® ! g vPand u®! g, w° are elem entary
S %) —reductions given by the two rules, and u’ is a subword ofh,. A fter the

critical pair analysis, at tine t° t, the Thue paths illustrated in Figure §

v’ and w? can be connected by a tin es Thue path in which all nodes are
no larmger than the largest of v’ and w°. Th particular, this applies at tine

43

t so0 that the targets of the two elem entary S (t)reductions from hy can be
connected by a tin et Thue path n which allnodes are strictly an aller than
hy . This com plktes the lnductive proof ofthe rst assertion of the theorem .

W e have arranged that t is Jarge enough so that, forallw u, allelem en—
tary S (t)—reductions of w are associated to pem anent rules, and such a w
can be pem anently Aut-reduced to the least elem ent in its T hue congruence
class. It follow s that such a w is Aut-irreduchble if and only if it ism Inim al
In its T hue class. In particular Aut+eduction ofu m ust give v.

0 0

uj Uy
S 12 S
Z1 Z2
—— = |

S)

Figure 5. W hen the fftward and rightward reductions from h, are cbtanhed from
mks (1; 1) and (»; ») having overbpping Eft-hand sdes, this dagram shows
the tin et® Thue paths that exist after the resulthg critical pair analysis.

6.12 Corollary. (i) The setofpefmgnentru]esjnAutjsoon uent. (ii) The
set of such ruks isequalto P = | _ ,S(s). (il A word u is smallest in
its T hue congruence class ifand only if it is perm anently irreducibl and this
is equivalent to being in shortldex nom al form . (iv) Each pem anent ruk
isa U-m iInimalruk and each U-m inim al ruk is acospted by Rulesh] forn

su ciently large.

Proof: The rst and third statem ents are obvious from Theorem %.11. For
the second statem ent, each pem anent rule is contained n P by Lemm a 6.9.

44

Conversly, f we have a rule r In S which is not pem anent, then for all
su clently large tim es s either its right-hand side or a proper subword of
its left-hand side is S (s)-reducible. Theorem .11 ensures that this reducble
word is Autreducbl for all su ciently large tines s. Therefore r will be
m nin ized and deleted from S. Hence from Lemm a 6.4 we see that r is not
contained In P.

To prove the fourth statem ent, suppose (;) isU-m Inimnal. By

6.11Cor-

to willeventually be generated by our K nuth {Bendix procedure and each
elem entary reduction in the path willbe rightward and associated to a per-
manent rul. The 1rst elementary reduction must have the form (; 9,
because each proper subword of is pem anently irreducible. But then

©= , Prothewise °> and 6.11Correctness of our Knuth {Bendit

But then (; % would not have been a pem anent rule. Therefore (;) isa

pem anent rule.
Conversly, suppose that (;) is a pem anent rule. This means that
and every proper subword of is pem anently irreducible. By 611Cor-
+____recness of our K nuth {Bendix P roceduretheorem 611, thismens that and

every proper subword of are in short—ex nom alfom . It follow sthat (;)
isU-mnin al.

T he next result is the m ain theoram of this paper.

6.13 Theorem . [Theorem] Let G ke a group wih a given nite presenta—
tion and a given ordering of the genemtors and their inverses. Suppose
that the set of U-m inIm al rukes is regulbr (Pr exampk if G ;A) is short-
Ex-autom atic) . Then the procedure given in 5.6 will stabilize at some ng

with Rulesh + 1] = Rulesh] if n ny. P (de ned in '6.12C orrecthess

1
[Spprpioiy R g g

tain twowvariabke nite state autom aton and the autom aton can ke explicitly
constructed. (Unfortunately we do not have a m ethod of knowing when or
whether we have reached ng.)

P roof: By hypothesis there is a tw ovariable autom aton acocepting the set of
allU-m Inin alrules. By welding, we obtain a twovariabl rul autom aton M .
By am algam ating states, we m ay assum e that each state of M ocorresponds
to a di erent word-di erence.

Given any arrtow N M ,thereisaU-m ininalrl (;) which isaccepted

P roceduretheorem 612. (;) is a pem anent rule which is eventually gen-—

only a nite number of arrows in M , we see that, for Jarge enough n, each

(;) Inthis nie sst of rulesm ay be traced out In Rulesih]. W e record the
states and arrow s reached asbeing required by this nite set of rules.

W em ay also assum e that the states in R ulesh Jwhich have been recorded

as jast explained, are all associated to di erent word-di erences. To see this,

rst note that any equality of word-di erences between di erent states is

eventually discovered according to 6.11C orrectness of our K nuth {Bendik

gam ated. It follow s that, for n lJarge enough, there is a copy of M Inside
Rulesh].

Subsequently, arrow s and states Iying outside M w illnot be used In Aut—
reduction. They w illnot be m arked as needed and w illbe deleted. It ollow s
that Rulesh]= M forn su ciently large.

Finall, knowing M , we can easily change i to a nite state autom aton
acoepting exactly them inin al ru]es| this nvolves m aking sure that if @;v)
is acoepted, then u > v, v is ireducble and every proper subword of u is
irreducible.

7 Fast reduction

[Section]

In this section, we show how to rapidly reduce an arbitrary word, using the
rules In Set Rules)together with the rules in S. W e assum e the properties
m ade explicit n 5. The tine taken to carry out the rst reduction is
bounded by a an all constant tin es the kength ofthe word. Thise ciency is
possibl because of the use of nite state autom ata to do the reduction.

7.1 Rulesforwhich nopre xorsu xisarule.Atthemoment, it is
possble for an elem ent ;v)" of SetRules) to have a pre x or su x which
isalso a rule. This isundesirable because i m akes the com putationswe w ill
have to do bigger and longer w ithout any com pensating gain.

R ecallthat the autom aton recognizing Set R ules) isthe product ofR ules
wih SL2, the mitial state being the product of initial states and the st of

nal states being any product of nalstates. By 5.1, there isonly one initial

and one nalstate ofRules; these are equal and the state is denoted by s .

W e ram ove from Rules any arrow labelled (x;x) from the initial state to
itself. W e then form the product autom aton, as described above, w ith two

46

restrictions. Firstly, we om i any arrow whose source is a product of nal
states. Secondly, we om it the state with rst com ponent equal to sq, the
Initial state of Rules, and second com ponent equal to state 3 of SL2 (see
Figure 3) and any arrow whose source or target is this om itted state. W e
call the resulting autom aton R ules’.

7.2 Lem m a. The language acoepted by R ules? is the set of Jabels of acoepted
paths in the product autom aton, starting from the product of iniHal states and
ending at a product of nal states, such that the only states along the path
with rst component equalto § are at the beginning and end of the path.

P roof: F irst consideran acoepted path in Rules®. The only arrow s in R ules’
w ith source having rst com ponent sy are those w ith source the product of
Iniialstates. In SL2 it isnot possible to retum to the nitialstate. &t ollow s
that has the required fom .

Conversely any such path in the product autom aton also lies in Rules’
because it avoids all om itted arrow s.

7.3 Lemm a. The language accepted by Rules® is the subset of Set R ules)
which has no proper su x or proper pre X in SetRules).

Proof: If is an accepted path in Rules’, then it is clearly in SetRules).
M oreover if it had a proper su x or proper pre X which was in SetRules),
there would be a state n them ddle of wih st component sp. W e have
seen that this is in possble n Lemm a 7 3.

Conversly, we must show that if is an accepted path in the product
autom aton such that no properpre x and no propersu x of would be ac-
cepted by the product autom aton, then no statemetby , apart from itstwo
ends, hassy asa rstocomponent. Let = ((sg;1); Qi;vi);Es::: QnsVa)ih),

First suppose u; < vi. Since is acoepted by SL2, 17> Fjand we
must have v, = $. Let r < n be chosen as large as possible so that the

rst com ponent of g, issp. Then Upr15Ver1) 10t WLV,) willbe acoepted by
Rules and w ill be acospted by SL2 because v, = $. Sihcoe this cannot be a
proper su x of by assum ption, wemust have r= 0. Hence g; hasa st
com ponent equalto sy ifand only ifi= 0 ori= n.

N ext note that we cannot have u; = v;. This is because there is no
arrow labelled (u;;u;) n SL2 with source the Initial state, so would not
be accepted by the product autom aton.

Now supposethatu; > v and ket r > 0 be chosen as an allaspossible so
that the rst com ponent ofq, is sy. Since u; > vy, the second com ponent of

47

g willbea nalstate (sseFigure3). Since hasno acoepted proper pre x,
wemust have r= n. Hence gt hasa st com ponent equalto sy ifand only
ifi= Qori= n.

So we have proved the required result for each of the three possibilities.

R eduction w ith respect to Set R ules) is done in a num ber of steps. F irst
we nd the shortest reduchbl pre x of w, if this exists. Then we nd the
shortest su x ofthat which is reducibl. This isa eft-hand side of som e rule
In SetRules). Then we nd the corresponding right-hand side and substitute
this for the keft-hand side which we have found .n w . This reduces w in the
short—ex-order. W e then repeat the operation untilwe obtain an irreducible
word. T he process is explained in m ore detail in 77.14.

Our rst obctive is to nd the shortest reducblk pre x of w, if this
exists. To achieve this, we must determ lne whether w contains a subword
which is the keft-hand side of rule belonging to SetRules).

Let Rules®be the autom aton cbtained from Rules’ (see Lanm as7J and
773) by adding arrow s abelled (x;x) from the initial state to the initial state.

W e construct an FSA Rblgy Rules) In one variabk by replacing each
label of the form (x;y) on an arrow of Rules® by x. Herex 2 A and y 2
A" . The nam e of the autom aton Rbley; Rules) refers to the fact that the
autom aton accepts reduchble words, and does so non-detem Inistically. W e
obtain an FSA wih no -arrows. Howevertherem ay bem any arrow s labelled
X wih a given source. Let LHS Rules) be the regular lJanguage of keft-hand
sides of rules in Set R ules) such that no properpre x orproper su x ofthe
rule is ts=lfa rule.

74 Lemma.A ILHSRules)= L Rhley Rules)).

P roof: Because of the extra arrow s Jabelled (x;x) from Initial state to mnitial
state, nserted intoRules®, the inclusion A 1HS Rules) L Rbley Rules))
is clear.

Conversly, if u is acoepted by Rblgy Rules), there is a corresponding
pair (u;v) acoepted by Rules®. We nd a maxinal common pre x p ofu
and v, so that u = pu®and v= pv’. Rules® ram ains in the initial state while
reading (o;p). Since the initial state of SL2 isnot a nalstate, L%v% must
be non-em pty. Since there is no way of retuming to the Iniial state 0£fSL2,
once R ules® starts reading @%v?, it can never retum to the initial state, and
therefore %v° must be accepted by Rules’. Thereforeu’2 LHS Rules), as
clain ed.

48

7.5 The autom aton P .To nd the shortest reduciblk pre x of a given
word w we could feed w Into the FSA Rblgy Rules). However, reading
a word w ith a non-determm inistic autom aton is very tim e-consum Ing, as all
possibl altemative paths need to be ollowed.

For this reason, it may at st sight seem sensble to determm inize the
autom aton. However, determ inizing a non-determm inistic autom aton poten—
tially leads to an exponential increase In size. T he states of the determ inized
autom aton are subsets of the non-determ inistic autom aton, and there are
potentially 2" of them if there were n states in the non-determ inistic au—
tom aton.

For this reason, we use a hzy stateevaluation form of the subsst con-
struction. T he Jazy evaluation strategy (comm on in com ijerdesjgn| e for
exam ple EI]) calculates the arrow s and subsets as and when they are needed,
0 that a gradually ncreasing portion P Rules) of a detem inized version
Rbley, Rules) of Rblgy Rules) is all that exists at any particular tin e.

Lazy evaluation is not autom atically an advantage. For exam ple, if In
the end one has to construct virtually the whole detem nized autom aton
Rbley, Rules) In any case, then nothing would be lost by doing this iInm e~
diately. In our special situation, lazy evaluation is an advantage for two
reasons. First, during a single pass of the K nuth {Bendix process (see 4.}),
only a com paratively an all part of the determ inized onevariable autom aton
Rble, Rules) needs to be constructed. In practice, this phenom enon is par-
ticularly m arked in the early stages of the com putation, when the autom ata
are far from being the \right" ones. Second, this approach gives us the op—
portunity to abort a pass of K nuth {B endix, recalculate on the basis of what
hasbeen discovered so far in thispass, and then restart the pass. Ifan abort
seem s advantageous early In the pass, very little work w illhave been done in
m aking the structure of a detem mnized version of Rblg, R ules) explicit.

At the start ofa Knuth{Bendix passwe kt P Rules) be the onevariablk
autom aton containing only one state and no arrows. The state is an ini-
tial state of P Rules) which is a singlton set whose only elem ent is the
ordered pairof initial states of Rules and SL2. At a subsequent tim e during
the pass, P Rules) m ay have Increased, but it will always be a portion of
Rbley, Rules). Each state of P Rules) is a sst of pairs (s;t), where s is a
state ofRules and t is a state of SL2.

T he transition w ith source s, a state n P Rules), and labelx 2 A m ay or
m ay not already be de ned. If it isde ned, we denote by (s;x) the target
of this arrow .

Suppose now that we wish to nd the shortest pre x of the word w =
X1 n 2 A whith is SetRules)reducible. Suppose that sp;si1;:::78
are states of P Rules), where 0 k n 1, that sy is the start state of

49

P Rules),and that, oreach iwith 1l i k,thearow wih sources; ; and
label x; hasbeen constructed, w ith target (s; 1;xi) = s;. Suppose that the
target of the arrow w ith source s, and Jabel Xy, 1 has not yet been de ned.

T he conventional subsst construction applied to the state s, ofP R ules)
under the alphabet sym bolxy. 1 yieldsa set, which wedenoteby 1 (S ;Xk+1) -
Thisishow ; (Sc;Xxs1) isde ned. Foreach (s%tY) 2 s, we ook rallarrow s
N Rbley Rules) labelled xi, ; with source (s%tY). If (s;t) isthe target of such
an arrow, then (s;t) is an element of 1 (Sk;Xy+1). Note that this subset is
always non-em pty, because the initial state ofRblgy Rules) isan elem ent of
each s;.

In the standard detem nization procedure one would now look to see
whetherthere isalready a state sy, ; 0fP Rules) which isequalto 1 (Sx;Xx+1)-
If not, one would create such a state sy, ;. One would then nsert an arrow
labelled xi. 1 from s, to sy 1, f there wasn’t already such an arrow . A new
state isde ned to be a nalstate of P Rules) if and only if the subset con-
talnsa nalstate ofRbley Rules). O foourse, one doesnot need to detemm ine
the subsst 1 (Sk;xk+ 1) Iffthere isalready an arrow In P R ules) labelled x4 1
with source s,, because in that case the subset is already com puted and
stored.

In ourprocedure we in prove on the procedure just described. Thepoint is
that 1 (sx;Xk+1) M ay contain pairswhich are not needed and can be rem oved.
From a practical point of view this has the advantage of saving space and
reducing the am ount of com putation involved when calculating subsequent
arrow s. Speci cally, we rem ove a pair @;q°) from 1 (Sc;xks1) I is state 3
of SL2 (seeFigureB) and 1 (S¢;Xys1) also contains the pair (o;q) where g is
state 2 of SL2(samep as in ;")) Rem oving all such pairs ;) yields the
et p (Sx;Xk+1) and we add the corresponding arrow and state to P Rules),
creating a new state ifnecessary. W em ake the state a nalstate ifthe subset
contains a nal state of Rbley Rules). The validiy of this m odi cation
follow s from Theorem 84, and we see that som e pre x ofw arrfvesata nal
state of P Rules) ifand only ifw is SetRules)-reducble.

W hen nding the corresponding lft-hand side of a rule Inside w, we
need never com pute beyond a nal state of P Rules). As a spacesaving
and tin esaving m easure our im plam entation therefore replaces each nal
state of P Rules), as soon as it is found, by the em pty set of states. A s re—
m arked above, the standard determm Inization ofRblgy R ules) never produces
an em pty set of states, so there is no possibbility of confiision.

Readingw can be quite slow ifm any statesneed tobeadded toP R ules)
whilke it is being read. However, reading w is fast when no states need to
be built. In practice, 2irly soon after a K nuth{Bendix pass starts, reading
beocom es rapid, that is, linear w ith a very sm all constant.

50

7.6 Finding the left-hand side in a word.W e retain the hypotheses
of Section]. Namely, we have a two-variable autom aton Rules satisfying
the conditions of Paragraph 5.k. W e are given a word w = x; n,&nd we
wish to reduce it. In the previous section we showed how to nd them ini-
m al reducble pre x w’= x; » Bfw with respect to the rules in plicitly
speci ed by Rules. W enow wish to nd themininalsu x ofw °which isa
Eft-hand side of som e rule in SetRules). T he procedure is quite sim ilar to
that of the previous section.

W e willnow give the basic construction. H owever, the details w ill Jater
need to bem odi ed so as to achieve greater com putationale ciency in nd-
Ing the associated right-hand side, if this is necessary. Our reason for in—
cluding the sin pler version is to lad the reader m ore gently and w ith m ore
understanding to the actualm ore com plex version.

W e form thetwo-variabl autom aton R ev R ules), which we combinew ih
Rev(SL2). The rst autom aton is, by hypothesis, partially determ inistic. If
we determ inize the second autom aton, we dbtain another PDFA . Figure 6
show s the determ nization ofRev (SL2), where the subsets of states of SL 2

are explicitly recorded.

(xé'y) x;y)
x6y
<\ x;y)ix6 y b X2y
12 ;) 12 x;9) 24 ®;y) _ ﬁ
3 34 5 x>y
6
(’;;g)y %) ®;y) &;y)
X;X
(x;y) X Y X > Yy
(x;x) ? x Yy 2
;%) x;y)
Xy

Figure 6.This PDFA arses by appling the accessble subsst construction to
Rev(SL2) In the case where the base alhabet has more than one ekm ent.
Fach state is a subset of the state set of Rev(SL2) and nal states have a
doubk border. This PDFA, when radhg a pair ;v) from right to Eft, keeps
track of whetheru is bnger than v ornot, which i discovers inm ediately sihoe
pradding sym bols if any m ust occur at the right-hand end of v. Note that this
autom aton ism inin zed.

W e take the product of the two autom ata RevRules) and Rev(SL2).
A new state is a pair of old states. An arrow is a pair of arrow s w ith the

51

sam e label (x;y). The Iniial state In the product is the unique pairof niial
states. A nalstate In the product is a pair of nal states.

To form the onevarabl non-determ inistic autom aton Revy (LH S Rules))
without -arrows, we use the sam e states and arrow s as in the product au-
tom aton, but replace each Jabel ofthe fom (x;y) In the product autom aton
by the lJabelx. T he detemm inistic onevariablk autom atonRevy (LH S Rules))
can then be constructed using the subsst construction.

A swe have already wamed the reader, we use not the construction just
described, but a related construction which we describe below . T he point of
what we do m ay not becom e fully apparent untilwe get to7.13.

7.7 Reversing the rules.W e rstdescrbeatwovariablePDFA M which
accepts exactly the reverse of each ruke (;)' In SetRules) such that no
propersu x and no properpre xof (;) ' isin Set®ules) (cf. Lemma7.3).
W e assum e that we have a two-variable autom aton R ules satisfying the con—
ditions of Paragraph 5.1.

A state of M is a trple (s;i;J), where s is a state of RevRules), i 2
f0;1;2gand j2 f+; g.The Intention isthat in a state (s;i;J), 1 represents
the num ber of padded symbols occurring in any path of arrow s from the
initial state of M to (s;i;3). By 5.3, the padded symbols must be of the
form (x;$), where x 2 A . There are zero, one or two padded sym bols in any
rule, and, ifpadded sym bols appear, they are at the right-hand end ofa rule.
Thism eans that they are the st symbols read by M . The j com ponent is
Intended to represent whether an arrow is pem itted w ith source (s;i; j) and
labela padded symbol. W e take j= + ifa padded symbol is pem ited, and
= if a padded sym bol is not pem itted.

M hasa unigque initial state (sp;0;+) where 5 is the unigque initial state
of RevRules). In addition, M has three nalstates f; = (50;0;);f; =
(s0;1;) and £, = (50;2;). We do not allow states of M of the fomm
(s0;1; J), except for the initial state and the three nalstates jist m entioned.
W ew illconstruct the arrow sofM to ensure that any path ofarrow s accepted
by M has st component equalto sy for its initial state and its nal state
and for no other states. (Com pare thiswih Lemmai73.)

T he follow ing conditions determm ne the arrows In M .

1. Each arrow ofM is labelled with some (x;y),wherex 2 A andy 2 A" .

2. (s;1;9) %™ isde ned ifand only ifl) t= s%* isde ned nRev Rules),
and 2a) (s;i;3) = (s9;0;+), the initial state, or2b)) = @€;+). In
case 2a) thetarget is (5;1;+), unless t isthe nalstate ofRev Rules),
In which case the target is f; = (59;1;). In case 2b), the target is

52

(t;2;),which may possbly beequalto f,. The nalstate f; ardises In
case 2a) when we have a ruke ;), which m eans that the generator x
of our group represents the trivial elem ent. The nalstate f, arises in
case 2b) when we have a mule X;%X5;). This kind of nule arises when
X; and x, are inverse to each other, usually fom al inverses.

3. Fori= 0;1;2, there are no arrow s w ith source f;.

4. Suppose (s;i;j) isnota nalstate. Then (s;i;3) ¥ wih x;y 2 A is
de ned ifand only if1) t= s®¥ isde ned in RevRules), and 2) if
t= sy then 2a) i= 0and x> yor2b) i> Oand x 6 y.W e then have
(;1;9)*¥) = (t;i;). This condition corresponds to the requirem ent
that ;v) can only be a rule ifa) u and v have the sam e length and
u; > vi, where these are the rst ketters of u and v respectively, orb)
ifu is ongerthan vand u; 6 vi.

7.8 Lemm a. The language aceepted by M is the set of reversals of ruks
(;) 2 SetRules) such thatno proper su x and no properpre xof (;)
is In SetRules).

The proofof this mm a ismuch the sam e as the proofs of Lenm as 7.2 and
73.W e therefore om it it.

U sing the above description of M , we now describe how to obtaln a
non-detemm inistic onevariabl autom aton Revy (LH S Rules)) from M in
an analogous m anner to that used to obtain Rblgy Rules) from Rules® n
Section 7. Rewy (LH S Rules)) acoepts reversed keft-hand sides of rules In
Set R ules) which do not have a proper pre x or a proper su x which is in
SetRules). Revwy (LH S Rules)) has the sam e st of states as M and the
sam e set of arrow s. However, the label x;y) with x 2 A andy 2 A* of
an arrow In M is replaced by the labelx In Revy (LH S Rules)) The two
autom ata, M and Revy (LH S Rules)), have the sam e initial state and the
sam e nalstates. Hence Revy (LH S Rules)) acospts all reversed left-hand
sides ® ofrules (;) whose reversals ((;))® areacospted by M .

7.9 The autom aton Q . The onevariabl autom aton Q Rules) is form ed
from Revy (LH S Rules)) by am odi ed subset construction, using lazy eval-
uation. Q Rules) ispart ofthe onevariable PDFA Revy (LH S Rules)), the
determm nization of Revy (LH S Rules)). Aswe shall see, a word is acoepted
by Q Rules) only if its reversal is the left-hand side ofa rule In Set R ules)
and no proper subword of has this property.

53

7.10 N ote. In order to construct states and arrows In Q Rules), one only
needsto have accesstoR ev R ules), that is, neitherM norRevy (LH S Rules))
has to be explicitly constructed. 2

7.11 The algorithm for nding the left-hand side. Suppose we have
aword x; » XA andweknow ithasa su x which isthe keft-hand side
of some rule ;n SetRules). Suppose no proper pre x of x; » Ras this
property. W e give an algorithm that nds the shortest such su x.

W e read the word from right to lft, starting with x,. W e assum e that
Xyt 1 X%+ 2 n asbeen read so far and that as a resul the current state of
Q Rules) isSy, where Sy isa state ofQ Rules) (so Sy is a subset ofthe set
of statesof Revy (LH S Rules))).

W e start the algorithm wih k = n and the current state of Q Rules)
equal to the singleton f (sgp;0;+)g whose only elem ent is the initial state of
M , where sy is the initial state of RevRules). Q Rules) has three nal
states, nam ely the singlkton sets ff;g fori= 0;1;2.

T he steps of the algorithm are as follow s:

1. Reocord the current state as the k-th entry In an array of size n, where
n is the length of the nput word.

2. Ifthe current state isnot a nalstate, go to Step 7.11 3. Ifthe current
state isa nalstate, then stop. Note that the nitial state ofQ Rules)
isnot a nalstate, so this step does not apply at the beginning of the
algorithm . If the current state isa nal state, then the shortest su x
ofx; o ®hich is the left-hand side ofa rmule in Set R ules) can then
be proved to be x4 1Xk+ 2 n X

3. If the arrow labelled x, with source the current state is already de—
ned, then rede ne the current state to be the target ofthis arrow and
decrease k by one.

4. Tfthe preceding step does not apply, we have to com pute the target T
ofthe arrow labelled x, w ith source the current state Sy . W edo thisby
looking forallarrow s labelled x;, in Revy (LH S Rules)) with source in
Sx.Wede neT tobe the st of all targets of such arrow s. N ote that
this set of targets cannot be em pty since we know that some su x of
X n I acospted by Rewy (LH S Rules)).

5. There are two m odi cations which we can m ake to the previous step.

@) Firstly, if the set of targets contains some nal state f5, then we
look forthe largest valueofi= 0;1;2 such thatf; 2 T and rede ne

54

T to be ff;g. W e then insert Into Q Rules) an arrow labelled Xy
from Sy to this nalstate. Ifwe have found that T isa nalstate,

we st Sy ; equalto T, decrease k by one, and go to Step /.11 1.

(o) Secondly, if, whil calculating the sst T, we nd that a state s
of RevRules) occurs In m ore than one triple (s;i;j), then we
only include the tripl w ith the largest value of i. For this to be
wellde ned, we need to know that (s;i;+) and (s;i;) cannot
both come up as potential elements of T | this is addressed in
the proof of Theorem 7.12 along with jasti cations of the other
m odi cations.

6. Having found T, see if it is equal to som e state T%0fQ Rules) which
has already been constructed. If so, de ne an arrow lbelled x;, from
S toT".

7. If T hasnot already been constructed, de ne a new state ofQ Rules)
equalto T and de ne an arrow labelled x from S to T .

8. Set the current state equalto T and decrease k by one. Then go to

Step 71T 1.

7.12 Theorem . Suppose X; n Ras a su x which is the kfi-hand side
ofa ruk in SetRules) and suppose no pre x of ¥ » ERas this property.
T hen the above algorithm correctly com putes the shortest such su x.

Proof: W e rst show that them odi cation in Step /115 iswellkde ned In
the sensethat triples (s;i;+) and (s;i;) cannotboth occurwhilke calculating
T . The reason for this is that the third com ponent can only be + if either
none of x; n Ras been read, In which case the only relevant state is
(s0;0;+), orelse only x, hasbeen read, In which case the possbl relkevant
states are (£;1;), (s;1;+) with s 6 £, and (s;0;). So a state of the
form (s;i;j) with a given s occurs at most once In a xed subset w ith the
maxin um possbl value of i.

The e ect of Step ;711 5a in the above algorithm is to ensure that ter-

m nation occurs as soon as a nal state of RevRules) appears In a cal
culated triple. Since we know that x; » gontains a left-hand side of a
rule In SetRules) as a su x we nead only show that the introduction of

tom aton. This willbe a consequence of Theorem 8, aswe now proceed to
show .

55

Consider a trpl t = (s;i;Jj) ardsing during the calculation of a subsst
T, and suppose that s is a non— nal state of RevRules). If j = + then
T cannot contain both (s;0;+) and (s;1;+) and so t will not be rem oved

from T as a resuk of Step /. 115b. Therefore we only need to consider the
case j = . Fork = 0;1;2, ¥t Ly A A Dbe the lJanguage cbtained
by making (s;k;) the only Iniial state of M , and observe that there can
be no padded arrow s In any path ofarrows from (s;k;) to a nalstate of
M . Now by considering the de niion of the non-padded transitions in M

given in 7.7 4, it is straightorward to seethat L, L; = L,. Therefore, since
Rew (LH S Rules)) hasno -arrows,wehave just shown that the hypotheses

does not a ect the accepted language ofQ Rules).

Aswih P Rules), rrading a word Into Q Rules) from right to left can
be slow In the initial stages of a K nuth {Bendix pass, but soon soeeds up to
being linear w ith a an all constant.

7.13 Finding the right-hand side of a rule.W e retain the hypotheses
ofSection 5.1. N am ely, we have a tw o-variable rule autom aton R ules which is
welded and satis esvariousotherm norcondiions. W earegiven aword w =
X1 nr@nd we wish to reduce it relative to the rules In plicitly contained
In Rules. So farwe have ocated a kft-hand side which isa subword ofw .
In this section we show how to construct the corresponding right-hand side.

W e rstgo Intom ore detailasto how we propose to reduce w . In outline
we prooeed as ollow s.

7.14 Outline of the reduction process.

1. Feed w one symbolat a tin e into the onevariabl autom aton P R ules)
described in Section 7, storing the history of states reached on a stack.

2. Ifa nal state is reached after som e pre x u of w has been read by
P Rules), then u has some su x which is a left-hand side. M oreover,
this proocedure nds the shortest such pre x.

3.Fead u from right to left nto Q Rules). A nal state is reached as
soon as Q Rules) has read the shortest su x ofu such that there is
arl (;)2 SetRules). Wenow haveu= p andw = p g, where
P;a 2 A , every proper pre x of p and every proper su x of is
Set R ules)—irreducible.

56

4.Find ,the smallest word such that thereisarl (;) n S (seedly).
Ifthere isno such ulein S, nd by am ethod to be described in 715,
sach that isthe anallest word such that (;) 2 SetRules).

5.If (;) isnot already in S, Insert it into the part of S called New .

6. Replace with 1w and pop j jlkvels o the stack so that the
stack represents the history as it was inm ediately after feeding p into
P Rules).

7. Rede new tobep g.Restart at Step 1 asthough p has jist been read
and the next letter to be read isthe rst ketter of . The history stack
enables one to do this.

N ote that other strategiesm ight lead to nding rst som e keft-hand side

In w otherthan .M oreover, therem ay be severaldi erent right-hand sides

wih (;)2 SetRules). A ruk (;) In SetRules) gives rise to paths in

Rules,SL2 andRevy (SL2).W ewill nd the path forwhich right-hand side
is short—Jex—Jeast, given that the left-hand side is equalto

Let = w n v Recall that a state of the onewvarable autom aton

Q Rules) used to nd is a set of states of the orm (s;1;j), where s isa

state of Rules;i 2 £0;1;2gand j 2 f+; g. W hen nding we kept the

be the st of triples (s;1;j) com prising the state of Q Rules) after reading
the word viy1 n Yom right to eft. Qo = ffig= f(sp;L;)g where 54 is
the unigue initial and nalstate of Rules, and i is the di erence in length
between and the thatwe are looking for.

7.15 Right-hand side routine. Inductively, after reading y; x wew il
have determ ined z; ks the pre x of . Inductively we also have a triple
(Sx;ik; &), where s is a state of Rules, iy isOor 1l or2 and j is+ or
Note that we alwayshavem k i.

1. Ifm k = i, then we have found = z7 x ad we stop. So from
now on we assum e thatm > i + k. Thism eans that the next symbol
Vit 172+ 1) Of (;) does not have a padding symbol in its right-hand
com ponent.

2.Wenow try to nd z: by munning through each element z 2 A In
Increasing order. Set z equalto the least elem ent of A .

3. Ifk= 0and iy = 0, then and willbe ofequal length, so the rst
symbolof (;) must be (vi;z1), where y; > z;. So at this stage we

57

can prove that we have y; > z, shoe we know that therem ust be som e
right-hand side corresoonding to our given left-hand side.

Ifk = 0 and iy > 0, then the rst symbolof (;)" is (y1;z) wih
z12A andy; 6 z;. Ifk= 0,1 > 0 and y; = z, we Increase z to the
next elem ent of A .

4. Here we are trying out a particular value of z to see whether it allow s
us to get further. W e look in Rules to see if 57 '™ = s, isde ned.
If it is not de ned, we Increase z to the next elem ent of A and go to

Step 7.153.

5. Esk+1 isde nedJnStep :'_7_.1_5_.§:,W€]O0kank+l ﬁ)ratl:'ple (Sk+l;j-k+l;jk+1)
which is the source ofan arrow labelled (yi+ 1;2z) In the automaton M ,

go to Step 7151

T he above algorithm w illnot hang, because each triple (s¢;i; k) thatwe
use does com e from a path ofarrows in M which starts at the initial state of
M and endsatthe rstpossble nalstate ofM . T herefore allpossible right—
hand sides such that (;) 2 SetRules), are Im plicitly com puted when we
record the statesofQ Rules) (see Step 711 1) . Since i does not vary during
our search, we willalways nd the shortest possble ,wih j j J jbeing
equal to this constant value of iy . Since we always look for z in Increasing
order, we are bound to nd the kexicographically least

8 A m odi ed determm inization algorithm

[Section]

In this section we discuss a usefulm odi cation to the usualdeterm iniza—
tion algorithm fortuming an NFA intoaDFA .LetN bean NFA .Theusual
proofthat N can be detem inized, isto form a new autom aton M each state
ofwhich isa subsst ofthe st S N) of states of N such that is —<losed.
That is to say, if s 2 S (N), then each -armmow with source s also has

58

target n . The initial state of M is the —closure of the st of all initial

statesIn N . Thee ect ofan arrow labelled x 2 A on istotakeeachs2 ,

apply x in allpossble ways, and then to take the -closure of the subsst of

S (N) so obtained. A nalstate of M is any subset of S N) containing a
nal state ofN .

In practice, to nd M , we start with the -—clsure of the st of initial
states of N and proceed Inductively. If we have found a state s ofM asa
subset ofthe set of statesofN ,we xsomex 2 A, and apply x n allpossble
waystoallt2 s, where t isa state of N . W e then Pllow wih -arrowsto
form an —closed subset of states ofN . T his gives us the result of applying x
to s. Them odi cation we wish to m ake to the usual subsst construction is
now explained and jasti ed.

W ewilldenote by M ° them odi ed version ofM thus obtained. M %isa
DFA which accepts the sam e Janguage asM and N , but the structure ofM °
m ight be sin pler than that ofM .

Suppose p is a state of the NFA N . Let N, be the sam e autom aton as
N , except that the only initial state isp. Suppose p and g are distinct states
of N andthatL. N,) L (Ng). Suppose also that the -closure ofgdoesnot
Include p. Under these circum stances, we can m odify the subsst construction
as follow s. A sbefore, we start w ith the —<closure ofthe set of nitial states of
N . W e ©llow the sam e procedure orde ning the arrow s and states ofM %as
forM , exoept that, whenever we construct a subsst containing both p and
g, we change the subset by om itting p.

8.1 Required conditions. The situation can be generalized. W e suppose
that we have a partial order de ned on the set of states 0of N , such that, if
p< gthen LN, LENg. Weasumethat ifp< g, p’°< ¢ andp’is
contained in the -clsure ofq, then ¥= q.

W e ollow the sam e procedure orde ning the arrow s and states ofM %as
forM , exospt that, whenever we construct a subset containing both p and g
w ith p < g, we change the subset by om iting p.

8.2 Theorem . Under the above hypotheses, LM %)= L N).

Proof: Consider a word w = X; n ZA whith is acoepted by N via the
path ofarrows in N

o; rYrX1iVag n Vs r97XniVnys i)

Thismeans that, oreach iwith 0 i n, there isan x;-arrow In N firom
u; to v; and Uy 1 is In the -closure ofv. M oreover vy is an iniial state and
Un+ 1 Isa nalstate.

59

O urproofw illbe by Induction on i. The i~th statem ent In the Induction

reach jwith 0< j< i there isan amow x5 :s5 ; ! s;3 .mn M % o that,
after reading x; ; %M %ist state s; ;. Our induction statem ent also
says that we have a path ofarrows In N

WXV T s DBV WL)7

such that uf2 s; ; and u}, ; isa nalstate ofN .

The induction startswih i= 1 and s, the initial state of M °. W e om
So by taking all niial states of N , and taking their —closure. If this subsst
of states of N containsboth p and gwih p < g, then p is om itted from s,
the initial state of M °. Ifu; 2 sy, then wemust have u; = p, with g2 s
and p< g. Sogmust be am axin alelem ent of sy w ith respect to the partial
order. Now w 2 L(N,) L ®N,). Ik ©llows that we can take u; in the -
closure of g and then de ne the rest of the path of arrow s for the case i= 1.
Sihce g 2 sy and uj is in the -closure of g, it is not the case that there is
a ¢ such that ul < 2 sy, according to 8. Soul 2 sy (that is, i isnot
om itted In our construction) and the induction can start.

Now suppose the induction statem ent is true for i. W e prove it fori+ 1.
we have a path ofarrow s

WXV W SIEN VL WL 1)7

n N such thatu} 2 s; ; and ul,, isa nalstate of N . W e de ne s; from
s; 1 In the m anner described above. First we apply x; in all possible ways
to all states In s; 1, cbtaining vj as one of the target states, and then take
the -closure, obtaining U, ; asone ofthe targetsofan -arrow . Fially, ifg
containsboth p and g, with p < gthen p isdelkted from s; before s; becom es
a state ofM °.

Tt now ©llows that etther ul,; 2 sj, orelse, rsomep < g, ul,; = p,
g2 siandp 2 s;. Inthe rstcasswede neu?l = ul and\/';frl =viPbrj> i
and the Induction step is com plte. In the seocond case, using the fact that
Xit 1 n LN, LN, we seethat we can take ui] in the —cbsure
of g and then de ne the rest of the path of arrows. Since g 2 s; and uii}
is in the —closure ofq,'8.1 shows that it is not possblk to have d 2 s; and
ulf I < ¢. Therefre ull I 2 s;. This com pletes the induction step.

At the end of the lnduction, M °has read allofw and isin state s, . W e
also have the nalstateu®!l 2 s,, so that w is acoepted by M °.

C onversely, suppose w is acogpted by M °. Tt ollow s easily by induction
that ifM ° is in state s; after reading the pre x x; ; afw , then each state
u 2 s; can be reached from som e Initial state of N by a sequence of arrow s

60

must contain a nalstate, and so w is accepted by N .

8.3 Rem ark. Thepracticalusage ofthistheoram clearly dependson having
an e cient way of determ ining when the condition L N ;) L (N) is satis-
ed. In this paper we have seen several exam ples of such tests which cost
virtually nothing to In plem ent but have the potential to save an appreciable
am ount ofboth space and tin e. 2

9 M iscellaneous details

In this section we present a number of points which did not seem to t
elssw here In this paper.

9.1 Aborting. It ispossbl that we com e to a situation where the proce—
dure is not noticing that certain words are reduchble, even though the nec—
essary inform ation to show that they are reduchble is already In som e sense
known. Tt is also possbl that reduction is being carried out ne ciently,
w ith several steps being necessary, whereas In som e sense the necessary in—
form ation to do the reduction in one step is already known. An indication
that our procedure is not proceeding as well as one hoped m ight be that
W Di is constantly changing, with states being identi ed and consequent
welding, or w ith new states or arrow s being added. In this case i m ight be
advisable to abort the current K nuth {Bendix pass.

To see if abortion is advisable, we can record statistics about how much
W Di haschanged since the beginning ofa pass. If the changes seem exces—
sive, then the pass is aborted. A convenient place for the program to decide
to do this is jast before another rule from New is exam ined at Step 5.6 3.

Ifan abort isdecided upon then allstatesand arrowsofW Di arem arked
as needed. At this point the program Jum ps to Step 561\,

9.2 P riority rules. A welbtknown phenom enon found when using K nuth {
Bendix to look for autom atic structures, is that rules associated w th nding
new word di erences or new arrows n W Di should be used m ore Inten-
sively than other rules. Further aspects of the structure are then found m ore
quickly. This is not a theoram | it is observed behaviour seen on exam ples
which happen to have been investigated.
A new rule associated w ith new word di erencesornew arrowsn W D i

ism arked as a prority rule. W hen a prority rule ism Inin ized, the output
isalsom arked as a priority rule. Ifa prority rule is added to one ofthe lists

61

Considered, Now orNew, it is added to the front of the list, whereas rules are
nom ally added to the end of the list. Just before deciding to add a priority
rule to New, we check to see if the mule ism inim al. If so, we add it to the
front of Now Instead of to the front of New .

W hen a rule is taken from Now at Step '5.64 during them ai loop, i is
nom ally com pared w ith allrules in Considered, looking for overlaps between
Eft-hand sides. In the case of a priority rule, we com pare left-hand sides not
only with rules in Considered, but also w ith allrules in Now . Ifa nom alrule
(;) istaken from Now and com parison w ith a rule In Considered gives rise
to a priorty rule, then the rule (;) is also marked as a prority rule. It
is then com pared w ith all rules in Now, once it has been com pared w ith all
rules n Considered.

Treating som e rules as priority rules m akes little di erence unless there
isamechanian In place or aborting a K nuth{Bendix passwhen W Di has
su ciently changed. If there is such a m echanisn , it can m ake a big di er-
ence.

93 Ane ciency consideration.D uring reduction we often have a state
s In a two—variable autom aton and an x 2 A , and we are looking for an arrow
labelled (x;y) with certain properties, where y 2 A" . Ik therefore m akes a
big di erence if the arrow sw ith source s are arranged so that we have rapid
access to arrow s lJabelled (x;y) once X is given.

94 The present.M any ofthe ideas In this paper have been in plem ented
In C++ by the ssoond author. But som e of the ideas in this paper only
occurred to us whilk the paper was being w ritten, and the procedures and
algorithm spresented In thispaper seem to usto be substantial in provem ents
on what hasbeen In plam ented so far. An unfortunate result ofthisisthatwe
are unable to present experin entaldata to badk up our ideas, although m any
ofour ideas have been explored in depth w ith actualcode. O ur experin ental
work hasbeen essential In enabling usto com e to the better algorithm sw hich
are presented here.

9.5 Comparison w ith kbm ag. Here we describe the di erences between
our ideas and the ideas in D erek H olt's kkm ag program s 4]. T hese program s
try to com pute the short-lex-autom atic structure on a group. O ur program
is a substitute only forthe st program in the klm ag suite of program s.

In klm ag, fast reduction is carried out using an autom aton w ih a state
for every pre x of every keft-hand side. In our program we also keep every
rule. However, the space required by a single character in our program is
Jess by a constant multiple than the space required for a state n a nite

62

state autom aton. M oreover, com pression technigues could be used In our
situation so that less space is used, whereas com pression is not availabl in
the situation of klam ag.

T he other Jarge ob cts In our sstup are the autom ata P Rulesih]) de—
ned in 75and Q Rulesh]) de ned in 7.9. T kim ag, there has also to be an
autom aton lke P Rulesh]), and i is possble to arrange that this autom a—
ton is only constructed after the K nuth {Bendix process is halted. In km ag
there is no analogue of ourQ Rulesh]). So these are advantages of klm ag.

In klm ag, reduction is carried out extrem ely rapidly. However, as new
rules are found, the autom aton in klan ag needs to be updated, and this is
quite tim e-consum ing. In our situation, updating the autom ata is quidk, but
reduction is slower by a factor of around three, because the word has to be
read into two or three di erent autom ata. M oreover we som etin es need to
use the m ethod of Section 713 which is slower oy a constant factor) than
sim ply reading a word into a detemm inistic nite state autom aton.

In Kam ag, there is a heurstic, which seem s to be lnevitably arbitrary, for
deciding when to stop the K nuth{Bendix process. In our situation there is
a sensble heurstic, nam ely we stop ifwe nd Rulesh + 1]= Rulesh].

In the case of klm ag, there are occasional cases where the process of

nding the set ofword di erences oscillates inde nitely. This is because re—
dundant rules are som etin es unavoidably introduced into the st of rulks,
Introducing unnecessary word di erences. Later redundant rules are elim
nated and also the corresponding word di erences. T his oscillation can con—
tihue inde niely. Hol has tadkled this problem in his program s by giving

the user interactive m odes of running them .
In our case, the results In Section EG show that, given a short—lex-autom atic

oace.

W e believe that the m ain advantage of our approach for com puting au-
tom atic structures w ill only becom e evident (if it exists at all) when looking
at very large exam ples. W e plan to carry out a system atic exam mnation of
short-lex-autom atic groups generated by Je W ecks’ SnapP ea program | e
EL:]}]| In order to carry out a system atic com parison.

R eferences

L]A V.Aho, R. Sethi, and JD .Ulman. Compikrs, Principks, Tech-
niques, and Tools. A ddison-W esky Publishing C om pany, 1986.

63

R1D B A .Epstein, JW .Cannon,D F.Hok, SV F.Levy,M S.Paterson,
and W P.Thurston. W ord P rocessing in G roups. A K . Peters, N atick,
M ass, 1992.

B]1D BA.Epstein, D F.Hol, and SE.Rees. The use of Knuth-Bendix
m ethods to solve the word problm in autom atic groups. Joumal of
Sym bolic C om putation, 12:397{414, 1991.

4]D F.Hokt. KBMAG KnuthBendix in M onoids and G roups), Ver-
sion 2. Software package, 1996. Availlbl by anonym ous fip from
fip m athswarw ick acuk in directory people/dfh/klbbm ag2.

B]D F.Holk. The W armw ick A utom atic G roups Sofftware. In G eom etrical
and com putationalpersoectives on in nite groups M inneapolis, M N and
New Brunswick, NJ, 1994), volum e 25 of DIM ACS Ser.D iscrete M ath,
T heoret. C om put. Sci., pages 69{82.Amer.M ath. Soc., Providence R I,
199%.

6] D F.Holk and SE .Rees. Software for autom atic groups, isom orxphisn
testing and nitely presented groups. In G eom etric group theory, Vol
1 (Sussex 1991), volum e 181 of Londin M ath. Soc. Lecture Note Ser.,
pages 120{125, Cambridge, 1993. Cambridge Univ. P ress.

[71 D E .Knuth and P B .Bendix.Sin pleword problm s In universalalgebra.
In J. Leech, editor, Com putational problm s in abstract algebras, pages
263{297.Pergam on P ress, 1970.

B] C.0Dunking. In nite regular Thue system s. T heoret. C om put. Sci.,
25:171{192, 1983.

O] M O .Rabin.R ecursive unsolvability ofgroup theoreticproblem s.Annals
ofM athem atdcs, (2)67:172{194, 1958.

[L0] CharlesC .Sin s.Com putation with nitely presented groups. C am bridge
University P ress, 1994.

[l1] JR.W esks. SnapPea: a computer program for studying hyperbolic
3-m anifolds. F reely available from www geom um n edu.

D B A .Epsten

M athem atics Institute, University of W arw ick
Coventry CV4 7AL,UK
dbae@maths.warwick.ac.uk

64

P J. Sanders

M athem atics Institute, University of W arw ick
Coventry CV4 7AL,UK
pjs@maths.warwick.ac.uk

65

