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SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, II.

POSETS OF FINITE LENGTH

MARINA SEMENOVA AND FRIEDRICH WEHRUNG

Abstract. For a positive integer n, we denote by SUB (resp., SUBn) the
class of all lattices that can be embedded into the lattice Co(P ) of all order-

convex subsets of a partially ordered set P (resp., P of length at most n). We
prove the following results:
(1) SUBn is a finitely based variety, for any n ≥ 1.
(2) SUB2 is locally finite.
(3) A finite atomistic lattice L without D-cycles belongs to SUB iff it be-

longs to SUB2; this result does not extend to the nonatomistic case.
(4) SUBn is not locally finite for n ≥ 3.

1. Introduction

For a partially ordered set (from now on poset) (P,E), a subset X of P is order-

convex, if x E z E y and {x, y} ⊆ X implies that z ∈ X , for all x, y, z ∈ P . The
set Co(P ) of all order-convex subsets of P forms a lattice under inclusion. It gives
an important example of convex geometry, see K. V. Adaricheva, V. A. Gorbunov,
and V. I. Tumanov [1]. In M. Semenova and F. Wehrung [10], the following result
is proved:

Theorem. The class SUB of all lattices that can be embedded into some Co(P )
is a variety.

This implies the nontrivial result that every homomorphic image of a member of

SUB belongs to SUB. It is in fact proved in [10] that the variety SUB is finitely

based, it is defined by three identities that are denoted by (S), (U), and (B).
In the present paper, we extend this result to the class SUBn of all lattices that

can be embedded into Co(P ) for some poset P of length n, for a given positive
integer n:

Theorem 6.4. The class SUBn is a finitely based variety, for every positive inte-

ger n.
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2 M. SEMENOVA AND F. WEHRUNG

It is well-known that for n = 1, the class SUBn is the variety of all distributive

lattices. This fact is contained in G. Birkhoff and M. K. Bennett [2].
For n = 2, SUBn = SUB2 is much more interesting, it is the variety of all

lattices that can be embedded into some Co(P ) without D-cycle on its atoms. We
find a simple finite set of identities characterizing SUB2, see Theorem 3.7. In
addition, we prove the following results:

— The variety SUB2 is locally finite (see Theorem 4.10), and we provide an

explicit upper bound for the cardinality of the free lattice on m generators

in SUB2.

— A finite atomistic lattice without D-cycle belongs to SUB iff it belongs to

SUB2 (see Proposition 3.9).

We also prove that SUBn is not locally finite for n ≥ 3 (see Theorem 7.1), and
that SUBn is a proper subvariety of SUBn+1 for every n (see Corollary 6.7).

2. Basic concepts

We recall some of the definitions and concepts used in [10]. For elements a, b,
c of a lattice L such that a ≤ b ∨ c, we say that the (formal) inequality a ≤ b ∨ c
is a nontrivial join-cover, if a � b, c. We say that it is minimal in b, if a � x ∨ c
holds, for all x < b, and we say that it is a minimal nontrivial join-cover, if it is a
nontrivial join-cover and it is minimal in both b and c.

The join-dependency relation D = DL (see R. Freese, J. Ježek, and J. B. Na-
tion [4]) is defined on the set J(L) of all join-irreducible elements of L by putting

p D q, if p 6= q and ∃x such that p ≤ q ∨ x holds and is minimal in q. (2.1)

It is important to observe that p D q implies that p � q, for all p, q ∈ J(L).
Furthermore, p � x in (2.1).

We say that L is finitely spatial (resp., spatial) if every element of L is a join of
join-irreducible (resp., completely join-irreducible) elements of L. It is well known
that every dually algebraic lattice is lower continuous—see Lemma 2.3 in P. Crawley
and R. P. Dilworth [3], and spatial (thus finitely spatial)—see Theorem I.4.22 in
G. Gierz et al. [5] or Lemma 1.3.2 in V. A. Gorbunov [6].

A lattice L is dually 2-distributive, if it satisfies the identity

a ∧ (x ∨ y ∨ z) = (a ∧ (x ∨ y)) ∨ (a ∧ (x ∨ z)) ∨ (a ∧ (y ∨ z)).

A stronger identity is the Stirlitz identity (S) introduced in [10]:

a ∧ (b′ ∨ c) = (a ∧ b′) ∨
∨

i<2

(
a ∧ (bi ∨ c) ∧

(
(b′ ∧ (a ∨ bi)) ∨ c

))
,

where we put b′ = b ∧ (b0 ∨ b1). Two other important identities are the Udav

identity (U),

x ∧ (x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x0 ∨ x2)

= (x ∧ x0 ∧ (x1 ∨ x2)) ∨ (x ∧ x1 ∧ (x0 ∨ x2)) ∨ (x ∧ x2 ∧ (x0 ∨ x1)),



LATTICES OF ORDER-CONVEX SETS, II 3

and the Bond identity (B),

x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) =
∨

i<2

((
x ∧ ai ∧ (b0 ∨ b1)

)
∨

(
x ∧ bi ∧ (a0 ∨ a1)

))

∨
∨

i<2

(
x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) ∧ (a0 ∨ bi) ∧ (a1 ∨ b1−i)

)
.

It is proved in [10] that a lattice L belongs to SUB iff it satisfies (S), (U), and

(B). Although these identities are quite complicated, they have the following re-
spective consequences, their so-called join-irreducible interpretations, that can be
easily visualized on the poset P in case L = Co(P ) for a poset P :

(Sj): For all a, b, b0, b1, c ∈ J(L), the inequalities a ≤ b ∨ c, b ≤ b0 ∨ b1, and

a 6= b imply that either a ≤ b∨ c for some b < b or b ≤ a∨ bi and a ≤ bi ∨ c
for some i < 2.

(Uj): For all x, x0, x1, x2 ∈ J(L), the inequalities x ≤ x0 ∨ x1, x0 ∨ x2, x1 ∨ x2

imply that either x ≤ x0 or x ≤ x1 or x ≤ x2.
(Bj): For all x, a0, a1, b0, b1 ∈ J(L), the inequalities x ≤ a0 ∨ a1, b0 ∨ b1 imply

that either x ≤ ai or x ≤ bi for some i < 2 or x ≤ a0 ∨ b0, a1 ∨ b1 or
x ≤ a0 ∨ b1, a1 ∨ b0.

It is proved in [10] that (S) implies (Sj), (U) implies (Uj), and (B) implies (Bj).
A Stirlitz track of L is a pair (〈ai | 0 ≤ i ≤ n〉, 〈a′i | 1 ≤ i ≤ n〉), where the ai-s

and the a′i-s are join-irreducible elements of L that satisfy the following relations:

(i) the inequality ai ≤ ai+1 ∨ a
′
i+1 holds, for all i ∈ {0, . . . , n− 1}, and it is a

minimal nontrivial join-cover;
(ii) the inequality ai ≤ a′i ∨ ai+1 holds, for all i ∈ {1, . . . , n− 1}.

For a poset P , the length of P , denoted by lengthP , is defined as the supremum
of the numbers |C| − 1, where C ranges over the finite subchains of P . We say
that P with predecessor relation ≺ is tree-like, if it has no infinite bounded chain
and between any points a and b of P there exists at most one finite sequence
〈xi | 0 ≤ i ≤ n〉 with distinct entries such that x0 = a, xn = b, and either xi ≺ xi+1

or xi+1 ≺ xi, for all i ∈ {0, . . . , n− 1}.

3. The identity (L2)

Let (L2) be the following lattice-theoretical identity:

a ∧
((
b ∧ (c ∨ c′)

)
∨ b′

)
=

(
a ∧ b ∧ (c ∨ c′)

)
∨

(
a ∧

(
(b ∧ c) ∨ b′

))
∨

(
a ∧

(
(b ∧ c′) ∨ b′

))
.

Taking b = c ∨ c′ implies immediately the following:

Lemma 3.1. The identity (L2) implies dual 2-distributivity.

In order to find an alternative formulation for (L2) and many other identities, it
is convenient to introduce the following definition.

Definition 3.2. A subset Σ of a lattice L is a join-seed, if the following assertions
hold:

(i) Σ ⊆ J(L);
(ii) every element of L is a join of elements of Σ;
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(iii) for all p ∈ Σ and all a, b ∈ L such that p ≤ a ∨ b and p � a, b, there are
x ≤ a and y ≤ b both in Σ such that p ≤ x ∨ y is minimal in x and y.

Two important examples of join-seeds are provided by the following:

Lemma 3.3. Any of the following assumptions implies that the subset Σ is a join-

seed of the lattice L:

(i) L = Co(P ) and Σ = {{p} | p ∈ P}, for some poset P .

(ii) L is a dually 2-distributive, complete, lower continuous, finitely spatial

lattice, and Σ = J(L).

Proof. (i) is obvious, while (ii) follows immediately from [10, Lemma 3.2]. �

Proposition 3.4. Let L be a lattice, let Σ ⊆ J(L). We consider the following

statements on L, Σ:

(i) L satisfies (L2).
(ii) There are no elements a, b, c of Σ such that a D b D c.

Then (i) implies (ii). Furthermore, if Σ is a join-seed of L, then (ii) implies (i).

Proof. (i)⇒(ii) Suppose that there are a, b, c ∈ Σ such that a D b D c. Let b′,
c′ ∈ L such that both inequalities a ≤ b ∨ b′ and b ≤ c ∨ c′ hold and are minimal,
respectively, in b and in c. From the assumption that L satisfies (L2) it follows that

a = (a ∧ b) ∨
(
a ∧

(
(b ∧ c) ∨ b′

))
∨

(
a ∧

(
(b ∧ c′) ∨ b′

))
.

Since a is join-irreducible and a � b, there exists x ∈ {c, c′} such that a ≤ (b∧x)∨b′.
But b ∧ x ≤ b, thus, by the minimality statement on b, b ≤ x, a contradiction.

(ii)⇒(i) under the additional assumption that Σ is a join-seed of L. Let a, b, b′,
c, c′ ∈ L, denote by u (resp., v) the left hand side (resp., right hand side) of the
identity (L2) formed with these elements. It is clear that v ≤ u. Conversely, let
x ≤ u in Σ, we prove that x ≤ v. If either x ≤ b∧(c∨c′) or x ≤ b′ then this is clear.
Suppose that x � b ∧ (c ∨ c′), b′. Since x ≤

(
b ∧ (c ∨ c′)

)
∨ b′ and Σ is a join-seed

of L, there are y ≤ b ∧ (c ∨ c′) and y′ ≤ b′ in Σ such that x ≤ y ∨ y′ is a minimal
nontrivial join-cover. If either y ≤ c or y ≤ c′ then either x ≤ a ∧

(
(b ∧ c) ∨ b′

)
or

x ≤ a ∧
(
(b ∧ c′) ∨ b′

)
, in both cases x ≤ v. Suppose that y � c, c′. Since y ≤ c ∨ c′

and Σ is a join-seed, there are z ≤ c and z′ ≤ c′ in Σ such that y ≤ z ∨ z′ is a
minimal nontrivial join-cover. Hence x D y D z, a contradiction. Therefore, x ≤ v.
Since every element of L is a join of elements of Σ, u ≤ v, whence u = v, which
completes the proof that L satisfies (L2). �

Corollary 3.5. Let (P,E) be a poset. Then Co(P ) satisfies (L2) iff lengthP ≤ 2.

Proof. Put Σ = {{p} | p ∈ P}, the natural join-seed of Co(P ). Suppose first that
lengthP > 2, that is, P contains a four-element chain o ⊳ a ⊳ b ⊳ c. Then
{a}D {b}D {c}, thus, by Proposition 3.4, Co(P ) does not satisfy (L2).

Conversely, suppose that Co(P ) does not satisfy (L2). By Proposition 3.4, there
are a, b, c ∈ P such that {a}D {b}D {c}. Since {a}D {b}, there exists b′ ∈ P such
that either b ⊳ a ⊳ b′ or b′ ⊳ a ⊳ b, say, without loss of generality, b′ ⊳ a ⊳ b.
Since {b}D {c}, there are u, v ∈ P such that u ⊳ b ⊳ v. Therefore, b′ ⊳ a ⊳ b ⊳ v
is a four-element chain in P . �

In order to proceed, it is convenient to recall the following result from [10]:
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Proposition 3.6. Let L be a complete, lower continuous, dually 2-distributive

lattice that satisfies (U) and (B). Then for every p ∈ P , there are subsets A and B
of [p]D that satisfy the following properties:

(i) [p]D = A ∪B and A ∩B = ∅.

(ii) For all x, y ∈ [p]D, p ≤ x ∨ y iff (x, y) belongs to (A×B) ∪ (B ×A).

Moreover, the set {A,B} is uniquely determined by these properties.

The set {A,B} is called the Udav-Bond partition of [p]D associated with p.
We can now prove the following result:

Theorem 3.7. Let L be a lattice. Then the following are equivalent:

(i) L belongs to SUB2.

(ii) L satisfies the identities (L2), (U), and (B).
(iii) There are a tree-like poset Γ of length at most 2 and a lattice embedding

ϕ : L →֒ Co(Γ) that preserves the existing bounds. Furthermore, the fol-

lowing additional properties hold:

— if L is finite, then Γ is finite;

— if L is finite and subdirectly irreducible, then ϕ is atom-preserving.

Proof. (i)⇒(ii) It has been already proved in [10] that every lattice in SUB (thus a

fortiori in SUB2) satisfies the identities (U) and (B). Furthermore, it follows from
Corollary 3.5 that every lattice in SUB2 satisfies (L2).

(ii)⇒(iii) Let L be a lattice satisfying (L2), (U), and (B). We embed L into the

lattice L̂ = FilL of all filters of L, partially ordered by reverse inclusion (see, e.g., G.

Grätzer [7]); if L has no unit element, then we allow the empty set in L̂, otherwise

we require filters to be nonempty. This way, L̂ is a dually algebraic lattice, satisfies

the same identities as L, and the natural embedding x 7→ ↑x from L into L̂ preserves
the existing bounds.

Hence we have reduced the problem to the case where L is a dually algebraic
lattice. In particular, L is complete, lower continuous, and finitely spatial (it is
even spatial), and Σ = J(L) is a join-seed of L (see Lemma 3.3). Since L sat-
isfies the identity (L2) and by Lemma 3.1, L is dually 2-distributive. Hence, by
Proposition 3.6, every p ∈ J(L) has a unique Udav-Bond partition {Ap, Bp}.

Our poset Γ is defined in a similar fashion as in [10, Section 7]. The underlying
set of Γ is the set of all nonempty finite sequences α = 〈a0, . . . , an〉 of elements of
J(L) such that a0 is D-minimal in J(L) (this condition is added) and ai Dai+1, for
all i ∈ {0, . . . , n − 1}; as in [10], we call n the length of α and we put e(α) = an.
Since L satisfies (L2) and by Proposition 3.4, the elements of Γ are of length either 1
or 2. Hence the partial ordering E on Γ takes the following very simple form. The
nontrivial coverings in Γ are those of the form 〈p, a〉 ⊳ 〈p〉 ⊳ 〈p, b〉, where p ∈ J(L)
and (a, b) ∈ Ap × Bp. Since the elements of length 1 of Γ are either maximal or
minimal, Γ has indeed length at most 2. The proof that Γ is tree-like proceeds
mutatis mutandis as in [10, Proposition 7.3].

As in [10], we define a map ϕ from L to the powerset of Γ by the rule

ϕ(x) = {α ∈ Γ | e(α) ≤ x}, for all x ∈ L.

If 〈p, a〉 ⊳ 〈p〉 ⊳ 〈p, b〉 in Γ, then p ≤ a∨ b; hence, for x ∈ L, if both 〈p, a〉 and 〈p, b〉
belong to ϕ(x), then 〈p〉 ∈ ϕ(x); whence ϕ(x) ∈ Co(Γ).

It is clear that ϕ is a meet-homomorphism, and that it preserves the existing
bounds. Let x, y ∈ L such that x � y. Since L is finitely spatial, there exists
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a ∈ J(L) such that a ≤ x and a � y. If a is D-minimal in J(L), then 〈a〉 belongs
to ϕ(x) \ ϕ(y). If a is not D-minimal in J(L), then there exists p ∈ J(L) such that
pDa. Since there are no D-chains with three elements in J(L), p is D-minimal, thus
〈p, a〉 belongs to ϕ(a) \ϕ(b). Therefore, ϕ is a meet-embedding from L into Co(Γ).

We now prove that ϕ is a join-homomorphism. It suffices to prove that ϕ(x∨y) ⊆
ϕ(x)∨ϕ(y), for all x, y ∈ L. Let α ∈ ϕ(x∨y), we prove that α ∈ ϕ(x)∨ϕ(y). This
is obvious if α ∈ ϕ(x) ∪ ϕ(y), so suppose that α /∈ ϕ(x) ∪ ϕ(y). Put p = e(α). So
p � x, y while p ≤ x∨y, thus there are u ≤ x and v ≤ y in J(L) such that p ≤ u∨v
is a minimal nontrivial join-cover. In particular, pD u and pD v, thus α = 〈p〉 and
both 〈p, u〉 and 〈p, v〉 belong to Γ. It follows from p ≤ u ∨ v that (u, v) belongs to
(Ap × Bp) ∪ (Bp ×Ap), thus either 〈p, u〉 ⊳ 〈p〉 ⊳ 〈p, v〉 or 〈p, v〉 ⊳ 〈p〉 ⊳ 〈p, u〉, in
both cases α ∈ ϕ(x)∨ϕ(y). This completes the proof that ϕ is a lattice embedding.

Of course, if L is finite, then Γ is finite. Now suppose that L is finite and
subdirectly irreducible. Since there are noD-sequences of length three in J(L), there
are a fortiori no D-cycles, thus, since L is subdirectly irreducible, J(L) has a unique
D-minimal element p (see R. Freese, J. Ježek, and J. B. Nation [4, Chapter 3]).
Hence, if x is an atom of L, then ϕ(x) is equal to {〈p〉} if x = p and to {〈p, x〉}
otherwise, in both cases, ϕ(x) is an atom of Co(Γ).

Finally, (iii)⇒(i) is trivial. �

Remark 3.8. It follows from [10, Example 8.1] that there exists a (non subdirectly
irreducible) finite lattice L without D-cycle in SUB2 that cannot be embedded
atom-preservingly into any lattice of the form Co(P ).

Proposition 3.9. Let L be a finite atomistic lattice without any D-cycle of the

form a D b D a. Then L belongs to SUB iff L belongs to SUB2. In particular, L
has no D-cycle.

Proof. Suppose that L belongs to SUB. For a, b, c ∈ J(L) such that a D b D c, it
follows from Lemma 3.3 that there are elements b′ and c′ in J(L) such that both
inequalities a ≤ b ∨ b′ and b ≤ c ∨ c′ hold and are minimal nontrivial join-covers.
Since L satisfies (Sj), there exists x ∈ {c, c′} such that b ≤ a ∨ x and a ≤ b′ ∨ x.
But a 6= b and b 6= x (because aD bDx), thus, since a, b, and x are atoms, the first
inequality witnesses that b D a. Hence a D b D a, a contradiction. It follows from
Proposition 3.4 that L satisfies (L2), and then it follows from Theorem 3.7 that L
belongs to SUB2, in fact, there exists a finite poset Γ of length at most 2 such
that L embeds into Co(Γ). It follows from Proposition 3.4 and Corollary 3.5 that
Co(Γ) has no D-cycle (a direct proof is also very easy), thus neither has L. �

As the following example shows, Proposition 3.9 does not extend to the nonat-
omistic case.

Example 3.10. A finite subdirectly irreducible lattice without D-cycle that belongs

to SUB3 \ SUB2.

Proof. Let P = {ȧ, ȧ′, ḃ, ċ, u̇, v̇} be the poset diagrammed on Figure 1.
Let L be the sublattice of Co(P ) that consists of those subsets X such that

(ȧ ∈ X ⇒ ȧ′ ∈ X) and ({ḃ, ċ} ⊆ X ⇒ ȧ ∈ X) and ({u̇, v̇} ⊆ X ⇒ ḃ ∈ X)

and ({ȧ′, u̇} ⊆ X ⇒ ḃ ∈ X) and ({u̇, ċ} ⊆ X ⇒ ȧ ∈ X).
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u̇

v̇ȧ ȧ′

ḃ

ċ

Figure 1. A finite poset of length 3

Then J(L) = {a, a′, b, c, u, v}, where a = {ȧ, ȧ′}, a′ = {ȧ′}, b = {ḃ}, c = {ċ},
u = {u̇}, v = {v̇}. Hence L is the 〈∨, 0〉-semilattice defined by the generators a, a′,
b, c, u, v, and the relations

a′ ≤ a; a ≤ b ∨ c; b ≤ u ∨ v; b ≤ a′ ∨ u; a ≤ u ∨ c.

In particular, L has no D-cycle and it is subdirectly irreducible. Furthermore, L is
a sublattice of Co(P ), hence it belongs to SUB3. However, L has the three-element
D-sequence a D b D u, thus it does not belong to SUB2. �

4. Local finiteness of SUB2

We begin with a few elementary observations on complete congruences of lattices
of the form Co(P ). We recall that a congruence θ of a complete lattice L is complete,
if x ≡ y (mod θ), for all y ∈ Y implies x ≡

∨
Y (mod θ) and x ≡

∧
Y (mod θ),

for all x ∈ L and all nonempty Y ⊆ L. We say that L is completely subdirectly

irreducible, if it has a least nonzero complete congruence.

Definition 4.1. We say that a subset U of a poset (P,E) is D-closed, if x ⊳ p ⊳ y
and either x ∈ U or y ∈ U implies that p ∈ U , for all x, y, p ∈ P .

Equivalently, {p} D {x} (in Co(P )) and x ∈ U implies that p ∈ U , for all p,
x ∈ P . Observe in particular that every D-closed subset of P is convex. We leave
to the reader the straightforward proof of the following lemma:

Lemma 4.2. Let P be a poset, let U be a D-closed subset of P . Then the binary

relation θU on Co(P ) defined by

X ≡ Y (mod θU ) ⇔ X ∪ U = Y ∪ U, for all X, Y ∈ Co(P )

is a complete lattice congruence on Co(P ), and one can define a surjective homo-

morphism hU : Co(P ) ։ Co(P \U) with kernel θU by the rule hU (X) = X \U , for

all X ∈ Co(P ). Furthermore, every complete lattice congruence θ of Co(P ) has

the form θU , with associated D-closed set U = {p ∈ P | {p} ≡ ∅ (mod θ)}.

We shall denote by D(P ) the lattice of all D-closed subsets of a poset P under
inclusion. It follows from Lemma 4.2 that D(P ) is isomorphic to the lattice of all

complete congruences of Co(P ).

Lemma 4.3. The lattice D(P ) is algebraic, for every poset P .
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Proof. Evidently, D(P ) is an algebraic subset of the powerset lattice P(P ) of P , that
is, a complete meet-subsemilattice closed under nonempty directed unions (see [6]).
Since P(P ) is algebraic, so is D(P ). �

We observe that Lemma 4.3 cannot be extended to complete congruences of ar-
bitrary complete lattices: by G. Grätzer and H. Lakser [8], every complete lattice L
is isomorphic to the lattice of complete congruences of some complete lattice K.
By G. Grätzer and E.T. Schmidt [9], K can be taken distributive.

Corollary 4.4. For a poset P , the lattice Co(P ) is completely subdirectly irre-

ducible iff there exists a least (for the inclusion) nonempty D-closed subset of P .

The analogue of Birkhoff’s subdirect decomposition theorem runs as follows:

Lemma 4.5. Let P be a poset. Then there exists a family 〈Ui | i ∈ I〉 of D-closed

subsets of P such that the diagonal map from Co(P ) to
∏

i∈I Co(P \Ui) is a lattice

embedding, and all the Co(P \ Ui) are completely subdirectly irreducible.

Proof. Let {Ui | i ∈ I} denote the set of all completely meet-irreducible elements
of D(P ). It follows from Lemma 4.3 that D(P ) is dually spatial, that is, every
element of D(P ) is a meet of some of the Ui-s. By applying this to the empty set,
we obtain that the Ui-s have empty intersection, which concludes the proof. �

Notation 4.6. For every positive integer n, we denote by Pn the class of all
posets P of length at most n such that Co(P ) is completely subdirectly irreducible
(i.e., P has a least nonempty D-closed subset).

For every pair (I, J) of nonempty disjoint sets, set PI,J = I ∪ J ∪ {p}, where p
is some outside element, with nontrivial coverings x ⊳ p for x ∈ I and p ⊳ y for
y ∈ J .

Lemma 4.7. The class P2 consists of the one-element poset and all posets of the

form PI,J , where I and J are nonempty disjoint sets.

Proof. It is straightforward to verify that the one-element poset and the posets PI,J

all belong to P2 (the monolith of Co(PI,J ) is the congruence Θ(∅, {p})). Conversely,
let P be a poset in P2. If lengthP ≤ 1, then Co(P ) is the powerset of P , thus it is
distributive. Furthermore, every subset of P isD-closed, thus, since P is completely
subdirectly irreducible, P is a singleton.

Suppose now that P has length 2. Thus there exists a three-element chain
a ⊳ p ⊳ b in P . Since P has length 2, a is minimal, b is maximal, and {p} is
D-closed. The latter applies to every element of height 1 instead of p, hence, by
assumption on P , p is the only element of height 1 of P . Let x be a minimal element
of P . If x 5 p, then {x} is D-closed, thus x = p, a contradiction; whence x ⊳ p;
Similarly, p ⊳ y for every maximal element y of P . Therefore, P ∼= PI,J , where I
(resp., J) is the set of all minimal (resp., maximal) elements of P . �

Notation 4.8. For a positive integer m, let SUB2,m denote the class of all lat-
tices that can be embedded into a product of lattices of the form Co(PI,J ), where
|I| + |J | ≤ m.

Lemma 4.9. Let L be a finitely generated lattice, let m ≥ 2, let a0, . . . , am−1

be generators of L. Let I and J be disjoint sets, let f : L → Co(PI,J) be a lat-

tice homomorphism. Then there are finite sets I ′ ⊆ I and J ′ ⊆ J such that, if
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π : Co(PI,J ) → Co(PI′,J′), X 7→ X ∩ PI′,J′ is the canonical map, the following

assertions hold:

(i) |I ′| + |J ′| ≤ 2m − 1;
(ii) π ◦ f is a lattice homomorphism;

(iii) ker(f) = ker(π ◦ f).

Proof. Let D be the sublattice of the powerset lattice P(I ∪ J) generated by the
subset {f(ai) \ {p} | i < m}. We observe that D is a finite distributive lattice.
Moreover, every join-irreducible element of D has the form

∧
i∈X f(ai), where X is

a proper subset of {0, 1, . . . ,m− 1}, hence | J(D)| ≤ 2m − 2.

Claim 1. The set D∗ =
(

D ∩
(
P(I) ∪ P(J)

))
∪ {X ∪ {p} | X ∈ D} is a sublattice

of Co(PI,J ), and it contains the range of f .

Proof of Claim. It is easy to verify that D∗ is a sublattice of Co(PI,J). It contains
all elements of the form f(ai), thus it contains the range of f . � Claim 1.

For all A ∈ J(D), let A† denote the largest element X of D such that A 6⊆ X .
Observe that A† is meet-irreducible in D. For every A ∈ J(D), we pick kA ∈ A\A†.
Furthermore, if the zero 0D of D is nonempty, we pick an element l of 0D. We define
K0 = {kA | A ∈ J(D)}, and we put K = K0 if 0D = ∅, K = K0 ∪ {l} otherwise.
Observe that K is a subset of I ∪ J and |K| ≤ 2m − 1. Finally, we put I ′ = I ∩K
and J ′ = J ∩K, and we let π : Co(PI,J ) → Co(PI′,J′) be the canonical map.

Claim 2. The following assertions hold:

(i) X 6⊆ Y implies that X ∩K 6⊆ Y ∩K, for all X, Y ∈ D.

(ii) X 6= ∅ implies that X ∩K 6= ∅, for all X ∈ D.

Proof of Claim. (i) There exists A ∈ J(D) such that A ⊆ X while A 6⊆ Y . Hence
kA ∈ A \A† ⊆ X \ Y .

(ii) If 0D = ∅, then X contains an atom A of D; hence kA ∈ A ⊆ X . If 0D 6= ∅,
then l ∈ 0D ⊆ X . � Claim 2.

Now we can prove that π ◦ f is a lattice homomorphism. It is clearly a meet-
homomorphism. To prove that it is a join-homomorphism, it suffices to prove the
containment

(f(x) ∨ f(y)) ∩ PI′,J′ ⊆ (f(x) ∩ PI′,J′) ∨ (f(y) ∩ PI′,J′), (4.1)

for all x, y ∈ L. Suppose otherwise. Since p is the only element of PI,J that is
neither maximal nor minimal, it belongs to the left hand side of (4.1) but not to its
right hand side. In particular, p /∈ f(x)∪f(y), whence, say, f(x) ⊆ I and f(y) ⊆ J .
By Claim 1, f(x), f(y) ∈ D∗, thus f(x), f(y) ∈ D. Furthermore, p ∈ f(x) ∨ f(y)
with f(x) ⊆ I and f(y) ⊆ J , whence f(x), f(y) are nonempty. By Claim 2(ii),
both f(x) and f(y) meet K, whence p ∈ (f(x) ∩ I ′) ∨ (f(y) ∩ J ′), a contradiction.
Therefore, π ◦ f is indeed a lattice homomorphism.

In order to conclude the proof of Lemma 4.9, it suffices to prove that ker(π ◦ f)
is contained in ker(f). So let x, y ∈ L such that f(x) 6⊆ f(y). By Claim 1, both
f(x) and f(y) belong to D∗. If f(x) \ {p} ⊆ f(y), then p ∈ f(x), hence

p ∈
(
f(x) ∩ PI′,J′

)
\

(
f(y) ∩ PI′,J′

)
= (π ◦ f(x)) \ (π ◦ f(y)).

If f(x) \ {p} 6⊆ f(y), then, by Claim 2(i), there exists k ∈ K with k ∈ (f(x) \ {p}) \
(f(y)\{p}), whence k ∈ (π◦f(x))\(π◦f(y)). In both cases, π◦f(x) 6⊆ π◦f(y). �
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We can now prove the main result of this section:

Theorem 4.10. Let m ≥ 2 be an integer. Then every m-generated member of

SUB2 belongs to SUB2,2m−1. In particular, the variety SUB2 is locally finite.

Proof. Let L be a m-generated member of SUB2. By Lemma 4.5, there exists a
family 〈(Il, Jl) | l ∈ Ω〉 of pairs of nonempty disjoint sets, together with an embed-
ding f : L →֒

∏
l∈Ω Co(PIl,Jl

). For all l ∈ Ω, denote by fl : L→ Co(PIl,Jl
) the l-th

component of f . By Lemma 4.9, there are finite subsets I ′l ⊆ Il and J ′
l ⊆ Jl such

that |I ′l |+ |J ′
l | ≤ 2m−1, πl◦fl is a lattice homomorphism, and ker(fl) = ker(πl ◦fl),

where πl : Co(PIl,Jl
) → Co(PI′

l
,J′

l

) is the canonical map. Therefore, the map

g : L→
∏

l∈Ω

Co(PI′

l
,J′

l
), x 7→ 〈πl ◦ fl(x) | l ∈ Ω〉

is a lattice embedding of L into a member of SUB2,2m−1. �

The above argument gives a very rough upper bound for the cardinality of
the free lattice Fm in SUB2 on m generators, namely, e(m)e(m)m

, where e(m) =

22m

+ 22m+1−2 − 1. Indeed, by Theorem 4.10, Fm embeds into AAm

, where A =
P2m−1,2m−1, and |A| = e(m).

5. The identities (Hn)

Definition 5.1. For a positive integer n, we define inductively lattice polynomials
Ui,n (for 0 ≤ i ≤ n), Vi,j,n (for 0 ≤ j ≤ i ≤ n− 1), Wi,j,n (for 0 ≤ j ≤ i ≤ n − 2),
with variables x0, . . . , xn, x′1, . . . , x′n, as follows:

Un,n = xn;

Ui,n = xi ∧ (Ui+1,n ∨ x′i+1) for 0 ≤ i ≤ n− 1;

Vi,i,n = (xi ∧ Ui+1,n) ∨ (xi ∧ x
′
i+1) for 0 ≤ i ≤ n− 1;

Vi,j,n = xj ∧ (Vi,j+1,n ∨ x′j+1) for 0 ≤ j < i ≤ n− 1;

Wi,i,n = xi ∧ (x′i+1 ∨ x
′
i+2) ∧

(
(Ui+1,n ∧ (xi ∨ x

′
i+2)) ∨ x

′
i+1

)
for 0 ≤ i ≤ n− 2;

Wi,j,n = xj ∧ (Wi,j+1,n ∨ x′j+1) for 0 ≤ j < i ≤ n− 2.

Furthermore, we put

Un = U0,n,

Vi,n = Vi,0,n for 0 ≤ i ≤ n− 1;

Wi,n = Wi,0,n for 0 ≤ i ≤ n− 2.

Lemma 5.2. Let n be a positive integer. The following inequalities hold in every

lattice:

(i) Vi,j,n ≤ Uj,n for 0 ≤ j ≤ i ≤ n− 1;
(ii) Wi,j,n ≤ Uj,n for 0 ≤ j ≤ i ≤ n− 2;
(iii) Vi,n ≤ Un for 0 ≤ i ≤ n− 1;
(iv) Wi,n ≤ Un for 0 ≤ i ≤ n− 2.

Proof. Items (i) and (ii) are easily established by downward induction on j. Items
(iii) and (iv) follow immediately. �

As in the following lemma, we shall often use the convenient notation

~a = 〈a0, a1, . . . , an〉, ~a′ = 〈a′1, . . . , a
′
n〉.
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Lemma 5.3. Let n be a positive integer, let L be a lattice, let a0, . . . , an ∈ J(L)
and a′1, . . . , a′n ∈ L such that ai ≤ ai+1 ∨ a′i+1 is a nontrivial join-cover, for all

i ∈ {0, . . . , n− 1}, minimal in ai+1 for i ≤ n− 2. If the equality

a0 =
∨

0≤i≤n−1

Vi,n(~a,~a′) ∨
∨

0≤i≤n−2

Wi,n(~a,~a′) (5.1)

holds, then there exists i ∈ {0, . . . , n − 2} such that ai ≤ a′i+1 ∨ a′i+2 and ai+1 ≤
ai ∨ a

′
i+2.

Note. Of course, the meaning of the right hand side of the equation (5.1) for n = 1
is simply V0,1(~a,~a

′).

Proof. We first observe that the assumptions imply the following:

Ui,n(~a,~a′) = ai, for all i ∈ {0, . . . , n}. (5.2)

Now we put ci,j = Vi,j,n(~a,~a′) and ci = ci,0 for 0 ≤ j ≤ i ≤ n − 1, and di,j =
Wi,j,n(~a,~a′) and di = di,0 for 0 ≤ j ≤ i ≤ n − 2. We deduce from the assumption
that one of the two following cases occurs:

Case 1. a0 = ci for some i ∈ {0, . . . , n−1}. This can also be written ci,0 = a0. Sup-
pose that ci,j = aj , for 0 ≤ j < i. So aj ≤ ci,j+1 ∨a

′
j+1 with ci,j+1 ≤ aj+1,

thus, by the minimality assumption on aj+1, we obtain that ci,j+1 = aj+1.
Hence ci,j = aj , for all j ∈ {0, . . . , i}, in particular, by (5.2),

ai = ci,i = (ai ∧ ai+1) ∨ (ai ∧ a
′
i+1),

whence, by the join-irreducibility of ai, either ai ≤ ai+1 or ai ≤ a′i+1,
which contradicts the assumption. Thus, Case 1 cannot occur.

Case 2. a0 = di for some i ∈ {0, . . . , n− 2} (thus n ≥ 2). As in Case 1, di,j = aj ,
for all j ∈ {0, . . . , i}, whence, for j = i and by (5.2),

ai ≤ (a′i+1 ∨ a
′
i+2) ∧

(
(ai+1 ∧ (ai ∨ a

′
i+2)) ∨ a

′
i+1

)

Set x = ai+1 ∧ (ai ∨ a
′
i+2), so x ≤ ai+1. Observe that ai ≤ a′i+1 ∨ a

′
i+2 and

ai ≤ x ∨ a′i+1, whence, by the minimality assumption on ai+1, we obtain
that x = ai+1, that is, ai+1 ≤ ai ∨ a

′
i+2.

This concludes the proof. �

Lemma 5.4. Let L be a lattice satisfying the Stirlitz identity (S), let Σ be a join-

seed of L, let x ∈ Σ, let n be a positive integer, and let a0, . . . , an, a′1, . . . , a′n ∈ L.

If x ≤ Un(~a,~a′), then one of the following three cases occurs:

(i) there exists i ∈ {0, . . . , n− 1} such that x ≤ Vi,n(~a,~a′);
(ii) there exists i ∈ {0, . . . , n− 2} such that x ≤Wi,n(~a,~a′);
(iii) there are elements xi ≤ Ui,n(~a,~a′) (0 ≤ i ≤ n) and x′i ≤ a′i (1 ≤ i ≤ n) of

Σ such that the pair (〈xi | 0 ≤ i ≤ n〉, 〈x′i | 1 ≤ i ≤ n〉) is a Stirlitz track.

Proof. We put a∗i = Ui,n(~a,~a′) for 0 ≤ i ≤ n, ci,j = Vi,j,n(~a,~a′) for 0 ≤ j ≤ i ≤ n−1
and di,j = Wi,j,n(~a,~a′) for 0 ≤ j ≤ i ≤ n− 2, then ci = ci,0 for 0 ≤ i ≤ n− 1 and
di = di,0 for 0 ≤ i ≤ n− 2. We observe that x ≤ U0,n(~a,~a′) = a∗0.

Suppose that x � ci, for all i ∈ {0, . . . , n − 1}. Put x0 = x. Suppose we
have constructed xj ≤ a∗j in Σ, with 0 ≤ j < n, such that xj � ci,j , for all

i ∈ {j, . . . , n− 1}. If either xj ≤ a∗j+1 or xj ≤ a′j+1, then, since xj ≤ aj , we

obtain that xj ≤ cj,j , a contradiction; whence xj � a∗j+1, a
′
j+1. On the other

hand, xj ≤ a∗j ≤ a∗j+1 ∨ a′j+1, thus, since xj ∈ Σ and Σ is a join-seed of L, there
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are xj+1 ≤ a∗j+1 and x′j+1 ≤ a′j+1 in Σ such that xj ≤ xj+1 ∨ x′j+1 is a minimal

nontrivial join-cover. Suppose that xj+1 ≤ ci,j+1 for some i ∈ {j + 1, . . . , n− 1}.
Then

xj ≤ aj ∧ (xj+1 ∨ x′j+1) ≤ aj ∧ (ci,j+1 ∨ a
′
j+1) = ci,j ,

a contradiction. Hence xj+1 � ci,j+1, for all i ∈ {j + 1, . . . , n− 1}, which completes
the induction step.

Therefore, we have constructed elements x0 ≤ a∗0, . . . , xn ≤ a∗n, x′1 ≤ a′1, . . . ,
x′n ≤ a′n of Σ such that x0 = x and xi ≤ xi+1 ∨ x′i+1 is a minimal nontrivial join-
cover, for all i ∈ {0, . . . , n− 1}. Suppose that (〈xi | 0 ≤ i ≤ n〉, 〈x′i | 1 ≤ i ≤ n〉) is
not a Stirlitz track. Then, since all the xi-s and the x′i-s are join-irreducible and L
satisfies the axiom (Sj) (see [10, Proposition 4.4]), there exists i ∈ {0, . . . , n − 2}
such that

xi+1 ≤ xi ∨ x
′
i+2 and xi ≤ x′i+1 ∨ x

′
i+2. (5.3)

It follows from this that xi+1 ≤ a∗i+1 ∧ (ai ∨ a
′
i+2), whence

xi ≤ ai ∧ (a′i+1 ∨ a
′
i+2) ∧

(
(a∗i+1 ∧ (ai ∨ a

′
i+2)) ∨ a

′
i+1

)
= di,i.

For 0 ≤ j < i, suppose we have proved that xj+1 ≤ di,j+1. Since xj ≤ xj+1 ∨ x
′
j+1,

we obtain that xj ≤ aj ∧ (di,j+1 ∨ a′j+1) = di,j . Hence we have proved that

xj ≤ di,j , for all j ∈ {0, . . . , i}. In particular, x = x0 ≤ di,0 = di = Wi,n(~a,~a′),
which concludes the proof. �

For a positive integer n, let (Hn) be the following lattice identity:

Un =
∨

0≤i≤n−1

Vi,n ∨
∨

0≤i≤n−2

Wi,n.

It is not hard to verify directly that (H1) is equivalent to distributivity.

Proposition 5.5. Let n be a positive integer, let L be a lattice satisfying (S)
and (U), let Σ be a subset of J(L). We consider the following statements on L, Σ:

(i) L satisfies (Hn).
(ii) For all elements a0, . . . , an, a′1, . . . , a′n of Σ, if ai ≤ ai+1 ∨ a′i+1 is

a nontrivial join-cover, for all i ∈ {0, . . . , n − 1}, minimal in ai+1 for

i 6= n − 1, then there exists i ∈ {0, . . . , n − 2} such that ai ≤ a′i+1 ∨ a′i+2

and ai+1 ≤ ai ∨ a
′
i+2.

(iii) There is no Stirlitz track of length n with entries in Σ.

Then (i) implies (ii) implies (iii). Furthermore, if Σ is a join-seed of L, then (iii)
implies (i).

Proof. (i)⇒(ii) Let a0, . . . , an, a′1, . . . , a′n ∈ Σ satisfy the assumption of (ii).
Observe that Ui,n(~a,~a′) = ai for 0 ≤ i ≤ n, in particular, Un(~a,~a′) = a0. From the
assumption that L satisfies (Hn) it follows that

a0 =
∨

0≤i≤n−1

Vi,n(~a,~a′) ∨
∨

0≤i≤n−2

Wi,n(~a,~a′).

The conclusion of (ii) follows from Lemma 5.3.
(ii)⇒(iii) Let σ = (〈ai | 0 ≤ i ≤ n〉, 〈a′i | 1 ≤ i ≤ n〉) be a Stirlitz track of L

with entries in Σ. From (ii) it follows that there exists i ∈ {0, . . . , n − 2} such
that ai ≤ a′i+1 ∨ a′i+2 and ai+1 ≤ ai ∨ a′i+2, whence ai+1 ≤ a′i+1 ∨ a′i+2. Since
σ is a Stirlitz track, the inequality ai+1 ≤ a′i+1 ∨ ai+2 also holds, whence, since
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ai+1 ≤ ai+2 ∨ a
′
i+2 and by (Uj), either ai+1 ≤ a′i+1 or ai+1 ≤ ai+2 or ai+1 ≤ a′i+2,

a contradiction.
(iii)⇒(i) under the additional assumption that Σ is a join-seed of L. Let a0, . . . ,

an, a′1, . . . , a′n ∈ L, define c, d ∈ L by

c = Un(~a,~a′), d =
∨

0≤i≤n−1

Vi,n(~a,~a′) ∨
∨

0≤i≤n−2

Wi,n(~a,~a′).

It follows from Lemma 5.2 that d ≤ c. Conversely, let x ∈ Σ such that x ≤ c,
we prove that x ≤ d. Otherwise, x � Vi,n(~a,~a′), for all i ∈ {0, . . . , n − 1} and
x � Wi,n(~a,~a′), for all i ∈ {0, . . . , n − 2}, thus, by Lemma 5.4, there are elements
x0 = x, x1, . . . , xn, x′1, . . . , x′n of Σ such that the pair

(〈xi | 0 ≤ i ≤ n〉, 〈x′i | 1 ≤ i ≤ n〉)

is a Stirlitz track of L, a contradiction. Since every element of L is a join of elements
of Σ, it follows that c ≤ d. Therefore, c = d, so L satisfies (Hn). �

Corollary 5.6. Let (P,E) be a poset, let n be a positive integer. Then Co(P )
satisfies (Hn) iff lengthP ≤ n.

Proof. It follows from [10, Section 4] that Co(P ) satisfies (S) and (U). Furthermore,
Σ = {{p} | p ∈ P} is a join-seed of Co(P ).

Suppose first that lengthP ≥ n + 1, that is, P contains a n + 2-element chain,
say, y ⊳ x0 ⊳ · · · ⊳ xn. Then the pair

(〈{xi} | 0 ≤ i ≤ n〉, 〈{y} | 1 ≤ i ≤ n〉)

is a Stirlitz track of length n in Co(P ), thus, by Proposition 5.5, Co(P ) does not
satisfy (Hn).

Conversely, suppose that P does not contain any n+2-element chain. By Propo-
sition 5.5, in order to prove that Co(P ) satisfies (Hn), it suffices to prove that Co(P )
has no Stirlitz track of length n with entries in Σ. Suppose that there exists such
a Stirlitz track, say,

(〈{xi} | 0 ≤ i ≤ n〉, 〈{x′i} | 1 ≤ i ≤ n〉).

Since {x0} ≤ {x1} ∨ {x′1} is a nontrivial join-cover, either x1 ⊳ x0 ⊳ x′1 or x′1 ⊳

x0 ⊳ x1, say, x′1 ⊳ x0 ⊳ x1. Similarly, for all i ∈ {0, . . . , n − 1}, either xi+1 ⊳

xi ⊳ x′i+1 or x′i+1 ⊳ xi ⊳ xi+1. Suppose that the first possibility occurs, and
take i minimum such. Thus i > 0 and x′i ⊳ xi−1 ⊳ xi ⊳ x′i+1 and xi+1 ⊳ xi while
{xi} ≤ {x′i} ∨ {xi+1}, a contradiction. Thus x′i+1 ⊳ xi ⊳ xi+1. It follows that

x′1 ⊳ x0 ⊳ · · · ⊳ xn

is a n+ 2-element chain in P , a contradiction. �

6. The identities (Hm,n)

Definition 6.1. For positive integers m and n and a lattice L, a bi-Stirlitz track

of index (m,n) is a pair (σ, τ), where

σ = (〈ai | 0 ≤ i ≤ m〉, 〈a′i | 1 ≤ i ≤ m〉),

τ = (〈bj | 0 ≤ j ≤ n〉, 〈b′j | 1 ≤ j ≤ n〉)

are Stirlitz tracks with the same base a0 = b0 ≤ a1 ∨ b1.
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For positive integers m and n, we define the identity (Hm,n), with variable sym-
bols t, xi, x

′
i (1 ≤ i ≤ m), yj , y

′
j (1 ≤ j ≤ n) as follows, where we put x0 = y0 = t:

Um(~x, ~x′) ∧ Un(~y, ~y′) =
∨

0≤i≤m−1

(
Vi,m(~x, ~x′) ∧ Un(~y, ~y′)

)

∨
∨

0≤i≤m−2

(
Wi,m(~x, ~x′) ∧ Un(~y, ~y′)

)

∨
∨

0≤j≤n−1

(
Um(~x, ~x′) ∧ Vj,n(~y, ~y′)

)

∨
∨

0≤j≤n−2

(
Um(~x, ~x′) ∧Wj,n(~y, ~y′)

)

∨
(
Um(~x, ~x′) ∧ Un(~y, ~y′) ∧ (x1 ∨ y

′
1) ∧ (x′1 ∨ y1)

)
.

The analogue of Proposition 5.5 for the identity (Hm,n) is the following:

Proposition 6.2. Let m and n be positive integers, let L be a lattice satisfying

(S), (U), and (B), let Σ be a subset of J(L). We consider the following statements

on L, Σ:

(i) L satisfies (Hm,n).
(ii) For all elements a0, . . . , am, a′1, . . . , a′m, b0, . . . , bn, b′1, . . . , b′n of

Σ with a0 = b0, if ai ≤ ai+1 ∨ a′i+1 is a nontrivial join-cover, for all

i ∈ {0, . . . ,m− 1}, minimal in ai+1 for i 6= m− 1 and if bj ≤ bj+1 ∨ b
′
j+1

is a nontrivial join-cover, for all j ∈ {0, . . . , n − 1}, minimal in bj+1 for

j 6= n− 1, then one of the following occurs:

(a) there exists i ∈ {0, . . . ,m − 2} such that ai ≤ a′i+1 ∨ a′i+2 and

ai+1 ≤ ai ∨ a
′
i+2;

(b) there exists j ∈ {0, . . . , n − 2} such that bj ≤ b′j+1 ∨ b′j+2 and

bj+1 ≤ bj ∨ b
′
j+2;

(c) a0 ≤ (a1 ∨ b
′
1) ∧ (a′1 ∨ b1).

(iii) There is no bi-Stirlitz track of index (m,n) with entries in Σ.

Then (i) implies (ii) implies (iii). Furthermore, if Σ is a join-seed of L, then

(iii) implies (i).

Proof. (i)⇒(ii) Let a0, . . . , am, a′1, . . . , a′m, b0, . . . , bn, b′1, . . . , b′n ∈ Σ satisfy the

assumption of (ii). Observe that Um,i(~a,~a
′) = ai for 0 ≤ i ≤ m and Un,j(~b,~b

′) = bj
for 0 ≤ j ≤ n. Put p = a0 = b0. From the assumption that L satisfies (Hm,n) it
follows that

p =
∨

0≤i≤m−1

(
Vi,m(~a,~a′) ∧ Un(~b,~b′)

)
∨

∨

0≤i≤m−2

(
Wi,m(~a,~a′) ∧ Un(~b,~b′)

)

∨
∨

0≤j≤n−1

(
Um(~a,~a′) ∧ Vj,n(~b,~b′)

)
∨

∨

0≤j≤n−2

(
Um(~a,~a′) ∧Wj,n(~b,~b′)

)

∨
(
Um(~a,~a′) ∧ Un(~b,~b′) ∧ (a1 ∨ b

′
1) ∧ (a′1 ∨ b1)

)
.

(6.1)

Since p is join-irreducible, three cases can occur:

Case 1. p =
∨

0≤i≤m−1

(
Vi,m(~a,~a′) ∧ Un(~b,~b′)

)
∨

∨
0≤i≤m−2

(
Wi,m(~a,~a′) ∧ Un(~b,~b′)

)
.
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From Lemma 5.2 it follows that the equality

p =
∨

0≤i≤m−1

Vi,m(~a,~a′) ∨
∨

0≤i≤m−2

Wi,m(~a,~a′)

also holds. By Lemma 5.3, there exists i ∈ {0, . . . ,m − 2} such that
ai ≤ a′i+1 ∨ a

′
i+2 and ai+1 ≤ ai ∨ a

′
i+2.

Case 2. p =
∨

0≤j≤n−1

(
Um(~a,~a′) ∧ Vj,n(~b,~b′)

)
∨

∨
0≤j≤n−2

(
Um(~a,~a′) ∧Wj,n(~b,~b′)

)
.

As in Case 1, we obtain j ∈ {0, . . . , n − 2} such that bj ≤ b′j+1 ∨ b′j+2

and bj+1 ≤ bj ∨ b
′
j+2.

Case 3. p ≤ (a1 ∨ b
′
1) ∧ (a′1 ∨ b1).

In all three cases above, the conclusion of (ii) holds.
(ii)⇒(iii) Let (σ, τ) be a bi-Stirlitz track as in Definition 6.1. Put p = a0 = b0.

It follows from the assumption (ii) that either there exists i ∈ {0, . . . ,m− 2} such
that ai ≤ a′i+1 ∨ a

′
i+2 and ai+1 ≤ ai ∨ a

′
i+2, or there exists j ∈ {0, . . . , n− 2} such

that bj ≤ b′j+1 ∨ b′j+2 and bj+1 ≤ bj ∨ b′j+2, or p ≤ (a1 ∨ b′1) ∧ (a′1 ∨ b1). In the

first case, ai+1 ≤ a′i+1 ∨ a
′
i+2, but σ is a Stirlitz track, thus also ai+1 ≤ a′i+1 ∨ ai+2,

a contradiction since ai+1 ≤ ai+2 ∨ a′i+2 and by (Uj). The second case leads to a
similar contradiction. In the third case, p ≤ a1 ∨ b

′
1, a contradiction by (Uj) since

p ≤ a1 ∨ b1 and p ≤ a1 ∨ a
′
1.

(iii)⇒(i) under the additional assumption that Σ is a join-seed of L. Let a0 = b0,

a1, . . . , am, a′1, . . . , a′m, b1, . . . , bn, b′1, . . . , b′n ∈ L, put c = Um(~a,~a′) ∧ Un(~b,~b′)
and define d ∈ L as the right hand side of (6.1). Further, put a∗i = Ui,m(~a,~a′) for

0 ≤ i ≤ m and b∗j = Uj,n(~b,~b′) for 0 ≤ j ≤ n. It follows from Lemma 5.2 that

d ≤ c. Conversely, let z ∈ Σ such that z ≤ c, we prove that z ≤ d. Otherwise, z �
Vi,m(~a,~a′), for all i ∈ {0, . . . ,m−1}, and z � Wi,m(~a,~a′), for all i ∈ {0, . . . ,m−2},

and z � Vj,n(~b,~b′), for all j ∈ {0, . . . , n − 1}, and z � Wj,n(~b,~b′), for all j ∈
{0, . . . , n− 2}, and z � (a1 ∨ b

′
1) ∧ (a′1 ∧ b1), say, z � a1 ∨ b

′
1. By Lemma 5.4, there

are x1 ≤ a∗1, . . . , xm ≤ a∗m, x′1 ≤ a′1, . . . , x′m ≤ a′m, y1 ≤ b∗1, . . . , yn ≤ b∗n, y′1 ≤ b′1,
. . . , y′n ≤ b′n in Σ such that, putting x0 = y0 = z, both pairs

σ = (〈xi | 0 ≤ i ≤ m〉, 〈x′i | 1 ≤ i ≤ m〉),

τ = (〈yj | 0 ≤ j ≤ n〉, 〈y′j | 1 ≤ j ≤ n〉)

are Stirlitz tracks. By assumption, the pair (σ, τ) is not a bi-Stirlitz track, whence
z � x1 ∨ y1. Furthermore, from z � a1∨ b

′
1 it follows that z � x1 ∨ y

′
1 (observe that

x1 ≤ a∗1 ≤ a1). However, from the fact that z ≤ x1 ∨ x
′
1, y1 ∨ y

′
1 are nontrivial join-

covers and (Bj) it follows that either z ≤ x1∨y1 or z ≤ x1∨y
′
1, a contradiction. �

Corollary 6.3. Let m and n be positive integers, let P be a poset. Then Co(P )
satisfies (Hm,n) iff lengthP ≤ m+ n− 1.

Proof. Suppose first that P contains a m+ n+ 1-element chain, say,

xm ⊳ · · · ⊳ x1 ⊳ x0 = y0 ⊳ y1 ⊳ · · · ⊳ yn.

Then both pairs σ and τ defined as

σ = (〈{xi} | 0 ≤ i ≤ m〉, 〈{y1} | 1 ≤ i ≤ m〉)

τ = (〈{yj} | 0 ≤ j ≤ n〉, 〈{x1} | 1 ≤ j ≤ n〉)
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are Stirlitz tracks with the same base {x0} = {y0} ≤ {x1} ∨ {y1}, hence (σ, τ) is a
bi-Stirlitz track of index (m,n). By Proposition 6.2, Co(P ) does not satisfy (Hm,n).

Conversely, suppose that P does not contain any m + n + 1-element chain. By
Proposition 6.2, in order to prove that Co(P ) satisfies (Hm,n), it suffices to prove
that it has no bi-Stirlitz track of index (m,n) with entries in Σ = {{p} | p ∈ P}.
Let

σ = (〈{xi} | 0 ≤ i ≤ m〉, 〈{x′i} | 1 ≤ i ≤ m〉)

τ = (〈{yj} | 0 ≤ j ≤ n〉, 〈{y′j} | 1 ≤ j ≤ n〉)

be pairs such that (σ, τ) is such a bi-Stirlitz track. By an argument similar as
the one used in the proof of Corollary 5.6, since σ is a Stirlitz track, either x′1 ⊳

x0 ⊳ · · · ⊳ xm or xm ⊳ · · · ⊳ x0 ⊳ x′1; without loss of generality, the second
possibility occurs. Similarly, since τ is a Stirlitz track, either y′1 ⊳ y0 ⊳ · · · ⊳ yn or
yn ⊳ · · · ⊳ y0 ⊳ y′1. If the second possibility occurs, then y1 ⊳ y0 = x0 and x1 ⊳ x0

while {x0} ≤ {x1} ∨ {y1}, a contradiction. Therefore, the first possibility occurs,
hence

xm ⊳ · · · ⊳ x1 ⊳ x0 = y0 ⊳ y1 ⊳ · · · ⊳ yn

is a m+ n+ 1-element chain in P , a contradiction. �

Now let us recall some results of [10]. In case L belongs to the variety SUB, so

does the lattice L̂ = FilL of all filters of L partially ordered by reverse inclusion

(see Section 3), and J(L̂) is a join-seed of L̂. Furthermore, one can construct two
posets R and Γ with the following properties:

(i) There are natural embeddings ϕ : L →֒ Co(R) and ψ : L →֒ Co(Γ), and
they preserve the existing bounds.

(ii) R is finite in case L is finite.
(iii) Γ is tree-like (as defined in Section 2, see also [10]).
(iv) There exists a natural map π : Γ → R such that α ≺ β in Γ implies that

π(α) ≺ π(β) in R. In particular, π is order-preserving.
(v) ψ(x) = π−1[ϕ(x)], for all x ∈ L.

The main theorem of this section is the following:

Theorem 6.4. Let n be a positive integer, let L be a lattice that belongs to the

variety SUB. Consider the posets R and Γ constructed in [10] from L̂. Then the

following are equivalent:

(i) lengthR ≤ n;
(ii) length Γ ≤ n;
(iii) there exists a poset P such that lengthP ≤ n and L embeds into Co(P );
(iv) L satisfies the identities (Hn) and (Hk,n+1−k) for 1 < k < n;
(v) L satisfies the identities (Hn) and (Hk,n+1−k) for 1 ≤ k ≤ n.

Proof. (i)⇒(ii) Suppose that lengthR ≤ n, we prove that length Γ ≤ n. Otherwise,
there exists a n+ 2-element chain α0 ≺ · · · ≺ αn+1 in Γ, thus, applying the map π,
we obtain a n+ 2-element chain π(α0) ≺ · · · ≺ π(αn+1) in R, a contradiction.

(ii)⇒(iii) Since L embeds into Co(Γ), it suffices to take P = Γ.
(iii)⇒(iv) follows immediately from Corollaries 5.6 and 6.3.
(iv)⇒(v) Suppose that L satisfies the identities (Hn) and (Hk,n+1−k) for 1 < k < n;

then so does the filter lattice L̂ of L. Since L̂ satisfies (Hn), it has no Stirlitz track
of length n (see Proposition 5.5), thus, a fortiori, it has no bi-Stirlitz track of index
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either (n, 1) or (1, n). Since J(L̂) is a join-seed of L̂, it follows from Proposition 6.2

that L̂ satisfies both (Hn,1) and (H1,n).
(v)⇒(i) Suppose that L satisfies the identities (Hn) and (Hk,n+1−k) for 1 ≤ k ≤ n;

then so does the filter lattice L̂ of L. We prove that lengthR ≤ n. Otherwise, R
has an oriented path r = 〈r0, . . . , rn+1〉 of length n + 2, that is, ri ≺ ri+1, for
all i ∈ {0, . . . , n}. By [10, Lemma 6.4], we can assume that r is ‘reduced’. If
there are n successive values of the ri that are of the form 〈ai, bi, ε〉 for a constant

ε ∈ {+,−}, then, by [10, Lemma 6.1], there exists a Stirlitz track of length n in L̂

(with entries in J(L̂)), which contradicts the assumption that L̂ satisfies (Hn) and
Proposition 5.5. Therefore, r has the form

〈〈ak−1, ak,−〉, . . . , 〈a0, a1,−〉, 〈p〉, 〈b0, b1,+〉, . . . , 〈bl−1, bl,+〉〉

for some positive integers k and l and elements a0, . . . , ak, b0, . . . , bl of J(L̂). By
[10, Lemma 6.1], there are Stirlitz tracks of the form

σ = (〈ai | 0 ≤ i ≤ k〉, 〈a′i | 1 ≤ i ≤ k〉),

τ = (〈bj | 0 ≤ j ≤ l〉, 〈b′j | 1 ≤ j ≤ l〉)

for elements a′1, . . . , a′k, b′1, . . . , b′l of J(L̂). Observe that p = a0 = b0. Furthermore,
from 〈a0, a1,−〉 ≺ 〈p〉 ≺ 〈b0, b1,+〉 and the definition of ≺ on R it follows that
p ≤ a1∨b1. Therefore, (σ, τ) is a bi-Stirlitz track of index (k, l) with k+ l = n+1 in

L̂, which contradicts the assumption that L̂ satisfies (Hk,l) and Proposition 6.2. �

The main result of [10] is that SUB is a finitely based variety of lattices. We
thus obtain the following:

Corollary 6.5. Let n be a positive integer. The class SUBn of all lattices L that

can be embedded into Co(P ) for a poset P of length at most n is a finitely based

variety, defined by the identities (S), (U), (B), (Hn), and (Hk,n+1−k) for 1 < k < n.

Since finiteness of L implies finiteness of R, we also obtain the following:

Corollary 6.6. Let n be a positive integer. A finite lattice L belongs to SUBn iff

it can be embedded into Co(P ) for some finite poset P of length at most n.

For a positive integer m, denote by m the m-element chain. As a consequence
of Corollaries 5.6 and 6.3 and of Theorem 6.4, we obtain immediately the following:

Corollary 6.7. For positive integers m and n, Co(m) belongs to SUBn iff

m ≤ n + 1. In particular, SUBn is a proper subvariety of SUBn+1, for every

positive integer n.

7. Non-local finiteness of SUB3

We have seen in Section 4 that the variety SUB2 is locally finite. In contrast
with this, we shall now prove the following:

Theorem 7.1. There exists an infinite, three-generated lattice in SUB3. Hence

SUBn is not locally finite for n ≥ 3.

Proof. Let P be the poset diagrammed on Figure 2.
We observe that the length of P is 3. We define order-convex subsets A, B, C

of P as follows:

A = {an | n < ω}, B = {d0} ∪ {bn | n < ω}, C = {cn | n < ω} ∪ {dn | n < ω}.
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a0 a1 a2

b0 b1 b2

c0 c1 c2

d0 d1 d2 d3

Figure 2. An infinite poset of length 3

We put A0 = A, B0 = B, An+1 = A ∨ (Bn ∩ C), and Bn+1 = B ∨ (An ∩ C), for
all n < ω. A straightforward computation yields that both cn and dn belong to
A2n+1 \A2n, for all n < ω. Hence the sublattice of Co(P ) generated by {A,B,C}
is infinite. �

8. Open problems

So far we have studied the following (ω + 1)-chain of varieties:

D = SUB1 ⊂ SUB2 ⊂ SUB3 ⊂ · · · ⊂ SUBn ⊂ · · · ⊂ SUB. (8.1)

We do not know the answer to the following simple question, see also Problem 1
in [10]:

Problem 1. Is SUB the quasivariety join of all the SUBn, for n > 0?

Every variety from the chain (8.1) is the variety SUB(K) generated by all Co(P ),
where P ∈ K, for some class K of posets.

Problem 2. Can one classify all the varieties of the form SUB(K)? In particular,
are there only countably many such varieties?

Problem 3. What are the complete sublattices of the lattices of the form Co(P )
for some poset P?

Problem 4. Give an estimate for the cardinality of the free lattice in SUB2 on m
generators, for a positive integer m.

Problem 5. Classify all the subvarieties of SUB2.
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Slav́ık.

References

[1] K.V. Adaricheva, V.A. Gorbunov, and V. I. Tumanov, Join-semidistributive lattices and

convex geometries, Adv. Math. 173 (2003), 1–49.
[2] G. Birkhoff and M.K. Bennett, The convexity lattice of a poset, Order 2 (1985), 223–242.
[3] P. Crawley and R.P. Dilworth, “Algebraic Theory of Lattices”, Prentice-Hall, New Jersey,

1973. vi+201 p.



LATTICES OF ORDER-CONVEX SETS, II 19
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