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Abstract

We study some properties of the Cayley graph of the R.Thompson’s group F in
generators x0, x1. We show that the density of this graph, that is, the least upper bound
of the average vertex degree of its finite subgraphs is at least 3. It is known that a 2-
generated group is not amenable if and only if the density of the corresponding Cayley
graph is strictly less than 4. It is well known this is also equivalent to the existence of
a doubling function on the Cayley graph. This means there exists a mapping from the
set of vertices into itself such that for some constant K > 0, each vertex moves into
the distance at most K and each vertex has at least two preimages. We show that the
density of the Cayley graph of a 2-generated graph does not exceed 3 if and only if the
group satisfies the same condition with K = 1. Besides, we give a very easy formula to
find the length (norm) of a given element of F in generators x0, x1. This simplifies the
algorithm by Fordham. The length formula may be useful to find the general growth
function of F in generators x0, x1 and the growth rate of this function. In this paper
we show that the lower bound for the growth rate of F is (3 +

√
5)/2.

Introduction

The Richard Thompson group F can be defined by the following infinite group presentation

〈 x0, x1, x2, . . . | xjxi = xixj+1 (i < j) 〉. (1)

∗This research is partially supported by the RFFI grant 99–01–00894 and the INTAS grant 99–1224.
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This group was found by Richard J. Thompson in the 60s. We refer to the survey [6] for

details. (See also [2, 3, 4].) It is easy to see that for any n ≥ 2, one has xn = x
−(n−1)
0 x1x

n−1
0

so the group is generated by x0, x1. It can be given by the following presentation with two
defining relations

〈 x0, x1 | xx2

0

1 = xx0x1

1 , x
x3

0

1 = x
x2

0
x1

1 〉, (2)

where ab = b−1ab by definition.
Each element of F can be uniquely represented by a normal form, that is, an expression

of the form
xi1xi2 · · ·xisx

−1
jt

· · ·x−1
j2
x−1
j1
, (3)

where s, t ≥ 0, 0 ≤ i1 ≤ i2 ≤ · · · ≤ is, 0 ≤ j1 ≤ j2 ≤ · · · ≤ jt and the following is true: if (3)
contains both xi and x−1

i for some i ≥ 0, then it also contains xi+1 or x−1
i+1 (in particular,

is 6= jt).
Equivalent definition of F can be done in the following way. Let us consider all strictly

increasing continuous piecewise-linear functions from the closed unit interval onto itself. Take
only those of them that are differentiable except at finitely many dyadic rational numbers
and such that all slopes (derivatives) are integer powers of 2. These functions form a group
under composition. This group is isomorphic to F . Another useful representation of F
by piecewise-linear functions can be obtained if we replace [0, 1] by [0,∞) in the previous
definition and impose the restriction that all functions on infinity have the form t 7→ t + c,
where c is an integer.

The group F has no free subgroups of rank > 1. It is known that F is not elementary
amenable (EA). However, the famous problem about amenability of F is still open. If F is
amenable, then it is an example of a finitely presented amenable group, which is not EA.
If it is not amenable, then this gives an example of a finitely presented group, which is
not amenable and has no free subgroups of rank > 1. Note that the first example of a non-
amenable group without free non-abelian subgroups has been constructed by Ol’shanskii [22].
(The question about such groups was formulated in [9], it is also often attributed to von
Neumann [21].) Adian [1] proved that free Burnside groups with m > 1 generators of odd
exponent n ≥ 665 are not amenable. The first example of a finitely presented non-amenable
group without free non-abelian subgroups has been recently constructed by Ol’shanskii and
Sapir [23]. Grigorchuk [15] constructed the first example of a finitely presented amenable
group not in EA.

The author thanks Matt Brin and Goulnara Arjantseva for helpful remarks.

1 Density

By the density of a finite graph Γ we mean the average value of the degree of a vertex in
Γ. More precisely, let v1, . . . , vk be all of vertices of Γ. Let degΓ(v) denote the degree of a
vertex v in the graph Γ, that is, the number of oriented edges of Γ that come out of v. Then

δ(Γ) =
degΓ(v1) + · · ·+ degΓ(vk)

k
(4)
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is the density of Γ.
Let G be a group generated by a finite set A. Let C(G,A) be the corresponding (right)

Cayley graph. Recall that the set of vertices of this graph is G and the set of edges is
G × A±1. For an edge e = (g, a), its initial vertex is g, its terminal vertex is ga, and the
inverse edge is e−1 = (ga, a−1). The label of e equals a by definition. For the Cayley graph
C = C(G,A) we define the number

δ̄(C) = sup
Γ

δ(Γ), (5)

where Γ runs over all finite subgraphs of C = C(G,A). So this number is the least upper
bound of densities of all finite subgraphs of C. If C is finite, then it is obvious that δ(C) =
δ̄(C). So we may call δ̄(C) the density of the Cayley graph C.

Recall that a group G is called amenable whenever there exists a finitely additive nor-
malized invariant mean on G, that is, a mapping µ:P(G) → [0, 1] such that µ(A ∪ B) =
µ(A) + µ(B) for any disjoint subsets A,B ⊆ G, µ(G) = 1, and µ(Ag) = µ(gA) = µ(A)
for any A ⊆ G, g ∈ G. One gets an equivalent definition of amenability if only one-sided
invariance of the mean is assumed, say, the condition µ(Ag) = µ(A) (A ⊆ G, g ∈ G). The
proof can be found in [13].

The class of amenable groups includes all finite and abelian groups. It is invariant under
taking subgroups, quotient groups, group extensions, and ascending unions of groups. The
closure of the class of finite and abelian groups under these operations is the class EA of
elementary amenable groups. A free group of rank > 1 is not amenable. There are many
useful criteria for (non)amenability [11, 20, 14]. We need to mention the two properties of a
finitely generated group G that are equivalent to non-amenability.

NA1. If G is generated by m elements and C is the corresponding Cayley graph, then

the density of C has no maximum value, that is, δ̄(C) < 2m.

Note that if NA1 holds for at least one finite generating set, then the group is not amenable
and so the same property holds for any finite generating set. For the proof of this property,
we need to use the well-known Følner condition [11]. For our reasons it is convenient to
formulate this condition as follows.

Let C be the Cayley graph of a group. By dist(u, v) we denote the distance between two
vertices in C, that is, the length of a shortest path in C that connects vertices u, v. For any
vertex v and a number r let Br(v) denote the ball of radius r around v, that is, the set of
all vertices in C on the distance at most r from v. For any set Y of vertices, by Br(Y ) we
denote the r-neighbourhood of Y , that is, the union of all balls Br(v), where v runs over Y .
By ∂Y we denote the boundary of Y , that is, the set B1(Y ) \ Y . The Følner condition (for
the case of a finitely generated group) says that G is amenable whenever inf #∂Y/#Y = 0,
where the infimum is taken over all non-empty finite subsets in G in a Cayley graph of
G in finite number of generators (this property does not depend on the choice of a finite
generating set). Any finite set Y of vertices in C defines a finite subgraph (also denoted by
Y ). The degree of any vertex v in C equals 2m, where m is the number of generators. We
know that exactly degY (v) of the 2m edges that come out of v, connect the vertex v to a
vertex from Y . The other 2m − degY (v) edges connect v to a vertex from ∂Y . Note that
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each vertex of ∂Y is connected by an edge to at least one vertex in Y . This implies that the
cardinality of ∂Y does not exceed the sum

∑

(2m−degY (v)) over all vertices of Y . Dividing
by #Y (the number of vertices in Y ) implies the inequality #∂Y/#Y ≤ 2m − δ(Y ). If
δ̄(C) = 2m, then Y can be chosen such that δ(Y ) is arbitrarily close to 2m so #∂Y/#Y will
be arbitrarily close to 0. On the other hand, for any vertex v in Y there are at most 2m
edges that connect v to a vertex in Y . Therefore, the sum

∑

(2m− dY (v)) does not exceed
2m#∂Y . So 2m− δ(Y ) ≤ 2m#∂Y/#Y . If the right hand side can be done arbitrarily close
to 0, then δ(Y ) approaches 2m so δ̄(C) = 2m.

NA2. If C is the Cayley graph of G in a finite set of generators, then there exists a

function φ:G → G such that a) for all g ∈ G the distance dist(g, φ(g)) is bounded by a

constant K > 0, b) any element g ∈ G has at least two preimages under φ.

An elegant proof of this criterion based on the Hall-Rado theorem can be found in [7],
see also [10]. Note that this property also does not depend on the choice of a finite generated
set. A function φ from NA2 will be called a doubling function on the Cayley graph C.

We need a definition. Suppose that NA2 holds for the Cayley graph of a group G for the
case K = 1. Then we say that the Cayley graph C is strongly non-amenable. The function
φ:G → G will be called a strong doubling function on the Cayley graph C. Note that each
vertex is either invariant under φ or it maps into a neighbour vertex. We know that NA2

holds if and only if the group is not amenable, that is, δ̄(C) < 2m. Now we would like to
find out what happens if the Cayley graph of a 2-generated group is strongly non-amenable.

Theorem 1 The Cayley graph of a group with two generators is strongly non-amenable

if and only if the density of this graph does not exceed 3.

Proof. Let G be a group with 2 generators and let C be the corresponding Cayley graph.
It follows from the proof of [7, Theorem 32] that C is strongly non-amenable if and only if
the doubling inequality holds, that is, #B1(Y ) ≥ 2#Y for any finite set Y of vertices in C.
Indeed, if C admits a doubling function φ from NA2 with K = 1, then φ−1(Y ) has at least
2#Y elements and it is contained in B1(Y ). To prove the converse, one needs to consider a
bipartite graph with two classes of vertices both equal to G. Two vertices from the different
classes are connected by an edge whenever the distance between them in C does not exceed
K = 1. The doubling inequality implies that the conditions of the Hall-Rado theorem hold.
Therefore, the bipartite graph has a perfect (2, 1)-matching. This means that C admits a
doubling function with K = 1.

The “only if” part is trivial since the doubling inequality is equivalent to the fact that
#∂Y ≥ #Y for any finite subset Y in C. We know that #∂Y/#Y ≤ 2m − δ(Y ) for any
non-empty finite subset Y ⊆ C, where m = 2. This means that δ(Y ) ≤ 2m− 1 = 3 and so
δ̄(C) ≤ 3.

Now suppose that δ̄(C) ≤ 3. Let Y be a finite subgraph of C with k vertices. For
each 0 ≤ s ≤ 4, let qs be the number of vertices in Y that have degree s in Y . Clearly,
k = q0 + q1 + q2 + q3 + q4. The number of oriented edges in Y is the sum of all degrees of
vertices, that is, q1+2q2+3q3+4q4. If we divide this number by k, then we get δ(Y ). Since
δ̄(C) ≤ 3, we have δ(Y ) ≤ 3, which is equivalent to the inequality q1 + 2q2 + 3q3 + 4q4 ≤
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3k = 3(q0 + q1 + q2 + q3 + q4) and so it can be rewritten as 3q0 + 2q1 + q2 − q4 ≥ 0. For any
finite subgraph Y , we denote the number 3q0 + 2q1 + q2 − q4 by q(Y ).

Suppose that the doubling inequality does not hold. Let us choose a minimal counterex-
ample Y to the doubling inequality, that is, a finite subgraph Y in C with the property
#B1(Y ) < 2#Y for which the number q(Y ) ≥ 0 takes the smallest possible value. Each
vertex in ∂Y = B1(Y ) \ Y is connected by an edge with at least one vertex in Y . Suppose
that some vertex v in ∂Y is connected with at least two vertices in Y . Let Y ′ be the subgraph
in C with the new vertex v added to Y and two new non-oriented edges that connect v with
vertices v1, v2 in Y . By definition, B1(Y

′) = B1(Y ) ∪ B1(v). The vertex v has exactly 4
edges that come out of v. At least two of them connect v with a vertex in Y . So B1(v) may
contain at most 2 vertices not in B1(Y ) (the vertex v itself belongs to B1(Y )). This means
that #B1(Y

′) ≤ #B1(Y ) + 2 < 2#Y + 2 = 2#Y ′. Hence Y ′ is also a counterexample. To
complete the proof, we need to check that q(Y ′) < q(Y ).

When we add a non-oriented edge that connects v and vj (j = 1, 2), then the degree of
vj increases by 1. This means that if degY (vj) = i, then degY ′(vj) = i+1. So 0 ≤ i < 4, the
value of qi decreases by 1, the value of qi+1 increases by 1. Clearly, q(Y ) = 3q0+2q1+ q2− q4
decreases by 1. So if we add the edges for both v1 and v2 (this does not exclude the case
v1 = v2), then q(Y ) decreases by 2. But we also have a new vertex v that has degree 2 in
Y ′. Thus q2 increases by 1 and so after all these operations we have q(Y ′) = q(Y )− 1. This
contradicts the minimality of Y .

The proof is complete.

Note that the proof of Theorem 1 goes without any changes if we apply it to any regular
graph of degree 4. Also we have to mention that the density of a Cayley graph of a group is
closely related to an isoperimetric constant ι∗ of a graph (see the definition in [7]). Namely,
one has the equality ι∗(C) + δ̄(C) = 2m for the Cayley graph C of an m-generated group.

Theorem 1 applied to the Cayley graph C2 of F in generators x0, x1 means that if we
cannot find a subgraph in C2 with density greater than 3, then there exists a doubling function
on C2. One can imagine this doubling function in the following way. Suppose that a bug
lives in each vertex of C2. We allow these bugs to jump at the same time such that each bug
either returns to its initial position or it jumps to a neighbour vertex. As a result, we must
have at least two bugs in each vertex.

It is natural to ask how much the value of δ(Y ) can be for the finite subgraphs we are
able to construct. It is easy to see that in each finite subgraph Y of C2 there exists a vertex
of degree at most 2. Indeed, if all vertices were of degree 3 or 4, then one could travel along
Y by positively labelled edges only (if we enter a vertex by an edge labelled by x0 or x1,
then we can leave this vertex travelling along an edge with one of these labels). But F does
not have nontrivial relations that involve positive letters only.

However, the following result shows that we are able to construct finite subgraphs in C2
with the density arbitrarily close to 3.

Theorem 2 Let C2 be the Cayley graph of F in generators x0, x1. For any integers

m,n ≥ 1 there exists a finite subgraph Γ̄n,m in C2 such that

lim
m→∞

δ(Γ̄n,m) =
6(n− 1)

2n− 1
(6)
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for any n ≥ 2. In particular, δ̄(C2) ≥ 3.

Proof. It is convenient to work with subgraphs in C = C∞. Note that all Cayley graphs
Ci (i = 2, 3, . . .) are subgraphs in C. Let Y be a finite connected subgraph in C. Assume
that Y is full , that is, if two vertices of Y can be connected in C by an edge, then this edge
belongs to Y . It is not hard to see that any finite subset in F determines the corresponding
full subgraph, which will be finite.

Let Y be a finite connected full subgraph in C. By a rank of a vertex v in Y we mean
the maximum number k ≥ 0 such that v has an edge in Y labelled by x±1

k that comes out of
v. Suppose that for some i ≥ 0, the rank of any vertex in Y is greater than i. Under these
conditions, we define a subgraph in C denoted by Ai(Y ).

Let v1, . . . , vk be the list of all vertices in Y (they are elements of F ). Let r1, . . . , rk
be the ranks of these vertices (each of these numbers exceeds i). For any 1 ≤ j ≤ k, we
consider the set of vertices of the form vjx

−s
i , where 0 ≤ s < rj − i. We call this set a column

of vj . The number of vertices in this column equals rj − i (if r− j = i+ 1, then the column
consists of vj only). The vertices in a column are connected in C by edges with label xi. The
number of these edges in the column of vj equals rj − i − 1. Note that all the columns are
disjoint. The union of them will be the set of vertices of the graph Ai(Y ) we want to define.

Now let us take an arbitrary edge from Y . Suppose that it connects v′ and v′′. Let r′,
r′′ be the ranks of these vertices, respectively. Without loss of generality we may assume
that our edge has label xk, where k > i so we have v′xk = v′′. If k = i + 1, then we do
nothing with this edge. If k = i + 2, then v′x−1

i and v′′x−1
i both appear in the columns of

v′ and v′′. In the graph C, these vertices are connected by an edge labelled by xi+1 since
v′x−1

i xi+1 = v′xi+2x
−1
i = v′′x−1

i . In general, if k = i + p + 1, where p ≥ 1, then the rank of
each of v′, v′′ is at least i+p+1. So the elements v′x−t

i , v′′x−t
i will appear in the columns for

all 1 ≤ t ≤ p. From the defining relations of F it follows that v′x−t
i , v′′x−t

i are connected in C
by an edge with label xk−t. Indeed, v

′x−t
i xk−t = v′xkx

−t
i = v′′x−t

i (we used the fact k − t > i
and the relations of the form x−1

i xj = xj+1x
−1
i that hold in F for all j > i).

So for any edge e labelled by xk from v′ to v′′ in Y (k ≥ i + 1), we have k − i edges
(including e) that connect a vertex in the column of v′ with a vertex in the column of v′′.
These edges are called parallel to e. The union of all these edges over all edges e in Y forms
the set of edges of Ai(Y ).

So we have defined the new graph Ai(Y ). It is finite, connected, and it contains Y . Let us
check that Ai(Y ) is full. Suppose that two vertices v′x−s

i and v′′x−t
i of Ai(Y ) are connected

by an edge f with label xk. We have inequalities 0 ≤ s < r′ − i, 0 ≤ t < r′′ − i, where r′, r′′

are the ranks of v′, v′′, respectively. The graph Y is connected so there exists a path from
v′ to v′′ in Y . The label of this path is a word W that involves only letters of the form x±1

j ,
where j > i. Equalities v′W = v′′ and v′x−s

i xk = v′′x−t
i imply xs

iW = xkx
t
i. We consider

several cases.
1) k < i. In this case xk belongs to the subgroup of F generated by xk+1, xk+2, . . . ,

which is impossible.
2) k = i. In this case xt−s+1

i = W belongs to the subgroup generated by xi+1, xi+2, . . . .
This can happen only if the exponent t−s+1 equals 0 and W = 1 in F . So v′ = v′′ = v and
our vertices have the form vx−s

i , vx
−(s+1)
i . These vertices are connected by the edge with

label xi in Ai(Y ).
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3) k > i. The word W−1x−s
i xkx

t
i equals 1 in F so the algebraic exponent sum over all

letters with the smallest subscript must be zero. In our case, the smallest subscript is i so
s = t. Therefore, W = x−s

i xkx
s
i = xk+s in F . The graph Y is full so the edge e labelled

by xk+s that connects vertices v′, v′′ must belong to Y . Then our edge f labelled by xk is
parallel to e and thus belongs to Ai(Y ) by definition.

Note that the rank of each vertex in Ai(Y ) is at least i. This means that we can apply
the operator A′

i to Ai(Y ) for any 0 ≤ i′ < i. We start with the “linear” graph Ξn,m that
consists of m+ 1 vertices 1, x−1

n , . . . , x−m
n and m positive edges labelled by xn that connect

these vertices. It is obvious that Ξn,m is full and all vertex ranks are equal to n. We can
apply the operator An−2 to it (An−1 can be also applied but this is useless). After that, we
can apply An−3, . . . , A1, A0. As a result we get the family of subgraphs

Γn,m = A0A1 · · ·An−2Ξn,m. (7)

Each of them is a subgraph in C∞. If we erase all edges of Γn,m that have labels of the form
x±1
k , where k > 1, then we get the subgraph Γ̄n,m in C2 from the statement of our Theorem.
It is possible to characterize all vertices of Γn,m as some words with negative expo-

nents. We only mention that all of them will be of the form x−sn
n x

−sn−2

n−2 · · ·x−s1
1 x−s0

0 , where
s0, s1, . . . , sn−2, sn ≥ 0.

Let Z be a subgraph in C∞. By a star of a vertex v in Z (or a Z-star) we mean the set of
labels of all edges that come out of v and belong to Z. Suppose that Z ′, Z ′′ are two subsets
of the set of vertices of Z and λ:Z ′ → Z ′′ is a bijection. If the Z-star of each vertex v ∈ Z ′

coincides with the Z-star of its image λ(v), then we say that λ is a local isomorphism (in
Z). Now let Y be a finite connected full subgraph in C∞ such that all its vertices have rank
> i. For any subset Y ′ of Y we can denote by Ai(Y

′) the union of columns of all vertices
from Y ′. (Note that each full subgraph is determined uniquely by the set of its vertices
so this notation does not lead to a confusion. For a single vertex v we shall write Ai(v)
instead of Ai({v}).) It is worth noting that if two vertices v, w ∈ Y have the same Y -star,
then they have the same rank r and there exists a natural bijection between their columns,
vx−k

i 7→ wx−k
i , where 0 ≤ k < r. Obviously, the Ai(Y )-stars of vx−k

i and wx−k
i are also the

same. So we can conclude that if Y ′ and Y ′′ are disjoint subsets and λ is a local isomorphism
between Y ′ and Y ′′ in Y , then the sets Ai(Y

′) and Ai(Y
′′) will be also disjoint and there

exists a local isomorphism between them in Ai.
Now we can consider two vertices x−s

n , x−t
n in Ξn,m, where 0 < s < t < m. Obviously, the

sets {x−s
n } and {x−t

n } are locally isomorphic disjoint subsets in Ξn,m. Applying the argument
from the above paragraph, we see that the sets Vs and Vt are disjoint locally isomorphic
subsets in Γn,m, where Vk = A0A1 · · ·An−2(Ξn,m) by definition for any 0 ≤ k ≤ m. It is clear
that all the sets V0, V1, . . . , Vm form the disjoint subdivision of the set of vertices of Γn,m.
These sets have exactly the same number of vertices. Let ρk (0 ≤ k ≤ m) be the average
degree of a vertex in the subset Vk, that is, the number

∑

v∈Vk
deg(v)/#Vk (the degree is

taken in the whole Cayley graph). We have ρ1 = · · · = ρm−1 = ρ. The density of Γn,m will
be equal to

δ̄(Γn,m) =
ρ0 + ρ1 + · · ·+ ρm−1 + ρm

m+ 1
. (8)

Since ρ0 and ρm are bounded, the limit of (8) as m approaches ∞, is exactly ρ. Thus to
complete the proof, we need to show that ρ = 6(n− 1)/(2n− 1).
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To calculate ρ, it is convenient to introduce the new family Γn of auxiliary finite graphs
(they are no longer subgraphs of C∞). But they will be still labelled graphs (automata) and
it will be clear from the definition of them that the set of vertices of Γn is in a bijection with
the set of vertices of Vk for any 1 ≤ k < m. Moreover, each vertex in Γn have the same star
as the corresponding vertex in Vk. Thus ρ will be equal to δ̄(Γn). The idea is to extend the
notion of Ai. Let Y be any labelled finite graph, where all edges have labels of the form
x±1
j , j ≥ 0. The rank of a vertex is defined in the same way. Suppose that all vertices in Y

have rank > i. For each vertex v of rank r we consider the set of r − i vertices v0, v1, . . . ,
vr−i−1, where v0 = v. These vertices form the column of v. We connect them by r − i − 1
directed edges labelled by xi, where the kth edge (1 ≤ k < r− i) goes from vk to vk−1. (It is
easy to see that vk here is an analog of vx−k

i in the above construction.) Then for any edge
e of Y that has label xj and goes from v to w, we consider j − i edges e0, e1, . . . , ej−i−1.
Namely, for any 0 ≤ k < j − i, we connect vk and wk by an edge labelled by xj−k. Clearly,
e0 = e. So we get a graph that contains Y and we denote it by Ai(Y ), as above. It is easy
to see that we have an extension of the above concept. Also it is clear that we can repeat
applications of the operators Ai with decreasing subscripts. If we start with the graph Ξn

that has a single vertex and a loop labelled by xn at this vertex, then we get the graph

Γn = A0A1 · · ·An−2Ξn.

By Γ̄n we denote the graph obtain from Γn by erasing all edges labelled by x±1
i , where i ≥ 2.

Since the vertex of Ξn has the same star as the vertex x−k
n in Ξn,m for any 1 ≤ k < m, we

easily conclude from our definitions that δ(Γ̄n) = ρk = ρ.
The graphs Γn (n ≥ 1) can be easily drawn explicitly. If a vertex v has a loop at v

labelled by xm, then it will be clear that the rank of v equals m. So we can draw this
vertex as a circle with the number m inside. If Y is a labelled graph with labels of the
form xj (j ≥ 0), then by Ψ(Y ) we denote the graph obtained from Y by increasing all
subscripts of the labels by 1. We know that Γ1 is a single loop labelled by x1. To obtain
Γn+1 from Γn (n ≥ 1), one has to apply Ψ to Γn and then apply A0. This is true because
Γn+1 = A0(A1 · · ·An−1Ξn+1) = A0(Ψ(A0 · · ·An−2Ξn−1)) = A0(Ψ(Γn)). This gives an easy
way to imagine how these graphs look like. We illustrate this process by the following picture
that shows Γn for 1 ≤ n ≤ 4.
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2

3 ✍✌
✎☞

✛

1

2 1

x0

x0 x0

x1

Γ2 Γ3

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞
2

3

4

3

2

✻

✻

❄

❄

x1

x2

x1

x1

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

1

2

3

2

1

1

2

1

1

✛

✛

✛

✛

✛

✛

✛

✛

✛

✻

x0

x0

x0

x0

x0

x0

x0

x0

x0

x1

Γ4

Lemma 1 Let ank (1 ≤ k ≤ n) be the number of vertices of Γn that have rank k. Then

ank =
k(2n− k − 1)!

(n− k)!n!
. (9)

The total number of vertices in Γn equals the nth Catalan number, that is,

(2n)!

n! (n+ 1)!
.

Proof.We proceed by induction on n. Obviously, a11 = 1, which agrees with the formula.
Each vertex of rank k in Γn, where 1 ≤ k ≤ n, becomes a vertex of rank k+1 in Ψ(Γn). After
applying A0 to Ψ(Γn), the column of this vertex will contain exactly one vertex of each rank
from 1 to k+1. Then the number of vertices of rank i in Γn+1 = A0(Ψ(Γn)) will be equal to the
sum

∑

i≤k+1 ank. Therefore we have the recursive formulas an+1,1 = an+1,2 = an1 + · · ·+ ann,
an+1,3 = an2 + · · · + ann, . . . , an+1,n = an,n−1 + ann, an+1,n+1 = ann. By the inductive
assumption, an+1,n+1 = ann = 1. Suppose that we have already proved formula (9) for
an,k+1, where 2 ≤ k ≤ n. Then

an+1,k = an,k−1 + an+1,k+1 =
(k − 1)(2n− k)!

(n− k + 1)!n!
+

(k + 1)(2n− k)!

(n− k)! (n+ 1)!

=
(2n− k)!

(n− k)!n!

(

k − 1

n− k + 1
+

k + 1

n + 1

)

=
k(2n− k + 1)!

(n− k + 1)! (n+ 1)!
,

9



which proves (9) for an+1,k. Finally,

an+1,1 = an+1,2 =
2(2n− 1)!

(n− 1)! (n+ 1)!
=

(2n)!

n! (n+ 1)!
,

which proves (9) for an+1,1.
Note that the total number of vertices in Γn will be equal to an1 + · · ·+ ann = an+1,1 =

(2n)!/(n! (n+1)!), which is the nth Catalan number. This completes the proof of the Lemma.

Now let bnk will be the number of edges in Γk labelled by xk, where 0 ≤ k ≤ n. (Recall
that if we denote a vertex by a circle with the number m inside, then this vertex has a loop
labelled by xm.)

Lemma 2 For any n ≥ 2,

bn0 = bn1 =
3(2n− 2)!

(n− 2)! (n+ 1)!
.

Proof. (Remark that b10 = 0, b11 = 1.) We would like to establish a more general formula

bnk =
(k + 1)(2n− k − 2)!

(n− k)! (n+ 1)!
· (3n2 − 3n(k + 1) + k2 + 2k) (10)

for any 0 ≤ k < n together with bnn = 1. The conclusion of the Lemma is a partial case
of these. We proceed by induction on n. The case n = 1 is obvious. First of all, we
want to give recursive formulas for bn+1,i (0 ≤ i ≤ n + 1). Let v be a vertex of rank k in
Γn (1 ≤ k ≤ n). It becomes a vertex of rank k + 1 in Ψ(Γn) and thus creates exactly k
edges labelled by x0 in A0(Ψ(Γn)) = Γn+1. This implies bn+1,0 = an1 + 2an2 + · · · + nann.
Using the recursive formulas from the proof of Lemma 1, one can rewrite this as bn+1,0 =
(an1 + · · ·+ ann) + (an2 + · · ·+ ann) + · · ·+ ann = an+1,2 + an+1,3 + · · ·+ an+1,n+1 = an+2,3.
Therefore, bn+1,0 = 3(2n)!/((n− 3)!n!), which proves (10) for bn+1,0.

Let e be an edge labelled by xk in Γn (0 ≤ k ≤ n). It becomes and edge labelled by xk+1

in Ψ(Γn) so it creates one edge of each of the ranks from 1 to k + 1 in A0(Ψ(Γn)) = Γn+1.
Thus bn+1,i will be the sum

∑

i≤k+1 bnk for any 1 ≤ i ≤ n + 1. We have the recursive
formulas bn+1,1 = bn0 + · · · + bnn, bn+1,2 = bn1 + · · · + bnn, . . . , bn+1,n+1 = bnn. Therefore,
bn+1,n+1 = bnn = 1 by the inductive assumption. Suppose that (10) has been proved for
bn+1,k+1, where 1 ≤ k ≤ n. We have bn+1,k = bn,k−1+bn+1,k+1. Hence, using the assumptions,
we obtain that bn+1,k equals

k(2n− k − 1)!

(n− k + 1)! (n+ 1)!
· (3n2 − 3nk + k2 − 1) +

(k + 2)(2n− k − 1)!

(n− k)! (n+ 2)!
· (3n2 − 3nk + k2 + k)

=
(2n− k − 1)!

(n− k)! (n+ 1)!

(

k(3n2 − 3nk + k2 − 1)

n− k + 1
+

(k + 2)(3n2 − 3nk + k2 + k)

n+ 2

)

=
(k + 1)(2n− k)!

(n− k + 1)! (n+ 2)!
· (3n2 − 3nk + 3n+ k2 − k),

10



which proves (10) for bn+1,k.
The proof is complete.

Finally, to compute δ(Γ̄n), one has to divide the number of oriented edges in Γ̄n labelled
by x±1

0 , x±1
1 by the number of vertices in Γn (it is the same as the number of vertices in Γ̄n).

According to Lemmas 1 and 2, we have

δ(Γ̄n) =
2(bn0 + bn1)

an+1,1

=
12(2n− 2)!

(n− 2)! (n+ 1)!
· n! (n+ 1)!

(2n)!
=

6(n− 1)

2n− 1

for any n ≥ 2.
This completes the proof. It may be interesting to know how many vertices in Γ̄n have a

given degree. For any n ≥ 5, one has

ν2 =
3(2n− 4)!

(n− 2)! (n− 1)!
, ν3 =

4(5n− 12)(2n− 5)!

(n− 3)!n!
, ν4 =

6(2n− 5)!

(n− 5)! (n+ 1)!
.

Here νd denotes the number of vertices that have degree d. This implies that an average
vertex of Γ̄m,n has degree 2, 3, 4 with probabilities approaching 3/16, 5/8, 3/16, respectively,
as m, n approach infinity.

2 The Lower Bound for the Growth Rate

By a norm of an element of F we mean the shortest length of a word in generators {x±1
0 , x±1

1 }
that represents this element. Equivalently, the norm of an element is the distance from this
element to the identity in the Cayley graph C2 of the group F .

Let bn (n ≥ 0) be the number of elements in the ball around 1 in C2 of radius n. Since F
has a free subsemigroup generated by x0, x1, the group F has exponential growth. But it is
still unknown what will be the general growth function

G(t) =
∞
∑

n=0

bn = b0 + b1t+ b2t
2 + · · ·+ bnt

n + · · ·

of the group F in canonical generators x0, x1. Since the sequence bn is monotone and satisfy
the submultiplicative inequality bm+n ≤ bmbn (m,n ≥ 0), there exists the limit

b = lim
n→∞

n

√

bn,

which is called the growth rate of a group (in a given set of generators). The exact value
of the growth rate of F in generators x0, x1 is also unknown. Recently Burillo [5] found an
exact number of positive elements in the ball of radius n (an element of F is positive if it
is a product of positive letters x0, x1, x2, . . . of the infinite set of generators). He also found
the general growth function for positive elements and its growth rate. This implies the lower
bound for the growth rate of F . Namely, Burillo proved that b is not less than the largest
root of the equation x3 − x2 − 2x + 1 = 0, that is, b ≥ 2.2469796 . . . . We would like to
present a better lower bound for the growth rate of F .

11



Theorem 3 The growth rate of the group F in generators x0, x1 is not less than (3 +√
5)/2 = 2.6180339 . . ..

Proof. We use the normal form for the elements of F found in [17]. It was shown
that there exists a regular spanning tree of the Cayley graph C2. Each element in F can be
uniquely represented by a word of the form w(x0, x1), where w does not contain the following
forbidden subwords: x±1

i x∓1
i (i = 0, 1), x±1

1 xn
0x1, x

±1
1 xn+1

0 x−1
1 (n ≥ 1). This normal form of

an element does not give a minimal representative of an element in the sense of its norm
(that is, the regular tree is not geodesic). However, for the regular language L of normal
forms one can find the growth rate using standard methods. If a word of length n belongs
to this language, then the norm of the corresponding element of F does not exceed n and
so it will belong to Bn(1). Thus bn, the number of elements in Bn(1), will be not less than
the number of words in L that have length n. So we begin to calculate the growth function
of the regular language L. To draw its generating automaton, we need to subdivide L into
seven disjoint subsets.

1) The empty word.
2) The words of the form xk

0, where k ≥ 1.
3) The words that end with the letter x−1

0 .
4) The words that end with the letter x1.
5) The words that end with the letter x−1

1 .
6) The words that end with x1x0 or x−1

1 x0.
7) The words that end with x1x

2
0 or x−1

1 x2
0.

It is obvious that all the seven classes are pair-wise disjoint and their union is L. This
allows to draw the generating automaton of L:

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

12 3

4

5

6 7✲✛
✚
✚
✚
✚
✚
✚✚❃

❩
❩
❩
❩
❩
❩❩⑦

❍❍❍❍❍❍❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✟✟✟✟✟✟✯

❄

✻

✻

❄

❅
❅
❅
❅
❅
❅❘

�
�

�
�

�
�✠

✲

�
�
�
�
��✒

x1

x−1
1

x0

x−1
1

x0

x0 x0

x1

x−1
1

x0
x−1
0

x1

x−1
1

x−1
0

x−1
0

x1

x0

x−1
1

x−1
0

Now let A be the transition matrix of the automaton, that is, aij = 1 if there is a directed
edge from the ith to the jth vertex of the automaton and aij = 0 otherwise. Obviously,

12



A =



























0 1 1 1 1 0 0
0 1 0 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 0 1 0
0 0 1 0 1 1 0
0 0 0 0 1 0 1
0 0 0 0 0 0 1



























Let c(p)n be the number of directed paths of length n in the automaton from the 1st vertex

to the vertex number p (n ≥ 0, 1 ≤ p ≤ 7). Clearly, c
(1)
0 = 1, c

(p)
0 = 0 if 2 ≤ p ≤ 7. For any

n ≥ 1, 1 ≤ p ≤ 7 one has

c(p)n = c
(1)
n−1a1p + c

(2)
n−1a2p + · · ·+ c

(7)
n−1a7p. (11)

Let Cp(t) be the generating function of c(p)n , that is,

Cp(t) =
∞
∑

n=0

c(p)n tn = c
(p)
0 + c

(p)
1 t+ · · ·+ c(p)n tn + · · ·

for each 1 ≤ p ≤ 7. Obviously, from (11) we obtain C1 = 1, Cp(t) = t
∑7

i=1Ci(t)aip. In the
matrix form, this means that (C1(t), . . . , C7(t))(E−tA) = (1, 0, . . . , 0). Thus (C1(t), . . . , C7(t))
is (1, 0, . . . , 0)(E−tA)−1, that is, the first row of (E−tA)−1. We are interested in the function
C(t) = C1(t) + · · ·+ C7(t). Finding the inverse matrix to E − tA and adding the elements
in its first row, gives us

C(t) =
t3 + 1

(t− 1)(t2 − 3t+ 1)

which is presented by series as

C(t) = 1 + 4t+ 12t2 + 34t3 + 92t4 + 244t5 + 642t6 + 1684t7 + 4412t8 + 11554t9 + · · · . (12)

The coefficient cn on tn shows the number of directed paths of length n in the automaton
that start in the first vertex. Hence C(t) is the generating function for the regular language
L. The radius of convergence of the series (12) will be the least absolute value of a root of
the denominator, that is, it will be (3−

√
5)/2. So the growth rate of L will be the reciprocal,

that is, (3+
√
5)/2. We have already mentioned that

∑n
i=0 cn ≤ bn for all n ≥ 0. So we have

the lower bound for the growth function of F and (3 +
√
5)/2 = 2.6180339 . . . will be the

lower bound for its growth rate. This completes the proof.
To compare the growth function of L with the growth function of F , let us show the first

terms of the series for the function Gs(t), where the coefficient on tn below shows the number
sn = bn− bn−1, that is, the number of elements in the sphere of radius n in the Cayley graph
of F . It is easy to see that the growth rates of bn and sn are the same. The coefficients of
the series below were found on a computer.

Gs(t) = 1 + 4t+ 12t2 + 36t3 + 108t4 + 314t5 + 906t6 + 2576t7 + 7280t8 + 20352t9 + · · · .
One can mention that the sequence sn/sn−1 is decreasing for 1 ≤ n ≤ 9. Since s9/s8 =
2.7956043 . . ., one can expect that the growth rate of F has this number as an upper bound.
(Of course, this is only a conjecture.)

13



3 Representing Elements of F by Diagrams

This background Section is devoted to the description of the representation of elements of
F by semigroup diagrams. We need this for the result of the next Section. The contents
of the present Section is essentially known. Detailed information about diagram groups can
be found in [18]. However, we need to describe a modified version of this idea based on the
representation of F by non-spherical diagrams.

First of all, let us recall the concept of a semigroup diagram and introduce some notation.
To do this, we consider the following example. Let P = 〈 a, b | aba = b, bab = a 〉 be the
semigroup presentation. It is easy to see by the following algebraic calculation

a5 = a(bab)a(bab)a = (aba)(bab)(aba) = bab = a

that the words a5 and a are equal modulo P. The same can be seen from the following
picture

r r r rr r r rr r r ra

a

a

a

a

b
a

b
b

a
b b

a
b

a

This is a diagram ∆ over the semigroup presentation P. It is a plane graph with 10
vertices, 15 (geometric) edges and 6 faces or cells . Each cell corresponds to an elementary
transformation of a word, that is, a transformation of the form p · u · q → p · v · q, where
p, q are words (possibly, empty), u = v or v = u belongs to the set of defining relations.
The diagram ∆ has the leftmost vertex denoted by ι(∆) and the rightmost vertex denoted
by τ(∆). It also has the top path top(∆) and the bottom path bot(∆) from ι(∆) to τ(∆).
Each cell π of a diagram can be regarded as a diagram itself. The above functions ι, τ , top,
bot can be applied to π as well. We do not distinguish isotopic diagrams.

We say that ∆ is a (w1, w2)-diagram whenever the label of its top path is w1 and the
label of its bottom path is w2. In our example, we deal with an (a5, a)-diagram. If we have
two diagrams such that the bottom path of the first of them has the same label as the top
path of the second, then we can naturally concatenate these diagrams by identifying the
bottom path of the first diagram with the top path of the second diagram. The result of the
concatenation of a (w1, w2)-diagram and a (w2, w3)-diagram obviously is a (w1, w3)-diagram.
We use the sign ◦ for the operation of concatenation. For any diagram ∆ over P one can
consider its mirror image ∆−1. A diagram may have dipoles , that is, subdiagrams of the
form π ◦ π−1, where π is a single cell. To cancel (or reduce) the dipole means to remove
the common boundary of π and π−1 and then to identify top(π) with bot(π−1). In any
digaram, we can cancel all its dipoles, step by step. The result does not depend on the
order of cancellations. A diagram is irreducible whenever it has no dipoles. The operation of
cancelling dipoles has an inverse operation called the insertion of a dipole. These operations
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induce an equivalence relation on the set of diagrams (two diagrams are equivalent whenever
one can go from one of them to the other by a finite sequence of cancelling/inserting dipoles).
Each equivalence class contains exactly one irreducible diagram.

For any nonempty word w, the set of all (w,w)-diagrams forms a monoid with the
identity element ε(w) (the diagram with no cells). The operation ◦ naturally induces some
operation on the set of equivalence classes of diagrams. This operation is called a product and
equivalent diagram are called equal . (The sign ≡ will be used to denote that two diagrams
are isotopic.) So the set of all equivalence classes of (w,w)-diagram forms a group that is
called the diagram group over P with base w. We denote this group by D(P, w). We can
think about this group as of the set of all irreducible (w,w)-diagrams. The group operation
is the concatenation with cancelling all dipoles in the result. An inverse element of a diagram
is its mirror image. We also need one more natural operation on the set of diagrams. By the
sum of two diagrams we mean the diagram obtained by identifying the rightmost vertex of
the first summand with the leftmost vertex of the second summand. This operation is also
associative. The sum of diagrams ∆1, ∆2 is denoted by ∆1 +∆2.

It is known that the group F is the diagram group over the simplest semigroup presenta-
tion P = 〈 x | x2 = x 〉 with base x (note that for any base xk, where k ≥ 1, we get the same
group). It is not hard to compare this representation of F with other known representations.
Say, in [6] and many other papers, the elements of F are represented by certain pairs of
rooted binary trees. If an element g ∈ F is represented by an (irreducible) (x, x)-diagram
∆, then the corresponding pair of trees can be recovered as follows. Let us consider the dual
graph Γ of the graph ∆. The vertices of Γ are the midpoints of all edges of ∆. For each
(x, x2)-cell of ∆ we connect the midpoint of the top edge of the cell (labelled by x) with
the midpoints of the edges e′, e′′, where e′e′′ is the bottom path of the cell. This gives a
“wedge” usually called the caret . All these carets form a rooted binary tree. Similarly, we
do the same thing for all (x2, x)-cells of ∆. This gives the other rooted binary tree. Each
of the two trees have the same number of leaves , that is, the vertices which are not roots of
any carets. The ith leaf of the upper tree (if to count the leaves from the left to the right)
coincides with the ith leaf of the lower tree.

Now let us compare the diagram representation of F with the representation of its ele-
ments by piecewise-linear homeomorphisms of the closed unit interval [0, 1]. Let ∆ be an
(xp, xq)-diagram over P. We will show how to assign to it a piecewise-linear function from
[0, p] onto [0, q]. Each positive edge of ∆ is homeomorphic to the unit interval [0, 1]. So we
assign a coordinate to each point of this edge (the leftmost end of an edge has coordinate
0, the rightmost one has coordinate 1). Let π be an (x, x2)-cell of ∆. Let us map top(π)
onto bot(π) linearly, that it, the point on the edge top(π) with coordinate t ∈ [0, 1] is
taken to the point on bot(π) with coordinate 2t (the bottom path of π has length 2 so it
is naturally homeomorphic to [0, 2]). The same thing can be done for an (x2, x)-cell of ∆.
Thus for any cell π of ∆ we have a natural mapping Tπ from top(π) onto bot(π) (we call
it a transition map). Now let t be any number in [0, p]. We consider the point o on top(∆)
that has coordinate t. If o is not a point of bot(∆), then it is an internal point on the top
path of some cell. Thus we can apply the corresponding transition map to o. We repeat
this operation until we get a point o′ on the path bot(∆). The coordinate of this point is a
number in [0, q]. Hence we have a function f∆: [0, p] → [0, q] induced by ∆. It is easy to see
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this will be a piecewise-linear function. When we concatenate diagrams, this corresponds to
the composition of the PL functions induced by these diagrams. For the group F , which is
the diagram group D(P, x), we have the homeomorphism from it to PLF [0, 1]. It is known
this is an isomorphism.

Now let us recall that F has another representation by PL functions. Namely, let
fi: [0,∞) → [0,∞) (i ≥ 0 is an integer) be the PL function that has slope 1 on [0, i],
slope 2 on [i, i+ 1] and slope 1 again on [i+ 1,∞). It is easy to verify that for any integers
j > i ≥ 0, one has fjfi = fifj+1 (the functions act on the right). Thus the mapping xi 7→ fi
induces a homomorphism from F to PLF [0,∞). It is also known this is an isomorphism.

In the above representation of F by diagrams, all these diagrams were spherical , that is,
they were (w,w)-diagrams for some word w. Our new representation of F by non-spherical
diagrams, which we are going to describe, corresponds to the representation of F by the PL
functions on [0,∞). Let ∆ be any diagram over P = 〈 x | x2 = x 〉, not necessarily spherical.
Let us add an infinite sequence of edges on the right of ∆, each edge is labelled by x. This
object will be called an infinite diagram over P. Note that it has finitely many cells. An
infinite diagram that corresponds to ∆ will be denoted by ∆̂. It has the leftmost vertex ι(∆̂)
and two distinguished infinite paths starting at ι(∆̂), both labelled by the infinite power
of x. These paths will be denoted by top(∆̂) and bot(∆̂), respectively. The concept of
a dipole in an infinite diagram is defined as above. The same concerns the operations of
deleting/inserting a dipole, the equivalence relation induced by these operations, and so on.
Any two infinite diagrams can be naturally concatenated (the bottom path of the first factor
is identified with the top path of the second factor). We use the sign ◦ for the concatenation.
The operation ◦ gives the set of all infinite diagrams a monoid structure. The identity of it
is the infinite diagram without cells denoted by ε. As in the case of spherical diagrams, the
operation of concatenation induces a group operation on the set of all equivalence classes
of infinite diagrams. Thus we have a group. We shall denote it by D̂(P, x). (This makes
sense for any semigroup presentation P in an alphabet of one letter. Note that we can forget
about the labels if we work with a one-letter alphabet.) It is quite easy to see that the group
we have will be isomorphic to F . Indeed, let Xi be the infinite diagram

r . . . r r
r

. . .

x

x xxi x∞

that consists of an (x, x2)-cell, the finite path labelled by xi on the left of it and the infinite
path labelled by the infinite power of x, on the right. By X−1

i we mean the mirror image of
Xi under the horizontal axis symmetry. Infinite diagrams of the form X±1

i (i ≥ 0) are called
atomic. For any integers j > i ≥ 0, the diagram

r r r r r
r r

x x

x x x x

xi xj−i−1 x∞
. . .
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equals both Xj ◦Xi and Xi ◦Xj+1. This means that we have a homomorphism from F to
the group of infinite diagrams. This homomorphism is onto because any infinite diagram
is a concatenation of atomic diagrams. The homomorphism must be injective because all
homomorphic images of F are abelian [6]. However, the group of infinite diagrams is not
abelian since X1X0 = X0X2 6= X0X1.

Note that the diagram Xi corresponds to the above defined PL function fi. (The transi-
tion maps allow to assign a PL function to any infinite diagram.) If we consider a dual graph
to an infinite diagram, this gives us a pair of binary rooted forests. Each forest is a sequence
of binary rooted trees. All of these trees but the finite number of them consists of just the
root vertex. All leaves of a forest can be naturally enumerated. Given a pair of such forests,
we can identify the ith leaf of the “upper” forest with the ith leaf of the “lower” forest for
all i ≥ 0.

When we work with infinite diagrams, it is convenient to eliminate the infinite “tail” on
the right of each infinite diagram. An ordinary diagram over P is called canonical whenever
it has no dipoles and it is not a sum of a diagram and an edge. It is obvious that there is a
one-to-one correspondence between the set of infinite diagrams without dipoles and the set
of canonical diagrams. So we may assume that each element of F has a unique canonical
representative. We have a group structure on the set of all canonical diagrams over P. Given
an (xp, xq)-diagram ∆1 and an (xs, xt)-diagram ∆2, we multiply them as follows. If q = s,
then we concatenate them. If q < s, then we concatenate ∆1 + ε(xs−q) and ∆2. If q > s,
then we concatenate ∆1 and ∆2 + ε(xq−s). After the concatenation, we reduce all dipoles
in the result. Then we need to make the diagram canonical. This means that we have to
delete the rightmost common suffix of the top and the bottom path of the diagram we have.
The only exception is made for the diagram ε(x), the identity element of the group. This
diagram is already canonical so we leave it as it is.

This representation of F by canonical diagrams is very convenient for many reasons. Say,
the number of cells in the canonical diagram of an element always equals the length of the
normal form of this element. Given a normal form, it is very easy to draw the corresponding
diagram, and vice versa. The following example illustrates the diagram that corresponds to
the element g = x2

0x1x6x
−1
3 x−2

0 represented by its normal form:

r r r r r r r r r
x0

x0 x1 x6

x−1
0

x−1
3x−1

0

This representation of elements in F by canonical diagrams has some more advantages.
First of all, the number of cells in a canonical diagram of an element g is obviously the
length of the normal form of g, which is also the shortest length of a word in the infinite
set of generators { x±1

0 , x±1
1 , x±1

2 , . . .} that represents g. Given the canonical representative
∆ of G, it is easy to construct an (x, x)-diagram that represents the same element. One has
to add an edge on the right of ∆, that is, to consider the diagram ∆ + ε(x). Let v be the
rightmost vertex of this diagram. We then connect v by arcs to all the vertices in top(∆)
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in the upper part and connect v by arcs to all the vertices of ∆ in the lower part. All edges
we add have label x. As a result, we give an (x, x)-diagram that represents g in the diagram
group D(P, x). This diagram has “redundant” cells — they are all cells that are not in ∆.
These cells do not correspond to any generators so ∆ looks a more “natural” representative
of g.

If we prefer to work with dual graphs, then, given a pair of binary rooted trees from [6]
that represent an element g, one has to remove all right carets from it. The rest will be the
pair of forests that is exactly the dual graph to the canonical representative of g.

Note that the diagram in the above picture is drawn in such a way that all the (x, x2)-cells
of it are above the straight line and all the (x2, x)-cells are below the straight line. This is
an easy consequence of the fact that the normal form of an element in F is a product of the
form pq−1, where p, q are positive words (words in generators x0, x1, x2, . . .with no negative
exponents). The following elementary fact was essentially used several times in [19, 16] and
some other papers.

Lemma 3 Let P = 〈X | R 〉 be a semigroup presentation. Suppose that all defining

relations of P have the form a = A, where a ∈ X, A is a word of length at least 2. Also

assume that all letters in the left-hand sides of the defining relations are different. Then any

irreducible diagram ∆ over P is the concatenation of the form ∆1 ◦∆−1
2 , where the top path

of each cell of both ∆1, ∆2 has length 1. The longest positive path in ∆ from ι(∆) to τ(∆)
is the bottom path of both ∆1 and ∆2.

Note that 〈 x | x = x2 〉 obviously satisfy the conditions of the Lemma. The same concerns
the presentation 〈 a, b | a = bab, b = aba 〉, which was considered in the previous Section. Let
us recall the idea of the proof. Let p be the longest positive path in ∆ from ι(∆) to τ(∆).
It cuts ∆ into two parts. It suffices to prove that all cells in the “upper” part correspond to
the defining relations of the form a = A, where a is a letter, and none of them correspond
to A = a. Assume the contrary. Suppose that there is a cell π in the upper part of ∆ with
the top label A and the bottom label a. The bottom path of π cannot be a subpath in p
since p is chosen the longest. So the bottom edge of π belongs to the top path of some cell
π′. The diagram ∆ has no dipoles. All letters in the left-hand sides of the defining relations
are different. So the top path of π′ cannot have length 1. This means that we have found
a new cell in the upper part of ∆ that also corresponds to the defining relation of the form
A = a. Applying the same argument to π′, we get a process that never terminates. This is
impossible since the cells that appear during the process cannot repeat. This completes the
proof.

4 The Length Formula

An algorithm to find the norm of an element of F in generators x0, x1 was obtained by
Fordham [12] in his PhD. The algorithm is based on the representation of F by pairs of
binary rooted trees. Each caret of a tree belongs to one of 7 classes defined in [12] (only 6 of
these classes are essential). All carets in each of the trees are enumerated. For any number,
there are 36 cases for a pair formed by the ith carets of the trees, to belong to some of the
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classes. To each of these 36 cases one can assign a weight. The sum of these numbers will
be the norm of an element. By this algorithm, the norm can be found in a polynomial time,
although the algorithm itself is quite complicated. However, it is a powerful tool to solve
various problems about F . For instance, Fordham’s algorithm is successfully implemented
in recent papers [5, 8]. In this Section, we present another algorithm to find the norm of an
element in F . We are based on the representation of F by non-spherical diagrams described
in Section 3. We classify vertices of the canonical diagram of a given element. There are
only two cases for this. To find the norm, one has to add the number of cells in the diagram
and the number of so-called special vertices multiplied by 2. This algorithm is very clear
and easy in use.

Let ∆ be a diagram over P = 〈 x | x2 = x 〉. From Lemma 3 we know that all vertices of
∆ belong to the longest positive path p from ι(∆) to τ(∆). We need to classify vertices of ∆.
A non-empty positive path q in ∆ (in particular, a single edge) is called a brigde whenever
q is a common subpath in both top(∆) and bot(∆). If q is a bridge of ∆, then one has
a decomposition of the form ∆′ + q + ∆′′, where ∆, ∆′′ are some diagrams (possibly ∆′′ is
empty) and q denotes the subdiagram in ∆ that consists of the bridge q. We say that the
bridge q is nontrivial whenever ∆′′ has cells. Note that any bridge q, being a path, has its
initial point ι(q).

A vertex v in ∆ is called active if v is either an initial point of a cell in ∆ or v is an initial
point of a nontrivial bridge of ∆. Since ∆ is a finite graph, we have the distance function
on vertices of ∆. The distance between two vertices is the length of the shortest path in ∆
that connects these vertices. An active vertex in ∆ is called special if its distance from the
origin O = ι(∆) is strictly greater than 1.

In the following picture

r r r r r r r r r0
4 5 6

7 832

1

we enumerate all vertices of the diagram ∆ travelling along p from the origin and starting
from the number 0. It is clear that vertices 0, 1, 3, 5, 6 are active. Vertices 5, 6 from this
list are the only special vertices of ∆.

Theorem 4 Let g ∈ F be represented by the canonical diagram ∆. Then the norm of

g, that is, the length of the shortest word representing g in group generators x0, x1, can be

found by the following formula:

||g|| = #c∆+ 2#s∆, (13)

where #c denotes the number of cells and #s denotes the number of special vertices of a

diagram.
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In the above example, one easily has #c∆ = 7, #s∆ = 2 so ||g|| = ||x2
0x1x6x

−1
3 x−2

0 || =
7 + 2 · 2 = 11. Recall that the number of cells in the canonical diagram of g is always equal
to the length of the normal form of g. Before the proof, we would like to verify that g is an
example of a dead vertex in the Cayley graph of F . Namely, we would like to show that for
any a = x±1

i (i = 0, 1) one has ||ga|| < ||g|| (that is, the norm of g decreases in all directions).
It can be shown that the number 11 is the smallest one for which this effect is possible.

We need to analyze what happens if we multiply g by each of the four semigroup gener-
ators. Let us consider 4 cases.

1) g → gx0. In this transition, when we multiply g by x0, one cell in ∆ cancels (the
leftmost cell on the bottom). The set of vertices remains the same. It is also clear that
the set of active vertices will be the same and no vertices change their distance from the
origin. So #c decreases by 1, #s is the same. Hence the norm decreases by 1, that is,
||gx0|| = ||g|| − 1 = 10.

2) g → gx1. When we multiply g on the right by x1, we cancel the second cell on the
bottom. This means we just remove the arc that connect vertices 3 and 5. In this case the
vertex number 3 will be no longer active. But the vertex number 4 becomes active because
it will be the initial point of a bridge. However, the vertex number 4 is on the distance 1
from the origin so it is not special. Thus the only special vertices in the new diagram will
be 5 and 6, as before. This means that the norm decreases by 1 so ||gx1|| = ||g|| − 1 = 10.

3) g → gx−1
0 . Multiplying by x−1

0 on the right means that we add a new cell to the
diagram. This means we add an arc that connects vertices 0 and 5. The set of active vertices
remains the same. But now the vertex number 5 will be on the distance 1 from the origin so
the only special vertex in the new diagram will be the vertex number 6. Thus #c increases
by 1, #s decreases by 1 and so the norm decreases by 1, that is, ||gx−1

0 || = ||g|| − 1 = 10.
4) g → gx−1

1 . In this case we need to add a new cell connecting vertices 3 and 6 by an
arc. Now the vertex number 5 will not be an initial point of a bridge. The only special
vertex in the new diagram will be 6. As in the previous paragraph, #c increases by 1, #s

decreases by 1 and ||gx−1
1 || = ||g|| − 1 = 10.

Proof of Theorem 4. We use the idea of [12, Lemma 2.1.1]. For any g ∈ F we consider
the canonical non-spherical diagram ∆ that represents g. The value #c∆ + 2#s∆ will be
denoted by ϕ(g). Our aim is to show that ||g|| = ϕ(g) for any g ∈ F .

Clearly, ϕ(g) = 0 if and only if g = 1 in F . We show that ϕ(ga) = ϕ(g)±1 for any g ∈ F
and for any semigroup generator a ∈ {x±1

0 , x±1
1 }. This will imply that ϕ(g) ≤ ||g|| for any

g ∈ F . Indeed, if we decompose g into a product of n = ||g|| generators, then one can easily
show by induction that ϕ(g) ≤ n.

Let us consider two neighbour elements in the Cayley graph C2. For these elements we
can compare the number of cells in canonical diagrams that represent these elements. It is
obvious that the difference between the numbers of cells will be always 1 or −1 so we can
assume without loss of generality that the number of cells in the canonical diagram of ga
will be greater than the number of cells in the canonical diagram ∆ of g by 1.

We consider 4 cases. In each of them we need to show that the number of special vertices
either remains the same or it decreases by 1. This will imply that the value of ϕ always
increases by 1 or decreases by 1 after we multiply its argument by a generator. Recall that
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Xi is the diagram that corresponds to the generator xi ∈ F (i ≥ 0).
Case 1. a = x0. Since multiplying by X0 increases the number of cells, we know that

∆ has no cells whose bottom path coincides with the leftmost edge of bot(∆). When we
concatenate ∆ and X0, then a new vertex appears on the bottom path of the cell of X0.
This vertex is on the distance 1 from the origin. So the vertex we add is not special. It is
easy to see that no new special vertices can appear. So ϕ increases by 1 in this case.

Case 2. a = x1. In this case we concatenate ∆ and X1. This gives a new vertex (on the
bottom of the cell of X1). Clearly, this vertex is not special since it is not an initial point of
a cell and it is not the initial point of a bridge. The status of all other vertices will be the
same, that is, no special vertices appear or disappear. Thus ϕ increases by 1.

Case 3. a = x−1
0 . Let v0, v1, v2, . . . be all vertices of the bottom path of ∆ enumerated

from the left to the right. Multiplying by X−1
0 means that we connect vertices v0 and v2 by

an arc. Suppose that v2 was a special vertex in ∆. In this case the number of special vertices
in ∆◦X−1

0 will be less by 1 than the number of special vertices in ∆. Otherwise the number
of special vertices remains the same. Hence ϕ decreases or increases by 1, respectively.

Case 4. a = x−1
1 . In the notation of the previous paragraph, one has to add an arc that

connects vertices v1 and v3 in order to concatenate ∆ and X−1
1 . Note that vertices v0, v1 are

not special in our diagrams. The vertex v3 also does not change its status because the new
arc does not connect it with the origin. Clearly, nothing happens with vertices vk if k ≥ 4.
So the only vertex we need to think about is v2. If the distance from it to the origin in ∆ is
1, then the same is true for ∆′ = ∆ ◦X−1

1 . Suppose that the distance in ∆ from v2 to the
origin is at least 2. Then the same is true for ∆′. If v2 was not active in ∆, then it could not
be active in ∆′. Suppose that v2 is an initial point of a cell in ∆. In this case v2 be a special
vertex of ∆. It is obvious that v2 has the same status in ∆′. So the only case we need to
check is when v2 is an initial point of a nontrivial bridge in ∆. After we concatenate ∆ and
X−1

1 , this will no longer be true. So v2 will not be special in ∆′ so the number of special
vertices decreases by 1. As a result, we have that ϕ increases or decreases by 1.

To complete the proof, we need to check that for any g ∈ F , g 6= 1, there exists at least
one generator a ∈ {x±1

0 , x±1
1 } such that ϕ decreases at its direction, that is, ϕ(ga) = ϕ(g)−1.

This will imply the inequality ||g|| ≤ ϕ(g) for any g ∈ F . Indeed, if ϕ(g) = n, then we can
start from the vertex g in C2. At each step we choose a direction that decreases ϕ by 1.
After n steps, we get to the element with the zero value of ϕ, that is, to the identity. So the
distance from g to the origin (that is, the norm of g) does not exceed n.

We enumerate the vertices of bot(∆) as above, where ∆ is the canonical representative
of g. Since g 6= 1, the diagram ∆ is nontrivial. Suppose that v2 is a special vertex in ∆.
Then ∆ cannot be the concatenation of some diagram ∆′ and X0 (otherwise v2 is on the
distance 1 from the origin). So if we multiply ∆ by X−1

0 , then the number of cells increases
by 1 and we are in the situation of Case 3. Since v2 is special vertex of ∆, the value of ϕ
decreases by 1, that is, ϕ(gx−1

0 ) = ϕ(g)− 1.
Assume that v2 is not a special vertex of ∆. Let ∆ be a concatenation of some diagram

∆′ and X−1
1 . If we multiply g by x1 on the right, then the number of cells decreases and

we are in the situation, which is inverse to the one described in Case 4 (now ∆ is obtained
from ∆′ by adding a cell when multiplying by x−1

1 ). We know that ϕ(∆′) is always greater
by 1 than ϕ(∆) except for one case. Let us describe it. By π we denote the cell in ∆ that
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corresponds to the factor X−1
1 in the concatenation ∆′ ◦X−1

1 . The top path of π is a product
of two edges e′e′′. The terminal point of e′ (=the initial point of e′′) will be denoted by v.
According to Case 4 (note that we have to exchange the rôles of ∆ and ∆′) we have that v
must be the initial point of a nontrivial bridge in ∆′. This bridge starts with the edge e′′.
So the terminal point of e′′ must be a special vertex of ∆′ and also of ∆. But this vertex is
v2, which gives a contradiction.

Let us analyze all cases that can happen to the edge e that is contained in bot(∆) (or
its continuation) and has the endpoints v1, v2. Suppose that e does not belong to a cell so
it is a bridge. This bridge should be trivial since v2 is not special. Thus ∆ is in fact an
(xm, x)-diagram for some m ≥ 1. It is nontrivial so ∆ is a concatenation of some diagram
∆′ and X−1

0 . If we look at the situation of Case 3 (in our case we go from ∆′ to ∆ adding
a cell), then we see that ϕ(∆) will be always greater than ϕ(∆′) by 1 except for one case
when the vertex v1 is a special vertex of the subdiagram ∆′. This cannot happen because
bot(∆) has length 1. Thus ϕ(gx0) = ϕ(g)− 1 in this case.

Now let e be contained in some cell of ∆. The only case we need to consider is the one
when e is a part of the bottom path of an (x, x2)-cell (the case of an (x2, x)-cell means that
∆ is a concatenation of some diagram and X−1

1 , which has been already considered). Let us
denote this (x, x2)-cell by π. The edge e may be the first or the second edge of bot(π) so we
have two subcases.

Suppose that bot(π) = e′e for some edge e′. If e′ is contained in the bottom path of ∆,
then it coincides with the first edge of bot(∆). Thus ∆ will be the concatenation of some
diagram ∆′ and X0. From Case 1 we can extract that ϕ(gx−1

0 ) = ϕ(g)−1 since ∆ is obtained
from ∆′ by adding one cell that corresponds to X0. If e′ is not contained in bot(∆), then
the first edge of bot(∆) must be a bottom edge of an (x2, x)-cell. This means that ∆ is a
concatenation of some diagram ∆′ and X−1

0 . The situation we have is described in Case 3.
Adding the new cell to ∆′ that corresponds to X−1

0 always increases ϕ except for the case
when the vertex v1 will be a special vertex of the subdiagram ∆′. But we know that the only
positive edge of ∆ that comes out of v1 is e. So v1 is not an initial point of a cell. Neither e
is a bridge. So ϕ(gx0) = ϕ(g)− 1 in this subcase.

Finally, let bot(π) = ee′′ for some edge e′′. If e′′ is also contained in bot(∆), then
∆ is a concatenation of some diagram and X1. From Case 2 we can easily conclude that
ϕ(gx−1

1 ) = ϕ(g) − 1. If e′′ is not contained in bot(∆′), then there is an “angle” between
e′′ and the third edge of bot(∆). Then v2 will be an initial point of some cell. However,
v2 cannot be on the distance 1 from the origin because otherwise the arc that connects the
origin and v2 would cross the edge top(π), which is impossible. Therefore, v2 is special. We
have a contradiction.

The proof is complete. Note that we have a quick procedure to find minimal representa-
tives of elements of F using the above description.
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