
ASYNCHRONOUS AUTOMATA NETWORKS CAN EMULATE

ANY SYNCHRONOUS AUTOMATA NETWORK

CHRYSTOPHER L. NEHANIV

Abstract. We show that any locally finite automata network A with global
synchronous updates can be emulated by another one Â, whose structure de-
rives from that of A by a simple construction, but whose updates are made
asynchronously at its various component automata (e.g., possibly randomly
or sequentially, with or without possible simultaneous updates at different
nodes). By “emulatation”, we refer to the existence of a spatial-temporal cov-
ering (‘local time’), allowing one to project the behavior of Â continuously
onto that of A. We also show the existence of a spatial-temporal section of the
asynchronous automata network’s behavior which completely determines the
synchronous global state of A at every time step.

We give the construction of the asynchronous automata network, establish
its freedom from deadlocks, and construct local time functions and spatial-
temporal sections relating any posssible behavior of Â to the single corre-
sponding behavior of A on a given input sequence starting from a given initial
global state.

This establishes that the behavior of any (locally finite) synchronous au-
tomata network actually can be emulated without the restriction of synchro-
nous update, freeing us from the need of a global clock signal. Local informa-
tion is sufficient to guarantee that the synchronous behavior of A is completely
determined by any asynchronous behavior of Â starting from a corresponding
global state and given the same input sequence as A. Moreover, the relative
passage of corresponding local time at any two nodes in Â is bounded in a
simple way by approximately one-third of the distance between them.

As corollaries, any synchronous generalized cellular automaton or synchro-
nous cellular automaton can be emulated by an asynchronous one of the same
type.

Implementation aspects of these asynchronous automata are also discussed,
and open problems and research directions are indicated.

1. Introduction and Preliminaries

In this paper we derive a general result which shows how it is possible to
emulate the behavior of a given synchronously updated automata network by a
corresponding asynchrononous one. This allows one to transfer results concerning
the usual (synchronous) automata networks to the asynchronous realm, including

Preprint submitted on 31 January 2003 to International Journal of Algebra & Computation.
Minor revisions 20 December 2003.

1

2 C. L. NEHANIV

for example cellular automata and their generalizations. Moreover, the result
holds also for infinite automata networks over locally finite underlying graphs.

1.1. Graphs. A directed graph (or digraph) Γ = (V, E) is a set V of vertices and
a set of directed edges E ⊆ V × V . Elements of V are sometimes called nodes.
An edge (w, v) ∈ E is said to have source w and target v, and to be an outgoing
edge of w and incoming edge to v.

We say node w is a neighbor of v if there is an incoming edge from w to v,
that is, (w, v) ∈ E. The neighborhood of v is the set N(v) ⊆ V of all neighbors
of node w.

The associated undirected graph to Γ is Γ̂ with the same set of vertices V and
edges

Ê = {(w, v) ∈ V × V | (w, v) ∈ E or (v, w) ∈ E or v = w}.
Thus Γ̂ has as edge set the symmetric and reflexive closure of the relation E.

A path of length n ≥ 0 in Γ from node v to node w is a sequence of vertices
v0, . . . , vn with v = v0 and w = vn such that (vi, vi+1) ∈ E for all 0 ≤ i < n.

The digraph Γ is locally finite if the associated undirected graph Γ̂ has no node
with infinitely many neighbors.

The distance d(v, w) from node v to node w in Γ̂ is the least n such that there
is a path of length n from v to w (if such a path exists), or, otherwise ∞, if there

is no path from v and w. (Since the edge relation in Γ̂ is symmetric, this gives a

metric on Γ̂.)

1.2. Synchronous Automata Networks. We recall the concept of (synchro-
nous) automata network A, which is an automaton defined by giving a directed
graph Γ = (V, E), a V -indexed set of automata Av, an external input alphabet
X, and a V -indexed set of feedback functions that are compatible with Γ:

To each v ∈ V , let an automaton Av = (Qv, Xv, δv : Qv × Xv → Qv) be
associated. We say Qv is the set of local states, Xv is the set of local input
letters, and δv is the local transition function at node v. If there is no danger
of confusion we shall write qv · xv for the state δv(qv, xv) whenever qv ∈ Qv and
xv ∈ Xv.

A global state of the automata network A is an element q of Q =
∏

v∈V Qv.
For a vertex v ∈ V , denote by qv ∈ Qv the v-component of q.

Let X �= ∅ be an external alphabet, and let Xð = X ∪ {ð} where ð �∈ X may
be regarded as as a Wait symbol. For each node v ∈ V , let there be a feedback
function

ϕv :
∏

w∈N(v)

Qw × Xð → Xv.

This determines a local input letter xv ∈ Xv to Av as a function of the external
input letter (or Wait symbol) x ∈ Xð and the state nodes in the neighborhood
of v. In the synchronous case, the Wait symbol ð is actually superfluous and X

ASYNCHRONOUS AUTOMATA NETWORKS 3

rather than Xð may be used throughout as we shall see. It is only required in
the asynchronous generalization.

We may extend ϕv to ϕv : Q×Xð → Qv by letting ϕv(q, x) = ϕv((qw)w∈N(v), x).
Here (qw)w∈N(v) ∈ ∏

w∈N(v) Qw is the assignment of states to all components in
the neighborhood of v according to global state q. In this way, ϕv does not really
depend on its w-component unless w ∈ N(v).

Given the digraph Γ = (V, E), automata {Av}v∈V , feedback functions {ϕv}v∈V ,
and external alphabet X as above, the (synchronous) automata network A is an
automaton with states Q =

∏
v∈V Qv, inputs X, and transition function δ :

Q × X → Q defined for all q ∈ Q and x ∈ X by giving the new v-component of
state q · x as

δv(qv, x) = δv(qv, ϕv(q, x)) = qv · ϕv(q, x),

here qv ∈ Qv is the v-component of global state q ∈ Q.
We say A is the (synchronous) automata network (or a general product or

Gluškov product) of local automata Av over the digraph Γ according to the
feedback functions ϕv.

For all natural numbers n ∈ N, let xn be a letter in X. If the sequence
x1, x2, x3, . . . is input to A in a synchronous network, starting from an initial
global state q0 ∈ A with v
→ qv

0 , then the global state qn of A at time n is given
inductively by

qv
n = qv

n−1 · ϕv(qn−1, xn),

for all n ≥ 1. Note that we are using a discrete model of time. Thus the successive
states of the local automaton Av at node v, qv

0 , q
v
1 , q

v
2 , . . . and the successive global

states q0, q1, q2, . . . of the entire network A depend in general on the particular
values of external inputs, except in the case |X| = 1. The function q : N → Q
with qn having v-component qv

n ∈ Qv is called the behavior of the synchronous
network A on the given input sequence {xn}n∈N and initial state q0.

Note also that in this synchronous case, a letter is read at each update, so the
Wait symbol is never used in place of an input letter by any feedback function
ϕv. Thus we could have equivalently used X rather than Xð in the definition
of the ϕv. This is what the classical definition does. Xð is needed for the gen-
eral asynchronous case below. In the synchronous case and, as we shall see, for
generalized cellular automata, this is equivalent to the classical definition.

1.3. Asynchronous Automata Networks. Our concept of asynchronous au-
tomata network A requires again giving a directed graph Γ = (V, E), a V -indexed
set of automata Av, an external input alphabet X, and a V -indexed set of feed-
back functions {ϕv}v∈V that are compatible with Γ. It also requires a V -indexed
family of read functions

ρv :
∏

w∈N(v)

Qw → {Read, Wait},

4 C. L. NEHANIV

which are used to determine whether the feedback function for node v receives
the Wait symbol ð or a letter of external input. These ingredients completely
determine the asynchronous automata network A.

We will allow “local update” at a node v without necessarily changing local
state at any other node, and local automata will be allowed to read the global in-
put sequence asynchronously and independently according to their update times
and local state in their neighborhoods. In particular, local automata will be
allowed to wait (as a function of the state of their local neighborhood) before
reading the next letter of external input.

Update Patterns. To capture the notion of asynchronous local updates, embed
N as a model of time arbitrarily into the non-negative real numbers R+ (or non-
negative rationals Q+, or N):

τ : N → R+ (or Q+ or N),

with τ(0) = 0, and i < j implying τ(i) < τ(j). At time τ(n) with n positive, a set
of local updates will occur simultaneously in the asynchronous automata network.
During the half-open interval [0, τ(1)), the state of the automata network is an
initial global state q0 as above. For each n > 0, during open interval (τ(n), τ(n+
1)), the state of the network does not change at all. At time τ(n), let Uτ(n) ⊆ V
denote the nodes updated at time τ(n). Formally, a (local) update is said to occur
at node v ∈ V at time τ(n) ∈ R+ if and only if v lies in the update set Uτ(n).
Thus subsets of the local automata of A will be updated instantaneously at time
points τ(1), τ(2), . . ., with all local automata having nodes in the update set Uτ(n)

updated simultaneously as a function of the current states of their neighbors and
possibly the input letters they are currently reading. We require that each node
v ∈ V is updated an unbounded number of times, i.e. v ∈ Uτ(n) for infinitely
many n ∈ N+.

An update pattern (τ, U) of an asynchronous network is an order preserving
function (as above) τ : N → R+ together with a family of update sets Uτ(n) ⊆ V ,
n > 0. (Sometimes we will suppress the update sets and refer to τ as an update
pattern.) For t ∈ R+ \ τ(N) and also for t = 0, one may define Ut = ∅. Then for
all moments in time t ∈ R+, an update occurs at node v at time t if and only if
v ∈ Ut. A run of a network is a sequence of global states qt of the network, and we
will soon see how an update pattern together with a infinite input word {xn}n>0

(with xn in X, for all positive natural numbers n) determine a well-defined run
q : R+ → Q, with component values qv

t = (qt)
v ∈ Qv at time t ∈ R+, called the

(continuous) behavior of the asynchronous network A for this update pattern and
input sequence, with initial global state q0. The restriction q : τ(N) → Q, of q to
τ(N), is called the (discrete) behavior of A, and clearly determines the continuous
behavior q on R+, since nothing in the network may change at any t �∈ R+ \τ(N).
An update pattern is not a part of the specification of the automata network, and

ASYNCHRONOUS AUTOMATA NETWORKS 5

need not be given in advance. An update pattern and external input sequence
are however required in to order determine a behavior of the network.

Local Reading and Waiting. For each node v ∈ V , we assume a next avail-
able letter xn∗(v) ∈ X — which one will depend on how far Av has read(!) —
is available at time τ(n) to be read from the sequence of global external in-
puts x1, x2, x3, . . . which are read sequentially but not synchronously by the local
automata in the asynchronous network. That is, the letters of external input
x1, x2, x3, . . . are read in sequence at each node v but node v is also permitted to
Wait and update itself before reading (or “consuming”) a letter. This is why the
feedback function must handle the case when the next letter is not to be read
yet, i.e. ϕv : Q × Xð → Xv where ð, the Wait symbol, is used as the second
argument to ϕv when the next input letter is not read.

However, whether or not the next letter at node v is read may depend at most
on the states of the local automata at the neighbors of node v, and may not de-
pend on external input letter itself. Thus this is determined, for each node v ∈ V ,
by the read function ρv :

∏
w∈N(v) Qw → {Read, Wait} for node v. Like the feed-

back functions ϕv, the ρv are given when specifying the asynchronous automata
network, and may be extended to all global states ρv : Q → {Read, Wait} by
defining

ρv(q) = ρv((qw)w∈N(v)).

Thus ρv(q) does not really depend on the w-component qw of q ∈ Q unless
w ∈ N(v).

If ρv(q) is Read when v ∈ Uτ(n) then the next external input letter is passed to
the feedback function ϕv; but if ρv(q) = Wait when v ∈ Uτ(n), then ð is passed
to the feedback function, and the external letter remains available. Letters of a
copy of the infinite external input sequence are thus consumed in order at every
node. Each local automaton gets to consume a copy of the same external input
sequence, but the local automaton may wait before consuming the next letter
depending on the state of its local neighborhood and the function ρv.

Thus at time t = τ(n) with n > 0, if v ∈ U(τ(n)) and the next letter locally
available for reading is x ∈ X, a local update of state at node v is given by:

qv
τ(n) =

{
qv
τ(n−1) · ϕv(qτ(n−1), x) if ρv(qτ(n−1)) = Read

qv
τ(n−1) · ϕv(qτ(n−1), ð) if ρv(qτ(n−1)) = Wait.

Note that the values of ϕv and ρv here do not depend on the state of local au-
tomata other than the neighbors of Av at time τ(n − 1). Since ρv is a function,
there is no non-determinism in deciding whether or not the next letter is to be
read or not for a given state q ∈ Q.

6 C. L. NEHANIV

Details of Asynchronous Behavior. To keep track, as external observers, of
which letter of the external input sequence is currently available at time τ(n) at
node v, we note that the index n∗(v) to the next letter for node v at time τ(n) is
given inductively by 1∗(v) = 1 and

(n + 1)∗(v) =

{
n∗(v) + 1 if v ∈ Uτ(n) and ρv(qτ(n−1)) = Read
n∗(v) otherwise.

Thus, starting from the first letter of the global input sequence {xn}n∈N, the index
to the next input letter is advanced if and only if the input letter in position n∗(v)
has been read when Av was last updated. Thus the next external letter which
may be read by the local automaton at node v ∈ V at time τ(n), with n a positive
natural number, is denoted xn∗(v) ∈ X.

Up to but not including time τ(n), the local automaton at v will have consumed
x1, . . . , xn∗(v)−1. Thus xn∗(v) indicates the next letter that the local automaton
may consume at time τ(n). It is important to note that the local automata Av

do not themselves carry any information on what the next letter will be or where
to find it, any more than do standard finite automata reading an input sequence.
The notation xn∗(v) merely allows an external observer to describe which is the
next letter of the external input sequence that is available to the local automaton.

The updates of state at node v for n > 0 are formally described by:

qv
τ(n) =

⎧⎨
⎩

qv
τ(n−1) · ϕv(qτ(n−1), xn∗(v)) if v ∈ Uτ(n) and ρv(qτ(n−1)) = Read

qv
τ(n−1) · ϕv(qτ(n−1), ð) if v ∈ Uτ(n) and ρv(qτ(n−1)) �= Read

qv
τ(n−1) otherwise,

where xn∗(v) ∈ X is the letter in position n∗(v) of the external input sequence.

Recall that no change of state occurs at time t unless t = τ(n), for some
n > 0. Therefore at every node v ∈ V , for all times t in the half-open interval
[τ(n − 1), τ(n)), where n > 0, we have qv

t = qv
τ(n−1). Thus the state of node v

during this interval, i.e. the state from time τ(n−1) up to and including any time
‘just before’ time τ(n) is exactly qv

τ(n−1). Given an initial global state q0, the above
update rule determines the state qv

t of Av and hence the state qt of the entire net-
work for all t ∈ R+, so we have a well-defined run, the (continuous) behavior of A.

Note that if external inputs are always read (i.e. ρv(q) = Read for all q ∈
Q, v ∈ V) and Uτ(n) = V for every n > 0 then the sequence of global states
qτ(0), qτ(1), qτ(2), . . . is exactly the behavior of a uniquely determined corresponding
synchronous automata network.

ASYNCHRONOUS AUTOMATA NETWORKS 7

2. Asynchronous Emulation Theorem

Definition (Spatial-Temporal Covering). Let Γ = (V, E) be a directed
graph. Then a spatial-temporal covering for Γ is any function λ : R+ × V → N

such that following conditions hold:
(1) the restriction λ : R+×{v} � N of λ to every given vertex v ∈ V is surjective,
(2) λ is locally monotonically increasing, i.e. for all t, t′ ∈ R+ and v ∈ V ,

t ≥ t′ implies λ(t, v) ≥ λ(t′, v),

(3) for all t, t′ ∈ R+ and v ∈ V ,

|λ(t, v) − λ(t′v)| ≤ d(v, v′),

where d denotes the distance metric in the associated undirected graph Γ̂ (the
reflexive-symmetric closure of the relation E).

Definition (Emulation).1 Let A be an synchronous automata network over

a directed graph Γ = (V, E) with global state set Q and Â be an asynchronous
automata network with the same input alphabet X, a directed graph Γ′ = (V, E ′)
with the same set of nodes, and global state set Q̂. Let π : Q̂ → Q be a function
from global states of the asynchronous automata network to global states of the

synchronous one, such that πv(q̂) = (π(q̂))v depends only on q̂v for all q̂ ∈ Q̂.
Thus we can denote (π(q̂))v by π(q̂v).

We then say that the behavior q̂ : R+ → Q̂ of Â starting in state q̂0 for update
pattern (τ, U) and input sequence x1, x2, . . . (xi ∈ X for i ∈ N) emulates the

behavior q : N → Q of Â starting in state q0 with the same input sequence under
the projection π if there exists a spatial-temporal covering λ : R+ × V → N such
that the following diagram commutes for each v ∈ V :

R+
q̂v

−→ Q̂v (asynchronous)
λ(−, v) ↓ ↓ π

N
qv

−→ Qv (synchronous)

That is, π(q̂v
t) = qv

λ(t,v)

with qv
n = state in A of node v at time n ∈ N

and q̂v
t = state in Â of node v at time t ∈ R+.

1More general definitions of emulation allowing differing sets of nodes and alphabets for A
and Â, partial definition of π, etc., are possible (in analogy to the classical notion of emulation
for synchronous automata networks), but for simplicity we shall use this one which suffices for
purposes of this paper.

8 C. L. NEHANIV

Theorem 1. (Asynchronous Emulation of Synchronous Automata Net-
works) Let any synchronous automata network A over a locally finite digraph
Γ = (V, E) with local automata Av = (Qv, Xv, δv) (v ∈ V) and external input
alphabet X be given.

We construct an asynchronous automata network Â (with the same input al-

phabet X) such that every possible behavior of Â with input sequence {xn}n>0

emulates the (only possible) behavior of A with input sequence {xn}n>0, when Â
starts in an initial global state q̂0 depending only on the initial global state q0 of
A.

Moreover, the following hold:

(1) The underlying digraph for Â is the reflexive-symmetric closure of the
digraph for A.

(2) For each vertex v, the local automaton Âv of Â are “not much more

complicated” than the local automaton Av of A. Moreover, Âv is a direct
product of Av, an identity-reset automaton, and a modulo three counter.
In fact, Av has state set state set Q̂v = Qv × Qv × {0, 1, 2}.

(3) The projection π : Q̂ → Q is given locally by πv(qv, bv, r) = qv for

(qv, bv, r) ∈ Q̂v.

(4) The starting state of Â is given by q̂v
0 = (qv

0 , q
v
0 , 0) for all v ∈ V .

(5) Furthermore, the spatial-temporal covering of the emulation satisfies

|λ(t, v) − λ(t, v′)| ≤ �d(v, v′) + 2

3

.

We call λ(t, v) the local time of the synchronous automaton A at vertex v

for time t in the emulating asynchronous automaton Â. Of course, λ depends

in general on the update pattern (τ, U) for the particular behavior of Â. Thus
(5.) above says that the difference in local time at two nodes in the emulating
asynchronous automata network is bounded above by approximately one third of
the distance between them.

Proof: We give the construction of Â and show by a series of lemmata that it
has the required properites:

As before, let Γ̂ be the reflexive and symmetric closure of Γ. Γ̂ = (V, Ê), where

Ê = {(v, v′) × V × V : v = v′ or (v, v′) ∈ E or (v′, v) ∈ E}.
Let N̂(v) denote the neighborhood of v in Γ̂. We construct Â as an automata

network over Γ̂. The local automaton Âv at node v ∈ V has states Q̂v = Qv ×
Qv × {0, 1, 2}, and its input alphabet is

X̂v = (Xv ∪ {1}) × (Constants on Qv ∪ {1}) × {+0, +1},
where 1 is a new symbol that acts as the identity on the corresponding component,
and, for each qv ∈ Qv, the middle component includes input letter constant qv

ASYNCHRONOUS AUTOMATA NETWORKS 9

which acts as a constant resetting the middle component to qv, whereas, in the
third component, +0 acts as the identity and +1 increases that component by 1
modulo 3.

We write q̂v = (qv, bv, rv) ∈ Q̂v = Qv × Qv × {0, 1, 2} for the local state q̂v at

node v ∈ V of Â.
The read functions of Â are ρ̂v : Q̂ → {Read, Wait} with

ρ̂v(q̂) =

{
Read if rw �= rv − 1 mod 3 for all w ∈ N̂(v) and rv = 0
Wait otherwise.

The feedback functions of Â are ϕ̂v : Q × Xð → X̂v with

ϕ̂v(q̂, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 1, +0) if rw = rv − 1 mod 3 for some w ∈ N̂(v)

(1, 1, +1) if rw �= rv − 1 mod 3 for all w ∈ N̂(v)
and rv �= 0

(ϕv(c, x), constant qv, +1) if rw �= rv − 1 mod 3 for all w ∈ N̂(v)
and rv = 0,

where qv is the first component of q̂v in state q̂ and c is an arbitrary state of A
such that for each w ∈ N(v),

cw =

{
qw if rw = 0
bw if rw = 1.

Note also rw must lie in {0, 1} in the determining the cw of the third case, as

necessarily rv = 0 in third case and w ∈ N(v) ⊆ N̂(v) implies rw �= 2 mod 3.

Updates at node v in Â are thus given by the local update function with

δ̂v((qv, bv, rv), ϕ̂v(q̂, x)) = (qv, bv, rv) · ϕ̂v(q̂, x) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(qv · 1, bv · 1, rv + 0) if rw = rv − 1 mod 3

for some w ∈ N̂(v)
(qv · 1, bv · 1, rv + 1 mod 3) if rw �= rv − 1 mod 3

for all w ∈ N̂(v), and rv �= 0
(qv · ϕv(c, x), bv · constant qv, 0 + 1) otherwise,

where c is as above.

That is,

δ̂v((qv, bv, rv), ϕ̂v(q̂, x)) =⎧⎪⎪⎨
⎪⎪⎩

(qv, bv, rv) if rw = rv − 1 mod 3 for some w ∈ N̂(v)

(qv, bv, rv + 1 mod 3) if rw �= rv − 1 mod 3 for all w ∈ N̂(v)
and rv �= 0

(qv · ϕv(c, x), qv, 1) otherwise,
where c is as above.

10 C. L. NEHANIV

Notice that the transition function of Av and the feedback function ϕv from
the synchronous network are used to give the input to Av in the third case. Of
course the value of qv ·ϕv(c, x) depends only on x, qv and the cw with w in N(v),
the neighborhood of v in the original digraph Γ.

In computing δ̂v, x ∈ Xð is the letter currently available for possible reading by
the local automaton at node v if ρ̂v(q̂) = Read but is x = ð in case ρ̂v(q̂) = Wait
(see discussion of local reading and waiting above). By our choice of reading
functions, the letter x is the Wait symbol ð in the first two cases of the local
update rule and lies in X if and only if the third case applies.2 Thus, the third
case applies if and only if the next available letter is consumed.

Suppose the initial state of A in a synchronous run is q0 with each node v ∈ V

in state qv
0 ∈ Qv. Let the initial state of Â have the automaton at each node v

in state q̂v
0 = (qv

0 , q
v
0 , 0).

For a given behavior of Â, we say there is a +1-update at vertex v whenever

the transition rule δ̂v is applied to update the local state using either its second
or third cases, i.e. exactly when the last component of state is incremented by +1
modulo 3. We say there is a real update at node v (corresponding to a synchronous

update in A at that node) whenever transition rule δ̂v is applied to update the
local state using its third case, i.e. exactly when the the last component of state
changes from 0 to 1. Let p(t, v) be the number of +1-updates that have occurred
at vertex v during a behavior with update pattern τ up to and including time
t ∈ R+.

Lemma 2. For each pair of neighboring nodes v, v′ ∈ V in Γ̂ and for all t ∈ R+,

|p(t, v) − p(t, v′)| ≤ 1.

Proof: It suffices to consider the values of p(t, v) for t ∈ {τ(0), τ(1), τ(2), τ(3), . . .}
since no applications of local transition rules occur between them. At t = 0 =
τ(0), p(t, w) = 0 for all w ∈ V , so p(t, v) = p(t, v′) holds. Now by induction, we
suppose the inequality holds at time τ(k) for all k ≤ n ∈ N.

If p(τ(n), v) = p(τ(n), v′) then at time τ(n + 1), a +1-update will occur at
none, one, or both of v and v′, so, as a result, the inequality will always hold at
time τ(n + 1).

Otherwise |p(τ(n), v) − p(τ(n), v′)| = 1. Without loss of generality, we may
assume

p(τ(n), v′) = p(τ(n), v) − 1.

2We remark that if X is a singleton, the above definition of δ̂v is also consistent with ρ̂v(q̂) =
Read for all q̂ ∈ Q̂, since the current letter is not different from the next one in an infinite
input word consisting of identical letters. This observation will be used when we specialize
Theorem 1 in Corollaries 8 and 9 respectively to emulating generalized cellular automata and
cellular automata by asynchronous automata networks which can be chosen to be asynchronous
generalized cellular automata and asynchronous cellular automata, respectively.

ASYNCHRONOUS AUTOMATA NETWORKS 11

Since the last component of state at a node is increased by one (modulo three)
for each +1-update at that node and otherwise remains unchanged, obviously the
last component rw

t of state at any node w in V is p(t, w) mod 3. Therefore

rv′
τ(n) = rv

τ(n) − 1 mod 3.

It follows from the definition of local update δ̂v that there will be no +1-update at
node v at τ(n+1), so p(τ(n), v) = p(τ(n+1), v). Now there are two possibilities:
Either there is also no +1-update at node v′ at this time, so p(τ(n), v′) = p(τ(n+
1), v′) and the inequality is preserved. Or, otherwise, there is a +1-update at
node v′, so then

p(τ(n + 1), v′) = p(τ(n), v′) + 1 = p(τ(n), v) = p(τ(n + 1), v),

and again the inequality holds.
It follows by induction that it holds for all n, hence for all t ∈ R+. �

Corollary 3. Let v and v′ be vertices at distance d in the graph Γ̂. Then for all
t ∈ R+,

|p(t, v) − p(t, v′)| ≤ d.

Proof: This follows immediately by considering a path of minimal length from v
to v′ and applying the above lemma. �

Define λ(t, v) to be the number of real updates that have occured at node v in

Â up to and including time t ∈ R+.

Corollary 4. Let v and v′ be vertices at distance d in the graph Γ̂. Then for all
t ∈ R+,

|λ(t, v) − λ(t, v′)| ≤ �d + 2

3

.

Proof: By definition we have

λ(t, v) = �p(t, v)

3
�.

We may assume λ(t, v) ≥ λ(t, v′), whence

|λ(t, v) − λ(t, v′)| = λ(t, v) − λ(t, v′)

= �p(t, v)

3
� − �p(t, v′)

3
�

≤ p(t, v) + 2

3
− p(t, v′)

3

≤ d + 2

3
by the corollary above.

12 C. L. NEHANIV

Since |λ(t, v) − λ(t, v′)| is an integer, it can be no more than �d+2
3

. �

Lemma 5 (Freedom from Deadlocks). With asynchronous automata network

Â in the initial configuration with q̂v
0 = (qv

0 , q
v
0 , 0) corresponding to an initial

configuration of A with node v ∈ V in qv
0 , for any update pattern (τ, U) and any

input sequence {xn}n>0 of letters in X, the number of real updates at each node
is unbounded. That is, for each fixed v ∈ V , always

lim
n→∞

λ(τ(n), v) = ∞.

It follows that λ : R+ × {v} → N is surjective for each v ∈ V .

Proof: It suffices to show, for each fixed v = v0 ∈ V , p(τ(n), v0) increases without
bound. Hence it is enough to show, that if p(τ(n), v0) = R then there is an r > n
with p(τ(r), v0) > R.

Since Γ̂ is locally finite, there are finitely many nodes v0, v1, . . . vk with distance
d(v0, vi) ≤ R. By our hypotheses on update patterns each of these vi ∈ Uτ(m) for
infinitely many m > n.

Suppose, for a contradiction, that no node amongst these can receive a +1-
update. That is, for all m > n, p(τ(n), vi) = p(τ(m), vi) for all 0 ≤ i ≤ k. Let
w(0) = v0. Inductively, starting with i = 0, since w(i) cannot get a +1-update,

by definition of δ̂v, w(i) must have a neighbor w(i + 1) with rw(i+1) = rw(i) − 1
mod 3, hence by Lemma 2, p(τ(n), w(i+1)) = p(τ(n), w(i))−1. Thus we can find
distinct nodes, w(0), w(1), w(2), . . . , w(R) within distance R of node v = w(0)
such that p(τ(n), w(i)) = p(τ(n), v) − i for 0 ≤ i ≤ R. In particular the node
w(R) has p(τ(n), w(R)) = 0. By Lemma 2, the neighboring nodes w′ to w(R)
have p(τ(n), w′) ∈ {0, 1}, and 0 ≤ p(τ(m′), w′) ≤ 1 for all m′ > n as long as
w(R) has not received a +1-update. Let m > n be the least integer, such that
w(R) ∈ Uτ(m). Then by the local update rule, w(R) gets a +1-update at time
τ(m) but lies with distance R of v0, a contradiction.

Therefore, within the finitely many nodes within distance R of v, some node
must indeed be +1-updated at some time τ(m) with m > n. Repeating this
argument, for any time τ(n′), we can find always a time τ(m′) with m′ > n′

such that some node within distance R of v0 gets a +1-update. Since there are
only finitely many such nodes, eventually (for some r > n) some node w = vi

(0 ≤ i ≤ k) among them will have p(τ(r), w) > 2R. But then by Corollary 3,

|p(τ(r), w) − p(τ(r), v0)| ≤ R,

implying that

p(τ(r), v0) > R,

i.e. node v0 must get a +1-update as well. �

ASYNCHRONOUS AUTOMATA NETWORKS 13

The local time function λ is clearly locally monotonically increasing, so Lemma
5 and Corollory 4 (together with the fact that �d+2

3

 ≤ d) show that λ is a spatial-

temporal covering as required.

Proposition 6 (Emulation using Local Time). Let the initial states, inputs and
update pattern be as in Lemma 5. Then the first component of state at node v in

the asynchronous automata network Â at time t equals the state of node v in the
synchronous automata network A at time λ(t, v). That is,

qv
λ(t,v) = π(q̂v

t).

Proof: It suffices to prove the assertion for all t ∈ τ(N).

If q̂v
t = (x, y, r) ∈ Âv, then let π(q̂v

t) = x, its first component as before; let
π2(q̂

v
t) = y, its second component, and let rv

t = r, its third component.
We proceed by induction on m to show that

1. qv
λ(τ(m),v) = π(q̂v

τ(m)),

2. λ(τ(m), v) ≥ 1 implies that π2(q̂
v
τ(m)) = qv

λ(τ(m),v)−1,

3. m > 0 implies that m∗(v) = λ(τ(m − 1), v) + 1.

We first carry out the induction for (3.). If m = 1, then by definition 1∗(v) = 1,
but since at time τ(0) at v there have been no real updates, we have λ(τ(0), v)+
1 = 1. For m > 1, by definition m∗(v) = (m− 1)∗(v) + 1 if and only if v ∈ Uτ(m)

and ρv(q̂τ(m−1)) = Read, i.e. if and only if the third case in the definition of δ̂v is
applied. Thus m∗(v) increases if and only if there is a real update at node v, i.e.
every time λ(τ(m − 1), v) increases by 1 so does m∗(v). Thus,

λ(τ(m), v) − λ(τ(m − 1), v) = (m + 1)∗(v) − m∗(v).

This and the induction hypotheis yields (3).

For m = 0, we have τ(0) = 0, λ(τ(0), v) = 0 and q̂v
0 = (qv

0 , q
v
0 , 0), so (l.) is

immediate; (2.) holds vacuously.

Suppose by induction hypothesis that (1.) and (2.) hold for all m with 0 ≤
m < n. We show these assertions follow also for m = n:

(case 1): If v ∈ U(τ(n)) but there is no real update at node v, it follows from the

definition of λ that λ(τ(n), v) = λ(τ(n−1), v), and, using the definition of δ̂v that
the first and second coordinates of q̂v are unchanged. Thus, π(q̂v

τ(n)) = π(q̂v
τ(n−1))

and therefore,

qv
λ(τ(n),v) = qv

λ(τ(n−1),v) = π(q̂v
τ(n−1)) = π(q̂v

τ(n)),

as required for (1.). For the implication (2.), if λ(τ(n), v) > 1 then

π2(q̂
v
τ(n)) = π2(q̂

v
τ(n−1)) as 2nd component is unchanged

= qv
λ(τ(n−1),v)−1 by induction hypothesis

= qv
λ(τ(n),v)−1 since λ(τ(n), v) = λ(τ(n − 1), v),

14 C. L. NEHANIV

as required. While if λ(τ(n), v) = 1 then it is clear from the definition of δ̂v,
since the value of the second coordinate can only be changed in case 3 below,
that π2(q̂

v
τ(n)) = qv

0 , which is just qv
λ(τ(n),v)−1, as required.

(case 2): If v �∈ U(τ(n)), then q̂v is unchanged and everything follows as above.
(case 3): Finally, if v ∈ U(τ(n)) and there is a real update at v at time τ(n),

then by definition of δ̂v have rv
τ(n−1) = 0 and rw

τ(n−1) �= rv
τ(n−1) − 1 mod 3 for all

w ∈ N̂(v), where rw
t denotes the third component of q̂w

t . So each rw
τ(n−1) ∈ {0, 1}.

It is also clear by induction that rw
t = p(t, w) mod 3 always holds. By Lemma 2,

|p(t, w) − p(t, v)| ≤ 1 for the neighboring nodes w and v.
We consider the cw’s that are used in the third case of the local update rule in

updating node v:
If rw

τ(n−1) = 0 then p(τ(n − 1), w) = p(τ(n − 1), v) follows and hence λ(τ(n −
1), w) = λ(τ(n − 1), v). In this case, by induction hypothesis for node w,
π(q̂w

τ(n−1)) = qw
λ(τ(n−1),w) = qw

λ(τ(n−1),v). It follows that cw in third case of the
local update rule equals qw

λ(τ(n−1),v).

Otherwise, rw
τ(n−1) = 1, and since rv

τ(n−1) = 0, we have p(τ(n−1), w) = p(τ(n−
1), v) + 1 and hence λ(τ(n − 1), w) = λ(τ(n − 1), v) + 1.3

Thus λ(τ(n − 1), w) ≥ 1, and so then

cw = π2(q̂
w
τ(n−1)) since rw

τ(n−1) = 1

= qw
λ(τ(n−1),w)−1 by induction hypothesis at node w

= qw
λ(τ(n−1),v).

It follows that, for each w ∈ N̂(v), the cw in the third case of the local update
rule applied at node v equals qw

λ(τ(n−1),v).

By the induction hypothesis that π(q̂v
τ(n−1)) = qv

λ(τ(n−1),v) and by (3.), n∗(v) =

λ(τ(n − 1), v) + 1. Thus, the first component of q̂v
τ(n) is

π(q̂v
τ(n)) = π(q̂v

τ(n−1)) · ϕv(c, xn∗(v)) by definition of δ̂v

= qv
λ(τ(n−1),v) · ϕv(c, xn∗(v)) by induction hypothesis

= qv
λ(τ(n−1),v) · ϕv(qλ(τ(n−1),v), xn∗(v))

since for all neighbors w ∈ N(v), we have

cw = qw
λ(τ(n−1),v)

= qv
λ(τ(n−1),v) · ϕv(qλ(τ(n−1),v), xλ(τ(n−1),v)+1) by (3.)

= qv
λ(τ(n−1),v)+1 by definition of local update in A

= qv
λ(τ(n),v) since at time τ(n) there is a real update at v.

3Notice that the most recent +1-update at node w must have been a real update, since
rw
τ(n−1) = 1. Since rv

τ(n−1) = 0 and node v and w differ by at most one +1-update, local time
at node v is behind local time at node w by exactly 1.

ASYNCHRONOUS AUTOMATA NETWORKS 15

This shows (1.)

Also by definition of δ̂v, we have that the second component of q̂v
τ(n) equals the

first component of q̂v
τ(n−1), so

π2(q̂
v
τ(n)) = π(q̂v

τ(n−1))

= qv
λ(τ(n−1),v) by induction hypothesis

= qv
λ(τ(n),v)−1 again since at time τ(n) there is a real

update at v.

This shows (2.) and completes the induction. The lemma is proved. �

Remark. By Lemma 5, for each node v0 ∈ V , λ(τ(n), v0) takes all non-negative
integer values, so the Proposition 6 shows how to recover the entire history of

node v in A: Just record the first component of the state at node v in Â every
time there is a real update at v. Thus the sequence of global states q0, q1, . . . of
A under a given external input sequence x1, x2, . . . can be recovered from any

behavior of Â started in state q̂v
0 = (qv

0 , q
v
0 , 0) for all v ∈ V with the same input

sequence.

The results above establish all the properties asserted for Â in the statement
of Theorem 1, whose proof is now complete. �

Definition. For a given external input sequence {xn}n>0 and update pattern
(τ, U), any function η : N × V → R+ satisfying, for all v ∈ V , n ∈ N,

qv
n = π(q̂v

η(n,v))

is called a spatial-temporal section of the behavior of the asynchronous automata
network Â mapping onto the behavior of the synchronous automata network A.

Corollary 7 (Existence of Spatial-Temporal Sections). Let ητ : N × V → R+ be
defined by

ητ (n, v) = the least τ(m) with m ∈ N such that λ(τ(m), v) is n.

Then ητ is a spatial-temporal section of the behavior of the asynchronous automata
network Â mapping onto the behavior of the synchronous automata network A.

Proof: As noted in the above remark, for every node v, local time λ(τ(m), v)
takes all values n ∈ N, so ητ is well-defined. By Proposition 6, this function is a
spatial-temporal section. �

The function ητ of Corollary 7 is called the natural spatial-temporal section for
fixed external input sequence {xn}n>0 and update pattern (τ, U) of the behavior

of Â.

16 C. L. NEHANIV

3. Generalized Cellular Automata and Cellular Automata

A locally finite synchronous or asynchronous automata network is said to be
a generalized cellular automaton if its external input alphabet X is a singleton.
In the synchronous case, the external input serves, in effect, only as a global
synchronous update signal for A – a ‘clock tick’, but does not otherwise effect the
state of A.4 Similarly, in the asynchronous case, the external input letter serves
as a local update signal for Av whenever v ∈ U(τ(n)) and ρv(τ(n − 1)) = Read.

A generalized cellular automaton A is a cellular automaton (CA) if it satisfies:
(1) The edge relation E is a symmetric relation on V ,
(2) For every v, w ∈ V , Aw = Av. That is, the same local automaton occurs at
each node.
(3) For every v, w ∈ V , there is a corresponding graph automorphism π : Γ → Γ
with π(v) = w such that for all q ∈ Q,

ϕv((qu)u∈N(v), x) = ϕw((qπ(u))π(u)∈N(w), x).

Conditions (2) and (3) imply that the automata network is highly homoge-
neous in that every vertex in the network has an isomorphic local neigbhorhood
and, also, the component automaton at each vertex computes the same transi-
tion function of the states of component automata in its local neighborhood as
computed by any other component automaton in the network.

For cellular automata (and sometimes for automata networks in general), the
local automata Av are sometimes referred to as the “cells” of A.

Corollary 8 (Asynchronous Emulation of Generalized CAs). If A is a syn-
chronous generalized cellular automaton then there is an emulating asynchronous

automata network satisfying the same conclusions as in Theorem 1, but also Â
is an asynchronous generalized cellular automaton.

Proof: This is of course just a special case of Theorem 1, with the additional

observation that Â is an asynchronous generalized cellular automaton since it
has the same singleton alphabet as A.

But it worth remarking that in this case a further simplification is possible.
Since the external input alphabet X = {x}, all input letters in the infinite ex-
ternal input sequence are identical. So it is possible to completely ignore the
external input letter in the feedback functions ϕv and moreover it is unnecessary
to keep track locally of which letter in the infinite word is available for reading.
Therefore the definition of ρ̂v(q̂) can be simplified to be constant ρ̂v(q̂) = Read

for all v ∈ V and q̂ ∈ Q̂ without affecting the global run. The resulting asyn-
chronous generalized cellular automata never waits before reading a letter, node

4The reader familiar with cellular automata may find it helpful to think of a A as cellular
automaton, except that the interconnection graph Γ is not required to be regular, the local
automata Av are not required to be isomorphic, and neighborhoods are not required to be
symmetric (v ∈ N(v′) does not necessarily imply v′ ∈ N(v) for vertices v, v′.)

ASYNCHRONOUS AUTOMATA NETWORKS 17

v is updated exactly when v ∈ Ut, and no Wait symbol cases are needed for the
the feedback functions, i.e. we restrict ϕv to Q̂ × X → Xv using X rather than
Xð. Since X is a singleton we may as well simplify feedback functions to have

form ϕv : Q̂ → Xv. Thus, the local transition functions then simplify to

δ̂v((qv, bv, rv), ϕ̂v(q̂)) =⎧⎪⎪⎨
⎪⎪⎩

(qv, bv, rv) if rw = rv − 1 mod 3 for some w ∈ N̂(v)

(qv, bv, rv + 1 mod 3) if rw �= rv − 1 mod 3 for all w ∈ N̂(v)
and rv �= 0

(qv · ϕv(c), qv, 1) otherwise,
where c is an arbitrary state of A such that for each w ∈ N(v),

cw =

{
qw if rw = 0
bw if rw = 1.

�

Corollary 9 (Asynchronous Emulation of Cellular Automata). If A is a syn-
chronous cellular automaton then there is an emulating asynchronous generalized

cellular automaton satisfying the same conclusions as in Corollary 8, but also Â
is an asynchronous cellular automaton.

Proof: This is clear since the directed graph Γ̂ of Â is identical to the directed
graph Γ of A except possibly that all nodes become neighbors of themselves in

Γ̂, and so Â inherits the conditions in the definition of cellular automata satisfied
by A. �

4. Remarks and Open Problems

Remarks on Implementations and State Number. (1) The need for a
global clock that is required by synchronous automata networks and (general-
ized) cellular automata is eliminated by the Asynchronous Emulation Theorem.
It constructively shows how an asynchronous emulation can be implemented,
e.g. on parallel, distributed and/or asynchronous computational devices, without
global clocks, and how the synchronous behavior can be recovered.
(2) In computational implementations of synchronous cellular automata on present-
day sequential computers it is usual to keep two copies of the state space, one for
current state of the entire space and one for the next state into which updated
local states are written as they are computed. Before the next global time step
the two global copies are exchanged, and then the process repeated. Thus in
practice for each cell Av in the space, one keeps two copies of local states. So
if there are |Qv| = n possible states in each cell, this corresponds to n2 possible
states for each cell in an implementation.

18 C. L. NEHANIV

For asynchronous cellular automata, our construction of Â for Corollary 9 (and
for asynchronous automata networks more generally in Theorem 1) uses local
automata that for each of the corresponding synchronous local automaton keep
a copy of current local state (their first component), which is ‘current’ according
to local time λ(t, v), and a copy of the previous local state (in their second
component), and in addition a modulo 3 counter value. There are thus 3n2 =

|Q̂v| = |Qv| × |Qv| × 3 possible local states. But if v, v′ ∈ Ut implies d(v, v′) �= 1
(e.g. if only a single random node is updated at a time), then it unnecessary
to keep auxillary copies of the entire state space (or even of the portion to be
updated) in a sequential implementation. The only essential increase in memory
usage is then the addition of local modulo 3 counters at each node.

Remark on Local Synchronization with Modulo n Counters. It is straight-
forward to modify the proof of Theorem 1 to obtain a variant result using modulo
n counters, for n ≥ 3, rather than modulo 3 counters for local synchronization.
This of course results in corresponding variants of Corollaries 8 and 9 for asyn-
chronous emulation in the realms of generalized cellular and cellular automata.

Open Problems. The Asynchronous Emulation Theorem (Theorem 1) allows
the update sets Uτ(n) for n > 0 to be arbitrary subject only to having v ∈ Uτ(n)

for infinitely many n. Thus, for example, determinisitic or nondeterministic,
sequential, uniformly random or Poisson-distributed, locally synchronous and
other choices of update patterns are permitted.
(1) For particular types of update patterns and network topologies, derive precise
bounds on the rate of local real update: Given v ∈ V study the relative passage of
local time in the asynchronous model at node v as compared to the synchronous
one, i.e. for synchronous global time t ∈ N determine bounds on the ratio

λ(τ(t), v)/t

for t > 0, and study its behavior as t → ∞.
Under what circumstances does the ratio remain bounded away from zero?
(2) Also determine the precise (or expected) number E(t0) of asynchronous up-
dates for local time to exceed t0, i.e. determine E(t0) ∈ R+ with

n ≥ E(t0) ⇒ λ(v, τ(n)) ≥ t0.

Under what circumstances is E(t0) independent of v?
(3) Extend the Asynchronous Emulation Theorem and its Corollaries to networks
in which the underlying graph is permitted to change over time, i.e. with addition
or deletion of new edges and nodes.
(4) Extend the results to the case when state changes are not instantaneous, and
a node may receive delayed information concerning the states of its neighbors.
(5) Develop methods for synchronous and asynchronous automata networks to
cope with defective local automata and errors in transmission of local state to
neighbors.

ASYNCHRONOUS AUTOMATA NETWORKS 19

(6) Is it possible to obtain analogous results to those of this paper if sometimes
letters of external input have not yet arrived at nodes reading them? This would
represented a strengthening of the Asynchronous Emulation Theorem (but not
for the generalized cellular automata analogues), since it would then not need to
be assumed that the next letter of global input were always available for local
reading, thus allowing for delays in the external input reaching local nodes of the
network.

Bibliographic Remarks

Cellular automata were introduced by J. von Neumann and S. Ulam; an im-
portant early study is by J. von Neumann [1966], see also E. F. Codd [1968],
A. W. Burks [1970]. Automata networks are studied in the books of F. Gécseg
and I. Péak [1972], F. Gécseg [1986], C. Choffrut [1986], F. Fogelman Soulié et al.
[1987], P. Dömösi and C. L. Nehaniv [in press]. Research articles on general and
restricted classes of network digraphs include for example V. M. Gluškov [1961],
A. A. Letichevsky [1961], K. Krohn and J. L. Rhodes [1962, 1965, 1968 (with B.

Tilson)], Z. Ésik and collaborators [1983, 1985, 1986a, 1986], M. Tchuente [1979a,
1979b, 1983, 1985, 1986, 1988], and P. Dömösi and C. L. Nehaniv [1998, 1999,
2000].

Studies of asynchronous automata networks with applications to computer and
electrical engineering include, e.g. V. Varshavsky [1965 (with B. L. Osievich),
1968, 1969, 1990] and his collaborators M. Kishinevsky et al. [1994a, 1994b], and
also J. A. Brzozowski and C.-J. Seger [1995], J. A. Brzozowski [2000], among
many others.

A weaker version of Corollary 9 for asynchronous cellular automata, using a
local transition function equivalent to the one in Corollary 8, was found indepen-
dently by K. Nakamura [1974], who sketches a proof of freedom from deadlocks
(but not emulation) in this case, and also again independently in a variant form
using modulo four counters but without complete proofs by T. Toffoli [1978] and
T. Toffoli and N. Margolus [1987]. The proofs in this paper thus fill gaps in
the literature, and apply to more general settings. The Asynchronous Emula-
tion Theorem, its corrolaries (Corollaries 8 and 9, which extend these previously
known constructions but incompletely proved results), and all other results shown
here are due independently to the author and were announced in C. L. Nehaniv
[2002a]. Applications exhibiting the details of the construction in the simplified
case of emulating synchronous cellular automata by asynchronous cellular au-
tomata, and the first examples of self-replication and of evolution in implemented
asynchronous cellular automata and as well as remarks on universal computation
in asynchronous cellular automata are given by C. L. Nehaniv [2002b, 2002c].

20 C. L. NEHANIV

References

[1] J. A. Brzozowski [2000], Delay-insensitivity and tenary timulation. Theoretical Computer
Science, 245, 245 (2000), 3–25.

[2] J. A. Brzozowski and C.-J. Seger [1995], Asynchronous Circuits. Springer Verlag, New
York, 1995.

[3] A. W. Burks [1970] (ed.), Essays on Cellular Automata. University of Illionis Press, Ur-
bana, 1970.

[4] C. Choffrut (ed.) [1986], Automata Networks. Lecture Notes in Computer Science, vol. 316,
Springer,1986.

[5] E. F. Codd [1968], Cellular Automata. Academic Press, New York, 1968.
[6] P. Dömösi and C. L. Nehaniv [1998], Algebraic theory of finite automata networks. Math.

Japon., 48 (1998), 481–509.
[7] P. Dömösi and C. L. Nehaniv [1999], Complete finite automata network graphs with min-

imal number of edges. Acta Cybern., 14 (1999), 37–50.
[8] P. Dömösi and C. L. Nehaniv [2000], On complete systems of automata. Theor. Comput.

Sci., 245, No. 1, (2000), 27–54.
[9] P. Dömösi and C. L. Nehaniv [in press], Algebraic Theory of Automata Networks: An

Introduction, SIAM Monographs on Discrete Mathematics and Applications (in press).
[10] Z. Ésik [1985], Homomorphically complete classes of automata with respect to the α2-

product. Acta Sci. Math., 48 (1985), 135–141.
[11] Z. Ésik [1986a], Complete classes of automata for the α1-product. Found. Control Engr.

11 (1986), 95–107.
[12] Z. Ésik and P. Dömösi [1986], Complete classes of automata for the α0-product. Theor.

Comput. Sci., 47 (1986), 1–14.
[13] Z. Ésik and Gy. Horváth [1983], The α2-product is homomorphically general. Papers on

Automata Theory V, No. DM83-3, Dep. Math., Karl Marx University of Economics, Bu-
dapest (1983), 49–62.

[14] F. Gécseg [1986], Products of Automata. EATCS Monographs on Theor. Comput. Sci.,
Vol. 7, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1986.

[15] F. Gécseg and and I. Peák [1972], Algebraic Theory of Automata. Disquisitiones Mathe-
maticae Hungaricae 2, Akadémiai Kiadó, Budapest, 1972.

[16] V. M. Gluškov [1961], Abstract theory of automata (in Russian). Uspehi matematičevskih
nauk 16:5 (101) (1961), pp. 3–62. Correction: ibid., 17:2 (104) (1962), p. 270.

[17] M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky [1994a], Concurrent Hardware:
The Theory and Practice of Self-Timed Design. Wiley Professional Computing, Chichester,
(1994).

[18] M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky [1994b], Analysis and identifi-
cation of speed-independent circuits on an event model. Form. Methods Syst. Des. 4, No.1,
33-75 (1994).

[19] K. B. Krohn and J. L. Rhodes [1962], Algebraic theory of machines. In: J. Fox, ed., Proc.
Symp. Math. Theory of Automata, (Brooklyn 1962), 341-384.

[20] K. B. Krohn and J. L. Rhodes [1965], Algebraic theory of machines, I. Prime decomposition
theorem for finite semi-groups and machines. Trans. Amer. Math. Soc. 116 (1965), 450–
464.

[21] K. B. Krohn, J. L. Rhodes and B. R. Tilson [1968], The prime decomposition theorem
of the algebraic theory of machines. In: M. Arbib, ed., Algebraic Theory of Machines,
Languages and Semigroups, Academic Press, New York, 1968.

[22] A. A. Letichevsky [1961], Conditions of completeness for finite automata (in Russian).
Žurn. Mat. i Mat. Fiz., 1 (1961), 702–710.

ASYNCHRONOUS AUTOMATA NETWORKS 21

[23] K. Nakamura [1974], Asynchronous cellular automata and their computational ability.
Systems, Computers, Controls, 5, No. 5, pp. 58-66, 1974, [translated from Japanese, Denshi
Tsushin Gakkai Ronbunshi, 57-D, No. 10, pp. 573–580, October 1974.]

[24] C. L. Nehaniv [2002a], Asynchronous Automata Networks Can Emulate Any Synchronous
Automata Network, presented at International Workshop on Semigroups, Automata, and
Formal Languages (June 2002 -Crema, Italy), 2002 [published abstract].

[25] C. L. Nehaniv [2002b], Self-Reproduction in Asynchronous Cellular Automata, Proc. 2002
NASA/DoD Conference on Evolvable Hardware (15-18 July 2002 – Alexandria, Virginia),
IEEE Computer Society Press, pp. 201–209, 2002.

[26] C. L. Nehaniv [2002c], Evolution in Asynchronous Cellular Automata, Artificial Life VIII:
Proc. 8th Intl. Conf. on Artificial Life (eds: R. K. Standish, M. A. Bedau, and H. A. Ab-
bass), MIT Press, pp. 65–73, 2002.

[27] J. von Neumann [1966], Theory of Self Reproducing Automata. Edited and completed by
A. W. Burks, University of Illionis Press, Urbana, 1966.

[28] F. Fogelman Soulié, Y. Robert and M. Thcuente (eds.) [1987], Automata Networks in
Computer Science: Theory and Applications, Princeton, 1987.

[29] M. Tchuente [1979], Parallel calculation of a linear mapping on a computer network. Linear
Algebra Appl., 28 (1979), 223–247.

[30] M. Tchuente [1979], Parallel realization of permutations over trees. Discrete Math.,39
(1982), 211–214.

[31] M. Tchuente [1983], Computation of Boolean functions on networks of binary automata.
J. Comput. Syst. Sci. 26 (1983), 269–277.

[32] M. Tchuente [1985], Permutation factorization on star-connected networks of finite au-
tomata. SIAM J. Algebraic Discrete Methods 6 (1985), 537–540.

[33] M. Tchuente [1986], Computation on binary tree network. Discrete Appl. Math., 14 (1986),
295–310.

[34] M. Tchuente [1988], Computation on finite networks of automata. In: C. Choffrut, ed.,
Automata Networks (Argelès-Village, France, 1986), Lecture Notes in Computer Science,
Vol. 316, Springer Verlag, 53–67, 1988.

[35] T. Toffoli [1978], Integration of Phase-Difference Relations in Asynchronous Sequential
Networks, In: G. Ausiello and C. Bohm, eds., Automata, Languages, and Programming
(Fifth Colloquium, Udine, July 1978), Lecture Notes in Computer Science 62, Springer
Verlag, pp. 457–463, 1978

[36] T. Toffoli and N. Margolus, Cellular Automata Machines, MIT Press, 1987.
[37] V. I. Varshavsky [1968], Collective behaviour and control problems. Machine Intell. 3,

217–242 (1968).
[38] V. I. Varshavsky [1969], The organization of interaction in collectives of automata. Machine

Intell. 4, 285–311 (1969).
[39] V. I. Varshavsky (ed.), [1990], Self-timed control of concurrent processes. The design of

aperiodic logical circuits in computers and discrete systems. Mathematics and its applica-
tions (Soviet Series), Dordrecht: Kluwer Academic Publishers, 1990.

[40] V. I. Varshavsky and B. L. Osievich [1965], Networks composed of ternary majority ele-
ments. IEEE Trans. Electron. Comput. 14, 730-733 (1965).

Faculty of Engineering & Information Sciences, University of Hertfordshire,

Hatfield Hertfordshire AL10 9AB, United Kingdom

E-mail address: C.L.Nehaniv@herts.ac.uk

