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Subgroups of finitely presented groups with solvable conjugacy

problem

A.Yu.Olshanskii and M.V. Sapir∗

Abstract

We prove that every countable group with solvable power problem embeds into a finitely
presented 2-generated group with solvable power and conjugacy problems.

1 Introduction

We say that a group G is recursively presented if G = 〈x1, x2, ... | R〉 where R is a recursive
set of words. In that case the set of all equalities u = 1 where u is a word in x1, x2, ..., that
are true in G is recursively enumerable. Recursive presentability follows from solvability of the
word problem. Note that in this paper, we always consider countable groups together with their
presentation: a countable group may have a recursive presentation and a non-recursive one.

Let G be a recursively presented (but not necessarily finitely generated) group. We shall
say that G has solvable power problem if there exists an algorithm which, given u, v in G says if
v = un for some n 6= 0. Notice that solvability of power problem implies solvability of the word
problem (take u = 1). The converse implication does not hold (see [McC2] or [Col2]). Notice
also that if G has solvable power problem then it has solvable order problem that is there exists
an algorithm that given u ∈ G computes the order of u in G. Indeed, one can first find out if
there exists an n 6= 0 such that 1 = un. Then if such an n exists, find the smallest such n using
an algorithm that solves the word problem in G. Notice that the “classical” formulation of the
power problem does not exclude the case n = 0, but that change is not significant since the case
n = 0 is a particular case of “our” power problem for v = 1.

In [KT] (Problem 5.21) Collins asked whether every torsion-free group with solvable word
problem can be embedded into a finitely presented group with solvable conjugacy problem.

In this paper, we shall give positive answer to Collins’ question under the stronger assumption
of solvability of the power problem. Adding that restriction allowed us to drop the “torsion-free”
restriction from Collins’ problem.

Theorem 1. Every countable group with solvable power problem is embeddable into a 2-generated
finitely presented group with solvable conjugacy and power problems.

Thus embedding a group into a finitely presented group can dramatically improve its algo-
rithmic properties.
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Remark 2. Notice that solvability of power problem cannot be replaced in Theorem 1 by
solvability of word problem. Indeed, there exists an example of a group with solvable word
problem that cannot be embedded into a group with solvable conjugacy problem (this example
is attributed by Collins to Macintyre in [KT, Problem 5.21]).

We also prove the following theorem that generalizes the main result of [OS2] and gives a
positive answer to Collins’ problem 5.22 from [KT].

Theorem 3. Every (countable) group with solvable conjugacy problem can be embedded into a
2-generated finitely presented group with solvable conjugacy problem.

In [OS2], we proved Theorem 3 only for finitely generated groups.

Remark 4. One can try to prove that every countable torsion-free group G with solvable word
problem is embeddable into a finitely presented group with solvable word problem (and solve
Collins’ problem 5.21 from [KT]) as follows. First embed G into a group G′ where all non-trivial
elements are conjugate using HNN extensions as in [LS]. Then use Theorem 3 to embed G′

into a finitely presented group with solvable conjugacy problem. Unfortunately this idea does
not work: the group G′ would not necessarily have solvable word problem. Indeed, an HNN
extension of a group has solvable word problem only if the group has solvable membership
problems for the associated subgroups. This is the reason why we cannot avoid the solvability
of power problem in Theorem 1.

2 Proofs

As usual, we are going to use van Kampen diagrams to represent deduction of relations in groups.
Throughout the paper, for every van Kampen diagram ∆, ∂∆ denotes its boundary, and for
every path p in a van Kampen diagram, φ(p) denotes its label.

The following lemma is proved in [Col1].

Lemma 5. Let G be a recursively presented group with solvable power problem. Let a, b be two
elements in G of the same order. Then the HNN extension Ga,b = 〈G, t | t−1at = b〉 has solvable
power problem.

In order to embed countable groups into 2-generated groups we use a set of positive words
in the alphabet {a, b} which is similar to the sets used for similar purposes in [McC1], [LS] and
[O1]:

Ai = a100bia101bi . . . a199bi, i = 1, 2, . . . . (1)

We denote by H the subgroup generated by these words in the free group F (a, b). The reduced
words in F (a, b) representing elements of H are called H-words. A cyclic H-word is a cyclically
reduced word that is freely conjugate to an H-word in F (a, b). Set λ = 1

11
.

Lemma 6. (1) Let UV ′ and UV ′′ be two distinct cyclic H-words. Then either

|U | < λmin(|UV ′|, |UV ′′|)

or the word V ′(V ′′)−1 is a free conjugate in F (a, b) of an H-word.
(2) The set of (cyclic) H-words and the set of their subwords are recursive.
(3) Suppose that a cyclic H-word W has prefixes w1 and w2w1 for some |w1| ≥ λ|W |. Then

w2 is a cyclic H-word.
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Proof. (1) This statement was proved in [O1] for λ = 1

7
. The same proof works for λ = 1

11
since

the factor 1

30
can be replaced by 1

50
in Lemma 1 of [O1].

(2) This follows from the explicit forms (1) for the generators of the subgroup H.
(3) This also follows from the definition (1) and the small cancellation property (1).

Consider the following construction (cf. [O1]) of an embedding of countable groups into
finitely generated groups. Let G = 〈x1, x2, ... | R〉 be a group. Without loss of generality we
shall assume that R consists of all non-empty relations of the group G. Denote by R̄ be the set
of words in the alphabet {a, b} obtained by substituting Ai for xi in every word from R. We
shall denote the group 〈a, b | R̄〉 by Ḡ.

We shall prove (Lemma 8 below) that G embeds into Ḡ and that this embedding preserves
solvability of power and conjugacy problems (Lemmas 10 and 11 below). Note that in the liter-
ature, there exist embeddings of countable groups into finitely generated groups which preserve
solvability of either power problem ([McC1]) or conjugacy problem ([Col1]). We need to preserve
solvability of both power and conjugacy problems so formally we cannot use embeddings from
either [McC1] or [Col1]. Besides, our construction is easier and it yields 2-generated groups
while constructions from [McC1] and [Col1] give 3- and 4-generated groups respectively.

The following statement is obvious.

Lemma 7. The group Ḡ is finitely presented provided G is finitely presented.

A (disc or annular) van Kampen diagram over R̄ will be called minimal if it contains the
minimal possible number of cells among all diagrams with the same boundary labels.

For every α > 0, a cell π in a disc or annular diagram ∆ is called a Greendlinger α-cell if ∂π
contains a subpath p with |p| ≥ α|∂π|, and p is a subpath of a boundary component of ∆. The
path p will be called a Greendlinger α-path of π.

We say that a diagram or a map ∆ satisfies the small cancellation condition C ′(λ) if for
every two cells π, π′ in ∆ (possibly π = π′), and every common subpath p of ∂π and (∂π′)−1,
we have |p| < λmin(|∂π|, |∂π′|).

If π = π′, p is a common subpath of ∂π and (∂π)−1, |p| ≥ λmin(|∂π|, |∂π′|), and ∂π =
q′pq′′p−1, where q′ surrounds the hole of the annular diagram ∆, then π is said to be a hoop.✬

✫

✩

✪

✛
p

✢

✿
q′

q′′
∆

π

Figure 1: A hoop.

Lemma 8. (1) A minimal disc or annular diagram over R̄, having no hoops in annular case,
satisfies the C ′(λ)-condition.
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(2) The labels of the subpaths q′ and q′′ in the boundary of a hoop (see the definition and
notation before the lemma) are cyclic H-words.

(3) If a boundary component q of a diagram (annular diagram) over R̄ is an H-word (a
cyclic H-word), and a cell π has boundary p1p2, where q = p1q

′ and |p1| ≥ λ|∂π|, then the label
of the path p−1

2
q′ is freely equal (freely conjugate) to an H-word.

(4) If a disc map ∆ satisfies C ′(λ)-condition and contains a cell, then (a) it has a Greendlinger
(1− 3λ)-cell, and (b) the number of (non-directed) edges of ∆ does not exceed
(1 + 3λ(1 − 6λ)−1)|∂∆|.

(5) If an annular map ∆ contains at least one cell and satisfies C ′(λ)-condition, then either
∆ has a Greendlinger (1−4λ)-cell or every cell π of ∆ has boundary subpaths p1 and p2 on both
boundary components; in particular |p1|+ |p2| > (1− 2λ)|∂π|.

(6)(a) The mapping xi → Ai extends to an embedding of the group G into Ḡ. (b) Under this
embedding, two elements of G that are conjugate in Ḡ are also conjugate in G.

Proof. Lemma 6 implies assertions (1), (2), (3) and (6)(a) as this was shown in §2 of [O1]. The
proof of (6)(b) is similar to the proof of (6)(a) but one should take an annular diagram instead
of a disc one and use assertion (2) when considering annular subdiagrams between two hoops.
(The statement (6)(b) was also proved by Ilya Belyaev in [Bel].) The proof of assertion (4)(a)
can be found in [LS] (see Theorem 4.4, formulated in terms of relations). The assertion (4)(b)
follows from (4)(a) by straightforward induction on the number of cells in ∆. The assertion (5)
is contained in [LS, Theorems 5.3 and 5.5]. (In the proofs of these theorems, one can replace
C ′(1/6) by C ′(λ), where λ ≤ 1/6. Accordingly one can replace (1/2)R by (1 − 3λ)R in the
assumptions of these theorems. Since i(D) = p/q + 2 = 4 in the formulation of [LS, Theorem
5.3], D is a Greendlinger (1− 4λ)-cell.)

We call a (cyclically) reduced word w (cyclically) R̄-reduced if it has no (cyclic) subword v,
where v is a subword of a relator r ∈ R̄ and |v| > 1

2
|r|. If the word problem is decidable for G,

then, by Lemma 6(2), for every word w, one can effectively find a (cyclically) R̄-reduced word
w′ which is equal (or is conjugate) to w in the group Ḡ.

Lemma 9. Assume that a R̄-reduced (cyclically R̄-reduced) word w is equal (is conjugate) in Ḡ
to an H-word (a cyclic H-word). Then w is equal (is conjugate) to an H-word (a cyclic H-word)
in the free group F (a, b).

Proof. We consider only the cyclic case. Let ∆ be a minimal diagram for the conjugation of w
and some cyclic H-word w′, and let ∆ have minimal number of cells over all such w′. By Lemma
8(2), ∆ has no hoops. If ∆ has a cell π, then, by Lemma 8 (3) and by the minimality of ∆, π
cannot have a common boundary subpath of length at least λ|∂π| with the contour of ∆ labeled
by w′. Then, by Lemma 8 (2),(5), π must have a boundary subpath of length greater than
(1− 4λ)|∂π|, lying on the contour of ∆ labeled by w′. This contradicts the cyclic R̄-reducibility
of w, since λ ≤ 1/8.

Lemma 10. If the group G has decidable word or conjugacy problem, then so has the group Ḡ.

Proof. Here we consider only the conjugacy problem. Let u and v be two words under our
investigation. We may assume that they are cyclically R̄-reduced since the conjugacy (and the
word) problem is decidable for G. By Lemma 9, we can also assume that they are H-words if
they are conjugate to H-words in Ḡ. In the later case, it suffices to check conjugacy of u and v
in G by Lemma 8 (6)(b). If u and v are conjugate in Ḡ, but none of them is conjugate to a cyclic
H-word, then a minimal diagram ∆ for the conjugation of u and v has no hoops by Lemma 8
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(2). It also has no Greendlinger α-cells for α > 1/2, since u and v are cyclically R̄-reduced. It
follows from Lemma 8, part (5), that the sum of perimeters of the cells of ∆ does not exceed
(1− 2λ−1)(|u| + |v|), and therefore such diagrams can be checked by exhaustion.

Lemma 11. Let G = 〈X | R〉 be a recursively presented group with solvable power problem.
Then the group Ḡ has solvable power problem.

Proof. Let u and v be words in the alphabet {a, b}. Suppose that v = un in Ḡ, where n ≥ 1. By
Lemmas 6 (2) and 9, we may assume that the word u is cyclically R̄-reduced and it is a cyclic
H-word if it is a conjugate of an H-word in Ḡ. If u is an H-word, then so is v, and, by Lemma 8
(6)(a), we may refer to the solvability of the power problem in G. Therefore we further assume
that u is not a conjugate of an H-word in Ḡ.

Let ∆ be a minimal diagram over R̄ whose contour is q1q2, where q1 and q2 are labeled by
un and v−1, respectively. Call a cell π of ∆ suitable, if its boundary has a common subpath p
with q1, and |p| > (1/2 + λ)|∂π|.

Suppose ∆ has a suitable cell π. If |p| ≥ |u|+ λ|∂π|, then u is a cyclic H-word by Lemma 6
(3), since the label of p is a subword of un; a contradiction. But it follows from the inequality
|p| < |u| + λ|∂π| that |p| < |u| + λ(1/2 + λ)−1|p|, i.e. |p| < (1 − λ(1/2 + λ)−1)−1|u|. It also
follows that the word u is not cyclically R̄-reduced, since an application to a cyclic permutation
of u of the R̄-relator corresponding to π, gives a word of length at most

|∂π| − |p|+ λ|∂π| <
1

2
|∂π| ≤

1

2
(1/2 + λ)−1|p| < (1 + 2λ)−1(1− λ(1/2 + λ)−1)−1|u| = |u|

The contradiction shows that ∆ has no suitable cells.
Now assume that ∆ has a cell Π having two maximal boundary subpaths p1 and p2 on q1

(a “bad” cell). Then there must be cells in the subdiagram Γ between Π and q1, and one may
chose Π so that there are no bad cells in Γ. Similarly we assume that there are no cells in Γ
having two maximal boundary subpaths on ∂Π, since otherwise we can decrease the number
of cells in Γ. Then by Lemma 8 (1), (4)(a), the diagram ∆ has a suitable cell inside Γ since
1− 3γ − λ ≥ 1/2 + λ.

✲

❄

✛

✻
p2

q1

p1

q2

Π

Γ

Figure 2: A “bad” cell.

This contradiction shows that there are no bad cells in ∆. The same consideration shows
that the path q1 is simple. Then ∆ has at least (1/2 + λ)−1(|q1| − |q2|) edges because it has no
suitable cells. This inequality and Lemma 8 (4)(b) give a linear upper bound for |q1| in terms
of |q2| since (1/2 + λ)−1 > 1 + 3λ(1 − 6λ)−1. This reduces the problem to the word problem in
Ḡ which is decidable by Lemma 10.
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Lemma 12. Let G be a finitely generated recursively presented group with solvable power and
conjugacy problems. Then the group G can be embedded into a finitely presented group H with
solvable power and conjugacy problems.

Proof. Let us use the embedding from [OS2]. We are going to use the notation and results from
[OS2]. In particular, from now on we shall denote G by G, and H by H as in [OS2]. We have
proved in [OS2] that H has solvable conjugacy problem. It remains to prove the solvability of
the power problem.

Recall that the set of generators of H consists of k-letters, a-letters, θ-letters and x-letters.
The subgroup G in H is generated by a subset A(P1) of the set of a-letters. As in [OS2], we
include all relations of G into the presentation of H.

Among the relations of H, there is one, called the hub which is a word in k-letters of length
N (in [OS2] N is any even number ≥ 8; here we take N ≥ 14), all letters occurring in the
hub are different. Every non-hub cell in a van Kampen diagram over H that contains an edge
labeled by a k-letter K (i.e. a k-edge) also contains an edge labeled by K−1, so we can consider
k-bands in ∆ (see the precise definition of a band in [OS2]). Similarly, we can consider θ-bands
and a-bands. The group given by the presentation of H without the hub is denoted by H1.

1. Let u be a word in generators of H. Consider a word u′ that is a conjugate of u in H
and has minimal number of k-letters among all words in the conjugacy class of H. Consider a
minimal annular diagram ∆ for this conjugation with contours p and p′, φ(p) = u, φ(p′) = u′.
By the minimality in the choice of u′, every hub Π of ∆ has at most N/2 k-bands starting on
Π and ending on p′. Assume there exists a hub in ∆. Since N ≥ 10, [OS2, Lemmas 10.4 and
10.3] provide us with a hub Π connected with p by two k-bands, such that there are no hubs
between these k-bands. By [OS2, Lemma 10.5], the hub Π can be effectively cut out of ∆ with
a recursive replacement of u by a conjugate word. However, by [OS2, Lemmas 10.4 and 10.3],
the number of hubs in ∆ is not greater than the doubled number of k-letters in u. Therefore we
can recursively obtain a word u′′, such that u′′ and u′ are conjugate in the group H1. Now, by
[OS2, Lemma 5.6], starting with u′′, we can recursively obtain an H1-conjugate word u′′′ having
minimal number of k-letters in its H-conjugacy class and minimal number of θ-letters in its H1-
conjugacy class. By [OS2, Lemma 5.6], u′′′ is also not conjugate to a word with fewer a-letters if
a deduction of the latest conjugation does not employ θ-relations. We shall call a word u′′′ with
these three properties cyclically minimal. Similarly for every word w in the generators of H, we
can effectively find a word w′ which is equal to w in H and has minimal number of k-letters
among all words that are equal to w in H, minimal number of θ-letters among all words that
are equal to w′ in H1, and not equal in H1 to a word with fewer a-letters if a deduction of this
equality does not use θ-relations. Such words w′ will be called minimal.

2. Let u,w be words in the generators of H. Suppose that w = un in H for some n ≥ 0.
To prove the lemma, we need to recursively bound n in terms of w and u. We can assume that
the word u is cyclically reduced and cyclically minimal by part 1. We can also assume that w is
minimal. Consider the corresponding minimal van Kampen diagram ∆ such that ∂∆ = pq−1,
φ(p) = w, φ(q) = un.

3. We set N ′ = N/2+1. Suppose that there exists a hub π in ∆ such that some consecutive
k-bands B1, ...,BN ′ starting on ∂π end on q, and between two consecutive k-bands starting on
∂π, there are no other k-bands. We shall call these hubs u-close. In particular, it implies that
between any two consecutive bands Bi, there are no hubs (since k-bands do not intersect). Since
all k-edges on ∂π have different labels, and there are no other k-edges between the end edges
of B1, ...,BN ′ on q, we can conclude that all the bands B1, ...,BN ′ connect ∂π with a subpath
of q labeled by a cyclic shift of u, contrary to the assumption that u is minimal, because
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N ′ > N −N ′. Hence ∆ contains no u-close hubs. Since N ≥ 14, this result, [OS2, Lemma 10.4]
and [O2, Lemma 3.4] give a linear upper bound for the number of hubs of ∆ in terms of |w|.

✲

✣
❯

· · ·

✌

p

q

B1

B2

BN ′

∆

Π

Figure 3: u-close hub.

4. Suppose that there are two k-edges e, e′ in q which are connected by a k-band B. Consider
the subdiagram ∆′ bounded by B and q (∆′ does not contain B). We can assume that ∆′ does
not contain k-bands connecting two edges on q ∪ ∂∆′. If there was a hub in ∆′ then by [OS2,
Lemmas 10.4 and 10.3] there would be a u-close hub there. Hence by part 1 there are no hubs
in ∆′. Hence there are no k-edges between e and e′ in q, therefore e and e′ belong to a subpath
of q labeled by a cyclic shift u1 of u. The word that labels the subpath of q starting at e and
ending at e′ is equal in H1 to the word written on a side of B that is farther from p. Thus the
cyclic shift u1 is equal in H1 to a word with fewer k-letters, contrary the assumption that u is
minimal.

Thus there are no two k-edges in q connected by a k-band. Then, by part 3, the number of
k-edges on q is bounded by a linear function in |w|. If u contains a k-letter, we get a recursive
bound for n. Hence we may suppose that k-letters do not occur in u.

5. The equality w = un in H and the minimality of w implies now that w has no k-letters
as well. Then, by [OS2, Lemmas 10.4, 10.3], ∆ has no hubs, and by [OS2, Lemma 3.11], ∆ has
no k-annuli. So ∆ has no k-edges at all. Therefore w = un in H1. Now Lemma 3.11 [OS2]
implies that we may assume that u contains no θ-letters. Indeed, again if u contains a θ-letter
and n > |w|, one of θ-bands must connect two edges on the subpath labeled by a cyclic shift of
u, contrary the assumption that u is cyclically minimal. Since w is minimal and w = un, the
word w has no θ-letters too, and there are no θ-edges in ∆ by [OS2, Lemma 3.11]. Finally, once
again making use of the cyclic minimality of u and the minimality of w, we conclude that u and
w have no a-letters, and ∆ has no a-bands for a /∈ A(P1). Since every x-cell must be a member
of an a-band for a /∈ A(P1), all cells in ∆ are G-cells. It remains to use the solvability of the
power problem in G (and in its free product with a free group generated by x-letters).

Proof of Theorem 1. Let G be a group with solvable power problem. Using a sequence of
HNN extensions as in Lemma 5, we can embed G into a group G1 with solvable power problem
where every two elements of the same order are conjugate. Thus the conjugacy problem in G1

is decidable. By Lemmas 10 and 11, G1 can be embedded into a 2-generated group G2 with
solvable power and conjugacy problems. Then Lemma 12 allows us to embed G2 into a finitely
presented group G3 with solvable power and conjugacy problems. Finally applying Lemmas 10
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and 11 again we embed G3 into a 2-generated finitely presented (by Lemma 7) group G4 with
solvable power and conjugacy problems.

Theorem 3 follows immediately from Lemmas 8(6a), 10 and [OS2, Theorem 1.1].
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