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CONGRUENCE LIFTING OF DIAGRAMS OF FINITE BOOLEAN

SEMILATTICES REQUIRES LARGE CONGRUENCE VARIETIES

JIŘÍ TŮMA AND FRIEDRICH WEHRUNG

Abstract. We construct a diagram D⊲⊳, indexed by a finite partially ordered
set, of finite Boolean 〈∨, 0, 1〉-semilattices and 〈∨, 0, 1〉-embeddings, with top
semilattice 2

4, such that for any variety V of algebras, if D⊲⊳ has a lifting,
with respect to the congruence lattice functor, by algebras and homomor-
phisms in V, then there exists an algebra U in V such that the congruence
lattice of U contains, as a 0,1-sublattice, the five-element modular nondistribu-
tive lattice M3. In particular, V has an algebra whose congruence lattice is
neither join- nor meet-semidistributive. Using earlier work of K.A. Kearnes

and Á. Szendrei, we also deduce that V has no nontrivial congruence lattice
identity.

In particular, there is no functor Φ from finite Boolean semilattices and
〈∨, 0, 1〉-embeddings to lattices and lattice embeddings such that the compo-
sition ConΦ is equivalent to the identity (where Con denotes the congruence
lattice functor), thus solving negatively a problem raised by P. Pudlák in 1985
about the existence of a functorial solution of the Congruence Lattice Problem.

1. Introduction

The Congruence Lattice Problem, CLP in short, asks whether every distributive
algebraic lattice is isomorphic to the congruence lattice of a lattice. Most of the
recent efforts aimed at solving this problem are focusing on lifting not only individ-
ual semilattices, but diagrams of semilattices, with respect to the functor Con, that
with a lattice associates its congruence lattice. This approach has been initiated
by P. Pudlák in [9]. For more information, we refer the reader to the survey papers
by G. Grätzer and E.T. Schmidt [6] and by the authors of the present paper [11].

As observed by the authors in [10], the diagram of Figure 1, labeled by Boolean
semilattices and 〈∨, 0, 1〉-homomorphisms, where π(x, y) = x∨ y and ε(x) = 〈x, x〉,

22
π

//

2
ε

oo idee

Figure 1. A diagram unliftable by any algebras.
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2 J. TŮMA AND F. WEHRUNG

cannot be lifted by lattices, see [10, Theorem 8.1]. In fact, the proof of [10, The-
orem 8.1] shows that there is no lifting of this diagram by algebras, and so this is
a result of universal algebra! However, the map π is not one-to-one, and so the
problem remained open whether any diagram of finite Boolean semilattices and
〈∨, 0〉-embeddings could be lifted. This problem was first raised by P. Pudlák in
1985, see the bottom of Page 100 in [9]. It was later attacked by the authors of
the present paper, see Problems 1 and 2 in [10]. We shall refer to this problem as
Pudlák’s problem.

In general, it is not known whether it is decidable, for a given finite diagram, to
have a lifting by, say, lattices, and tackling even quite simple diagrams may amount
to considerable work with ad hoc methods greatly varying from one diagram to the
other; see, for example, the cube diagrams (indexed by 23) constructed in [10]. This
partly explains why Pudlák’s problem had remained open for such a long time.

In the present paper, we solve Pudlák’s problem by the negative, by constructing
a diagram, indexed by a finite poset, of finite Boolean semilattices and 〈∨, 0, 1〉-em-
beddings, denoted by D⊲⊳, that cannot be lifted, with respect to the Con functor, by
lattices, see Theorem 4.1. Again, it turns out that as for the diagram of Figure 1,
lattice structure does not really matter, and our negative result holds in any variety
satisfying a non-trivial congruence lattice identity. Whether it holds in any variety
of algebras is still an open problem.

As the top semilattice of D⊲⊳ is P(4), this makes it the “shortest” (in terms of
the top semilattice) diagram of finite Boolean 〈∨, 0, 1〉-semilattices and 〈∨, 0, 1〉-em-
beddings that cannot be lifted by lattices.

2. Basic concepts

We denote by ALatt the category of algebraic lattices and compactness-pre-
serving complete join-homomorphisms, and by Alg(Σ) the category of algebras of
a given similarity type Σ with Σ-homomorphisms. For algebras A and B and a
homomorphism f : A → B, we denote by Con f the map that with every congru-
ence α of A associates the congruence of B generated by all pairs 〈f(x), f(y)〉, where
〈x, y〉 ∈ α. Then Con f is a compactness-preserving complete join-homomorphism.
The correspondence A 7→ ConA, f 7→ Con f is a functor from Alg(Σ) to ALatt,
that we shall denote by Con and call the congruence lattice functor on Alg(Σ), see
[10, Section 5.1]. For an algebra A, we denote by 0A the identity congruence of A
and by 1A the coarse congruence of A.

A diagram of a category D, indexed by a category C, is a functor from C

to D. Most of our diagrams will be indexed by posets, the latter being viewed
as categories in which hom sets have at most one element. A lifting of a diagram
Φ: C → ALatt of algebraic lattices is a diagram Ψ: C → Alg(Σ) of algebras such
that the functor Φ and the composition ConΨ are naturally equivalent.

We put n = {0, 1, . . . , n−1}, for every natural number n. For a set X , we denote
by P(X) the powerset algebra of X .

3. Varieties satisfying a nontrivial congruence lattice identity

We first recall some basic definitions and facts of commutator theory, see R.N.
McKenzie, G. F. McNulty, and W.F. Taylor [8, Section 4.13]. For a congruence θ

of an algebra A and strings ~a = 〈ai | i < n〉 and ~b = 〈bi | i < n〉 of elements of A,

let ~a ≡θ
~b hold, if ai ≡θ bi holds for all i < n. For congruences α, β, and δ of an
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algebra A, we say that α centralizes β modulo δ, in symbol C(α, β; δ), if for all m,
n < ω and every (m+ n)-ary term t of the similarity type of A,

t(~a, ~p) ≡δ t(~a, ~q) =⇒ t(~b, ~p) ≡δ t(~b, ~q),

for all ~a, ~b ∈ Am and ~p, ~q ∈ An such that ~a ≡α
~b and ~p ≡β ~q.

We state in the following lemma a few standard properties of the relationC(α, β; δ),
see [8, Lemma 4.149].

Lemma 3.1. Let A be an algebra.

(i) For all α, β ∈ ConA, there exists a least δ ∈ ConA such that C(α, β; δ).
We denote this congruence by [α, β], the commutator of α and β.

(ii) For all β, δ ∈ ConA, there exists a largest α ∈ ConA such that C(α, β; δ).
We denote this congruence by (δ : β), the centralizer of δ modulo β.

(iii) [α, β] ⊆ α ∩ β, for all α, β ∈ ConA.

We say that an algebraA is Abelian, if [1A,1A] = 0A; equivalently, (0A : 1A) = 1A.
A weak difference term (resp. weak difference polynomial) on A (see K.A. Kearnes

and Á. Szendrei [5]) is a ternary term (resp., polynomial) d such that

d(x, y, y) ≡[θ,θ] x ≡[θ,θ] d(y, y, x),

for all θ ∈ ConA and all 〈x, y〉 ∈ θ. A weak difference term for a variety V is a
ternary term that is a weak difference term in any algebra of V. The statement of
the following lemma has been pointed to the authors by Keith Kearnes.

Lemma 3.2. Let A be an algebra with a weak difference polynomial d(x, y, z). If

there exists a 0,1-homomorphism of M3 to ConA, then A is Abelian.

Proof. By assumption, there are α, β, γ ∈ ConA such that α∩β = α∩γ = β∩γ =
0A and α ∨ β = α ∨ γ = β ∨ γ = 1A. It follows from Lemma 3.1(iii) that [β, α] =
[γ, α] = 0A, which can be written 1A = β ∨ γ ≤ (0A : α) (see Lemma 3.1(ii)), so
that [1A, α] = 0A; a fortiori, [α, α] = 0A. Similarly, [β, β] = [γ, γ] = 0A.

Now let 〈x, y〉 ∈ α ◦ β. Pick z ∈ A such that x ≡α z ≡β y. Hence,

x = d(x, z, z) (because x ≡α z and [α, α] = 0A)

≡β d(x, z, y) (because y ≡β z and d is a polynomial)

≡α d(z, z, y) (because z ≡α x and d is a polynomial)

= y (because y ≡β z and [β, β] = 0A),

and hence 〈x, y〉 ∈ β ◦ α. Therefore, by symmetry, we have proved that the con-
gruences α, β, and γ are pairwise permutable. The conclusion follows from [8,
Lemma 4.153]. �

We say that a variety V has no nontrivial congruence lattice identity, if any
lattice identity that holds in the congruence lattices of all algebras in V holds in
all lattices.

The following lemma sums up a few deep results of universal algebra, namely
Corollaries 4.11 and 4.12 in [5]. Recall that an algebra A is affine, if there are a
ternary term operation t of A and an Abelian group operation 〈x, y〉 7→ x− y on A

such that t(x, y, z) = x−y+z for all x, y, z ∈ A and t is a homomorphism from A3

to A. For further information we refer the reader to C. Herrmann [4] or R. Freese
and R.N. McKenzie [2, Chapter 5]. We call t a difference operation for A.
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Theorem 3.3 (K.A. Kearnes and Á. Szendrei). For a variety V satisfying a non-

trivial congruence lattice identity, the following statements hold.

(i) V has a weak difference term.

(ii) Any Abelian algebra of V is affine (thus it has permutable congruences).

In fact, it follows from [5, Theorem 4.8] that (i) implies (ii) in Theorem 3.3. This
observation is used in Remark 5.3.

An algebra A is Hamiltonian, if every subalgebra of A is a congruence class of A.

Lemma 3.4 (folklore). Every affine algebra A is Hamiltonian.

Proof. Let t be a difference operation for A, with an Abelian group operation −
on A, and let U be a subalgebra of A. For all x ∈ A and all u, v ∈ U , it follows
from the equation x + v = t(x + u, u, v) that x + u ∈ U implies that x + v ∈ U .
Hence, picking u ∈ U , we can define a binary relation ≡ on A by setting

(3.1) x ≡ y ⇐⇒ t(x, y, u) ∈ U, for all x, y ∈ A,

and the relation ≡ is independent of the choice of u. The relation ≡ is obviously
reflexive. Now observe that the equation t(y, x, u) = t(u, t(x, y, u), u) holds for all
x, y ∈ A. In particular, if x ≡ y, then, as U is closed under t (because t is a term
operation of A), t(y, x, u) belongs to U , that is, y ≡ x. Hence ≡ is symmetric.
Similarly, by using the equation t(x, z, u) = t(t(x, y, u), u, t(y, z, u)), that holds for
all x, y, z ∈ A, we obtain that ≡ is transitive. By using the assumption that t is a
homomorphism from A3 to A and by the independence of (3.1) from u, we obtain
that ≡ is compatible with all the operations of A; whence it is a congruence of A.
Finally, it is obvious that U is the equivalence class of u modulo ≡. �

We shall use Lemma 3.4 in its following special form: every subalgebra of a simple

affine algebra is either a one-element algebra or the full algebra.

4. The diagram D⊲⊳

We define 〈∨, 0, 1〉-homomorphisms e : P(1) → P(2), f i : P(2) → P(3), and
ui : P(3) → P(4) (for i < 3) by their values on atoms:

e : {0} 7→ {0, 1};

f0 :

{

{0} 7→ {0, 1}

{1} 7→ {0, 2}
, f1 :

{

{0} 7→ {0, 1}

{1} 7→ {1, 2}
, f2 :

{

{0} 7→ {0, 2}

{1} 7→ {1, 2}
,

u0 :











{0} 7→ {0}

{1} 7→ {1, 3}

{2} 7→ {2, 3}

, u1 :











{0} 7→ {0, 3}

{1} 7→ {1}

{2} 7→ {2, 3}

, u2 :











{0} 7→ {0, 3}

{1} 7→ {1, 3}

{2} 7→ {2}

.

Our diagram, that we shall denote by D⊲⊳, is represented on Figure 2. All its arrows
are 〈∨, 0, 1〉-embeddings, and none of them except e is a meet-homomorphism. It
is easy to verify that the diagram D⊲⊳ is commutative.

We denote as usual by M3 the unique modular nondistributive lattice with five
elements. We shall represent it as a semilattice of subsets of 3, by

(4.1) M3 = {∅, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}},

see the left hand side of Figure 3. We are now ready to formulate our main result.
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P(4)

P(3)

u0

=={{{{{{{{
P(3)

u1

OO

P(3)

u2

aaCCCCCCCC

P(2)

f0

OO

f0

EE













f0xx

;;xxxxxxxxxxxxxx

P(2)

f144444444

YY444

f1

OO

f1










EE




P(2)

f2FF

ccFFFFFFFFFFFFFF f2

YY4444444444444

f2

OO

P(1)

e

aaCCCCCCCC
e

OO

e

=={{{{{{{{

Figure 2. The diagram D⊲⊳.

Theorem 4.1. Let V be a variety of algebras. If the diagram D⊲⊳ admits a lifting,

with respect to the congruence lattice functor, by algebras and homomorphisms in V,

then there exists an algebra U in V such that M3 has a 0,1-lattice embedding into

ConU . Furthermore, V satisfies no nontrivial congruence lattice identity.

The conclusion of Theorem 4.1 can be further strengthened, see Remark 5.3.
In particular, Theorem 4.1 implies immediately that D⊲⊳ cannot be lifted by

lattices.

Lemma 4.2. The semilattice imu0 ∩ imu1 ∩ imu2 is isomorphic to M3.

Proof. It is straightforward to verify that for all X0, X1, X2 ⊆ 3, u0(X0) =
u1(X1) = u2(X2) iff X0 = X1 = X2 belongs to M3, see (4.1) and the left hand side
of Figure 3. �

1U

0U

{0, 1} {0, 2} {1, 2}

{0, 1, 2}

∅

µ0,1
µ0,2 µ1,2

Figure 3. Representing M3 by either subsets or congruences.

5. Proof of Theorem 4.1

We let a diagram E of algebras inV liftD⊲⊳, and we label E as on the left hand side
of Figure 4. For vertices X and Y of E, denote by fX,Y the unique homomorphism
from X to Y arising from E. Furthermore, put fX,Y = Con fX,Y , a 〈∨, 0, 1〉-homo-
morphism from ConX to ConY . For example, fA0,B is a homomorphism from A0

to B, with fA0,B = fB0,B ◦ fA0,B0
= fB1,B ◦ fA0,B1

, and so on.
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We let the equivalence between ConE and D⊲⊳ be witnessed by isomorphisms εX
from the corresponding vertex of D⊲⊳ onto ConX , for X among A, A0, A1, A2, B0,
B1, B2, B. For example, εAi

: 22 → ConAi, εBj
: 23 → ConBj , and εBj

◦ f i =
fAi,Bj

◦ εAi
, for all i, j < 3.

B B

B0

@@�������
B1

OO

B2

^^>>>>>>>

B0

@@�������
B1

OO

B2

^^>>>>>>>

U

^^>>>>>>>

OO @@�������

A0

OO GG��������������

@@�����������������
A1

WW..............

OO GG��������������
A2

^^>>>>>>>>>>>>>>>>>

WW..............

OO

A0

@@�������
A1

OO

A2

^^>>>>>>>

A

^^>>>>>>>

OO @@�������
A

^^>>>>>>>

OO @@�������

Figure 4. The diagram E and the algebra U .

Since E lifts D⊲⊳ and all arrows of D⊲⊳ are 〈∨, 0〉-embeddings, so that, in partic-
ular, they separate 0, all arrows of E are embeddings. In particular, we may replace
each vertex X of E by its image im fX,B in B, and thus assume that all fX,Y -s
in E are (set-theoretical) inclusion mappings. We denote by U the subalgebra of B
generated by A0 ∪A1 ∪A2. Of course, U is contained in B0 ∩B1∩B2, see the right
hand side of Figure 4.

Lemma 5.1. The equalities fA,U (1A) = fAi,U (1Ai
) = 1U hold, for all i < 3.

Proof. It suffices to prove that the congruence θ = fA,U (1A) is equal to 1U . Fix
a ∈ A, and put V = [a]θ, the θ-block of a in U . As any pair of elements of A is
θ-congruent, V is a subalgebra of U . As E lifts D⊲⊳ and e is unit-preserving, all
maps fA,Ai

, for i < 3, are unit-preserving. Hence, for any x ∈ A0, we obtain the
relation x ≡ a (mod fA,A0

(1A)), thus, a fortiori, x ≡ a (mod fA,U (1A)); whence A0

is contained in V . Similarly, both A1 and A2 are contained in V . Since U is the
subalgebra of B generated by A0 ∪A1 ∪A2, we obtain V = U , that is, θ = 1U . �

Now we put ξi,j = fAi,U ◦ εAi
({j}), for all i < 3 and j < 2. So ξi,j is a compact

congruence of U . Furthermore, it follows from Lemma 5.1 that

(5.1) ξi,0 ∨ ξi,1 = 1U , for all i < 3.

Now we put

(5.2) µ0,1 = ξ0,0 ∨ ξ1,0, µ0,2 = ξ0,1 ∨ ξ2,0, µ1,2 = ξ1,1 ∨ ξ2,1.

Lemma 5.2. There exists a unique 0,1-lattice embedding from M3 into ConU that

sends {i, j} to µi,j , for all i < j < 3.
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Proof. It follows from (5.1) that µ0,1 ∨ µ0,2 = µ0,1 ∨ µ1,2 = µ0,2 ∨ µ1,2 = 1U . Now
we need to prove that any two µi,j-s meet at zero. We observe that for all i, k < 3
and all j < 2,

fU,Bk
(ξi,j) = fU,Bk

◦ fAi,U ◦ εAi
({j}) = fAi,Bk

◦ εAi
({j}) = εBk

◦ f i({j}).

This makes it easy to calculate the values fU,Bk
(µi,j), for i < j < 3 and k < 3. We

obtain, using (5.2),

fU,Bk
(µi,j) = εBk

({i, j}), for all i < j < 3 and k < 3.

It follows immediately that fU,Bk
(µ0,1∧µ0,2) = εBk

(Xk), for someXk ⊆ {0}. Hence,
applying the observation that fBk,B ◦ fU,Bk

= fU,B (independent of k), we obtain
that u0(X0) = u1(X1) = u2(X2), hence, by Lemma 4.2, X0 = X1 = X2 is not a
singleton. Therefore, X0 = ∅, so fU,B0

(µ0,1 ∧ µ0,2) = 0B0
. Since fU,B0

separates
zero, it follows that µ0,1 ∧ µ0,2 = 0U . The proofs that µ0,1 ∧ µ1,2 = 0U and
µ0,2 ∧ µ1,2 = 0U are similar. Therefore, the right hand side of Figure 3 represents
a 0,1-sublattice of ConU isomorphic to M3. �

As the subalgebra U of B belongs to V, the result of Lemma 5.2 completes the
proof of the first part of Theorem 4.1.

Now suppose that V (our variety lifting D⊲⊳) satisfies a nontrivial congruence
lattice identity. By Theorem 3.3(i), V has a weak difference term. By Lemmas 3.2
and 5.2, the algebra U is Abelian, thus so is A0. By Theorem 3.3(ii), A0 is affine.
Since ConA0

∼= 22 and A0 has permutable congruences, we obtain (up to iso-
morphism) that A0 = A′ × A′′, for simple algebras A′ and A′′, and e is lifted by
an embedding of the form x 7→ 〈e′(x), e′′(x)〉, for embeddings e′ : A →֒ A′ and
e′′ : A →֒ A′′. By Lemma 3.4, both A′ and A′′ are Hamiltonian, thus both e′ and e′′

are isomorphisms, whence A′ ∼= A′′. Now observe that any term giving a differ-
ence operation on the affine algebra A0 satisfies Mal’cev’s equations. Hence, taking
A′ = A′′ and using [8, Lemma 4.154], we obtain that the smallest congruence of A0

collapsing the diagonal of A′ is a complement, in ConA0, of both projection ker-
nels in A0 = A′ × A′, which contradicts ConA0

∼= 22. This concludes the proof of
Theorem 4.1.

Remark 5.3. As M3 does not embed into the congruence lattice of any lattice, a
mere solution of Pudlák’s problem does not require any use of commutator theory.

On the other hand, it follows from [5, Theorem 4.8] that (i) implies (ii) in
the statement of Theorem 3.3. Therefore, the conclusion of Theorem 4.1 can be
strengthened into saying that V has no weak difference term. However, that this is
indeed a strengthening is not trivial, and it follows from the deep [5, Corollary 4.12].

6. Discussion

A first immediate corollary of Theorem 4.1 is the following.

Corollary 6.1. Let V be a variety of algebras with a nontrivial congruence lattice

identity. Then there is no functor Φ from the category of finite Boolean 〈∨, 0, 1〉-
semilattices and 〈∨, 0, 1〉-embeddings to V such that the composition ConΦ is equiv-

alent to the identity.

The assumption of Corollary 6.1 holds, in particular, for V being the variety
of all lattices, which is congruence-distributive. Therefore, this solves negatively
Pudlák’s problem. Of course, the level of generality obtained by Theorem 4.1
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goes far beyond the failure of congruence-distributivity—for example, it includes
congruence-modularity.

These results raise the problem whether there is a ‘quasivariety version’ of the
variety result stated in Corollary 6.1.

Problem 1. Let V be a variety of algebras. If every finite poset-indexed diagram
of finite Boolean semilattices and 〈∨, 0, 1〉-embeddings can be lifted, with respect
to the congruence lattice functor, by a diagram in V, then can every finite lattice
be embedded into the congruence lattice of some algebra in V?

A possibility would be to introduce more complicated variants of the diagramD⊲⊳,
which would yield a sequence 〈Si | i < ω〉 of finite lattices, each of which would play
a similar role as M3 in the proof of Lemma 5.2, and that would generate the quasi-
variety of all lattices. However, the main difficulty of the crucial Lemma 5.2 is the
preservation of meets, for which the lattice M3 is quite special. Although we know
how to extend the method to many finite lattices, we do not know how to get all
of them.

Another natural question is whether there is any variety at all satisfying the
natural strengthening of the assumption of Theorem 4.1.

Problem 2. Does there exist a variety V of algebras such that every finite poset-
indexed diagram of finite Boolean 〈∨, 0, 1〉-semilattices and 〈∨, 0, 1〉-embeddings can
be lifted, with respect to the congruence lattice functor, by algebras in V?

Of course, a similar question can be formulated for finite Boolean 〈∨, 0〉-semilat-
tices and 〈∨, 0〉-embeddings.

In view of Bill Lampe’s results [7], a natural candidate for V would be the variety
of all groupoids (i.e., sets with a binary operation). By the second author’s results
in [12, 13], any variety satisfying the conclusion of Problem 2 (provided there is any)
has the property that every diagram of finite distributive 〈∨, 0, 1〉-semilattices and
〈∨, 0, 1〉-embeddings can be lifted, with respect to the congruence lattice functor,
by algebras in V. In particular, every distributive algebraic lattice with compact

unit would be isomorphic to the congruence lattice of some algebra in V. The
latter conclusion is known (even without the distributivity restriction!) in case V

is the variety of all groupoids, see [7]. Strangely, whether the corresponding result
holds for arbitrary distributive algebraic lattices is still an open problem. Also,
there exists an algebraic lattice that is not isomorphic to the congruence lattice of
any groupoid—namely, the subspace lattice of any infinite-dimensional vector space
over any uncountable field, see [1].
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