
ar
X

iv
:0

80
5.

23
48

v1
 [

m
at

h.
G

R
]

 1
5

M
ay

 2
00

8 A fast algorithm for Stallings’ Folding Process

Nicholas W.M. Touikan

August 20, 2018

1 Introduction

The main purpose of this is to give an algorithm that quickly performs Stallings’
Folding algorithm for finitely generated subgroups of a free group. First some
definitions, motivations and then results.

Let Γ be a directed labeled graph with the labels lying in some alphabet
X = {x1, x2, . . . , xn}. Such a graph is said to be folded if at each vertex v there
is at most one edge with a given label and incidence starting (or terminating)
at v. We now state the following topologically flavoured definition.

Definition 1.1. An elementary folding of a directed labeled graph Γ is a (con-
tinuous) quotient map π : Γ → ∆, where ∆ is another directed labeled graph,
that is obtained by identifying two edges e1 and e2, which at some vertex v, have
the same incidence and label at v and if e1 and e2 are edges between vertices
v, w and v, w′ respectively then the vertices w and w′ are also identified.

A folding process takes as input reduced words in J1, . . . , Jm in X±1, makes
a graph with m loops with labels J1, . . . , Jm and attaches them all at some ver-
tex v0 to make a graph Γ0 which is a bouquet of m circles with labels J1, . . . , Jm
if read starting at v0 and following the obvious convention with respect to in-
cidence and inverses. The algorithm then consists of a sequence of elementary
foldings until it is impossible to fold any further:

Γ0 → Γ1 → . . . → ΓM = Γ

The process terminates because Γ0 has finitely many edges and each elementary
folding decreases the number of edges by 1. The output will be the folded graph
Γ = Γ(J1, . . . , Jm) which is independent of the sequence of foldings (see [2]).

Example 1.2. This is a folding for inputs:J1 = abba, J2 = a−1ba, J3 = aaa.
The thickened edges represent the elementary foldings. The progression is to be
read left to right, top to bottom.

1

http://arxiv.org/abs/0805.2348v1

a

a a

a

a
ab

b

b

a

a

a

a

b

b

b

ba

a

a

b

a

a

a b

a

a

a

a

b

b

a

a

b

a

b

aa
a

a

b

b b

b

aa

a

a

a a

a
b

a

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e2
[v]
[w]
[u]

v0

a

b

u

v

When we get to a point where we can no longer fold and so we stop. From this,
we can now infer that H = 〈J1, J2, J3〉 = F (a, b)

This folded graph gives us a picture of the subgroup H = 〈J1, . . . Jm〉 ≤
F (X). Topologically, if we view F (X) as the fundamental group π1(B, x0) of a
bouquet of n circles B, then constructing Γ amounts to constructing the “core”
of the covering space B̃ of B corresponding to the subgroup H . [4, 6]

What is also of great interest are the “computational” properties of Γ. One
can immediately verify that w ∈ H by checking that w is the label of a loop
based at v0. It follows that once Γ is constructed the membership problem
for the word w and the subgroup H is solvable in linear time. If we take a
spanning tree of Γ using the breadth first method, which takes time linear in
the number of vertices of the graph, we can obtain a Nielsen Basis for H . We
can also compute the index of H in F (X): if Γ is regular, i.e. at each vertex
v for each x ∈ X there are edges with label x with both incidences, then the
index is the number of vertices in Γ otherwise, [F (X) : H] = ∞. There is also
a bijective correspondence between spanning trees of Γ and Schreier systems
of coset representatives (given a spanning tree T , take labels of subtrees of T
rooted at v0 that do not have any vertices of valency more than two). These
systems of coset representatives are very important in the theory of rewriting
systems. We now state the main result [3, 5, 7]:

Definition 1.3. The function log∗ : N → N assigns to each natural number n
the least natural number k such that:

log ◦ log ◦ . . . ◦ log︸ ︷︷ ︸
k times

(n) ≤ 1

where we are using the base 2 logarithm. Equivalently log∗(2n) = log∗(n) + 1.

2

Notice that:

log∗(22
2
2
2

) = log∗(2 · 1019728) = 5

It follows that for most practical purposes, log∗ grows so slowly that it can be
considered a constant.

Theorem 1.4. Let F (X) be the free group over the generators x1, . . . , xn, let
J1, . . . , Jm be words in X±1 and let N =

∑
|Ji|. Then there is an algorithm

for the folding process that given the input J1, . . . , Jm will terminate in time at
most O(N · log∗(N)).

Corollary 1.5. Given generators J1, . . . , Jm as before and the subgroup H =
〈J1, . . . , Jm〉 ≤ F (X) we can:

1. Compute the index of H.

2. Obtain a Nielsen Basis for H.

3. Get a Schreier Transversal

In time O(N · log∗(N)). And once Γ is constructed we can solve the membership
problem for a word w in time O(m) where m is the length of w.

We can also slightly generalize the algorithm to obtain the following very
useful fact:

Theorem 1.6. Let ∆ be any connected directed labeled graph. Suppose it has
V vertices and E edges, then there is an algorithm that will fold ∆ in time at
most O(E + (V + E)log∗(V)).

We first present the data structures that will be used in our algorithm and
state results pertaining to running times of various operations. All this could
then be coded using object oriented languages like Java or C++.

2 Data Structures

The terminology I will use is non-standard in computer science, but hopefully
more comprehensible to mathematicians. The details in this section are only
given for completeness, all that is really important here are the theorems on
running times.

For our purposes, a data type is a tuple (X, f1, . . . , fm) where X is a set and
f1, . . . , fm are n-ary functions, i.e. functions with n arguments such that for
each i and a fixed Yi:

fi : X × . . .×X︸ ︷︷ ︸
ni times

→ Yi

Moreover we allow the functions to be undefined and allow ourselves to change
their values. These functions will be called operations. For example X = P(N)
is the collection of sets of natural numbers, with binary operations, union, in-
tersection and the unary operation least element (which a set to to a natural

3

number). We will also want to allow different instances of a data type, e.g.
the data type is math students with the function grade: {students} → R and
we have two instances: calculus students and linear algebra students. Maybe
some students will be taking both classes so they will have two grades, one for
calculus and one for linear algebra it follows that there will be two instances
of the grade function defined on different (though maybe not disjoint) sets of
students.

So far nothing can be said about running times. To this end we have to
flesh out our construction, we give the actual algorithms that perform our op-
erations. Primitive operations are unary operations (or simply functions) that
either correspond to variable assignment or so-called pointers used in object
oriented programming. We will directly invoke primitive operations in algo-
rithms. We assume that the operating time cost of either evaluating a primitive
operation or changing its value on one entry will be 1.

Some operations will not be primitive, so to calculate them we will provide
a method which is basically an algorithm which, using primitive operations,
enables one to perform a more complicated operation. Once a method is given,
it will be possible to calculate the running time of the associated operation. The
reason the word method is used instead of simply algorithm is that we want to
stress that it is at a lower level of abstraction, once it’s given we want to forget
everything about it other than its running time and the fact it works. As will
be seen, there will also be a certain structure to the way the elements in our
data type are interrelated which motivates the terminology data structure.

The reason for this rather artificial formalism is mainly to ease analysis.
The main algorithm that will be given in Section 3.3 will be given in terms
of operations whose semantic meaning is clear and it will be obvious that the
algorithm actually works. The explicit methods presented in this section will
give us running times for our operations and we’ll be able to compute the running
time of the algorithm.

As a remark to computer scientists, the definition of data type given here
resembles an interface and combined with the methods, what we’re actually
describing is an abstract data structure.

2.1 Ordered Sets

This data structure actually is actually made of two interdependent components
lists and list nodes. List nodes have two primitive operations:

1. next : {list nodes} → {list nodes}

2. prev : {list nodes} → {list nodes}

And two operations that will require methods.

1. list : {list nodes} → {lists}

2. remove : {list nodes} → {lists}

4

For lists we have the two primitive operations:

1. head : {lists} → {list nodes}

2. tail : {lists} → {list nodes}

As well as the binary operation:

1. concatenate:{lists} × {lists} → {lists}

Finally, we need an operation to add a node to a list:

1. addnode : {list nodes} × {lists} → {lists}

So far we have two types of objects and some functions. An ordered set will
be encoded as a doubly linked list. It can be thought of as a chain of list nodes.

Example 2.1. Here we have a list L, and list nodes a,b and c. We have the
following function tables.

list node n next(n) prev(n) list(n)
a b undefined L

b c a undefined
c undefined b L

And
ListX head(X) tail(X)
L a c

We represent this as as follows:

a b c

L

?

?

?

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e2
[v]
[w]
[u]

v0

a

b

u

v

A priori, there are no restrictions on what values functions can take, but if
we’re not careful our list will not be well formed, for example:

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e2
[v]
[w]
[u]

v0

a

b

u

v

5

We can ensure that our structures will be well formed if we make sure that
our methods keep structures well formed and only use these methods. We now
give the methods associated to operations on ordered sets. When invoking a
method we will use the typewriter font. The method associated to the function
remove will be called remove and we will denote “performing the removemethod
on a list node n” by remove(n). This method does not return anything, it simply
removes the list node n from a list while keeping it well formed

remove(n):

1. Get the variables h=head(list(n)) and t=tail(list(n)).

2. If h = t = n then make head(list(n)) and tail(list(n)) undefined.

3. If h = n 6= t then set head(list(n))=next(n), set list(next(n))=list(n), set
prev(next(n))=undefined, and set next(n)=prev(n)=undefined.

4. If h 6= n = t then do the same as the previous with prev and next inter-
changed.

5. If h 6= n 6= t then set next(prev(n))=next(n), set prev(next(n))= prev(n)
and set next(n)=prev(n)=undefined.

The next method is for the concatenate operation for two lists l1, l2. We call the
method concatenate, it appends the list nodes of l2 to those of l1 and leaves
the list l2 empty.

concatenate(l1, l2):

1. If head(l2) is undefined (l2 is empty) then do nothing.

2. If head(l1) is undefined, then set head(l1)=head(l2), set list(head(l2))=l1,
set tail(l1)=tail(l2), set list(tail(l2))=l1 and set head(l2)=tail(l2)=undefined.

3. Else set next(tail(l1))=head(l2), set prev(head(l2))=tail(l1), set tail(l1)=tail(l2)
and set list(tail(l2))=l1.

The following illustrates the concatenate operation:

a b c d e f g

a b c d e f g

PSfrag replacements

. . .
n1

n2

n3

l1

l1 l2

l3
ln

e1
e2
[v]
[w]
[u]

v0

a

b

u

v

6

The method addnode for the addnode operation will not be given, but it is
quite obvious. The following theorem holds.

Theorem 2.2. There exists methods of the operations remove, concatenate and
addnode that take a constant amount of time.

Proof. The associated methods remove, concatenate and addnode involve only
a bounded number of primitive operations.

We can also enumerate a list l1, indeed take head(l1) then repeatedly perform
“next” operations, once the value “undefined” is reached, the list is exhausted.

2.2 Disjoint Sets

In our case we have a sequence of elementary foldings:

Γ0 → Γ1 → . . . → ΓM = Γ

The composition, π = πM ◦ πM−1 . . . ◦ π1 of all the quotient maps πi : Γi →
Γi+1 gives a quotient map π : Γ0 → Γ. This map π, in turn, induces an
equivalence relation on the vertices of of Γ0, i.e v ∼ w ⇐⇒ π(v) = π(w). In
fact one can consider the vertices of Γ as equivalence classes of vertices of Γ0.
These equivalence classes are “built” from smaller disjoint sets by successively
merging them in each elementary folding. For example if the vertices v, w in
Γi correspond to equivalence classes {v1, . . . , vr}, {w1, . . . ws} respectively and
if πi(v) = πi(w) = ū, then the vertex ū of Γi+1 will correspond to the set
of vertices {v1, . . . , vr, w1, . . . , ws} ⊂ Vertices(Γ0). Though this doesn’t fully
motivate our interest in the following data structure and it’s clever methods it
does give an example of how they are going to be used.

The Disjoint Set Forest data structure has an underlying set of nodes. On
the set of nodes we have the following primitive operations:

1. rank:{nodes} → N

2. parent:{nodes} → {nodes}.

From this it is seen that nodes can be organized into rooted trees. We have the
following non-primitive operations:

1. root:{nodes} → {nodes}

2. merge: {nodes} × {nodes} → {trees}

Some explanations are in order. We have a set X of nodes and we want to
build equivalence classes out of them. An equivalence class will be encoded as
a rooted directed tree. We shall identify the trees by their root nodes, i.e. the
unique node in the tree that has itself as a parent. If we want to know to which
equivalence class a node n belongs we use the function root(n) which returns
the root of n’s tree, similarly we can check if two nodes are “congruent” by
checking if they have the same root. We will use the merge(u, v) operation to
form the union of the equivalence classes containing u and v. It is clear that
here too some care must be taken to avoid “malformed” trees.

7

Example 2.3. Here is a set partitioned into two equivalence classes. Notice that
the nodes pointing to themselves are roots or equivalence class representatives.

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e2
[v]
[w]
[u]

v0

a

b

u

v

Initialization: When a node n is created we need the to set following initial
values so that everything works:

1. set parent(n)=n

2. set rank(n)=0.

This is like putting n into an equivalence class with only itself in it.
To perform the root(n) operation we use a method called Find-set(n) which

takes a node n and returns the node r which is the root of its tree. It is given
recursively:

Find-set(n)

1. If parent(n)=n, return n.

2. Else set parent(n)=Find-set(parent(n)) and return parent(n).

Proposition 2.4. This method actually works.

Proof. We basically do this by induction on the depth of n i.e. the least integer
M such that:

parent ◦ . . . ◦ parent︸ ︷︷ ︸
M−1 times

(n) = parent ◦ . . . ◦ parent︸ ︷︷ ︸
M times

(n)

If the depth is 0, i.e. n is a root, then it works. If it works for all nodes of depth
M or less and n has depth M +1 then Find-set(parent(n)) will return the root
of n’s tree and all is well.

Clearly this is not the most expedient way to get the root node (which in
this case would simply consist of successively evaluating parents until we hit
a “fixed point”). However something interesting happens, instead of working
your way up to the tree root r, you work your way up to the root and then
back down again and at each step on the way back you set the values of parent
functions to r. This is called path compression and it makes the tree “bushier”
and will make successive root operations faster. Here is a situation that could
arise after performing root(a):

8

d

c

b

a

e

f

f e

a b c d

r

r

j

hg

i
i

g h

j

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e2
[v]
[w]
[u]

v0

a

b

u

v

Though tree itself changes, the mathematical object it represents is the same:
we still have the same nodes and the same equivalence classes. The tree, how-
ever, has been partially optimized.

The last operation, merge, should takes two nodes x, y and make the union
of of the equivalence classes containing x and y respectively. Here we use the
rank, which is basically an upper bound on the depth of the tree. It is used to
determine which node will be the new parent. We call the associated method
Merge(x, y):

1. Get r1 =Find-set(x), r2 =Find-set(y).

2. If rank(r1)>rank(r2) then set parent(r2)=parent(r1).

3. If rank(r2)>rank(r1) then set parent(r1)=parent(r2).

4. Else set parent(r2)=r1 and set rank(r1)=rank(r1)+1

We now come to a truly amazing result due to Tarjan whose proof can
be found in [1]. This proof uses the methods we just described. This result,
however, is not obvious to prove. An amortized running time is the combined
running time of a sequence of operations.

Theorem 2.5. Suppose we perform n Disjoint Set operations, i.e. root and
merge operations, on a Disjoint Set forest containing N nodes. Then there exist
methods for the root and merge operations such that the amortized running time
devoted to these operations will be at most O((n+N) · log∗(N)).1

2.3 Directed Labeled Graphs

We now encode a graph. We assume that we are working over F = F (a, b)
the free group on the alphabet {a, b}. A graph will have two underlying sets
consisting of vertex objects and edge objects. The idea is that there are functions
assigning to edges their terminal and initial vertices and each vertex has list of
adjacent edges. It follows that each edge will be a node in two lists. We will
also want to organize vertices into Disjoint Set forests and put them in a list
called UNFOLDED. We have the following primitive operations:

1. edgelist:{vertices} → {lists}

1The result in [1] actually gives an even better bound: instead of log∗ it’s an inverse
Ackerman function.

9

2. initial:{edges} → {vertices}

3. terminal:{edges} → {vertices}

4. label:{edges} → {a, b}

We also want to make lists of edges so we define two instances of the list node
operations on the set of edges. One instance for the list at an edge’s initial
vertex and one instance for the list at an edge’s terminal vertex. Hopefully the
nomenclature will be self-explanatory:

1. next-initial:{edges} → {edges}

2. next-terminal:{edges} → {edges}

3. prev-initial:{edges} → {edges}

4. prev-terminal:{edges} → {edges}

5. remove-initial:{edges} → {lists}

6. remove-terminal:{edges} → {lists}

7. addnode-initial:{edges} × {lists} → {lists}

8. addnode-terminal:{edges} × {lists} → {lists}

And for vertices we have the following additional operations:

1. next-UNFOLDED:{vertices} → {vertices}

2. prev-UNFOLDED:{vertices} → {vertices}

3. remove-UNFOLDED:{vertices} → {lists}

4. addnode-UNFOLDED:{vertices} × {lists} → {lists}

5. root:{vertices} → {vertices}

6. rank:{vertices} → N

7. merge:{vertices} × {vertices} → {trees}

3 Ideas and the Algorithm

3.1 Elementary Foldings

Recall that in the sequence of elementary foldings

Γ0 → Γ1 → . . . → ΓM = Γ

The vertices of Γi could be seen as equivalence classes of vertices of Γ0. For this
reason we will denote vertices of Γi as [v], i.e. “the equivalence class in the set
of vertices of Γ0 with representative v.”

10

Definition 3.1. A vertex [v] is said to be folded if there are no edges with same
label and incidence an [v]. Otherwise we say [v] is unfolded.

Consider the following identification of the edges e1 and e2 via an elementary
folding.

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e1

e2

[v]
[v]

[w]

[u]

[u]

v0

a

b

u

v

We see that that the vertices [u] and [w] get identified so that in the next
graph in our sequence the equivalence class represented by u will consist of
the union [u] ∪ [w] we shall denote this by [u]′. In our computer program
such an elementary folding would be accomplished by performing the opera-
tion merge(u, v) (in the example rank(u) ≥ rank(w)), removing the edge e2
from the edge lists at w and v (essentially deleting it) and finally performing
concatenate(edgelist(u),edgelist(w)). Recall that after an elementary folding
the edges at [u]′ will be the edges at [u] plus the edges at [w] minus the deleted
edge. This is reflected by concatenating the edgelists and though none of the
edges in [w]’s old edgelist are set to point to u yet (edges go between vertices,
not equivalence classes) it is possible to update them. However if we completely
update all the edges at each folding we’ll end up having something that runs
in quadratic time! Some care is therefore needed. The updating of edges only
occurs when checking whether a vertex is folded (see Observation 1 in Section
3.2) and in the second step of the loop in the algorithm in Section 3.3 and when
either case happens, we only update at most five edges at a time. This is the
trick to get the algorithm to run in almost linear time.

Consider the following illustration. The figure on the top is the graph Γi as a
topological object with vertices corresponding to equivalence classes of vertices
of Γ0. We see that the edges outgoing from [u] labeled a will be identified
in some elementary folding. The figure on the bottom is at a lower level of
abstraction, it shows what is encoded in the computer. The circles represent
“vertex” objects, notice that the vertices parent pointers as well as graph edges
coming out of (going into) them:

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e2

[v]

[w]

[u]v0

a

a

a

a

b

b

b

b

b

b

u v

11

We see that the equivalence class [u] contains eight elements, that the v’s
edgelist has four entries but that there is only one edge “actually” at v, i.e.
some edge e with label(e)=b and initial(e)=v.

3.2 Detecting Unfolded Vertices

The only other difficulty is figuring out where to fold. Three observations tell us
that we can easily keep track of the unfolded vertices and when we know that
there are none left, then we’re done.

Observation 1. To check whether or not a vertex [v] is folded takes a bounded
number of operations. Indeed, we need only go through the edge list of [v] and
check the labels and incidences of the edges.

To find the incidence of an edge e in [v]’s edge list, find u =initial(e) and
w =terminal(e) and perform the operations root(u) and root(w) to find equiv-
alence class representatives. If for example root(u)=v then e is outgoing at [v].
Similarly we can determine if e is incoming or forms a simple loop at [v]. At
this point we could also update the edges i.e. set initial(e)=root(initial(e)) and
set terminal(e)=root(terminal(e)) for an extra two operations.

Now go through the edge list of v. Either you find two edges with same label
and incidence so [v] is unfolded or you exhaust the edgelist without finding edges
with the same incidence and label so [v] is folded. Since we are assuming that
we are working over F (a, b) it is clear that an edgelist with five or more entries
must result in unfoldedness. It follows that we never check more than 5 edges
at a time.

Observation 2. An elementary folding is an essentially local operation. That
is, whenever two edges get identified we need only to check for three vertices
whether they have gone from being folded to unfolded or vice-versa. Any vertex
that is not the initial or terminal vertex of some edge being identified with
another edge at that elementary folding will have the same number of incoming
and outgoing edges after the elementary folding.

Observation 3. At the beginning there is exactly one unfolded vertex, i.e.
where we initially attach our loops, and the algorithm terminates when there
are no unfolded vertices left.

These three observations tell that we can have a list called UNFOLDED
which contains exactly the unfolded vertices and that at each elementary folding
we need perform a bounded number of primitive, ordered set and disjoint set
operations to keep it updated.

3.3 The Algorithm

We will make a distinction between ordered set operations and disjoint set op-
erations. We will call primitive operations and ordered set operations simply
“operations” and mention disjoint set operations explicitly.
Initialization:

12

We are given an input (J1, . . . , Jn) of reduced words in F (a, b). For each
Ji we make a directed labeled loop li with label Ji starting at v0 and initialize
each vertex as in Section 2.2 we call the resulting graph Γ0. At this point there
is only one unfolded vertex: v0. We also create the list UNFOLDED containing
the single vertex v0.

PSfrag replacements

. . .
n1

n2

n3

l1

l2

l3

ln

e1
e2
[v]
[w]
[u]

v0

a

b

u

v

All this takes time O(N).

Folding:

While UNFOLDED is not empty do the following:

1. Get v=head(UNFOLDED) to get an unfolded vertex. This costs 1 oper-
ation.

2. Get L=edgelist(v). Get e1=head(L) get u1=root(initial(e1)), v1=root(terminal(e1))
and label(e1) to get the label and incidence of e1 at [v]. Then set initial(e1))=u1

and set terminal(e1)=v1 to “update” the edge. Take e2= either next-
initial(e1) or next-terminal(e1) (depending on the incidence of e1) and
again get the incidence, get the label and update the edge. Keep perform-
ing “next” operations until you get two edges with the same label and
incidence and can fold. This costs 1+1 operations + ≤ 5 · (6 operations +
2 disjoint set operation + some constant amount of time)

At this point we have found 2 edges ei1 , ei2 (without loss of generality e1, e2)
with same incidence and label. We have four possible local situations:

13

or

I

II

III

IV

PSfrag replacements

. . .
n1

n2

n3

l1
l2
l3
ln

e1
e1

e2

[v]

[v] [v]

[v]

[v] [v]

[v] [v]

[w]

[u]

[u]

[u]

[u][u]

[u]

v0

a

b

u

v

From Step 2 we know the the endpoints of e2 and e1 and can therefore
establish which case we are dealing with (this takes constant time).

Case I:

I.1 merge(u,w) (assume the new representative is u.) This costs 1 disjoint
set operation.

I.2 if necessary, remove the non representative vertex w from UNFOLDED.
This costs 1 operation.

I.3 concatenate(edgelist(u),edgelist(w)). This costs 1 operation.

I.4 We assume that e2 is the edge going from v to w. Then we do remove-
initial(e2) and remove-terminal(e2). At this point we can assume that e2
is deleted. This costs is 2 operations.

I.5 Check whether the remaining vertices [u] and [v] are folded and add or
remove them from UNFOLDED accordingly. By Observation 1 this again
takes a bounded number of disjoint set and “normal” operations.

How to handle cases II-IV is similar and will not be given. When we exit
the “while” loop, i.e. UNFOLDED is empty, the algorithm terminates. All the
remaining edges point to their representative vertices and no vertex is unfolded,
so we have a usable folded graph.

3.4 Analysis

Each time the “while” loop executes an edge gets deleted so the loop runs at
most N times i.e. the total length of the input. Each run through the loop in
fact corresponds to an elementary folding. Each time the loop runs, a constant

14

bounded number of “standard” and disjoint-set operations are executed so ap-
plying Theorem 2.5 this runs in time O(N) + O(N log∗(N)) = O(N log∗(N)).
This proves the main result, Theorem 1.4. We can also give the following:

Proof of Theorem 1.6. We do a search through our graph and check at each
vertex v if it is folded. If not then we add v to UNFOLDED. The search takes
time O(E). We then proceed as usual.

References

[1] T.H. Cormen, C.E. Leierson, R.L. Rivest and C. Stein, Introduction
to Algorithms, Second Edition, The MIT Press, 2001.

[2] Kapovich, I., Miasnikov, A. G., Stallings foldings and subgroups of
free groups, J. Algebra, 248:2 (February 2002), 608-668.

[3] C. C. Sims. Computation with Finitely Presented Groups, Cam-
bridge Univ. Press, Cambridge (1994).

[4] J. R. Stallings, Topology of finite graphs. Invent. Math. 71 (1983),
pp.551-565

[5] J. R. Stallings and A. R. Wolf, The Todd-Coxeter process, us-
ing graphs. Combinatorial Group Theory and Topology, Princeton
Univ. Press, Princeton (1987) p. 157-161

[6] M. J. Dunwoody, Folding sequences, The Epstein birthday schrift.
Geom. Topol. (Coventry) (1998), pp. 139-158

[7] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications,
Am. Elsevier, New York (1976)

15

	Introduction
	Data Structures
	Ordered Sets
	Disjoint Sets
	Directed Labeled Graphs

	Ideas and the Algorithm
	Elementary Foldings
	Detecting Unfolded Vertices
	The Algorithm
	Analysis

