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BOUNDING RIGHT-ARM ROTATION DISTANCES

SEAN CLEARY AND JENNIFER TABACK

Abstract. Rotation distance measures the difference in shape between binary trees
of the same size by counting the minimum number of rotations needed to transform
one tree to the other. We describe several types of rotation distance where restrictions
are put on the locations where rotations are permitted, and provide upper bounds on
distances between trees with a fixed number of nodes with respect to several families
of these restrictions. These bounds are sharp in a certain asymptotic sense and are
obtained by relating each restricted rotation distance to the word length of elements
of Thompson’s group F with respect to different generating sets, including both finite
and infinite generating sets.

1. Introduction

Rotation distance quantifies the difference in shape between two rooted binary trees
of the same size by counting the minimum number of elementary changes needed to
transform one tree to the other. Search algorithms are most efficient when searching
balanced trees, which have few levels relative to the number of nodes in the tree. Thus
one is often interested in calculating, or at least bounding, the number of these changes
necessary to alter a given tree into another with a more desirable shape, such as a
balanced tree.

If we allow these elementary changes, called rotations, to take place at any node, we
obtain ordinary rotation distance. This was analyzed by Sleator, Tarjan and Thurston
[14], who proved an upper bound of 2n−6 rotations needed to transform one rooted binary
tree with n nodes into any other, for n ≥ 11. Furthermore, they showed that the 2n− 6
bound is achieved for all sufficiently large n and thus is the best possible upper bound.
No efficient algorithm is known to compute rotation distance exactly, though there are
polynomial-time algorithms of Pallo [11] and Rogers [13] which estimate rotation distance
efficiently.

Here we expand on the study of restricted rotation distance begun in [4] and [5]. Re-
stricted rotation distance allows rotations only at the root node and the right child of
the root node. Restricted rotation distance is related to the word length of elements of
Thompson’s group F with respect to its standard finite generating set. This is illustrated
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Figure 1. Right rotation at node N transforms T1 to T2; similarly, left
rotation at node N transforms T2 to T1. The labels A, B and C represent
(possibly empty) subtrees of T1 and T2.

in [4, 5] and involves the interpretation of elements of F as pairs of finite binary rooted
trees and Fordham’s method [9] for computing the word length of an element of F with
respect to that standard finite generating set directly from such trees. These methods
not only give an effective algorithm to compute restricted rotation distance, but they also
give an effective algorithm to find the appropriate rotations which realize this distance.

Right and left rotations at a node N of a rooted binary tree T are defined to be the
permutations of the subtrees of T described in Figure 1. Right rotation at a node N

transforms the original tree T1, given on the left side of Figure 1, to the tree T2 on the
right side of Figure 1. Left rotation at a node is the inverse operation. In all that follows,
T1 and T2 denote trees with the same number of nodes.

In this paper, we discuss generalizations and variations of restricted rotation distance,
in which rotations are again only allowed at specified nodes of the tree. We relate these
distances to distinct word metrics on Thompson’s group F . We use this interpretation to
exhibit linear bounds on the number of allowable elementary rotations needed to trans-
form one tree with n nodes into another, and show that these bounds are asymptotically
sharp in the sense that the coefficients of the linear terms of the bounds are the best
possible. These alternate definitions all allow rotations at the root node and at nodes
connected to the root node by a path consisting entirely of right edges; that is, nodes
that lie on the right side or right arm of the tree. The root node is considered to lie on
the right side of the tree.

One complication that arises is that while the original restricted rotation distance is
always defined between any two trees with the same number of nodes, this is no longer
necessarily the case when we allow rotations at other collections of nodes along the right
side of the tree. Some transformations between trees cannot be accomplished with a
specified set of rotations without the nonstandard technique of adding additional nodes
to the trees. Such a transformation is not permitted when computing rotation distances of
any type. Below, we describe how to determine when such transformations are possible
with a prescribed set of permitted locations at which to rotate. When this restricted
right-arm rotation distance is defined, we provide an upper bound on its magnitude.

The sharp upper bound on the restricted rotation distance between two trees, each with
n nodes, obtained in [5] is 4n − 8, for n ≥ 3. Below, we consider allowing additional
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rotations along the right side of the tree and note that allowing rotations at any finite
collection of nodes on the right side of the tree does not change the multiplicative constant
of 4 in the upper bound. It is only when we allow an infinite set of rotations along the
right arm of the tree that we obtain the multiplicative constant of 2 in the upper bound,
analogous to ordinary rotation distance. These rotation distances and bounds, which
hold for sufficiently large n, are summarized in Table 1, where n is the number of nodes
in each tree.

Type of distance Rotations allowed at Symbol Upper Bound

Rotation distance all nodes dR 2n− 6
Restricted rotation root node and right dRR 4n− 8
distance child of the root node
Restricted right arm root node and a finite 4n− C

rotation distance collection S of nodes on dSRRA some C

the right side of the tree
Right arm all nodes on the right dRA 2n− 2
rotation distance side of the tree
Restricted spinal root node and a finite 4n− C

rotation distance collection S of nodes on dSRS some C

both sides of the tree

Table 1. Summary of rotation distances between trees with n nodes,
with upper bounds for all sufficiently large n.

Culik and Wood [8], in the course of studying ordinary rotation distance, showed that
the rotation distance is never more than 2n − 2, and in fact use only rotations on the
right arm to show this bound. Since the ordinary rotation distance between two such
trees can only be as much as 2n−6 for n ≥ 11, it is remarkable that restricting rotations
to the right side of the tree adds only four rotations to the upper bound.

Pallo explicitly studied right-arm rotation distance in [12], allowing rotations at all nodes
along the right side of the tree. He described an algorithm for computing right-arm rota-
tion distance which we show below is equivalent to finding the word length in Thompson’s
group F with respect to the standard infinite generating set.

The trees we consider are composed of edges and vertices. The vertices fall into two
types: those of valence one and those of higher valence. The vertices of valence one are
called exterior nodes or leaves or exposed leaves. The vertices of higher valence are called
interior nodes. We shall use the terminology node to refer to a vertex which is an interior
node, and leaf to refer to a vertex which is an exterior node.

A caret in a tree is composed of a node together with two downward directed edges. We
will only consider finite, rooted binary trees with n carets, equivalently, with n nodes.
Such trees are called extended binary trees in Knuth [10] or 0-2 trees. The nodes and
carets in a tree have a natural infix ordering. The exposed leaves in a tree are numbered
from left to right, beginning with zero. A tree with n carets yields n+1 exposed leaves.
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A caret with two exposed leaves is called an exposed caret, its leaves are termed siblings
and those leaves are said to form a sibling pair.

A caret N which is attached to the right (respectively left) edge of a caret M is called
the right (respectively left) child of M . A caret which has one edge on the left side of
the tree is called a left caret. A caret which has one edge on the right side of the tree
and is not the root caret is called a right caret. Similarly, we have left and right nodes.
Carets which are neither right nor left are called interior carets. The union of left and
right carets in a tree is called the spine of the tree. A tree consisting of only the root
caret and n − 1 right carets is called the all-right tree with n carets. An ancestor of a
caret (resp. node) is any caret (resp. node) which lies along the shortest path between
it and the root caret (resp. root node).

The connection between Thompson’s group F and restricted rotation distance is de-
scribed below. Thompson’s group F is studied combinatorially in two ways: via a finite
presentation and an infinite presentation. Computing restricted rotation distance be-
tween two trees is related to computing the word length of the element of F described
by those trees with respect to the standard finite generating set for the group F . Anal-
ogously, right-arm rotation distance corresponds to computing the word length of the
element with respect to the word metric induced by the standard infinite generating set
for F . Restricted right-arm rotation distances and restricted spinal rotation distances,
defined below, relate to the word metric on F with respect to other finite generating sets.

2. Thompson’s Group F

The connection between Thompson’s group F and rotations at nodes of trees is described
in [4] and [5], using the work of Fordham [9]. Here, we briefly describe this connection,
and refer the reader to Cannon, Floyd and Parry [3] for a survey of the properties of
Thompson’s group F , and the further connections between elements of F and pairs of
binary rooted trees.

2.1. The infinite presentation of Thompson’s group F . Thompson’s group F has
a presentation with an infinite number of generators and relations:

P =
〈

x0, x1, . . . |x
−1
i xnxi = xn+1,∀i < n

〉

.

In this presentation, there are normal forms for elements given by

xr1i1x
r2
i2
· · · xrkik x

−sl
jl

· · · x−s2
j2

x−s1
j1

with ri, si > 0, where the indices satisfy 0 ≤ i1 < i2 < · · · < ik and 0 ≤ j1 < j2 < · · · <
jl. This normal form is unique for a given element if we further require the reduction
condition that when both xi and x−1

i occur, so does xi+1 or x−1
i+1, as discussed by Brown

and Geoghegan [2]. The relators provide a quick and efficient method for rewriting
words into normal form, and form a complete rewriting system, as described by Brown
[1]. There is a natural shift homomorphism φ : F → F where φ(xi) = xi+1 which respects
the relators, and the reduction from normal form to unique normal form is accomplished
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with a sequence of operations replacing words of the form uxiφ(v)x
−1
i w with uvw, where

φ(v) is a subword which contains only generators of index i+ 2 and higher.

We note that F can be generated by just x0 and x1 in the above presentation; the relators
show that x0 conjugates x1 to x2. Similarly, all higher-index generators are conjugates of

x1 by higher powers of x0, as xn = x
−(n−1)
0 x1x

n−1
0 . This leads to a finite presentation for

F with generating set {x0, x1}. In fact, x0 and any higher index generator are sufficient
to generate the group. Any two generators xi, xj with i 6= j will generate an subgroup of
F which is isomorphic to the entire group but which is the entire group only when one
of i or j is 0.

We begin by proving that in the word metric arising from this infinite generating set,
the normal form expressions are geodesic representatives for elements of F .

Lemma 2.1. Let w be an element of F , and α a word in the infinite generating set which
is the unique normal form for w, as described above. Then α is a geodesic representative
for w in the word metric arising from the infinite generating set {xi} of F .

Proof. Suppose that α = xr1i1x
r2
i2
· · · xrkik x

−sl
jl

· · · x−s2
j2

x−s1
j1

was not a geodesic representative
for w in this word metric. Then there is a shorter expression β, not necessarily in normal
form, representing w in this infinite generating set. It is clear from the relations of P that
the conversion of β into unique normal form can only preserve or decrease the length of
β. Thus, after converting β into normal form we have obtained a second expression for
w in unique normal form shorter than the initial unique normal form for w given by α,
a contradiction. �

2.2. Tree pair diagrams for elements of Thompson’s group F . The group F has
a geometric description in terms of equivalence classes of tree pair diagrams. A tree pair
diagram is a pair of finite rooted binary trees with the same number of nodes (or carets),
or equivalently with the same number of leaves. We write w = (T1, T2) to denote the
two trees comprising a pair representing w. The equivalence between the geometric and
algebraic interpretations of F is described in [3], and examples of this equivalence and
its connection with rotations are given in [7].

Given two trees T1 and T2 with the same number of carets, the word in normal form
associated to w = (T1, T2) is found as follows. The leaves of each tree are numbered from
left to right, beginning with zero. The leaf exponent of a leaf numbered k is the integral
length of the longest path starting at leaf k consisting entirely of left edges which does
not touch the right side of the tree. The tree pair diagram (T1, T2) has an associated

normal form x
f0
0 x

f1
1 · · · xfnn x−en

n · · · x−e1
1 x−e0

0 where ei is the leaf exponent of leaf i in tree
T1 and fi is the leaf exponent of leaf i in T2. An example of a tree with leaf exponents
computed is given in Figure 2.

An element of F is represented uniquely by a tree pair diagram satisfying the following
reduction condition. A tree pair diagram (T1, T2) is unreduced if both T1 and T2 contain
a caret with two exposed leaves numbered i and i + 1. A tree pair diagram which is
not unreduced is reduced. Geometrically, any tree pair diagram has a unique reduced
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Figure 2. A tree whose leaves are numbered from left to right. The
leaf exponents of the leaves, according to increasing leaf number, are
2,0,1,1,0,0,0,1,0,1,0, and 0.

form that is obtained by successively deleting exposed carets with identical leaf numbers
from both trees, renumbering the leaves, and repeating this process until no further such
reductions are possible. Elements of F are equivalence classes of tree pair diagrams,
where the equivalence relation is that two tree pairs are equivalent if they have a common
reduced form.

This tree pair reduction condition corresponds exactly to the combinatorial reduction
condition given above to ensure uniqueness for words in normal form in the infinite
presentation of F . That is, if leaves i and i + 1 form a sibling pair in both T1 and T2,
then in both cases, the leaf exponents of leaf i will be non-zero in both trees and those
for leaf i+ 1 will be zero, as leaf i+ 1 is a right leaf in both trees. So the corresponding
normal form will contain both xi and x−1

i but not x±1
i+1, meaning that the normal form

can be reduced.

To perform the group operation on the level of tree pair diagrams, it may be necessary
to use unreduced representatives of elements. Namely, to multiply (T1, T2) and (S1, S2),
we create unreduced representatives (T ′

1, T
′
2) and (S′

1, S
′
2) in which T ′

2 = S′
1, and write

the product as the (possibly unreduced) element (T ′
1, S

′
2). See [3] for examples of group

multiplication using tree pair diagrams for elements of F .

The reduced tree pair diagrams associated to the generators x0, x1 and xn are pictured
in Figure 3. As explained in Lemmas 2.6 and 2.7 of [6], the generators x0 and x1 can
be viewed in terms of rotations of rooted binary trees as well. The generator x0 can be
interpreted as a left rotation at the root of the left tree in the pair, yielding the right tree
in the pair. Similarly, the generator x1 performs a left rotation at the right child of the
root, transforming the left tree in the pair to the right one. The inverses x−1

0 and x−1
1

perform right rotations at the root node and right child of the root node, respectively.

Analogously, right multiplication of an element w given by a possibly unreduced rep-
resentative (T1, T2) by the generator x−1

0 yields the tree pair diagram (T ′
1, T

′
2) in which
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n+1 n+2 n n+1

n+2

x
0

x
1

x

Figure 3. The tree pair diagrams corresponding to the generators x0,
x1 and xn of F .

wxw 1w

Figure 4. In order to multiply the tree pair diagram representing w by
the generator x1, we form the unreduced representative w̄ of w in which
the dashed caret is added to both trees. Then are we able to form the
product w̄x1 which is the same group element as wx1.

T ′
1 differs from T1 by a left rotation at the root node, and T ′

2 = T2. We can similarly
interpret right multiplication by x0, x±1

1 and x±1
n .

One complication that may arise when using the geometry of the tree pair diagrams
to understand rotation distance is the possibility of requiring unreduced representatives
in order to perform the group multiplication. Since elements of Thompson’s group are
equivalence classes of tree pair diagrams, we can always multiply any group element w

by any group generator g. It is possible that we may have to add carets to the reduced
tree pair diagram for w in order to carry out this multiplication. From the standpoint of
group theory, the reduced and unreduced tree pair diagrams are interchangeable. When
considering rotation distance, however, we are not allowed to change the number of carets
in the starting tree. Thus certain rotations, corresponding to multiplication by specific
generators, may not be permitted when calculating rotation distance.

For example, we cannot perform a right rotation at the right child of the root to either
of the trees in the tree pair diagram for x0 as shown in Figure 3 because neither tree
contains a left subtree of the right child of the root. As an element of Thompson’s group,
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we can enlarge any pair of trees to another representative in the equivalence class, and
thus are able to multiply any element by any generator. A typical such application is
shown in Figure 4 where a caret is added to a tree to be able to perform the desired
rotation. The tree pair diagram w does not have a left child of the right child of the root,
so performing a right rotation at the right child of the root is not possible. However, the
word w̄ which represents the same element of F does have a left child of the right child
of the root and it is possible to perform the right rotation at the right child of the root
there. We obtain w̄ by adding an additional caret (indicated by dashing) to leaf number
2 in both trees of the tree pair diagram.

To describe when it is necessary to add a caret to a tree to perform a particular rotation,
we make the following definitions. We say a right rotation at the root can be applied to a
tree T if the left subtree of the root of T is non-empty. Similarly, we say a left rotation
at the root can be applied to a tree T if the right subtree of the root of T is non-empty
and we also adopt this terminology when performing rotations at other nodes along the
spine of the tree.

Understanding when rotations can be performed on trees helps us develop the connection
between rotations of trees and right multiplication by generators of F . If, for example,
we have a tree pair diagram (T1, T1) representing the identity and we can perform a left
rotation at the root to T1 to obtain x0T1, then the new tree pair diagram (T1, x0T1) is
the tree pair diagram representing the word x0 in F , and similarly the new tree pair
diagram (x0T1, T1) is tree pair diagram representing the word x−1

0 in F .

We note that in F , multiplication by a generator may result in an unreduced tree pair
diagram. So during the course of a sequence of multiplications by generators of F , the
number of carets in the reduced tree pair diagram representing the partial products may
fluctuate – rising when it is necessary to add one or more carets to apply a generator,
and falling when multiplication by a generator results in an unreduced tree pair diagram.
To understand rotation distance, however, as we apply a sequence of rotations to a single
tree, we do not allow the number of carets in the tree to change.

The link between restricted rotation distance and Thompson’s group F is the word
metric on F with respect to the generators {x0, x1}. Given two rooted binary trees T1

and T2 with the same number of nodes, we consider a minimal length word in x±1
0 and

x±1
1 representing the element w = (T1, T2) ∈ F . As described in [4], this word gives a

minimal sequence of rotations at the root and right child of the root which transform
the tree T1 into the tree T2. It follows from Fordham [9] that these minimal words which
transform one tree into the other maintain a constant number of carets at each stage in
the sequence of rotations. The issue of certain rotations altering the number of nodes in
the tree does not arise in the case of restricted rotation distance.

More precisely, suppose that w ∈ F is given by the tree pair diagram (T1, T2), and a
minimal length representative for w is g1g2 · · · gn, where each gi ∈ {x±1

0 , x±1
1 }. Then the

tree pair diagram (T1, gn · · · g2g1T1) will represent w, and we can think of the sequence of
generators gn · · · g2g1 as a sequence of rotations which transforms T1 to T2. At each stage
of this process, we will be able to perform the rotation corresponding to the generator
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gi+1 to the tree gi · · · g2g1T1 without adding extra carets. There may be reductions
possible to tree pair diagrams, or equivalently to the normal forms, during this process,
but from the standpoint of rotation distance we do not want to take advantage of these
reductions. Instead, we keep the number of carets constant at each stage.

Equivalently, we can think of (gn · · · g2g1T1, T2) as a representative of the identity and
witness the transformation of T1 to T2 by considering the sequence of tree pair diagrams

(T1, T2), (g1T1, T2), . . . , (gn · · · g2g1T1, T2).

Below, we consider other possible locations for rotations to occur, and again exploit the
link to Thompson’s group F , but now considering other appropriate generating sets for
F , where the generators are chosen to reflect the locations where rotations are permitted.
We assign a level to each node or caret in the tree as follows. The root node is defined
to have level zero. The level of a node N is the number of edges in a minimal length
path connecting N to the root node. The level of a caret C is defined to be the level of
the node associated to that caret.

Writing the generators xn for n > 1 via the relators xn = x
−(n−1)
0 x1x

n−1
0 , we relate

each generator to the following rotation of a tree T . We denote the all-right tree with
the appropriate number of carets by ∗. Group multiplication must be between a pair
of elements, and each element corresponds to a pair of trees, so we use the tree ∗ as
the positive tree corresponding to T . The product of the generator xn and the tree pair
diagram (T, ∗) performs a right rotation to T at the caret at level n along the right arm
of T . In all that follows, when we describe a generator as inducing a rotation on a single
tree T rather than on a tree pair diagram, we are forming the product with the pair
(T, ∗) as above.

3. Metrics on F and rotation distances

3.1. Relation to the word metric. In [5], the word length with respect to the finite
generating set {x0, x1} of F is used to compute the restricted rotation distance between
a pair of trees, using techniques of Fordham [9]. Fordham developed a method for
computing the exact length of an element of F directly from the reduced tree pair diagram
representing that element.

Definition 3.1. If T1 and T2 are trees with the same number of nodes, we define the
restricted rotation distance dRR(T1, T2) as the minimal number of rotations required to
transform T1 to T2, where rotations are allowed at the root and the right child of the root.

Restricted rotation distance is well-defined for any two trees with the same number of
leaves, as shown in [4]. We then obtain the following sharp bound on restricted rotation
distance.

Theorem 3.2 ([5], Theorems 2 and 3). Given two rooted binary trees T1 and T2 each with
n nodes, for n ≥ 3, the restricted rotation distance between them satisfies dRR(T1, T2) ≤
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4n − 8. Furthermore, for n ≥ 3, there are trees T ′
1 and T ′

2 with n nodes realizing this
bound; that is, with dRR(T

′
1, T

′
2) = 4n− 8.

Intermediate between the two-element generating set {x0, x1} and the infinite generating
set {x0, x1, . . .} are other finite generating sets of the form {x0, xi1 , . . . , xiL}, where we
arrange the indices of the (distinct) generators in increasing order. Analyzing the infinite
generating set corresponds to allowing all rotations along the right side of the tree. Finite
generating sets correspond to allowing finite collections of rotations at the root node and
other nodes along the right side of the tree.

Definition 3.3. Let S = {x0, xi1 , . . . , xiL} be a finite subset of the infinite generating set
for F and T1 and T2 be trees with the same number of leaves. We define dSRRA(T1, T2),
the restricted right-arm rotation distance with respect to S, as the minimal number of
rotations required to transform T1 to T2, where the rotations are only allowed at levels
0, i1, . . . , iL−1 and iL along the right side of the tree.

We will see below that unlike restricted rotation distance, restricted right-arm rotation
distance may not be defined between all pairs of trees with the same number of nodes.
We use the notation | · |S to denote the word length of an element of F with respect to the
generating set S. We now relate the restricted right-arm rotation distance dSRRA(T1, T2)
to |(T1, T2)|S .

We consider two trees T1 and T2 each with n nodes. The word length of the element
w = (T1, T2) ∈ F with respect to a generating set S is the length of the shortest expres-
sion for w in that generating set. However, when considering the corresponding rotations
to the tree pair diagram for w, we have no analogue of Fordham’s proof that a minimal
length representative in these generators can be constructed while maintaining a constant
number of nodes in each tree. Thus, it may be possible that a minimal length repre-
sentative for w = (T1, T2) ∈ F with respect to S includes some rotations which would
require the addition of carets to the trees and are thus not permitted. Therefore, we see
that the word length |(T1, T2)|S provides only a lower bound on the rotation distance
dSRRA(T1, T2), when this rotation distance is defined. If this word length corresponds to
a sequence of rotations in which the number of nodes remains constant at each inter-
mediate step, then we have computed the actual restricted right-arm rotation distance
between the two trees. These cases will be addressed below.

For example, we consider the trees shown in Figure 5. The desired transformation from
the top left tree T1 drawn in solid lines to the top right tree T2 drawn in solid lines would
be given by x1, a single right rotation at the right child of the root. But if the permitted
locations for rotation are only at the root (corresponding to the generator x±1

0 ) and the

right child of the right child of the root (corresponding to the generator x±1
2 ), it will

be impossible to accomplish the desired transformation without adding extra nodes, and
the corresponding restricted right-arm rotation distance is not defined between those two
trees.

If we are permitted to add a node to the leftmost leaf of each tree, as shown with
the dashed carets, to obtain the related problem of transforming the new tree T ′

1 into T ′
2
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−1

x

x

x
x

1

0
0

2

Figure 5. A right rotation at the right child of the root performed on
the reduced tree by x1 and on the partially reduced tree by x0x2x

−1
0 . The

trees T1 and T2 are the solid trees in the left and right respectively of the
top row, and the trees T ′

1 and T ′
2 are respectively the same trees with the

additional single dashed caret in each case.

(drawn including the dashed carets) then the transformation would be possible using only
the allowed rotations. The unreduced form of the top tree pair diagram (T ′

1, T
′
2) drawn

including the dashed caret is x0x2x
−1
0 which reduces to x1 in the usual manner in F , if

desired. If rotations are permitted at the root and right child of the root, the rotations
that transform T1 to T2 are exactly the same as those to perform the transformation
from T ′

1 to T ′
2 and the added dashed caret is simply carried along intact. However, if we

are only permitted to rotate at the root and right child of the right child of the root,
the added caret is essential in allowing that transformation, though it does take two
additional steps. We cannot transform T1 to T2 but we can easily transform T ′

1 to T ′
2

by rotating rightwards at the root, rightwards at the right child of the right child of the
root, and then leftwards at the root, as pictured.

We can describe exactly when a tree T1 can be transformed into T2 without adding nodes
with respect to a specified set of allowed rotations along the right-arm of the tree; that
is, exactly when the restricted right-arm rotation distance is defined. First, we consider
the case when the word in normal form associated to (T1, T2) is already reduced; that is,
when (T1, T2) is a reduced tree pair diagram.

Lemma 3.4. Let S = {x0, xi1 , . . . , xiL} be a generating set for F with 0 < i1 < i2 <

· · · < iL. We consider the corresponding restricted right-arm rotation distance dSRRA,
where rotations are allowed at nodes at levels 0, i1, . . . , iL on the right side of the tree.
Suppose T1 and T2 are finite rooted binary trees with the same number of nodes forming
a reduced tree pair diagram w = (T1, T2) ∈ F with unique normal form given by

xr1i1 x
r2
i2
· · · xrkik x

−sl
jl

· · · x−s2
j2

x−s1
j1

.



12 SEAN CLEARY AND JENNIFER TABACK

If x±1
t for 1 ≤ t ≤ i1−1 appears in this normal form, then the restricted right-arm rotation

distance dSRRA(T1, T2) is not defined. Conversely, if no x±1
t for 1 ≤ t ≤ i1 − 1 appears in

the unique normal form, then the restricted right-arm rotation distance dSRRA(T1, T2) is
defined.

When i1 = 1, it follows from Lemma 3.4 that dSRRA will always be defined. This includes
the special case of restricted rotation distance, when S = {x0, x1}.

Proof. We recall that the leaf exponent of the leaf numbered n in a tree is the length
of the maximal path of left edges from leaf n which does not reach the right side of the
tree. Observe that the leaf exponent that changes as a result of a rotation at the node
at level h on the right arm of the tree corresponds to the leftmost leaf in the left subtree
of the node where the rotation occurs.

First, we suppose that x±1
t for 1 ≤ t ≤ i1 − 1 appears in the unique normal form for

(T1, T2). So t appears as the leaf number of a left leaf of a caret in either in T1 or T2 or
possibly both. If the restricted right-arm rotation distance dSRRA(T1, T2) is defined, then
the sequence of rotations transforming T1 into T2 does not change the number of nodes
in the tree at any intermediate step and thus no leaves are added or removed during this
process. So there is no potential renumbering of leaves, as there may be when considering
equivalence classes of tree pairs in Thompson’s group F . We consider the leaf numbers
whose exponents can be affected by rotations at the permitted nodes. Rotations are
permitted at the root node and at levels ij along the right side of the tree. Rotations
at the root can affect only the exponent of leaf zero, as it will be the leftmost leaf in
the left subtree attached at the root. Other rotations can affect the exponents of leaves
which are the leftmost leaves of left subtrees of right nodes at levels i1 and lower. The
left subtree of the right node at level h will have leaves numbered at least h, so if t < i1,
then no rotation at level ij can affect the exponent of leaf t. So if there is a left leaf in
the range 1 ≤ t ≤ i1 − 1 present in T1, rotations at the root cannot affect its exponent,
and rotations at levels i1 and greater cannot affect its exponent.

If leaf t has different exponents in T1 and T2, since the allowed rotations cannot change
its exponent, T1 cannot be transformed into tree T2 by the allowed rotations. If leaf t
is present in both trees with the same exponent, then since w is in unique normal form,
the exponent of leaf t+ 1 must also be non-zero in at least one of the trees. Moreover,
leaves numbered t and t + 1 belong to the left subtree of the same node on the spine.
Thus none of the allowed rotations can affect the leaf exponent of leaf t+ 1 as well. We
iterate this argument with leaves t + 1 and t + 2. Thus, we see that if any x±1

t with
1 ≤ t ≤ i1 − 1 appears, then the two trees cannot be connected by any sequence of the
allowed rotations without the addition of extra nodes.

Conversely, if x±1
t for 1 ≤ t ≤ i1−1 do not appear in the normal form, then we can rotate

T1 rightwards at the root by application of an appropriate power of xk0 so that all of the
nontrivial subtrees then hang from the right arm of the tree at levels i1 and greater. In
Proposition 3.7 we show that the right-arm rotation distance is always defined between
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two trees with the same number of nodes. This allows us to finish the proof with the
following argument.

We now use x0, xij and conjugates of xij by powers of x0 to rotate the tree to an all-
right tree, just as in the infinite generating set, without adding any extra nodes. So we
can transform T1 to the all-right tree, and then from the all-right tree, we can again
use x0, xi1 and conjugates of xi1 by powers of x0 (and possibly other xij , if desired) to

transform the all-right tree to T2 without adding extra nodes. Thus, dSRRA(T1, T2) is
defined. There may be more efficient ways of accomplishing this transformation but it
is clear that there is at least one way of doing it without adding extra nodes, so the
restricted right-arm rotation distance is defined. �

To understand the case where (T1, T2) is an unreduced tree pair diagram, and thus
we do not obtain the unique normal for the element directly from the leaf exponents,
we introduce the notion of partial reduction. Partial reduction is similar to ordinary
reduction except that we do not want to remove left nodes common to both trees. Stated
algebraically, it means that if the normal form for the element contains instances of x0
and x−1

0 but not x±1
1 , we do not simplify the expression, as we do when xk and x−1

k

appear but not x±1
k+1 for k > 0. The presence of these additional left nodes may allow

us to perform rotations which would not be permitted otherwise without increasing the
number of carets in the trees. This phenomenon occurs in the tree pairs shown in Figure
5, where the restricted right-arm rotation distance where rotations are permitted at the
root and the right child of the right child of the root is defined between T ′

1 and T ′
2 but

not between T1 and T2.

Definition 3.5. A word w in F in normal form is partially reduced if it is of the form
xr1i1x

r2
i2
· · · xrkik x

−sl
jl

· · · x−s2
j2

x−s1
j1

with 0 ≤ i1 < · · · < ik and 0 ≤ j1 < · · · < jl, with rn and
sn all positive, and if we further require the partial reduction condition that for i > 0,
when both xi and x−1

i occur, so does at least one of xi+1 or x−1
i+1.

For any word w in (not necessarily unique) normal form, there will be a maximal length
word w′ satisfying the partial reduction condition which we can easily obtain using the
procedure described above.

The partial reduction allows us to prove the following lemma, which describes when one
given tree can be transformed into another with respect to a specified set of rotations,
when the initial tree pair diagram is unreduced. The proof is identical to that of Lemma
3.4.

Lemma 3.6. Let S = {x0, xi1 , . . . , xiL} be a generating set for F with 0 < i1 < i2 < · · · <
iL. We consider the corresponding restricted right-arm rotation distance dSRRA where
rotations are allowed at the root node and at right nodes of levels i1, . . . , iL. Suppose T1

and T2 are finite rooted binary trees with the same number of nodes forming a tree pair
diagram w = (T1, T2) ∈ F and that w has the partially reduced normal form of maximum
length given by the word

w′ = xr1i1 x
r2
i2
· · · xrkik x

−sl
jl

· · · x−s2
j2

x−s1
j1

.
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If x±1
t for 1 ≤ t ≤ i1−1 appears in this partially reduced normal form, then the restricted

right-arm rotation distance dSRRA(T1, T2) is not defined. Conversely, if no x±1
t for 1 ≤

t ≤ i1 − 1 appears in this partially reduced normal form, then the restricted right-arm
rotation distance dSRRA(T1, T2) is defined.

When rotations at all nodes along the right side of the tree are allowed, we obtain
the right-arm rotation distance dRA, understood by the methods of Culik and Wood
[8] and Pallo [12]. Culik and Wood considered general rotation distance but used only
rotations on the right side of the tree to show their upper bound of 2n − 2, while Pallo
intentionally restricts to only allow rotations on the right hand side of the tree. Pallo’s
situation is analogous to restricted rotation distance, which considers only the rotations
corresponding to the generators x0 and x1, because the word length once again yields
the exact rotation distance.

Proposition 3.7. Let I denote the standard infinite generating set for F , and let T1

and T2 be binary trees, each with n nodes. Then

dRA(T1, T2) = |(T1, T2)|I .

Proof. We will assume that the tree pair diagram (T1, T2) is reduced. If it is not, we form
the tree pair diagram (T ′

1, T
′
2) representing the same group element which is reduced.

The rotations necessary to transform T ′
1 into T ′

2 will also transform T1 into T2, since
no additional rotations are necessary to alter the nodes which cause T1 and T2 to be
unreduced. The nodes which were removed during the reduction are identical in both
trees and are carried along unchanged during the rotations which transform T ′

1 to T ′
2.

The leaf exponent method of associating the unique normal form to the tree pair diagram
described above shows that each tree provides one part of the normal form; in the pair
(T1, T2) the tree T1 corresponds to the terms with negative exponents and T2 to those
with positive exponents. We thus write the normal form as the product PN , where N

contains the generators with negative exponents, and P those with positive exponents.

We see that N is a word which rotates the tree T1 into the all-right tree without requiring
the addition of any nodes, and the subword P is a string of generators which rotates the
all-right tree into the tree T2.

Thus we see that a lower bound for right arm rotation distance is |(T1, T2)|I , and an
upper bound is given by combining the length of the strings P and N . It follows from
Lemma 2.1 that |(T1, T2)|I = |(T1, ∗)|I + |(T2, ∗)|I where ∗ is the all-right tree with n

nodes, proving the proposition. �

3.2. Bounds on restricted rotation distances. Now that we have described the
relationship between the different rotation distances and word lengths in F , we obtain
numerical bounds on these rotation distances as summarized in Table 1. We note that
word length of an element of F computed with respect to a generating set of the form
S given above has the potential to be much shorter than the word length of the same
element computed with respect to the generating set {x0, x1}. Thus we might expect
significantly smaller asymptotic upper bounds on restricted right-arm rotation distance
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than on restricted rotation distance. In fact, this is not the case, and the difference
between the upper bounds on the two rotation distances is at most a constant.

The goal of this section is to prove that the multiplicative constant of 4 in the upper
bound on restricted rotation distance cannot be improved upon when we allow additional
rotations along the right arm of the tree. Both of these rotation distances between two
trees with n nodes each, when defined, are bounded above by 4n minus a constant. This
constant depends upon the particular finite set of rotations permitted. These bounds are
shown to be sharp for restricted rotation distance in [5]. We show below that they are
asymptotically sharp for restricted right-arm rotation distance as well. While allowing
additional rotations may shorten the restricted right-arm rotation distance between cer-
tain pairs of trees, asymptotically the worst-case scenario differs from restricted rotation
distance only by an additive constant. One way to improve the multiplicative constant
of 4 is to allow rotation at an infinite collection of nodes along the right side of the tree,
in which case the multiplicative constant of the bound may decrease to 2.

The necessity of the constant 4 is shown in two steps. We first show that the restricted
right-arm rotation distance, when defined, is always bounded above by 4n−8, where n is
the number of nodes in either tree. We then show that there are words which approach
this bound to within an additive constant.

Proposition 3.8. Let S = {x0, xi1 , xi2 , . . . , xiL} be a generating set for F with 0 < i1 <

i2 < · · · < iL, and let dSRRA be the corresponding restricted right-arm rotation distance.
Let T1 and T2 be binary trees, each with n nodes with n ≥ 3, for which dSRRA(T1, T2) is
defined. Then

dSRRA(T1, T2) ≤ 4n− 8.

Proof. The case where i1 = 1 is already addressed by the analysis of ordinary rotation
distance, described in [5]. We consider the element w = (T1, T2) ∈ F , where T1 and T2

are trees for which the relevant restricted right-arm rotation distance dSRRA is defined,
and assume that i1 > 1.

Case 1: The tree pair diagram (T1, T2) is reduced.

In this case, we know that the normal form of w contains no generators x±1
t for 1 ≤ t ≤

i1− 1. In addition, this normal form can contain x0 or x−1
0 but not both. If both x0 and

x−1
0 were present in the normal form with no x±1

1 generator, then the normal form could

be reduced. We can assume by symmetry that the normal form for w contains x−k
0 but

no factors of x0.

Using the correspondence between the normal form and the leaf exponents in the trees
T1 and T2, we see that the leaves of both trees numbered from 1 through i1−1 are either
exposed right leaves of left nodes or exposed left leaves of right nodes. In T1, denote
the (possibly empty) subtrees of the left and right nodes by A1, A2, . . . , An, where the
smallest leaf number in A1 is i1. If A1 is empty, by ”smallest leaf number”, we mean
the number of the leaf attached to the spine of the tree in that position. Similarly, in T2

denote these subtrees by B1, B2, . . . , Bm, where the smallest leaf number in B1 is i1.
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1

R1 R2

A

A

1

A2

n Bn

B2

B1

S1 T2

A

A

1

A2

n Bn

B2

B

Figure 6. The tree pair diagrams for the words used to show that the
restricted right-arm rotation distance is bounded above by 4n.

Let w′ = wxk0 , so that the tree pair diagram (S1, T2) of w
′ has tree S1 containing a single

left node, namely the root node, and i1− 1 right nodes with exposed left leaves, followed
by right nodes having A1, . . . , An as their left subtrees. The pair (S1, T2) has the form
given in Figure 6.

We consider the element v ∈ F which has tree pair diagram (R1, R2), where R1 has a
single left node, namely the root node, and the left subtree of the right node at height
i is Ai. The tree R2 is defined analogously, using the subtrees Bi from the original tree
T2. Since restricted rotation distance is well defined for all trees with the same number
of nodes, we apply Theorem 3.2 to obtain the bound dRR(R1, R2) ≤ 4(n− (i1 − 1))− 8.
This restricted rotation distance is realized by a string α of the generators {x±1

0 , x±1
1 }.

We define a string of generators α′ by replacing each instance of x±1
1 in α with x±1

i1
.

Then this string of generators exactly produces the tree pair diagram (S1, T2). Since
the number of nodes in each tree remains constant as each generator from α is applied
to create (R1, R2), the same is true as we multiply the generators in α′ to create w′ =
(S1, T2).

Thus the restricted right-arm rotation distance with respect to T = {x0, xi1} is bounded
as follows:

dTRRA(S1, T2) ≤ 4(n− (i1 − 1))− 8.

Now we note that w = w′x−k
0 , and since there were initially k+1 left nodes in the tree T1,

the number of nodes in each tree remains constant during these successive multiplications
by x−1

0 . Thus the string α′x−k
0 realizes the restricted rotation distance between the trees

T1 and T2.

If k ≤ i1 − 1, then the left nodes which are changed to right nodes under multiplication
by x−k

0 do not appear in R1 and R2, and so are not represented in the upper bound given
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above. Thus, when the rotation distance is increased by k, we trivially extend the bound
to

dTRRA(T1, T2) ≤ 4n− 8.

Since adding extra generators to the generating set, or equivalently allowing rotations
at additional nodes, can only decrease the rotation distance, the upper bound still holds
when we consider the entire generating set S.

If k ≥ i1, then the left nodes which are changed to right nodes by these multiplications
by x−1

0 are of two types: those with exposed left leaves numbered from 1 to i1 − 1, and
those with left subtrees of the form Ai. The first type of right node is not counted in
the upper bound given above, and thus we increase the number of nodes in the bound
by i1 − 1 to (more than) account for the additional generators.

The right nodes of the second type, with left subtrees of the form Ai, are already counted
in the bound given above. However, we recall that the word α′ which realizes the
restricted right-arm rotation distance between S1 and T2, came from the word α in
{x±1

0 , x±1
1 }. We know from Fordham’s method of calculating word length with respect

to the generating set {x0, x1} directly from the tree pair diagram that each pair of nodes
with the same infix number in each tree contributes a certain number of generators to this
word length. Fordham calls this the weight of the pair of nodes. We see from Fordham’s
table of weights [9] that any pair of nodes in which one node is a right node has a weight
of at most three. So using an extra generator of the form x−1

0 to transform this right
node into a left node means that these nodes contribute at most four generators each
to the length of the word realizing the restricted right-arm rotation distance between T1

and T2. We have thus shown the existence of the upper bound

dTRRA(T1, T2) ≤ 4n− 8.

Since rotation distance can only decrease when additional rotations are permitted, this
extends immediately to show

dSRRA(T1, T2) ≤ 4n− 8.

Case 2: The tree pair diagram (T1, T2) is not reduced.

In this case, since dSRRA(T1, T2) is defined, we know from Lemma 3.6 that the unreduced
tree pair diagram (T1, T2) yields a word α which is partially reduced and represents
w. We obtain α by considering the unreduced normal form arising from (T1, T2) and
applying the usual reduction rules but without reducing instances of x0 and x−1

0 with

no x±1
1 . We may also be able to partially reduce (T1, T2) to correspond to this partially

reduced normal form for w; in this case the number of nodes in the tree pair diagram
may reduce to n′ < n. The proof of this case is now identical to that of Case 1. This
produces an upper bound of 4n′−8 < 4n−8 on the restricted right-arm rotation distance
between the two trees. �

We now show that the multiplicative constant of 4 is necessary for the above inequality.
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  n

m+1

m+2

m+1

m+2

m+3

0

1

m

0

1

n−3 n−2

n−1
  n

n−2 n−1

Figure 7. The tree pair diagram (T1, T2) for words of the form
xm+2xm+3 · · · xn−2x

−1
n−3x

−1
n−4 · · · x

−1
m+1.

Theorem 3.9. Let S = {x0, xi1 , . . . , xiL}. Then there exist trees T1 and T2, each with
n nodes, so that dSRRA(T1, T2) is defined, and with

dSRRA(T1, T2) ≥ 4n− 4iL − 4.

The generating set S used in Theorem 3.9 corresponds to a series of rotations along the
right side of the tree from levels 0 to iL but does not necessarily include all rotations at
levels within this range. We now enlarge our generating set to correspond to all rotations
at levels 0 to iL, and work with this set S ′ in Theorem 3.10. It will be enough to use
this larger set of generators and show that dS

′

RRA(T1, T2) ≥ 4n− 4iL − 4. Thus we prove
the following theorem.

Theorem 3.10. Let S ′ = {x0, x1, x2, . . . , xiL}, with m = iL. Then there exist trees T1

and T2, each with n nodes, so that dS
′

RRA(T1, T2) is defined, and with

dS
′

RRA(T1, T2) ≥ 4n − 4m− 4.

The elements we will use to prove this theorem have normal form

xm+2xm+3 · · · xn−2x
−1
n−3x

−1
n−4 · · · x

−1
m+1

and tree pair diagram which we denote (T1, T2). These elements are shown in Figure 7.

Fordham’s method for computing exact word length is only valid for the generating set
{x0, x1}, so we bound the lengths of these elements indirectly in a series of lemmas which
analyze how many generators are needed to change a “deeply buried” part of the tree.

We write [i, i + 1] if leaves i and i + 1 form a sibling pair. Performing a rotation cor-
responding to the generator xn on a tree T is equivalent to taking the product of xn
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(iii)

a b

c

a b b

cC

A

(i) (ii)

Figure 8. Instances where right rotation at node N along the right side
of the tree creates or destroys sibling pairs in the tree T . Capital let-
ters represent nonempty subtrees of T , and lower case letters denote leaf
numbers.

N

a

b c

a

b b cC

A

(i) (ii) (iii)

N N

Figure 9. Instances where left rotation at node N along the right side
of the tree creates or destroys sibling pairs in the tree T . Capital let-
ters represent nonempty subtrees of T , and lower case letters denote leaf
numbers.

with the tree pair diagram (T, ∗), where ∗ is the tree consisting only of the root node
and a series of right nodes. By analyzing the effect of a rotation at a right node on a
tree T , we see that there are only three configurations of T which allow a sibling pair to
be created or destroyed. These are presented in Figure 8, where capital letters refer to
nonempty subtrees of T and lower case letters denote leaf numbers. Right rotation at
the appropriate node N along the right side of the tree has the following effect on the
sibling pairs.

(i) The pair [a, b] is destroyed and the pair [b, c] is created.
(ii) The pair [a, b] is destroyed.
(iii) The pair [b, c] is created.

We can similarly consider left rotation at the node N , in which case we refer to Figure
9. Left rotation at node N along the right side of the tree has the following effect on the
sibling pairs.

(i) The pair [a, b] is created and the pair [b, c] is destroyed.
(ii) The pair [a, b] is created.
(iii) The pair [b, c] is destroyed.

From these observations, we can see immediately at which nodes it is possible to create
and destroy sibling pairs with a set of rotations.
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Lemma 3.11. Suppose a tree T ′ is obtained from a tree T by applying a right rotation
at a node N at level n on the right side of T .

(1) If leaves m and m+1 are siblings in T and are not siblings in T ′, then leaves m

and m+ 1 are the leaves of an exposed node whose parent is node N .
(2) If we have the sibling pair [m,m+1] in T ′ but not in T , then [m,m+1] must be

the rightmost node in T ′ and m must be a leaf in T whose parent is the node at
level n in T .

Similarly, the opposite conditions hold for left rotations.

We note that when N is the root node, the only sibling pairs that might be affected by
rotation at N consist of the first two and the last two leaves in the tree.

When we consider the trees T1 and T2 in Figure 7 corresponding to the reduced tree pair
diagram representing the element xm+2xm+3 · · · xn−2x

−1
n−3x

−1
n−4 · · · x

−1
m+1, we see that in

T1, leaves n− 3 and n− 2 are siblings and in T2, leaves n− 2 and n− 1 are siblings.

Now we consider the minimal number of rotations needed to change the sibling pairings
from [n−3, n−2] to [n−2, n−1], expressed as a word w = g1g2 · · · gl, where each gi ∈ S ′.
We will need to first destroy the sibling pair [n − 3, n − 2] and subsequently create the
sibling pair [n−2, n−1]. The exposed nodes with siblings [n−3, n−2] and [n−2, n−1]
are “deeply buried” in the sense that many rotations are required to affect those nodes
and thus those leaf pairings. We measure this depth more precisely with the following
definition.

Definition 3.12. Let c be an exposed caret, and αc the minimal path from the node of
c to the spine of the tree. The node which is the endpoint of αc lying on the spine of the
tree is called the spinal ancestor of c.

Define G(c) = (r, s) where r is the number of edges in the path αc and s is the level in
the tree of the spinal ancestor of c.

Note that the spinal ancestor of c can be either a left or right caret. For example, in the
tree T1 for w given in Figure 7, we consider c as the caret with exposed leaves [n−3, n−2].
The length of the path αc is n−m− 3, so G(c) = (n −m− 3,m+ 1). If c′ is the caret
in T2 with exposed leaves [n− 2, n − 1], then G(c) = (n−m− 3,m+ 2).

In Table 2 below, we summarize the changes in G(c) = (r, s) when a single rotation at
level k > 0 is performed on the right arm of the tree containing the exposed caret c. We
label each non-spinal node along the path αc, beginning with the one closest to the spine,
as follows. We give the node the label R if it belongs to a caret which is the right child
of its parent, and L if that node belongs to a caret which is the left child of its parent.
If the first spinal ancestor of c is on the right side of the tree, then αc must begin with
the label L. Analogously, if the first spinal ancestor of c is on the left side of the tree,
then αc must begin with the label R.

The change in G(c) under a single rotation is governed by two factors:
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(1) the relative positions of the levels k and s, and
(2) the first two labels along the path αc.

The following tables summarize the changes in G(c) = (r, s) when different rotations are
performed at level k along the right side of the tree, so we are assuming that the spinal
ancestor of c lies on the right arm of the tree. If the spinal ancestor of c lies on the left
arm of the tree, then G(c) is unaffected by a rotation along the right arm of the tree.

Direction Initial labels Relative position Change in
of Rotation of αc of k and s G(c) = (r, s)

Left rotation LL or LR k < s− 1 (r, s − 1)
Right rotation LL or LR k < s− 1 (r, s + 1)

Left rotation LL or LR k = s− 1 (r + 1, s − 1)
Right rotation LL or LR k = s− 1 (r, s + 1)

Left rotation LL or LR k = s (r + 1, s)
Right rotation LL k = s (r − 1, s)
Right rotation LR k = s (r − 1, s + 1)

Left rotation LL or LR k > s (r, s)
Right rotation LL or LR k > s (r, s)

Table 2. Change in G(c) = (r, s) when a single rotation is performed at
level k along the right arm of the tree, and the spinal ancestor of c is on
the right arm of the tree.

To give a lower bound on the restricted right-arm distance between the trees T1 and
T2 which form the tree pair diagram for w, we consider the sibling pairings involving
leaf n − 2. Leaf n − 2 is paired with leaf n − 3 in T1 and paired with leaf n − 1 in T2.
In the following lemmas we bound the minimal number of rotations necessary to split
these sibling pairs. Combined, these estimates yield the desired lower bound. The main
tool is the ordered pair G(c), which allows us to track the position of the exposed caret
containing leaf n− 2 relative to the right arm of the tree.

Lemma 3.13. Let w = (T1, T2) ∈ F have normal form

xm+2xm+3 · · · xn−2x
−1
n−3x

−1
n−4 · · · x

−1
m+1

where n > m + 4. The tree T ′ resulting from the application of at most 2n − 2m − 3
rotations at locations at levels 0 to m along the right side of the tree to T1 will contain
the sibling pair [n− 3, n − 2].
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Proof. We note that by Lemma 3.11, sibling pairs can be destroyed by a single rotation
only when they are connected by one left edge to a node on the right side of the tree at
level m or less, or are the leaves of the rightmost caret in the tree. The exposed caret c
in T1 with leaves n− 3 and n− 2 cannot be moved to be the rightmost caret of the tree,
as all rotations preserve the natural infix order on the carets.

Thus, until the caret c is connected by a single left edge to the right side of the tree at
level at most m, and the correct rotation is performed to separate them, leaves n−3 and
n− 2 will remain a sibling pair. We use the ordered pair G(c) to monitor the position of
c relative to the right arm of the tree while performing a series of rotations. The leaves
n−3 and n−2 will remain sibling pairs until G(c) = (1, l) for some l ≤ m, when a single
rotation can be performed to separate these leaves.

We consider the sequence of trees S0 = T1, S1, S2, . . . , St resulting from performing a
series of t rotations corresponding to a sequence of t generators g1g2 · · · gt. Each Si is the
result of applying gi to Si−1. We trace the images of the caret c through this sequence
and denote its image in Si by ci. While the exposed leaves of each ci have the same leaf
numbers in Si, the entries in G(ci) may change as a result of each rotation. The possible
changes in G(ci) are summarized in Table 2.

We note that it is possible to move the caret c so that its spinal ancestor is on the left
arm of the tree. Since rotations are not allowed along the left arm of the tree, caret c

must be returned to a subtree of a right node before the sibling pair [n − 3, n − 2] can
be split. This will not happen in any minimal length transformation.

We know that initially, G(c) = (n−m− 3,m + 1), and the sibling pair [n − 3, n − 2] is
not destroyed until after G(ci) = (1, l), for some appropriate l ≤ m. The path αc has
labels LRRR · · ·R. These labels remain unchanged as rotations are performed along the
right arm of the tree. As the length of the path αci is decreased, labels are removed
sequentially from the beginning of this list, but the remaining labels are never changed
by rotations along the right arm of the tree.

We see from Table 2 that the rotations which reduce the first coordinate of G(ci) fall
into two types.

(1) Rotations which decrease the first coordinate and increase the second.
(2) Rotations which decrease the first coordinate and leave the second unchanged.

These can only happen when the initial two labels of αci are LL.

Along the initial path αc, there are no adjacent left labels. To create such a pair of
labels, in order to perform a reduction of the first coordinate of G(ci) but leave the
second coordinate unchanged, requires the creation of at least one additional caret with
label L. While this is easily accomplished, its creation increases the first coordinate of
G(ci). The resulting rotation then decreases this coordinate with no net change in G(ci).
So we see that there will never be any rotations of this second type in a minimal sequence
of rotations that splits the sibling pair [n− 3, n − 2] in T1.



BOUNDING RIGHT-ARM ROTATION DISTANCES 23

To reduce the first coordinate of G(c) = (n −m − 3,m + 1) to 1, we will need at least
n − m − 2 rotations, all of the first type listed above. Each reduction will increase the
second coordinate of G(c) by one. We will need at least n−m− 2 additional rotations
to reduce the second coordinate back to its starting value, without changing the first
coordinate. We then must perform at least one additional rotation to decrease the
second coordinate to m before the sibling pair in question can be split. This gives a
minimum of 2n−2m−3 rotations before the sibling pair [n−1, n] can be destroyed. �

We make an analogous argument in the lemma below to bound the minimal number of
rotations necessary to split the sibling pair [n− 2, n− 1] in the tree T2.

Lemma 3.14. Let w = (T1, T2) ∈ F have normal form

xm+2xm+3 · · · xn−2x
−1
n−3x

−1
n−2 · · · x

−1
m+1

where n > m + 4. The tree T ′ resulting from the application of at most 2n − 2m − 2
rotations at locations at levels 0 to m along the right side of the tree to T2 will contain
the sibling pair [n− 2, n − 1].

Proof. We note that in this case, when c is the caret with exposed leaves numbered n

and n + 1, we have G(c) = (n −m − 3,m + 2) and to reduce G(c) to (0, l) with l ≤ m

will take at least (n −m − 2) + (n −m − 2) + 2 = 2n − 2m − 2 rotations by the same
analysis as in Lemma 3.13. �

We combine these lemmas to prove Theorem 3.10.

Proof of Theorem 3.10. We consider the reduced tree pair diagram (T1, T2) corresponding
to the element w = xm+2xm+3 · · · xn−2x

−1
n−3x

−1
n−2 · · · x

−1
m+1 ∈ F , as in the lemmas above.

If the restricted right-arm rotation distance between these two trees is d, then we consider
the sequence of trees S0 = T1, S1, S2, . . . , Sd = T2 resulting from performing that series
of d rotations to T1 to get T2. Lemma 3.13 shows that any application of 2n − 2m − 3
allowed rotations to T1 will still result in a tree with leaves n− 3 and n− 2 still paired,
so in trees Si with 0 ≤ i ≤ 2n − 2m − 3 leaf n − 2 must be paired with n − 3. We
consider the tail end of that sequence, and find that Lemma 3.14 shows that in trees Si

with d− (2n− 2m− 2) ≤ i ≤ d leaf n− 2 must be paired with n− 1. Since it will take at
least one additional rotation to change the pairing of leaf n− 2 from n− 3 to n− 1, the
restricted right arm rotation distance between the two trees is at least 4n− 4m− 4. �

Theorem 3.10 gives a family of pairs of trees with n nodes satisfying a lower bound on
restricted right-arm rotation distance with respect to a generating set S ′ which includes
all generators from x0 to xm. Restricting the generating set to a subset S of S ′ which
includes x0 can only increase the restricted right-arm rotation distance between two trees,
or cause it to be undefined. In the case of the words used in the proof of Theorem 3.10,
it follows from Lemma 3.6 that the restricted right-arm rotation distance will still be
defined when the generating set is further restricted. This follows because the smallest
index in the normal form of the words used exceeds the highest level along the right arm
of the tree where rotation is allowed. Thus we have proven Theorem 3.9 as well.



24 SEAN CLEARY AND JENNIFER TABACK

2

0

n−3

n

0

n−2

n

1

2

n−2

n−1

1

n−1

Figure 10. The tree pair diagram for words of the form
x0x1x2x3 · · · xn−2x

−1
n−3x

−1
n−4 · · · x

−1
1 x−2

0 , with n nodes and length 2n − 2
with respect to the infinite generating set.

4. Bounding right-arm rotation distance

The original arguments of Culik and Wood [8] which give a bound on ordinary rotation
distance apply to right-arm rotation distance as well. Their argument is that any binary
tree T with n nodes can be transformed to or from the all-right tree with n nodes by
no more than n − 1 rotations, all of which can be chosen to lie on the right arm of the
tree. Thus, the right-arm rotation distance between two trees T1 and T2 each with n

nodes is no more than 2n−2, as we can transform T1 to the all-right tree and from there
transform it to T2. While this bound is not optimal for the original rotation distance,
we show that it is optimal for right-arm rotation distance.

Theorem 4.1. For each n ≥ 3, there are rooted binary trees T1 and T2 each with n nodes
so that the right-arm rotation distance between them satisfies dRA(T1, T2) = 2n− 2.

Proof. To prove this we consider the elements of F with normal form

x0x1x2x3 · · · xn−2x
−1
n−3x

−1
n−4 · · · x

−1
1 x−2

0

pictured in Figure 10, which have n nodes and have word length 2n − 2 with respect
to the infinite generating set for F . It follows from Proposition 3.7 that this is also the
right-arm rotation distance between the two trees. �

5. Left-arm and spinal rotation distances

We now consider rotation distances which include rotations at nodes along the left side
of the tree, instead of or in addition to, nodes along the right side of the tree. It is clear
by symmetry that restricted left-arm rotation distance, which allows rotations only at
a finite collection of nodes on the left side of the tree and the root node, will satisfy
the same bounds as restricted right-arm rotation distance. Similarly, left-arm rotation
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distance, which allows rotations at any node along the left arm of the tree, will satisfy
the sharp upper bound of 2n− 2 on trees with n nodes, for n ≥ 3.

Finally, we consider a rotation distance which allows rotations at the root node, a finite
nonempty collection of nodes on the right side of the tree, and at a finite nonempty
collection of nodes on the left side of the tree. Since all nodes where rotations are
permitted lie on the spine of the tree, we call such a rotation distance a restricted spinal
rotation distance. In terms of Thompson’s group F , left rotation at level n on the left
arm of the tree can be expressed as yn = xn0x1x

−n−1
0 . So there is an extended infinite

generating set for F consisting of all xn and yn which corresponds to allowing rotations
at any location on the spine. Here, we consider finite subsets of this enlarged generating
set. Again, if we do not include x0 in the generating set we consider, we generate either
a subgroup isomorphic to F or its direct square, so we restrict to the case where x0 is
included in the generating set.

Definition 5.1. Let S = {x0, xi1 , . . . , xiL , yj1 , . . . , yjl} with i1 < i2 · · · < iL and j1 <

j2 · · · < jl be a finite subset of the extended infinite generating set for F and T1 and T2

be trees with the same number of leaves. We define dSRS(T1, T2), the restricted spinal
rotation distance with respect to S, as the minimal number of rotations required to
transform T1 to T2, where the rotations are only allowed at levels 0, i1, . . . , iL−1 and iL
along the right side of the tree and at levels j1, . . . , jl on the left side of the tree.

Again, though allowing rotations at finitely many locations on both the right and left
arms of the tree may reduce the rotation distance between some pairs of trees, we prove
that the multiplicative constant of 4 in the upper bound cannot be decreased.

We first show that spinal rotation distance satisfies the same upper bound as restricted
right-arm rotation distance.

Theorem 5.2. Let S = {x0, xi1 , . . . , xiL , yj1 , . . . , yjl} with i1 < i2 · · · < iL and j1 <

j2 · · · < jl, where xi is a generator of F and yn = xn0x1x
−n−1
0 , and let dSRS be the

corresponding spinal rotation distance. Let T1 and T2 be binary trees, each with n carets
with n ≥ 3, for which dSRS(T1, T2) is defined. Then

dSRS(T1, T2) ≤ 4n− 8.

Proof. Let S ′ = {x0, xi1 , . . . , xiL}, which is also a generating set for F in which each
generator corresponds to a rotation along the right arm of the tree. Since adding addi-
tional elements to a generating set can only decrease the corresponding restricted rota-
tion distance, we see immediately that dSRS(T1, T2) ≤ dS

′

RS(T1, T2). Since dS
′

RS(T1, T2) =

dS
′

RRA(T1, T2), and Proposition 3.8 proves that dS
′

RRA(T1, T2) ≤ 4n − 8, the theorem fol-
lows. �

Now we show that the multiplicative coefficient of 4 is optimal in the same sense as with
restricted right-arm rotation distance. For these examples, to avoid possible repeated
excessive reductions in G(c), we take words which have an exposed caret connected to
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I+1

I+2

I+3

I+1

m−1 m m m+1

I+2

I+3

I

Figure 11. An example from the family of elements of the form w =
(T1, T2) = xI+2x

2
I+3x

2
I+4 · · · x

2
mx−2

m−1x
−2
m−2 · · · x

−2
I+2x

−1
I+1 which are used to

show that the multiplicative constant of 4 in the upper bound on restricted
spinal rotation distance is optimal.

the right-hand side of the tree with a path which alternates between branching right and
left.

Theorem 5.3. Let S = {x0, xi1 , . . . , xiL , yj1 , . . . , yjl} with i1 < i2 · · · < iL and j1 <

j2 · · · < jl, where xi is a generator of F and yn = xn0x1x
−n−1
0 . Then there exist trees T1

and T2 with n nodes where n > max{iL, jl} for which dSRS(T1, T2) is defined that satisfy

dSRS(T1, T2) ≥ 4n − 4max{iL, jl} − 12.

We again introduce a particular family of elements w ∈ F , represented by reduced tree
pair diagrams (T1, T2), which requires this lower bound on the restricted spinal rotation
distance between T1 and T2. As in the proof of Theorem 3.10, we use the ordered pair
G(c) as the main tool of the proof. Since rotations are now permitted along the left arm
of the tree, we must note the changes in G(c) caused by a rotation along the left arm of
the tree. As before, c is an exposed caret, αc is the minimal path from the node of c to
the spinal ancestor of c, each non-spinal node along αc is given a label of R or L, and
G(c) = (r, s). If the spinal ancestor of c lies on the left arm of the tree, then the initial
label along αc must be R.

The following table summarizes the changes in G(c) when a single rotation is performed
along the left arm of the tree. If the spinal ancestor of c is on the right arm of the tree,
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and a rotation is performed on the left arm of the tree, at level at least one, then G(c)
remains unchanged.

Direction Initial labels Relative position Change in
of Rotation of αc of k and s G(c) = (r, s)

Left rotation RL or RR k < s− 1 (r, s + 1)
Right rotation RL or RR k < s− 1 (r, s − 1)

Left rotation RL or RR k = s− 1 (r, s + 1)
Right rotation RL or RR k = s− 1 (r + 1, s − 1)

Left rotation RL k = s (r − 1, s + 1)
Left rotation RR k = s (r − 1, s)
Right rotation RL or RR k = s (r + 1, s)

Left rotation RL or RR k > s (r, s)
Right rotation RL or RR k > s (r, s)

Table 3. Change in G(c) = (r, s) when a single rotation is performed at
level k ≥ 1 along the left arm of the tree, and the spinal ancestor of c is
on the left arm of the tree.

Rotation at the root caret, corresponding to multiplication by the generator x±1
0 can

affect G(c) in one of two ways.

(1) If G(c) = (r, 1), then this rotation may change the arm of the tree on which the
spinal ancestor of c lies. If this is the case, then the first label along the path αc

will change from L to R or vice versa and G(c) will remain (r, 1).
(2) If G(c) 6= (r, 1) then the r coordinate remains unchanged, and the s coordinate

is changed by ±1, depending on the direction of the rotation.

Other rotations which do not add carets to the path αc will not change the labels along
αc. Rotations which decrease the length of αc can only remove the initial label along the
path.

The proof of Theorem 5.3 uses methods analogous to the proofs of Lemmas 3.13 and
3.14 and Theorems 3.9 and 3.10.

Proof of Theorem 5.3. First, we can assume without loss of generality that iL is larger
than jl, since if not, we can interchange the left and right sets of generators by taking
reflections of the trees considered. Given the set S, we define the level furthest from the
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root on the right side at which a rotation can take place as I = iL for convenience and
consider the elements with m > I of the form

w = (T1, T2) = xI+2x
2
I+3x

2
I+4 · · · x

2
mx−2

m−1x
−2
m−2 · · · x

−2
I+2x

−1
I+1.

The reduced tree pair diagram (T1, T2) for w is pictured in Figure 11. Each Ti contains
n = 2m − I carets, with a deeply buried exposed caret in each tree connected to the
right-hand side of the tree via a zigzag path. In T1, we label the caret with the sibling
pair [m−1,m] as c and in T2, we label caret with the sibling pair [m,m+1] as d. We see
that the lengths of αc and αd are both 2m− 2I − 3, and have labels LRLRLRL · · ·RL.
We begin with G(c) = (2m− 2I − 3, I + 1) and G(d) = (2m− 2I − 3, I +2) and to split
each sibling pair, we need to reduce both G(c) and G(d) to (1, l) for some appropriate l.
As in the right-arm case described above, when counting the needed rotations, we count
from the beginning of the transformation to determine the number of rotations needed to
separate the sibling pair in caret c and from the end of the transformation to determine
the number of rotations to separate the pair in caret d.

As in the proof of Theorem 3.10, there are two ways that a single rotation can decrease
the r coordinate of G(c), which we extract from Tables 2 and 3.

(1) Rotations which decrease the first coordinate and increase the second.
(2) Rotations which decrease the first coordinate and leave the second unchanged.

These can only happen when the spinal ancestor of c is on the right arm of the
tree and initial two labels of αci are LL or when the spinal ancestor of c is on
the left arm of the tree and initial two labels of αci are RR. We will call these
bonus rotations.

We note that a single rotation which does not increase the r coordinate either leaves
the labels along αc unchanged, or removes the initial label. There is no way for a single
rotation to change a label in the middle of the path. Rotation at the root may change
the initial label from R to L or vice versa, or leave all labels unchanged.

We first enlarge our generating set to S ′ = {x0, x1, x2, · · · xiL , y1, y2, · · · , yjl}, so that
rotations are permitted at all nodes at levels zero through iL along the right side of the
tree, and at all levels one through jl along the left side of the tree. As with Theorems
3.9 and 3.10, if we can produce trees T1 and T2 which require the desired lower bound
on the spinal rotation distance dS

′

RS(T1, T2), then the same bound holds with respect to
S, since the removal of elements from the generating set can only increase the spinal
rotation distance or cause it to be undefined. Since the elements in our example do not
have any generators in their normal forms of index less than iL, Lemma 3.6 guarantees
that the relevant restricted right-arm rotation distance using just the rotations on the
right side of the tree is defined. Thus the restricted spinal rotation distance using the
larger set of rotations corresponding to the entire generating set S will also be defined.

We now give a lower bound on the minimal number of rotations necessary to separate the
sibling pair [m−1,m] in T1, which we can equivalently view as multiplication by a minimal
sequence of generators. We recall that we must reduce G(c) from (2m − 2I − 3, I + 1),
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where I = iL, to (1, l) for some level l at which rotation is allowed on the correct arm of
the tree. Every rotation, whether at a node on the right or left arm of the tree, which
decreases the r coordinate of G(c), with the exception of bonus rotations, also increases
the s coordinate. The s coordinate of G(c) begins larger than iL (and thus jl as well),
and so each non-bonus rotation which reduces the r coordinate will require an additional
rotation to counteract the corresponding increase in the s coordinate.

We now consider the role of bonus rotations that can be used in a minimal length
sequence of rotations. We note that the labels for αc begin with LRLRLRL · · · . There
is no natural occurrence in the sequence of labels of RR or LL. In order to create an RR

or LL, we can use an application of at least one x±1
0 which will change the initial label

but will not change G(c). Thus each such bonus rotation would need to be accompanied
by an x±1

0 which does not change G(c).

Let β be a minimal string of rotations which reduces G(c) = (2m−2I−3, I+1) to (1, l).
We divide the rotations in β into three groups:

(1) p1 non-bonus rotations which change the coordinates of G(c),
(2) p2 bonus rotations which change the coordinates of G(c), and
(3) p3 rotations which do not change G(c).

The argument above showing that there is at least one x±1
0 accompanying each bonus

rotation shows that p3 ≥ p2. Totalling the effects of these p rotations, we find that to
reduce G(c) = (2m − 2I − 3, I + 1) to G(c) = (1, l) with l ≤ I will require at least
2(2m− 2I − 4) + 1 = 2n− 2I − 7 total rotations, since n = 2m− I. Thus, as in Lemma
3.13, any sequence of at most 2n − 2I − 7 rotations applied to tree T1 will have leaves
m− 1 and m as sibling pairs.

Similarly, working backward and considering tree T2, we need to change the G(d) =
(2m− 2I − 3, I + 2) to (1, l) with l ≤ I, to be able to affect the sibling pair [m,m+ 1].
A similar calculation shows that any sequence of at most 2n − 2I − 6 rotations applied
to the tree T2 will have leaves m and m+ 1 as sibling pairs.

So we see that in the sequence of trees S0 = T1, S1, S2, . . . , Sd = T2 exhibiting the
transformation of T1 into T2 via rotation, the sibling pair [m− 1,m] must be present in
the first 2n − 2I − 7 trees and the sibling pair [m,m + 1] must be present in the last
2n− 2I − 6 trees. Including the rotation to change the sibling pairing of leaf m, we see
that the spinal rotation distance must be at least 4n− 4I − 12.

Note that the number of nodes in these trees n is constructed to be 2m−I, so depending
upon whether or not I is even or odd, the number of nodes in the trees constructed using
these examples for increasing m will either always be even or always be odd. To obtain
examples for all parity n larger than I, we can repeat the argument above on examples
with one additional caret, with normal forms

w′ = (T1, T2) = xI+2x
2
I+3x

2
I+4 · · · x

2
mxm+1x

−1
m x−2

m−1x
−2
m−2 · · · x

−2
I+2x

−1
I+1

and find that the sibling pair [m,m + 1] must be present in the first 2n − 2I − 5 steps
and that the sibling pair [m+1,m+ 2] must be present in the last 2n− 2I − 6 steps, so
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in those cases the distance between the two trees must be at least 4n − 4I − 10. Thus,
we have that the bound holds for all n larger than I and thus the therorem. �
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