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FINITELY GENERATED INFINITE SIMPLE GROUPS OF

INFINITE COMMUTATOR WIDTH

ALEXEY MURANOV

Abstract. It is shown that there exists a finitely generated infinite
simple group of infinite commutator width, and that the commutator
width of a finitely generated infinite boundedly simple group can be
arbitrarily large. Besides, such groups can be constructed with decidable
word and conjugacy problems.
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1. Introduction

In 1951, Oystein Ore (see [Ore51]) conjectured that all elements in every
non-abelian finite simple group are commutators. In terms of commutator

width, the question is whether the commutator width of every non-abelian
finite simple group is 1. This question still remains open. However, using
the Classification of Finite Simple Groups, it was shown by John Wilson
that there exists a (not found explicitly) common upper bound on the com-
mutator widths of all finite simple groups (see [Wil96]).
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2 ALEXEY MURANOV

In 1977, Martin Isaacs (see [Isa77]) noted that no simple group, finite or
infinite, was known to have commutator width greater than 1. In 1999, Va-
lerij Bardakov posed the following question (see Problem 14.13 in [MK99]):

Does there exist a (finitely presented) simple group of infinite
commutator width?

Simple groups of infinite commutator width, realised as groups of certain
surface diffeomorphisms, appeared in [BG92, GG04] in 1992. The infinity
of the commutator width is established there by constructing nontrivial ho-

mogeneous quasi-morphisms. However, the question of existence of finitely
generated simple groups of commutator width greater than 1 seems to have
been open until now.

In this paper it is shown that presentations (by generators and defining
relations) of finitely generated infinite simple groups of infinite commutator
width, as well as of large finite commutator width, can be constructed using
methods of small-cancellation theory. This approach is rather flexible and
can yield groups with various additional properties.1

Definition 1. The commutator of two group elements x and y, denoted
[x, y], is xyx−1y−1. The commutator length of an element g of the derived
subgroup of a group G, denoted clG(g), is the minimal n such that there
exist elements x1, . . . , xn, y1, . . . , yn in G such that g = [x1, y1] . . . [xn, yn].
The commutator length of the identity element is 0. The commutator width

of a group G, denoted cw(G), is the maximum of the commutator lengths
of the elements of its derived subgroup [G,G].

Definition 2. The conjugate of a group element g by a group element h,
denoted gh, is hgh−1. A nontrivial group G is called n-boundedly simple if
for every two nontrivial elements g, h ∈ G, the element h is the product of
n or fewer conjugates of g±1, i.e.,

(∃m ≤ n) (∃σ1, . . . , σm ∈ {±1}) (∃x1, . . . , xm ∈ G) (g = (hσ1)x1 . . . (hσm)xm).

A group G is called boundedly simple if it is n-boundedly simple for some
natural n.

Every boundedly simple group is simple, but the converse is not generally
true (e.g., for an infinite alternating group).

Remark 3. A group is boundedly simple if and only if each of its ultrapowers
is simple. If a group is n-boundedly simple, then all its ultrapowers are n-
boundedly simple.

Theorem 4. For every natural n, there exists a torsion-free 2-generated
simple group G with a rank-2 free subgroup H such that :

(1) for every g ∈ G and every x ∈ G \ {1}, there exist y1, . . . , y2n+2 in

G such that g = xy1 . . . xy2n+2 ; and
(2) for every h ∈ H \ {1} and for every m ≥ 2n, clG(h

m) > n

1In particular, groups can be constructed so that to admit no nontrivial homogeneous
quasi-morphisms (it suffices to make the stable commutator length of each element of a
group equal 0). This is not actually done in the paper.
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(in particular, G is (2n+2)-boundedly simple, and n+1 ≤ cw(G) ≤ 2n+2).
Moreover, there exists such a group G with decidable word and conjugacy

problems.

Note that Theorem 4 improves the result of Theorem 2 in [Mur05].

Theorem 5. There exists a torsion-free 2-generated simple group G with a

rank-2 free subgroup H such that for every h ∈ H \ {1},

lim
n→+∞

clG(h
n) = +∞

(in particular, G has infinite commutator width). Moreover, there exists

such a group G with decidable word and conjugacy problems.

The theorems are proved by providing examples of groups which satisfy
the required properties. These groups are presented by generators and defin-
ing relations in Section 2. (The constructed presentations are recursive, as
follows from the proof of Proposition 80.)

The properties of simplicity or bounded simplicity for the constructed
groups follow directly from the imposed relations, but the existence of free
non-cyclic subgroups and estimates on the commutator lengths of their ele-
ments are obtained through a nontrivial analysis of van Kampen diagrams
on spheres with handles.

To show that the commutator length of a given element g of a constructed
group is greater than n, it is proved that if ∆ is a van Kampen diagram on
a sphere with handles and a hole such that some group word representing
the element g “reads” on the boundary of ∆, then the number of handles is
greater than n. This is done by assuming that the number of handles is not
greater than n, which gives a lower bound on the Euler characteristic, and
coming to a contradiction.

The contradiction is obtained as follows. The hole in the diagram is
covered with an extra face so as to make the diagram closed. Some arcs of
the diagram are selected and distributed among the faces. This is done in
such a manner that the sum of the lengths of the arcs associated to each
face is small, significantly less than half of the perimeter of that face, but
almost all edges of the diagram lie on selected arcs. This eventually leads to
a contradiction with the fact that in a closed diagram the number of edges
is half the sum of the perimeters of faces.

Certainly, the least obvious part of the proof is distributing “almost all”
edges among the faces, while associating “few” edges to each face. For this
purpose the group presentations are constructed with small-cancellation-
type conditions. These conditions allow one to choose a system of selected
arcs in a specific way. The selected arcs together cover almost all edges
of the diagram, and are short relative to the perimeters of incident faces.
Using the bound on the Euler characteristic of the diagram (determined by
the number of handles), and one combinatorial lemma by Philip Hall, the
selected arcs can be distributed among the faces so as to have “very few”
relatively “short” and “a few” relatively “very short” arcs associated to each
face.
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The approach used in this paper is similar to that of [Mur05]. There are
improvements and generalizations which allow one to obtain better estimates
and to deal with diagrams on arbitrary surfaces.

2. Construction of the groups

Let A = {a, b} be a two-letter alphabet. Choose recursive sequences of
positive numbers {λn}n∈N and {µn}n∈N so that for every n ∈ N,

(1) 2λn + (14n + 8)µn +
2n+ 1

4n+ 4
<

1

2
.

(This inequality is to be used in the proofs of some of the properties.) Let
for definiteness

(2) λn =
1

20n + 20
and µn =

1

(14n + 8)(8n + 8)
.

Remark 6. The values of λn and µn satisfying the inequality (1) can be
chosen by the lowest parameter principle of Alexander Ol’shanskii, e.g.,
1/n ≻ µn ≻ λn, which means that for every n, if µn is sufficiently small, then
the desired inequality holds for all sufficiently small λn (see [Ol’89, Ol’91]).

2.1. Boundedly simple group of large commutator width. Take an
arbitrary natural number n.

Let (v1, w1), (v2, w2), (v3, w3), . . . be a list of all ordered pairs of reduced
group words over A. Moreover, let the function i 7→ (vi, wi) be recursive.

Let {uij}i∈N;j=1,...,2n+2 be a recursive indexed family of reduced group
words, and z1, z2 be two cyclically reduced group words over A such that:

(1) for every i ∈ N,
(a) |ui,1| = |ui,2| = · · · = |ui,2n+2| ≥ i, and
(b) λn(4n+ 4)|ui,1| ≥ |vi|+ (2n+ 2)|wi|;

(2) the family {uij}i∈N;j=1,...,2n+2 satisfies the following small-cancellation
condition: if uσ1

i1j1
= p1sq1 and uσ2

i2j2
= p2sq2 (here σ1, σ2 ∈ {±1}),

then either

(i1, j1, σ1, p1, q1) = (i2, j2, σ2, p2, q2),

or
µn(4n + 4)|ui1j1 | ≥ |s| ≤ µn(4n + 4)|ui2j2 |;

(3) z1 starts and ends with a+1, and z2 starts and ends with b+1 (hence,
if t(x, y) is an arbitrary reduced group word over {x, y}, then sub-
stituting z1 for x and z2 for y yields a reduced groups word t(z1, z2)
over A);

(4) if s is a common subword of uij and of the concatenation of several

copies of z±1
1 and z±1

2 , then

|s| ≤ µn(4n+ 4)|uij |.

For example, z1, z2, and {uij}i∈N;j=1,...,2n+2 may be defined as follows:

(3)

z1 = a2, z2 = b2,

uij =

4(14n+8)j
∏

k=4(14n+8)(j−1)+1

akb2(|ui−1,1|+|vi|+|wi|)+4(14n+8)(2n+2)+1−k ,
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where in the case i = 0, the summand |ui−1,1| shall be replaced with 0.
(Here multiplication in Π-notation is understood in the usual left-to-right

sense, e.g.,
∏3

i=1Ai = A1A2A3, and not A3A2A1.)
For every i ∈ N, let

ri = w
ui,1

i . . . w
ui,2n+2

i v−1
i

where w
ui,1

i . . . w
ui,2n+2

i v−1
i denotes the concatenation of the group words ui,1,

wi, u
−1
i,1 , ui,2, wi, u

−1
i,2 , . . . , ui,2n+2, wi, u

−1
i,2n+2, and v

−1
i in this order.

Now inductively construct a group presentation 〈A ‖Rn 〉 as follows. Start

with R
(0)
n = ∅. On step number i (i ∈ N), if the relation ‘wi = 1’ is a

consequence of the relations ‘r = 1’, r ∈ R
(i−1)
n , then define R

(i)
n = R

(i−1)
n ;

otherwise, define R
(i)
n = R

(i−1)
n ∪ {ri}. Finally, let

Rn =
⋃

i∈N

R(i)
n .

Let Gn be the group presented by 〈A ‖Rn 〉.

2.2. Simple group of infinite commutator width. Let w1, w2, w3, . . .
be a recursive list of all reduced group words over A.

Let {uij}i∈N;j=1,...,4i+4 be a recursive indexed family of reduced group
words, and z1, z2 be two cyclically reduced group words over A such that:

(1) for every i ∈ N,
(a) |ui,1| = |ui,2| = · · · = |ui,4i+4|,
(b) λi(4i+ 4)|ui,1| ≥ 1 + (2i + 2)|wi|,
(c) λi(4i+ 4)|ui,1| ≤ λi+1(4(i + 1) + 4)|ui+1,1|,
(d) µi(4i+ 4)|ui,1| ≤ µi+1(4(i+ 1) + 4)|ui+1,1|,
(e) |ui,1| ≤ |ui+1,1|, and
(f) µi(4i+ 4)|ui,1| ≥ i;

(2) the family {uij}i∈N;j=1,...,4i+4 satisfies the following condition: if
uσ1
i1j1

= p1sq1 and uσ2
i2j2

= p2sq2 (σ1, σ2 ∈ {±1}), then either

(i1, j1, σ1, p1, q1) = (i2, j2, σ2, p2, q2),

or
µi1(4i1 + 4)|ui1j1 | ≥ |s| ≤ µi2(4i2 + 4)|ui2j2 |;

(3) z1 starts and ends with a+1, and z2 starts and ends with b+1;
(4) if s is a common subword of uij and of the concatenation of several

copies of z±1
1 and z±1

2 , then

|s| ≤ µi(4i+ 4)|uij |.

For example, z1, z2, and {uij}i∈N;j=1,...,4i+4 may be defined as follows:

(4)

z1 = a2, z2 = b2,

uij =

4(14i+8)j
∏

k=4(14i+8)(j−1)+1

akb2(|ui−1,1|+|wi|)+4(14i+8)(4i+4)+1−k ,

where in the case i = 0, the summand |ui−1,1| shall be replaced with 0.
For every i ∈ N, let

ri,1 = w
ui,1

i . . . w
ui,2i+2

i a−1, ri,2 = w
ui,2i+3

i . . . w
ui,4i+4

i b−1.
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Now inductively construct a group presentation 〈A ‖R∞ 〉 as follows.

Start with R
(0)
∞ = ∅. On step number i, if the relation ‘wi = 1’ is a

consequence of the relations ‘r = 1’, r ∈ R
(i−1)
∞ , then define R

(i)
∞ = R

(i−1)
∞ ;

otherwise, define R
(i)
∞ = R

(i−1)
∞ ∪ {ri,1, ri,2}. Finally, let

R∞ =
⋃

i∈N

R(i)
∞ .

Let G∞ be the group presented by 〈A ‖R∞ 〉.

Note that:

Proposition 7. For every natural n, if the group Gn is nontrivial, then

it is (2n + 2)-boundedly simple. Moreover, for every g ∈ Gn and every

x ∈ Gn \ {1}, there exist y1, . . . , y2n+2 ∈ Gn such that g = xy1 . . . xy2n+2 .

Proposition 8. If the group G∞ is nontrivial, then is simple.

Other properties of these groups shall be established in Section 7.

3. Combinatorial complexes, maps, and van Kampen diagrams

3.1. Combinatorial complexes. The purpose of introducing combinato-

rial cell complexes is to model CW-complexes by combinatorial objects
which preserve most of the combinatorial theory without need for deep topo-
logical proofs.

Combinatorial cell complexes described here are equivalent to a particular
type of cone categories defined in [McC00]. They should not be confused
with cell categories defined therein because, for example, in a cell category
a 2-cell cannot have less than 3 corners, but in a combinatorial cell complex
2-cells with just 1 or 2 corners are allowed.

Cone categories provide a perfect algebraic alternative to CW-complex-
es. Unfortunately, despite the beauty of their concise and purely algebraic
definition, the language of cone categories seems less appealing to geometric
intuition than the language of CW-complexes. Some of the natural geomet-
ric operations, such as “cutting and pasting,” are harder to visualise when
thinking about cone complexes instead of their geometric realisations. The
author chooses to define and use combinatorial cell complexes whose anal-
ogy to CW-complexes is more evident, but he believes that it is possible to
rewrite all the statements, proofs, and definitions in this paper in terms of
cone categories.

The following terms shall all be used as synonyms: an i-dimensional

combinatorial cell complex is the same as a combinatorial i-complex, or just
an i-complex. Combinatorial 0-complexes and 1-complexes shall be viewed
as particular cases of 2-complexes. Only 0-, 1-, and 2-complexes will be used,
and only their definitions are discussed. Thus all combinatorial complexes
may be assumed 2-dimensional.

Some terms whose meaning in relation to combinatorial complexes can be
unambiguously inferred from their meaning in relation to CW-complexes or
simplicial complexes may be used without definition (e.g., connectedness, a
link of a vertex, etc.).
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The definition of combinatorial complexes here is very similar to that in
[Mur05].

A (combinatorial) 0-complex A is a 3-tuple (A(0),∅,∅) where A(0) is an
arbitrary set. Elements of A(0) are called 0-cells, or vertices, of A.

A 0-complex with exactly 2 vertices shall be called a combinatorial 0-
sphere.

Amorphism φ from a 0-complex A to a 0-complex B is a 3-tuple (φ(0),∅,∅)
where φ(0) is an arbitrary function A(0) → B(0). If A, B, and C are 0-
complexes, and φ : A→ B and ψ : B → C are morphisms, then the product
ψφ : A → C is defined naturally: (ψφ)(0) = ψ(0) ◦ φ(0). A morphism
φ : A→ B is called an isomorphism of A with B if there exists a morphism
ψ : B → A such that ψφ is the identity morphism of the complex A and φψ
is the identity morphism of the complex B.

A (combinatorial) 1-complex A is a 3-tuple (A(0), A(1),∅) such that:

(1) A(0) is an arbitrary set;
(2) A(1) is a set of ordered triples of the form (i, E, α) where E is a

combinatorial 0-sphere and α is a morphism of E to the 0-complex
(A(0),∅,∅), such that the function (i, E, α) 7→ i is injective on A(1).

Elements of A(0) are called 0-cells, or vertices, of A, elements of A(1) are
called 1-cells, or edges. The 0-complex (A(0),∅,∅) is called the 0-skeleton
of A and is denoted A0.

If e = (i, E, α) is an edge of a 1-complex A, then i is called the index of e,
E is called the characteristic boundary of e and shall be denoted by ė, and
α is called the attaching morphism of e. (The purpose of “indexing” 1- and
2-cell is to allow distinct cells with identical characteristic boundaries and
attaching morphisms.)

Combinatorial 1-complexes may sometimes be called graphs.
A 1-complex which “looks like” a circle shall be called a combinatorial

1-sphere, or a combinatorial circle. More precisely, a combinatorial circle is
a finite connected non-empty graph in which the degree of every vertex is 2.

If A and B are 1-complexes, then a morphism φ : A → B is a 3-tuple
(φ(0), φ(1),∅) such that:

(1) φ0 = (φ(0),∅,∅) is a morphism of A0 to B0;
(2) φ(1) is a function on A(1) which maps each e = (i, E, α) ∈ A(1)

to an ordered pair (e′, ξ) such that e′ = (i′, E′, α′) ∈ B(1), ξ is an
isomorphism of E with E′, and φ0α = α′ξ.

Multiplication of morphisms of 1-complexes is defined naturally. For ex-
ample, if A, B, C are 1-complexes, φ and ψ are morphisms, φ : A → B,
ψ : B → C, e = (i, E, α) is an edge of A, e′ = (i′, E′, α′) is an edge of B,
e′′ = (i′′, E′′, α′′) is an edge of C, φ(1)(e) = (e′, ξ), ψ(1)(e′) = (e′′, ζ), then
(ψφ)(1)(e) = (e′′, ζξ) (note that ζξ is an isomorphism of the characteristic
boundary of e with that of e′′). Isomorphisms of 1-complexes are defined in
the natural way.

A (combinatorial) 2-complex A is a 3-tuple (A(0), A(1), A(2)) such that:

(1) (A(0), A(1),∅) is a 1-complex, called the 1-skeleton of A and de-
noted A1;
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(2) A(2) is a set of ordered triples of the form (i, F, α) where F is a
combinatorial 1-sphere and α is a morphism of F to A1, such that
the function (i, F, α) 7→ i is injective on A(2).

Elements of A(0) are called 0-cells, or vertices, of the complex A, elements
of A(1) are called 1-cells, or edges, elements of A(2) are called 2-cells, or
faces.

If f = (i, F, α) is a face of a 2-complex A, then i is called the index of f ,

F is called the characteristic boundary of f and shall be denoted by ḟ , and
α is called the attaching morphism of f .

If A and B are 2-complexes, then a morphism φ : A → B is a 3-tuple
(φ(0), φ(1), φ(2)) such that:

(1) φ1 = (φ(0), φ(1),∅) is a morphism of A1 to B1;
(2) φ(2) is a function on A(2) which maps each f = (i, F, β) ∈ A(2)

to an ordered pair (f ′, ξ) such that f ′ = (i′, F ′, β′) ∈ B(2), ξ is an
isomorphism of F with F ′, and φ1β = β′ξ.

Products of morphisms of 2-complexes are defined analogously to the case
of 1-complexes. The notion of isomorphism for 2-complexes is the natural
one.

The empty combinatorial complex, a finite complex, a subcomplex, etc.,
are defined naturally.

Any combinatorial complex C gives rise to a CW-complex, called its geo-
metric realisation, which is unique up to isomorphism (homeomorphism pre-
serving the cellular structure). A geometric realisation is constructed as
follows:

Let C be a combinatorial 2-complex. Construct a geometric realisation
X0 of C0 by imposing a structure of a 0-dimensional CW-complex on an
arbitrary set which is in bijective correspondence with C(0). Next, con-
struct a geometric realisation X1 of C1 by attaching 1-cells to X0 as fol-
lows. For every e ∈ C(1), construct a geometric realisation S of ė (a 2-point
0-dimensional CW-complex); take B to be a cone over S viewed as a topo-
logical space (homeomorphic to a closed interval); attach B to X0 via the
continuous function S → X0 induced by the attaching morphism of e; this
procedure yields a 1-cell in X1 for each 1-cell of C. Finally, construct a geo-
metric realisation X = X2 of C by attaching 2-cells to X1 in correspondence
with 2-cells of C in the same manner as how 1-cells were attached to X0.

The class of CW-complexes that are geometric realisations of combina-
torial complexes is quite narrow, and does not even include all transverse
2-dimensional CW-complexes. For example, a geometric realisation of a
2-complex cannot have a 2-cell attached to a single 0-cell.

Every morphism φ from a combinatorial 2-complex A to a combinatorial
2-complex B naturally determines functions A(i) → B(i), i = 0, 1, 2. By
abuse of terminology, if e is an i-cell of A and e′ is its image under the
function A(i) → B(i) induced by a morphism φ : A → B, then e′ shall be
called the image of e under φ, or the φ-image of e.

If e = (i, E, α) is an edge of a 2-complex C, then the vertices of the
characteristic boundary ė = E of e are called the ends of e. The images of
the ends of e under the attaching morphism α of e are called the end-vertices
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of e. An edge e is incident to a vertex v if v is an end-vertex of e. An edge
with only 1 end-vertex is called a loop.

If f is a face of a 2-complex Φ, then the vertices and edges of the char-
acteristic boundary of f are called the corners and sides of f , respectively.
The images of the corners and sides of a face f under the attaching mor-
phism of f are called corner-vertices and side-edges of f , respectively, and
are said to be incident to f .

The size of a face f is the number of its sides (which is equal to the
number of its corners).

If v is a vertex of a complex C, then the number of edges incident to v
“counted with multiplicity” is called the degree of v. More precisely, the
degree of a vertex v in a complex C is the total number of ordered pairs
(e, x) where e is an edge of C, x is an end of e, and v is the image of x under
the attaching morphism of e.

The link of a vertex v in a combinatorial complex C, denoted LinkC v, or
Link v, is a combinatorial complex which can be viewed as “the boundary of
a nice small neighborhood of v.” A precise definition is not given here since
the meaning of the term in the present context can be easily inferred from
its meaning in context of simplicial complexes or CW-complexes.2 Note that
the link of a vertex v in a 2-complex is a 1-complex whose vertices are in
bijective correspondence with all the ordered pairs (e, x) where e is an edge
incident to v and x is an end of e which is mapped to v by the attaching
morphism of e, and whose edges are in bijective correspondence with all the
ordered pairs (f, x) where f is a face incident to v and x is a corner of f
which is mapped to v by the attaching morphism of f .

An orientation of an edge e is a function from the set of ends of e to Z

which maps one of the ends to +1 and the other to −1. An oriented edge is
an edge together with an orientation. The end-vertex of an oriented edge e
that is the image of the “negative” end is called the tail-vertex, or the initial
vertex, of e. The end-vertex that is the image of the “positive” end is called
the head-vertex, or the terminal vertex, of the oriented edge; on figures it
is indicated with an arrowhead. An oriented edge exits its tail-vertex and
enters its head-vertex.

Consider a combinatorial circle C and a function f which chooses an
orientation of each edge of C. The choice of orientations f is called coherent

if every vertex of C is the tail-vertex of exactly one (and the head-vertex
of exactly one) of the oriented edges obtained from edges of C by assigning
orientations according to f . A coherent choice of orientations of all edges of
C is called an orientation of C, and C together with one of its orientations
is called an oriented combinatorial circle.

An orientation of a face f is an orientation of the characteristic boundary
of f . An oriented face is a face together with an orientation.

Every edge and every face has exactly two opposite orientations. Two
oriented edges (or faces) with the same underlying non-oriented edge (or
face) but with opposite orientations are called mutually inverse.

2In the language of cone categories, the link of a vertex is the full subcategory of the
co-slice category of that vertex obtained by removing the initial object.
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A path is a non-empty finite sequence of alternating vertices and oriented
edges in which every oriented edge is immediately preceded by its tail-vertex
and immediately succeeded by its head-vertex.

The length of a path p = (v0 e1, v1, . . . , en, vn) is n; it is denoted by |p|.
The vertices v1, . . . , vn−1 of this path are called intermediate. A trivial path

is a path of length zero. By abuse of notation, a path of the form (v1, e, v2)
shall be denoted by e, and a trivial path (v) shall be denoted by v.

The inverse path to a path p is defined naturally and is denoted by p−1.
If the terminal vertex of a path p1 coincides with the initial vertex of a
path p2, then the product p1p2 is defined (naturally). A path s is an initial

subpath of a path p if p = sq for some path q. A path s is a terminal subpath

of p if p = qs for some q.
A cyclic path is a path whose terminal and initial vertices coincide. A

cycle is the set of all cyclic shifts of a cyclic path. The cycle represented by
a cyclic path p shall be denoted by 〈p〉. The length of a cycle c, denoted by
|c|, is the length of an arbitrary representative of c. A trivial cycle is a cycle
of length zero. A path p is a subpath of a cycle c if for some representative
r of c and for some n ∈ N, p is a subpath of rn (i.e., of the product of n
copies of r).

A path is reduced if it has no subpath of the form ee−1 where e is an
oriented edge. A cyclic path is cyclically reduced if it is reduced and its first
and last oriented edges are not mutually inverse. (Trivial paths are cyclically
reduced.) A cycle is reduced if it consists of cyclically reduced cyclic paths.
A path is simple if it is nontrivial, reduced, and every its intermediate vertex
appears in it only once. A cycle is simple if it consists of simple cyclic paths.

An oriented arc of a complex C is a simple path whose all intermediate
vertices have degree 2 in C. An oriented pseudo-arc of a complex C is
a nontrivial reduced path all intermediate vertices of which have degree 2
in C. A (non-oriented) arc is a pair of mutually inverse oriented arcs. A
(non-oriented) pseudo-arc is a pair of mutually inverse oriented pseudo-arcs.
Sometimes edges may be viewed as arcs, and oriented edges as oriented arcs.

Note that if C is a connected 1-complex and is not a combinatorial circle,
then every pseudo-arc of C is an arc. All pseudo-arcs under consideration
will be pseudo-arcs in characteristic boundaries of faces.

A (pseudo-)arc or an edge u lies on a path p if at least one of the oriented
(pseudo-)arcs or oriented edges, respectively, associated with u is a subpath
of p. An arc shall be called free if none of its edges is incident to any face.

Any morphism of combinatorial complexes induces maps of paths and
cycles. An arc u is incident to a face f if the associated oriented arcs are
the images of some paths in ḟ under the map induced by the attaching
morphism of f .

Definition 9. A c-path, c-cycle, c-arc, or c-pseudo-arc of a face f is a
path, a cycle, an arc, or a pseudo-arc in the characteristic boundary of f ,
respectively. A c-edge of a face is the same as its side.

It shall be assumed that distinct faces always have disjoint sets of corners
and disjoint sets of sides, as well as that distinct edges have disjoint sets
of ends. This will assure that every c-path is a c-path of exactly one face.
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Moreover, it is convenient to assume that no other set-theoretic complica-
tions happen; in particular, no vertex can be simultaneously an edge.

To use combinatorial complexes effectively, a few operations on them need
to be defined, and some properties of these operations need to be established.

The following operations are easy to define:

Removing a face: this operation is self-explanatory.
Removing an arc: If u is a free arc (or free edge) in a complex C,

then to remove u from C means to remove all edges and all inter-
mediate vertices of u from C.

Attaching a face (along a cyclic path): This is the operation in-
verse to removing a face. If p is a cyclic path in a complex C, then
to attach a face f along p means to attach a new face f in such a
way that the image of some simple cyclic c-paths of f be mapped to
p by the attaching morphism of f .

Attaching an arc (at a pair of vertices): this is the operation in-
verse to removing an arc.

Next, there are operations whose geometric meaning is clear, but whose
precise combinatorial definition may be complicated. Instead of giving pre-
cise definitions, these operations are informally described here:

Dividing an edge by a vertex: To divide an edge e by a vertex v
geometrically means to put a new vertex v inside e.

Dividing a face by an edge: To divide a face f by an edge e through
its (not necessarily distinct) corners x and y geometrically means to
connect the corners x and y within f by a new edge e.

Pulling an edge into a face: To pull an edge e into a face f through
its corner x geometrically means to put a new vertex v inside f and
connect it within f to the corners x by a new edge e.

Merging two edges across a vertex: this is the operation inverse
to dividing an edge by a vertex.

Merging two faces across an edge: this is the operation inverse to
dividing a face by an edge.

Pushing an edge out of a face: this is the operation inverse to pull-
ing an edge into a face.

Definition 10. The complex obtained from a given 2-complex C by an ar-
bitrary (finite) sequence of operations of dividing edges by vertices, dividing
faces by edges, and pulling edges into faces is called a subdivision of C. Two
combinatorial 2-complexes are called geometrically equivalent if they have
isomorphic subdivisions.

As shown in Section 9 of [Ol’89, Ol’91], if the topological spaces of the
geometric realisations of two combinatorial complexes A and B are home-
omorphic 2-dimensional surfaces with or without boundaries, then A and
B are geometrically equivalent in the defined above sense. Vice versa, it is
obvious that geometrically equivalent combinatorial complexes have home-
omorphic geometric realisations.

Definition 11. A combinatorial surface is a non-empty combinatorial com-
plex in which every vertex link is either a combinatorial circle or a combina-

torial segment (a finite connected 1-complex in which 2 vertices have degree
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1 and all the others have degree 2). A combinatorial surface is closed if the
link of every vertex is a combinatorial circle.

Only combinatorial surfaces will be discussed, rather than topological
ones. The adjective “combinatorial” shall be omitted for brevity.

Alternatively, a combinatorial surface may be defined as a combinato-
rial complex whose geometric realisation is a 2-dimensional surface, with or
without boundary. Only finite combinatorial surfaces are discussed in this
paper.

Consider a combinatorial surface S and a function f which chooses an
orientation of each face of S. Then the function f induces an orientation on
every side of every face of S. The attaching morphisms of faces carry the
orientations of sides of these faces over to the edges that are the images of
these sides (under the attaching morphisms). The choice of orientations f
is called coherent if for every edge e of S that is the image of two distinct
face sides, the orientations of these two sides determined by f induce (via
the attaching morphisms) opposite orientations of e.

Definition 12. A coherent choice of orientations of all faces of a combinato-
rial surface S is called an orientation of S, and S together with an orientation
is called an oriented combinatorial surface. A combinatorial surface which
can be oriented is called orientable.

It can be shown that a combinatorial surface is orientable if and only if
its geometric realisation is.

An orientable connected combinatorial surface has exactly two orienta-
tions.

Let a sample combinatorial disc be a 2-complex C consisting of 1 ver-
tex, 1 edge, and 1 face whose attaching morphism is an isomorphism of its
characteristic boundary with the 1-skeleton of C.

Definition 13. A combinatorial disc is an arbitrary 2-complex which is
geometrically equivalent to a sample combinatorial disc.

Let a sample combinatorial sphere be a 2-complex C consisting of 1 vertex,
1 edge, and 2 faces whose attaching morphisms are isomorphisms of their
characteristic boundaries with the 1-skeleton of C.

Definition 14. A combinatorial sphere is an arbitrary 2-complex which is
geometrically equivalent to a sample combinatorial sphere.

(Combinatorial discs and spheres are exactly those 2-complexes whose
geometric realisations are 2-discs and 2-spheres, respectively.)

In a similar fashion, other combinatorial surfaces, e.g., combinatorial tori,
may be defined. Such terms shall be used without further definitions.

Definition 15. A nontrivial singular combinatorial disc is an arbitrary 2-
complex that can be obtained from a combinatorial sphere by removing 1
face (or which can be turned into a combinatorial sphere by attaching 1
face). A trivial singular combinatorial disc is a combinatorial complex that
consists of a single vertex.

Lemma 16. If C is a proper connected subcomplex of a combinatorial sur-

face, and C has at least 1 edge, then C can be turned into a connected
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combinatorial surface by operations of attaching faces. If C is a proper

subcomplex of a connected combinatorial surface, then C is not a closed

combinatorial surface.

This lemma is not proved here because it is intuitively obvious, while its
proof would probably be rather technical but hardly interesting.

Definition 17. The Euler characteristic of a 2-complex C is denoted by
χC and is defined by χC = ‖C(0)‖ − ‖C(1)‖ + ‖C(2)‖ where ‖C(i)‖ is the
number of i-cells of C, i = 0, 1, 2.

Lemma 18. The maximal possible Euler characteristic of a closed connected

combinatorial surface is 2, and among all closed connected surfaces, only

spheres have Euler characteristic 2, and only projective planes have Euler

characteristic 1. The maximal possible Euler characteristic of a proper con-

nected subcomplex of a combinatorial surface is 1, and every such complex

is a singular combinatorial disc.

Proof. The first part of this lemma follows from the classification of compact
(or finite combinatorial) surfaces. The second part follows from the first part
together with Lemma 16. �

Thus a combinatorial disc could be defined as a non-closed connected
finite combinatorial surface of Euler characteristic 1, and a combinatorial
sphere could be defined as a connected finite combinatorial surface of Euler
characteristic 2.

3.2. Maps.

Definition 19. A nontrivial connected map ∆ consists of:

(1) a finite connected combinatorial complex C;
(2) a function that for every face Π of C chooses one of its simple cyclic

c-paths, called the contour c-path, or c-contour, of Π;
(3) a (possibly empty) indexed family of cyclic paths in C, called the

contour paths, or contours, of ∆.

The only requirement to this structure is that a complex obtained from C
by attaching one new face along each of the indexed contours of ∆ must be
a closed combinatorial surface.3

An indexed contour of a map is an element of the indexed family of
contours of the map together with its index. One contour of a map may
correspond to two distinct indexed contours.

The c-contour of a face Π shall be denoted by ∂⋆Π. The image of the
c-contour of a face Π in C1 is called the contour path, or contour, of Π and
shall be denoted by ∂Π. The cycle represented by the contour of a face Π is
called the contour cycle of Π. Similarly, the cycle represented by a contour
of a map ∆ is called a contour cycle of ∆. The contours of ∆ shall be
denoted by ∂1∆, ∂2∆, ∂3∆, et cetera. If ∆ has only one contour, then it
can be alternatively denoted by ∂∆.

3It seems that a natural way to extend the notion of a map would be to weaken this
condition and require instead that in the complex obtained from C by attaching faces
along the contours of ∆, the links of all vertices are connected.
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Definition 20. A trivial map is a combinatorial complex consisting of a
single vertex together with the trivial cyclic path in it called its contour.

A map in general consists of a finite non-zero number of connected com-

ponents, each of which is either a nontrivial connected map, or a trivial
map.

Definition 21. A map without contours is called closed. If ∆ is a map
without trivial connected components, then a closed map obtained from ∆
by attaching new faces along its contours, and choosing the c-contours of
the new faces so that the contours of ∆ become the contours of the new
faces, is called a closure of ∆.

Remark 22. It is not possible to define a closure of a trivial map in a sim-
ilar way because no face in a combinatorial complex can have boundary
consisting of a single vertex.

A map is closed if and only if its underlying complex is a closed surface
(see Lemma 16).

A closure of a map ∆ is unique up to isomorphism.
The important notion of a submap of a map shall be defined in the sub-

sequent subsection.

Definition 23. Two maps are called essentially isomorphic if there exists
an isomorphism between their underlying complexes which preserves the
contours of the maps up to re-indexing and/or replacing with cyclic shifts
or cyclic shifts of the inverses.

Two maps without trivial connected components are essentially isomor-
phic if and only if there exists an isomorphism between their underlying
combinatorial complexes that extends to an isomorphism between the un-
derlying complexes of their closures.

Definition 24. A map is simple if all its contours are simple (cyclic) paths,
and distinct contours have no common vertices. A map is semi-simple if in
it every edge is incident to a face. A map without faces is called degenerate.

Definition 25. A disc map is either a trivial map, or any map with ex-
actly one contour which has a spherical closure. An annular map is an
arbitrary map with exactly two contours which has a spherical closure. An
elementary map is a spherical map with exactly 2 faces, whose 1-skeleton is
a combinatorial circle.

The underlying 2-complex of a disc map is a singular combinatorial disc,
and the underlying 2-complex of simple disc map is a combinatorial disc.

Lemma 26. A connected map of Euler characteristic 2 is closed spheri-

cal. A connected map of Euler characteristic 1 is either disc, or (closed)
projective-planar. The maximal possible Euler characteristic of a connected

map with n contours is 2− n.

This lemma follows from Lemma 18.
Every non-free arc of a map is either internal (is the image of two distinct

c-arcs, and does not lie on any contour cycle of the map), or external (is the
image of only one c-arc, and lies on some contour cycle of the map).
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Definition 27. A map is called contour-oriented if every oriented edge
occurs in the contour of some face or in some contour of the map.

If ∆ is a contour-oriented map and ∆̄ is its closure, then the c-contours
of the faces of ∆̄ induce an orientation of the underlying complex of ∆̄.

It is convenient to have terms to express the idea that two paths in the
characteristic boundary of a face “go in the same direction,” and also to have
a “preferred direction” in the boundary. For that purpose let all nontrivial
reduced c-path of each face of a map be divided into positive and negative:

Definition 28. A c-path p of a face Π of a map is called positive if it is a
nontrivial subpath of 〈∂⋆Π〉. A c-path p is negative if p−1 is positive.

3.3. Transformations of maps.

3.3.1. Removing a face. If Π is a face of a map ∆, then the submap of ∆
obtained by removing Π is the map Ψ such that:

(1) the underlying complex of Ψ is obtained from the underlying complex
of ∆ by removing the face Π,

(2) the c-contours of faces of Ψ are those inherited from ∆, and
(3) the indexed family of contours of Ψ is obtained from the indexed

family of contours of ∆ by adding the contour of Π as a new indexed
member, and possibly re-indexing the family.

(Re-indexing an indexed family means replacing the index set with a new
set of the same cardinality, and pre-composing the indexing function with a
bijection from the new index set onto the original index set of the family.)

3.3.2. Removing an arc. If u is a free arc of a map ∆, then a submap of ∆
obtained by removing u is a map Ψ such that:

(1) the underlying complex of Ψ is obtained from the underlying complex
of ∆ by removing the arc u;

(2) the c-contours of faces of Ψ are those inherited from ∆;
(3) the family of contours of Ψ consists of, up to re-indexing, all the in-

dexed contours of ∆ that do not have common edges with u, together
with additional 1 or 2 chosen as follows:
(a) if removing u from the underlying complex increases the number

of connected components, then, first, take paths p1, p2, and v
such that:

(i) v and v−1 are the oriented arcs associated with u, and
(ii) 〈vp1v

−1p2〉 is a contour cycle of ∆,
and second, assign new indices to some cyclic shift of p±1

1 and

some cyclic shift of p±1
2 , and take them as 2 additional indexed

contours of Ψ;
(b) if removing u from the underlying complex does not increase

the number of connected components, and u lies on only one
contour cycle of ∆ (which implies that a closure of ∆ is non-
orientable), then, first, take paths p1, p2, and v such that:

(i) v and v−1 are the oriented arcs associated with u, and
(ii) 〈vp1vp2〉 is a contour cycle of ∆,

and second, assign a new index to a cyclic shift of (p1p
−1
2 )±1,

and take it as an additional indexed contour of Ψ;
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(c) if u lies on two distinct contour cycles of ∆, then, first, take
paths p1, p2, and v, and indices i and j such that:

(i) v and v−1 are the oriented arcs associated with u,
(ii) 〈vp1〉 = 〈∂i∆〉,
(iii) either 〈vp2〉 = 〈∂j∆〉, or 〈p−1

2 v−1〉 = 〈∂j∆〉, and
(iv) i 6= j,

and second, assign a new index to a cyclic shift of (p1p
−1
2 )±1,

and take it as an additional indexed contour of Ψ.

Definition 29. A map Ψ is a submap of a map ∆ if it can be obtained
from ∆ by operations of removing faces, removing free arcs, and removing
connected components (the last operation is self-explanatory).

Lemma 30. If Γ is a submap of a map ∆, and ∆̄ is a closure of ∆, then:

(1) the underlying complex of Γ is a subcomplex of the underlying com-

plex of ∆;
(2) the contours and c-contours of faces of Γ are those inherited from ∆;
(3) for every contour q of Γ that is neither a contour of ∆, nor the

contour of a face of ∆, there is n ∈ N and there are subpaths p0,
p1, . . . , pn = p0 of q, oriented arcs u0, u1, . . . , un = u0 of ∆, and
c-paths p′0, p

′
1, . . . , p

′
n = p′0, u

′
0, u

′
1, . . . , u

′
n = u′0, v

′
0, v

′
1, . . . , v

′
n = v′0

of faces of ∆̄ that are not in Γ, such that :
(a) 〈q〉 = 〈p0p1 . . . pn−1〉,
(b) u0, u1, . . . , un are pairwise non-overlapping and maximal among

oriented arcs of ∆ that do not have common edges with Γ,
(c) the terminal vertices of u0, u1, . . . , un are vertices of q,
(d) for every i = 0, . . . , n, the images of p′i, u

′
i, and v′i are pi, ui,

and u−1
i , respectively, but v′i 6= u′−1

i ,
(e) for every i = 0, . . . , n − 1, the product u′ip

′
iv

′
i+1 is a reduced

c-path of a face of ∆̄.

This lemma can be proved by induction on the number of operations of
removing (free) arcs used in obtaining Γ from ∆.

Lemma 31. Every subcomplex of the underlying complex of every map ∆
has a structure of a submap of ∆, which is unique up to essential isomor-

phism.

The non-obvious part of this lemma is the “uniqueness.” It can be proved
by showing that the set of essential isomorphism classes of submaps of a given
map containing a given subcomplex, together with operations of removing
faces, arcs, and connected components, form a confluent and terminating

rewriting system.
For brevity, subcomplexes of the underlying complexes of maps shall be

called subcomplexes of the maps.

3.3.3. Diamond move.

Definition 32. Two c-edges, or two oriented c-edges, of faces of a complex
C are called contiguous if their images (in C1) under the respective attaching
morphisms coincide.
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Contiguity of oriented c-edges is an equivalence relation. Observe that
any closed map is determined up to isomorphism by c-contours of its faces
and the contiguity relation on oriented c-edges. In other words, the conti-
guity relation tells how to glue faces together, which together with a choice
of c-contours of faces “completely” determines a closed map. This observa-
tion allows one to define diamond moves on maps in terms of changing the
contiguity relation on oriented c-edges.

Consider an arbitrary closed map ∆. Let e1 and e2 be two distinct ori-
ented edges in ∆ with a common terminal vertex v.

Choose a “local orientation around v,” i.e., choose an orientation of the
link of v in ∆. Consider an arbitrary oriented c-edge x of a face of ∆ such
that v is the head-vertex of the image of x (for example, the image of x may
be e1 or e2). The “positive” end of x naturally corresponds to an end of some
edge of Link v, which in turn is either “positive” or “negative” with respect to
the chosen orientation of Link v. Call x “positive” or “negative” accordingly.
(This terminology shall only be used in the subsequent definition.) Thus
every oriented edge entering v has one “positive” and one “negative” pre-
image under attaching morphisms. Let a, b, c, and d be, respectively, the
“positive” and the “negative” pre-images of e1, and the “positive” and the
“negative” pre-images of e2.

Definition 33. A map obtained from ∆ by the diamond move along e1 and
e2 is a (unique up to isomorphism) closed map Γ which has the same char-
acteristic boundaries and c-contours of faces, but in which a is contiguous
to d, b is contiguous to c, and the contiguity relation on the oriented c-edges
distinct from a±1, b±1, c±1, d±1 is the same as in ∆ (see Fig. 1).

Let e3 and e4 be the images in Γ1 of a and d, and b and c, respectively.
There are natural bijections:

(1) between the vertices of ∆ not incident to e1 and e2, and the vertices
of Γ not incident to e3 and e4;

(2) between the edges of ∆ distinct from e1 and e2, and the edges of Γ
distinct from e3 and e4;

(3) between all faces of ∆ and all faces of Γ.

Informally and imprecisely speaking, the diamond move consists in cut-
ting the map ∆ along the path e1e

−1
2 and then gluing the sides of the ob-

tained diamond-shaped hole in a different way than how it was before.
Consider now an arbitrary map ∆ and two distinct oriented edges e1

and e2 in ∆ with a common terminal vertex, none of which is a loop. The
diamond move along e1 and e2 consists of, first, closing the connected com-
ponent of ∆ that contains e1 and e2; second, applying the diamond move
along e1 and e2 to the closure; and finally, removing the faces that were
added when closing the component.

Suppose that neither e1 nor e2 is a loop. If the initial vertices of e1 and e2
are distinct, then the diamond move is called proper, otherwise it is called
improper. If the initial vertices of e1 and e2 coincide, and the cyclic path
e1e

−1
2 does not switch orientation in ∆ (informally speaking, this means that

some neighbourhood of e1e
−1
2 is orientable), then the (improper) diamond
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Figure 1. Diamond Move.

move is called disconnecting ; otherwise, if the cyclic path e1e
−1
2 does switch

orientation, the (improper) diamond move is called untwisting.
Suppose that e1 is a loop, while e2 is not. In this case the dimond move

is called proper for the reason that will be clear from Lemma 34.
If both e1 and e2 are loops, then the task to suitably classify such a

diamond move as either proper, or improper disconnecting, or improper un-

twisting is left to the reader. (This case is admittedly more difficult, but
analogous to the previous two.)

Lemma 34. Consider an arbitrary map ∆ and a map Γ obtained from ∆
by a diamond move. Then

(1) ‖Γ(1)‖ = ‖∆(1)‖ and ‖Γ(2)‖ = ‖∆(2)‖;
(2) if the diamond move is proper, then ‖Γ(0)‖ = ‖∆(0)‖, χΓ = χ∆,

and Γ̄ is geometrically equivalent to ∆̄ if Γ̄ and ∆̄ are closures of

Γ and ∆;
(3) if the diamond move is untwisting, then ‖Γ(0)‖ = ‖∆(0)‖ + 1, and

Γ has the same number of connected components as ∆;
(4) if the diamond move is disconnecting, then ‖Γ(0)‖ = ‖∆(0)‖ + 2,

and Γ has either the same number of connected components as ∆,
or 1 more;
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(5) χ∆ ≤ χΓ ≤ χ∆ + 2.

Proof of this lemma is left to the reader.
Properties of diamond moves can be described even in greater detail, but

this lemma is sufficient for many applications.

3.4. Diagrams.

Definition 35. If 〈A ‖R 〉 is a group presentation, then a van Kampen dia-

gram (or simply a diagram) over 〈A ‖R 〉 is a map together with a labelling
of its oriented edges such that every two mutually inverse oriented edges are
labelled with mutually inverse group letters from A

±1, and each group word
that “reads” on the contour of some face belongs to R±1.

In every van Kampen diagram, let the label of an oriented edge e be
denoted by ℓ(e), and the label of a path p be denoted by ℓ(p).

Definition 36. Two faces of a diagram or of two distinct diagrams are said
to be congruent if their contour labels are either cyclic shifts of each other,
or cyclic shifts of the inverses of each other.

Definition 37. Two diagrams are called essentially isomorphic if there
exists a label-preserving isomorphism between their underlying complexes
which preserves the contours of the diagrams up to re-indexing and/or cycli-
cally shifting and/or inverting.

Definition 38. A pair of distinct faces {Π1,Π2} in a diagram ∆ is called
immediately cancellable if there are paths p1 and p2 in ∆ such that

(1) 〈∂Π1〉 ∈ {〈p1〉, 〈p
−1
1 〉} and 〈∂Π2〉 ∈ {〈p2〉, 〈p

−1
2 〉},

(2) p1 and p2 have a common nontrivial initial subpath, and
(3) ℓ(p1) = ℓ(p2).

A diagram ∆ is called weakly reduced if it does not have immediately can-
cellable pairs of faces.

Weakly reduced diagrams are exactly the diagrams reduced in the sense
of [LS01].

Definition 39. A diamond move in a diagram ∆ (a diagrammatic diamond

move) is a diamond move in the underlying map of ∆ along two oriented
edges with identical labels, followed by the natural labelling of the obtained
map so as to obtain a diagram.4

Definition 40. A pair of distinct faces {Π1,Π2} in a diagram ∆ is called
cancellable if there exists a sequence of diamond moves that separates these
two faces into an elementary spherical subdiagram (i.e., leads to a diagram
in which the faces corresponding to Π1 and Π2 form an elementary spherical
connected component). A diagram ∆ is called reduced if it does not have
cancellable pairs of faces.

Lemma 41. Immediately cancellable pairs are cancellable. Reduced dia-

grams are weakly reduced.

4Diamond moves in diagrams correspond to bridge moves in pictures, see [Rou79,
Hue81].
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Proof of this lemma is left to the reader.
It should be noted that there is a substantial distinction between the di-

agrams (and their transformations) defined in this paper and such classical
objects as pictures (called standard diagrams in [Rou79]) and 0-refined dia-

grams (in [Ol’89, Ol’91]). If D2 is a 2-dimensional disc, K(A;R) is the geo-
metric realisation of a group presentation 〈A ‖R 〉, andK1(A;R) = K(A;∅)
is its 1-skeleton, which is a wedge of circles, then both pictures and 0-refined
diagrams over 〈A ‖R 〉 can be used to represent arbitrary transverse (in the
sense of [BRS76]) continuous maps (D2, ∂D2) → (K(A;R),K1(A;R)) up
to isotopy of the domain D2. Transverse maps in turn represent arbitrary
continuous maps up to homotopy. Certain combinatorially defined transfor-
mations of pictures, as well as of 0-refined diagrams, represent homotopies
between transverse continuous maps. The diagrams defined in this paper
without introducing 0-cells are not suitable for representing arbitrary homo-
topy classes of maps (D2, ∂D2) → (K(A;R),K1(A;R)). Nevertheless, they
are an appropriate tool for studying relations in groups and formulating
useful results (see Lemma 42).

If 〈A ‖R 〉 is a group presentation, G is the group presented by 〈A ‖R 〉,
and w is a group word over A, then let [w]G, or [w]R, or simply [w], denote
the element of G represented by w.

The results of the following lemma are assumed to be well-known.

Lemma 42. Let G be the group presented by 〈A ‖R 〉. Let w, w1, and w2

be arbitrary group words over A, and n be a natural number. Then

(1) if there exists a disc diagram ∆ over 〈A ‖R 〉 such that ℓ(∂∆) = w,
then [w] = 1;

(2) if [w] = 1, then there exists a reduced disc diagram ∆ over 〈A ‖R 〉
such that ℓ(∂∆) = w;

(3) if there exists a contour-oriented annular diagram ∆ over 〈A ‖R 〉
such that ℓ(∂1∆) = w1 and ℓ(∂2∆)−1 = w2, then [w1] and [w2] are
conjugate in G;

(4) if [w1] and [w2] are conjugate in G, then either [w1] = [w2] = 1,
or there exists a contour-oriented reduced annular diagram ∆ over

〈A ‖R 〉 such that ℓ(∂1∆) = w1 and ℓ(∂2∆)−1 = w2;
(5) if there exists a one-contour diagram ∆ over 〈A ‖R 〉 such that

ℓ(∂∆) = w and the underlying complex of a closure of ∆ is a combi-

natorial sphere with n handles, then [w] ∈ [G,G] and clG([w]) ≤ n;
(6) if clG([w]) = n, then there exists a one-contour reduced diagram ∆

over 〈A ‖R 〉 such that the underlying complex of a closure of ∆ is

a combinatorial sphere with n handles, and ℓ(∂∆) = w.

Outline of a proof. Parts (1), (2), (3), and (4) follow, for example, from
Theorem V.1.1 and Lemmas V.1.2, V.5.1, and V.5.2 of [LS01]. See also
Lemmas 11.1 (van Kampen Lemma) and 11.2 in [Ol’89, Ol’91] (all results
there are formulated in terms of 0-refined diagrams).

Here is an outline of a proof of parts (5) and (6).
Suppose that ∆ is a one-contour diagram over 〈A ‖R 〉 such that the un-

derlying complex of a closure of ∆ is a combinatorial sphere with n handles,
and ℓ(∂∆) = w. Let o be the initial vertex of ∂∆. Consider the (com-
binatorial) fundamental group π1(∆, o) of ∆ with base-point o. It can be
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shown from the definition of a combinatorial handled sphere (which is easy
to formulate) that in π1(∆, o), the homotopy class of ∂∆ is the product of
n commutators. Therefore clG([w]) ≤ n, since there is a homomorphism
π1(∆, o) → G which maps the homotopy class of ∂∆ to [w].

Now suppose clG([w]) = n. Let x1, . . . , xn, y1, . . . , yn be group words over
A such that [w] =

[

[x1], [y1]
]

. . .
[

[xn], [yn]
]

in G. Let Ψ be a disc diagram

over 〈A ‖R 〉 such that ℓ(∂∆) = [x1, y1] . . . [xn, yn]w
−1 (here part (2) of this

lemma is used). At this point 0-refinement of Ψ is needed.
Definition and explanation of 0-refinement are given in [Ol’89, Ol’91].

In a 0-refined diagram, faces and edges are usually divided into 2 classes:
0-edges and 0-faces, and all the other, “regular,” edges and faces. Here
the terminology shall be slightly different. The class of 0-faces shall be
subdivided into a class of 0-faces and a class of 1-faces; “regular” edges
shall be called 1-edges, and “regular” faces shall be called 2-faces. Thus, all
the edges of a 0-refined diagram are divided into 0-edges and 1-edges, and
all the faces are divided into 0-faces, 1-faces, and 2-faces. The requirements
on the labelling of a 0-refined diagram over 〈A ‖R 〉 are the following:

(1) the label of every oriented 0-edge is 1 (the symbol ‘1’ here is regarded
as a new group letter such that 1−1 = 1+1 = 1);

(2) the label of every oriented 1-edge is an element of A±1, and, as usual,
mutually inverse oriented edges are labelled with mutually inverse
group letters;

(3) the label of the contour of every 0-face is of the form 1k;
(4) the label of the contour of every 1-face is of the form 1kx1lx−11m

where x ∈ A
±1; and

(5) the label of the contour of every 2-face is an element of R±1.

Let Ψ̃ be a 0-refinement of Ψ such that ∂Ψ̃ is a simple cyclic path, and
ℓ(∂Ψ̃) = ℓ(∂Ψ). Let p1, . . . , p2n, q1, . . . , q2n, and t be the paths such that

(1) ∂∆̃ = p1p2q
−1
1 q−1

2 . . . p2n−1p2nq
−1
2n−1q

−1
2n t

−1,
(2) ℓ(p2i−1) = ℓ(q2i−1) = xi and ℓ(p2i) = ℓ(q2i) = yi for i = 1, . . . , n,

and
(3) ℓ(t) = w.

Let ∆0 be the (0-refined) diagram obtained from Ψ̃ by “gluing” together
each pair of paths pi and qi, i = 1, . . . , n, and choosing t (or rather the copy
of t in ∆0) as the contour of ∆0. Let ∆̄0 be a closure of ∆0. Then the
underlying complex of ∆̄0 is a combinatorial sphere with n handles. Let Θ
be the “improper” face of ∆̄0 (which is not a face of ∆0); this face is to be
regarded as a 2-face in the sense of 0-refinement.

Eliminate all 0-edges and 0-faces of ∆̄0 by collapsing 0-edges. If e is a 0-
edge which is not a loop and not the only edge of some connected component
of the diagram, then the meaning of collapsing e is clear. If e is the only
edge of some connected component of the diagram, then collapsing e means
removing this component all together. Consider a 0-edge e which is a loop. If
e is the only edge incident to some 0-face Π1, and e is incident to another face
Π2 which is incident to some edge distinct from e, then collapsing e results in
removing e and Π1, and shortening the contour of Π2 by 1. If e is incident to
two distinct faces Π1 and Π2, both of which are also incident to some other
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edges, then collapsing e results in removing e, possibly doubling the end-
vertex of e (unless e switches orientation in the diagram), and shortening
the contours of Π1 and Π2 by 1. Let ∆̄1 be the closed map obtained from
∆̄0 by collapsing one-by-one all 0-edges. Then ∆̄1 does not have any 0-edges
or 0-faces. Clearly, ∆̄1 is orientable, since so is ∆̄0.

Observe that if the operation of collapsing an edge increases the number
of connected components, then it increases it only by 1, and simultaneously
increases the Euler characteristic by 2, and if it decreases the Euler charac-
teristic, then it decreases it at most by 2 and simultaneously decreases the
number of connected components (recall Lemma 18). Therefore, if k is the
number of connected components of ∆̄1, then χ∆̄1

≥ χ∆̄0
+2(k−1). Let ∆̄2

be the connected component of ∆̄1 that contains the face Θ. By Lemma 18,
χ∆̄2

≥ χ∆̄0
.

The number of connected components and the Euler characteristic of any
map that can be obtained from a given closed map by diamond moves are
both bounded from above. Indeed, the number of connected components
is bounded by the number of faces, and hence, by Lemma 18, the Euler
characteristic is bounded by 2 times the number of faces. Let ∆̄3 be a map
of maximal Euler characteristic that can be obtained from ∆̄2 by diamond
moves. Since diamond moves do not decrease the Euler characteristic, and
improper diamond moves increase it (see Lemma 34), no improper diamond
move is applicable to ∆̄3, nor to any diagram obtained from ∆̄3 by any
sequence of diamond moves.

Let ∆̄ be the connected component of ∆̄3 that contains the face Θ. Then
∆̄ does not contain any 1-faces (otherwise an improper diamond move would
be applicable to ∆̄). Every diamond move that increases the number of
connected components, increases it by 1 and simultaneously increases the
Euler characteristic by 2. Therefore χ∆̄ ≥ χ∆̄2

. Since ∆̄ is oriented, its
underlying complex is a combinatorial sphere with at most n handles, but
the number of handles cannot be less than n, as follows from part (5).

Let ∆ be the subdiagram of ∆̄ obtained by removing Θ. The diagram
∆ is reduced, because otherwise some improper diamond move would be
applicable to some diagram obtained from ∆̄ by proper diamond moves.
The diagram ∆ is such as desired. �

4. Estimating Lemmas

Lemmas of this and the subsequent sections are rather technical. It is
advisable that the reader first takes a look at the proofs of Propositions 77,
78, and 80 in Section 7.

IfX is a set, then ‖X‖ shall denote the cardinality ofX. Assume the usual
definitions and notation concerning binary relations (subsets of Cartesian
products). In particular, if R is a relation and X is a set, then

R(X) = { y | (∃x ∈ X)(x R y) }.

Lemma 43 (Philip Hall, 1935). Let A and B be two finite sets, and R be a

relation from A to B (i.e., R ⊂ A×B). Then the following are equivalent :

(I) There exists an injection h : A → B such that for each x ∈ A,
x R h(x).
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(II) For each subset X of A, ‖R(X)‖ ≥ ‖X‖.

Corollary 44. Let A and B be two finite sets, and R be a relation from

A to B. Let w be a function from B to N ∪ {0}. Then the following are

equivalent :

(I) There exists a function h : A→ B such that :
(1) for each x ∈ A, x R h(x), and
(2) for each y ∈ B, the full pre-image of y under h consists of at

most w(y) elements.

(II) For each subset X of A,
∑

y∈R(X)

w(y) ≥ ‖X‖.

(III) For each subset Y of B,
∑

y∈Y

w(y) ≥ ‖{x | R({x}) ⊂ Y }‖.

Proofs of the lemma and the corollary may be found, for example, in
[Hal35, Mur05]. (The equivalence of items (II) and (III) of the corollary is
not proved in those papers, but is easy to verify.)

Definition 45. A c-path is called regular if its image in the 1-skeleton
of the complex is reduced and nontrivial. A c-pseudo-arc is regular if the
associated oriented c-pseudo-arcs are such.

Definition 46. An S1-map is a map together with a system of selected

c-paths of its faces satisfying the following conditions:

(1) all selected c-paths are regular (in particular, they are oriented c-
pseudo-arcs),

(2) the inverse path of every selected c-path is selected, and
(3) every nontrivial subpath of every selected c-path is selected.

A c-pseudo-arc of a face in an S1-map is selected if the associated oriented c-
pseudo-arcs are selected. An arc in an S1-map is selected if this arc is internal
and both c-arcs that map to it (by attaching morphisms) are selected.

This definition of S1-maps is similar to the definition of S-maps in [Mur05],
but it is adapted to the more general definition of maps (one of the generali-
sations is that maps now are allowed to be non-orientable). In [Mur05], “S”
stood for “selection,” and here it stands for “structure,” because an S1-map
is a map with additional structure. So are S2-maps and S-maps, which shall
be defined and used below.

Definition 47. A set X of c-pseudo-arcs encloses a simple disc submap Φ
if

(1) elements of X are c-pseudo-arcs of faces which do not belong to Φ
(are “outside” of Φ),

(2) for every c-pseudo-arc from X, one of the associated oriented c-
pseudo-arcs maps to a subpath of 〈∂Φ〉, and

(3) ∂Φ can be decomposed into a product of paths each of which is the
image of a subpath of an oriented c-pseudo-arc associated with an
element of X.

Definition 48. Let ∆ be an S1-map, Φ its simple disc submap, and n ∈ N.
The S1-map ∆ is said to satisfy the condition Z(n) relative to Φ if every set
of selected c-pseudo-arcs enclosing Φ in ∆ has at least n+ 1 element.



24 ALEXEY MURANOV

Lemma 49. Let Ψ be a non-degenerate disc map. Suppose ∂Ψ = p1 . . . pn,
n ∈ N, where p1, . . . , pn are reduced paths. Then there exist a maximal

simple disc submap Φ of Ψ and simple paths q1, . . . , qm, 1 ≤ m ≤ n, such
that ∂Φ = q1 . . . qm and there are i1, . . . , im such that 1 ≤ i1 < · · · < im ≤ n
and for every j = 1, . . . ,m, qj is a subpath of pij .

(This Lemma is similar to Proposition 3.1 in [Mur05].)

Proof. Without loss of generality, assume that all the paths p1, . . . , pn are
nontrivial, and that the contour of Ψ is cyclically reduced. For if it is not,
then the terminal vertex of one of the paths p1, . . . , pn has degree 1 in
Ψ. Remove this vertex together with the incident edge, and “shorten” or
remove each of the paths from among p1, . . . , pn that start or end at this
vertex (the contour of Ψ is also “shortened”). If the lemma holds for the
new disc map and the new set of paths, it is clear that it holds for the initial
ones. Thus it can be assumed that ∂Ψ is cyclically reduced.

The conclusion is obvious if Ψ is simple. Assume Ψ is not simple. Then it
has two maximal simple disc submaps whose contours are subpaths of 〈∂Ψ〉,
and which are either disjoint, or have only one vertex in common. Let Φ1

and Φ2 be such maximal simple disc submaps.
If ∂Φ2 is a subpath of one of the paths p1, . . . , pn, then take Φ = Φ2,

m = 1, q1 = ∂Φ, and see that the conclusion holds.
Suppose ∂Φ2 is not a subpath of any one of the paths p1, . . . , pn. If the

initial vertex of ∂Ψ is not in Φ1, then let Φ = Φ1. If the initial vertex of ∂Ψ
is in Φ1, then let Φ be the map obtained from Φ1 by cyclically shifting its
contour so that ∂Φ starts at the same vertex as ∂Ψ. The initial vertices of the
n+1 paths p1, . . . , pn, ∂Φ1 divide the simple path ∂Φ into at most n simple
subpaths. Denote these subpaths by q1, . . . , qm so that ∂Φ = q1 . . . qm. The
submap Φ and the path q1, . . . , qm are the desired ones. �

The following notation is used in Estimating Lemma 50 and throughout
the rest of this paper: if Π is a face of an S1-map ∆, then let κ∆(Π),
or κ(Π), denote the number of maximal selected c-pseudo-arcs of Π, and
κ′∆(Π), or κ

′(Π), denote the number of maximal piece-wise selected regular
c-pseudo-arcs of Π. Note that κ′∆(Π) ≤ κ∆(Π). Note also that if all c-
pseudo-arcs of Π are selected, as well as if no c-pseudo-arc of Π is selected,
then κ∆(Π) = κ′∆(Π) = 0.

Recall that an elementary map is a spherical map with exactly 2 faces,
whose 1-skeleton is a combinatorial circle. Elementary maps are “bad” in
the sense that the conclusion of Estimating Lemma 50 may fail for them
(but only if all c-pseudo-arcs are selected, and hence κ = κ′ = 0). They are
also “inconvenient” in the sense that their distinct maximal selected arcs
can overlap.

Estimating Lemma 50 (First Estimating Lemma). Let ∆ be a non-

elementary connected S1-map, or an elementary S1-map which has a maxi-

mal selected c-pseudo-arc. Let A be a set of selected internal arcs of ∆ such

that no two distinct elements of A are subarcs of the same selected arc. Let
C and D be sets of faces of ∆ such that :

(1) C contains all faces incident to arcs from A, and
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(2) ∆ satisfies the condition Z(2) relative to every simple disc submap

that does not contain any faces from D and does not contain at least

one arc from A.

Let c∆ be the number of contours of ∆. Then either A is empty, or

‖A‖ ≤
∑

y∈C

(

3 + κ∆(y) + κ′∆(y)
)

+ 2‖D \ C‖ − c∆ − 3χ∆.

Furthermore, if B is a subset of C, there exist a subset E ⊂ A and a

function f : A \ E → B such that :

(1) either E is empty, or

‖E‖ ≤
∑

y∈(C\B)\D

(

3 + κ∆(y) + κ′∆(y)
)

+
∑

y∈(C\B)∩D

(

1 + κ∆(y) + κ′∆(y)
)

+ 2‖D‖ − c∆ − 3χ∆;

(2) for every x ∈ A \E, f(x) is incident to x;
(3) for every y ∈ B, the full pre-image of y under f consists of at most

3 + κ∆(y) + κ′∆(y) elements;
(4) for every y ∈ D, the full pre-image of y under f consists of at most

1 + κ∆(y) + κ′∆(y) elements.

Proof. If A is empty, then there is nothing to prove (meaning the proof is
easy). Assume it is non-empty.

It suffices to prove this lemma in the case ∆ is closed. (To prove the
statement in the case ∆ is not closed, apply this lemma to a closure of ∆,
the same sets A, B, C, and the set D extended by including the attached
“improper” faces). Hence assume without loss of generality that ∆ is closed.

Let K be the set of all connected components of a submap obtained from
∆ by removing all the faces that are in C and all the arcs that are in A.

For every element Ψ of K, let d(Ψ) denote the number of arcs in A that
have exactly one end-vertex in Ψ, plus twice the number of arcs in A that
have both end-vertices in Ψ. (Thus d is analogous to vertex degree.)

Clearly,
∑

Ψ∈K

χΨ − ‖A‖+ ‖C‖ = χ∆,

and
∑

Ψ∈K

d(Ψ) = 2‖A‖.

Using these two equations, one has

‖A‖ = 3‖C‖+ 3
∑

Ψ∈K

χΨ − 2‖A‖ − 3χ∆

= 3‖C‖+
∑

Ψ∈K

(

3χΨ − d(Ψ)
)

− 3χ∆.

By Lemmas 18 and 26, the Euler characteristic of each element of K is at
most 1, and if the Euler characteristic of Ψ ∈ K is 1, then Ψ is a disc map.
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Figure 2. Illustrations of Ψ ∈ K ′′
1 (left) and Ψ ∈ K ′′

2 (right).

Let

K ′
i = {Ψ ∈ K | d(Ψ) = i and χΨ = 1 } for i = 0, 1, 2, . . . .

Each element of each K ′
i is a disc map. Observe that K ′

0 = ∅. Therefore,

‖A‖ ≤ 3‖C‖+ 2‖K ′
1‖+ ‖K ′

2‖ − 3χ∆.

To complete the proof, essentially it is only left to demonstrate that

2‖K ′
1‖+ ‖K ′

2‖ ≤
∑

Π∈C

(

κ∆(Π) + κ′∆(Π)
)

+ 2‖D \ C‖,

and then to apply the corollary of Hall’s Lemma.
For i = 1, 2, let K ′′

i be the set of those elements of K ′
i whose face sets are

disjoint with D (i.e., such Ψ ∈ K ′
i that Ψ(2) ∩D = ∅). Clearly,

‖K ′
1 \K

′′
1 ‖+ ‖K ′

2 \K
′′
2 ‖ ≤ ‖D \ C‖.

Now it is to be shown that

2‖K ′′
1 ‖+ ‖K ′′

2 ‖ ≤
∑

Π∈C

(

κ∆(Π) + κ′∆(Π)
)

.

Let L be the set of all positive (for definiteness) maximal selected c-paths
of all face from C. Let L′ be the set of all elements of L that are terminal
subpaths of maximal piece-wise selected regular c-path. Clearly,

‖L‖ =
∑

Π∈C

κ∆(Π) and ‖L′‖ =
∑

Π∈C

κ′∆(Π).

Note that the image in ∆1 of every element of L has a common vertex with
at least one element of K (because of the maximality of elements of L).

Let a function h : L → K be defined as follows: h(x) is the element of
K such that the image of some terminal subpath of x has a common vertex
with h(x) and no common vertices with any other element of K.

Assign weights to all elements of L so that the weight of every element
of L′ is 2, and the weight of every element of L \ L′ is 1. Let the weight
of every element of K be the sum of the weights of all elements of its full
pre-image under h.

Consider an arbitrary Ψ ∈ K ′′
1 . Let v be the oriented arc that represents

an element of A and whose terminal vertex is in Ψ. Let Π be the face
incident to v. Let v′, q′, and u′ be c-paths of Π such that v′q′u′ is a c-path
of Π as well, the images of v′ and u′ are v and v−1, respectively, and the
image of q′ represents 〈∂Ψ〉 (see Fig. 2). Both v′ and u′ are selected c-paths.
Let q be the image of q′.
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Suppose Ψ is degenerate. Then vqv−1 is not reduced, which means that
v′q′u′ is not regular. Consider the maximal positive piece-wise selected reg-
ular c-path x containing either v′ or u′−1 as a subpath. Clearly, the image
of the terminal vertex of x is in Ψ, and therefore x has a (terminal) subpath
which is an element of L′. The image of this element of L′ under h is Ψ.
Therefore, the weight of Ψ is at least 2.

Suppose Ψ is non-degenerate. By Lemma 49, there is a simple disc
submap Φ of Ψ whose contour is a subpath of q. Since ∆ satisfies Z(2)
relative to Φ, the (nontrivial) c-path q′ cannot be selected and cannot be
the product of two selected c-paths. Therefore, the full pre-image of Ψ under
h must contain either an element of L′, or at least 2 distinct elements of L.
(If the pre-image does not contain any element of L′, then v′q′u′ is piece-wise
selected; if additionally the pre-image consisted of a single element, then q′

would be selected or would be the product of two selected c-paths, which is
impossible.) In either case the weight of Ψ is at least 2.

Consider an arbitrary Ψ ∈ K ′′
2 . Let v1 and v2 be the two oriented arcs

that represent elements of A and whose terminal vertices are in Ψ. Let v′1,
q′1, u

′
1, v

′
2, q

′
2, and u

′
2 be c-paths, and q1 and q2 be paths such that:

(1) v′1q
′
1u

′
1 and v′2q

′
2u

′
2 are c-paths (i.e., the products are defined),

(2) the images of v′1, q
′
1, u

′
1, v

′
2, q

′
2, u

′
2 are v1, q1, v

−1
2 , v2, q2, u

−1
1 ,

respectively, and
(3) 〈q1q2〉 = 〈∂Ψ〉 (see Fig. 2).

The c-paths v′1, u
′
1, v

′
2, and u

′
2 are selected. Let Π1 and Π2 be the faces to

which the c-paths v′1q
′
1u

′
1 and v′2q

′
2u

′
2 respectively belong.

Suppose Ψ is degenerate. If v1q1v
−1
2 or v2q2v

−1
1 is not reduced, which

means that v′1q
′
1u

′
1 or v′2q

′
2u

′
2 is not regular, then the pre-image of Ψ under

h contains at least one element of L′. Suppose now that both v1q1v
−1
2 and

v2q2v
−1
1 are reduced. Then they are inverse to each other. Therefore, they

are oriented arcs in ∆, unless v1 = v−1
2 . If v1 = v−1

2 , then ∆ is elementary,
K = {Ψ}, L 6= ∅, and hence the full pre-image of Ψ under h is non-empty.
Hence, suppose that v1q1v

−1
2 and v2q2v

−1
1 are mutually inverse oriented arcs

of ∆. The associated non-oriented arc cannot be selected because otherwise
it would be a selected arc containing two distinct elements of A as subarcs.
Therefore, at least one of the c-paths v′1q

′
1u

′
1 or v′2q

′
2u

′
2 is not selected, which

implies that the maximal selected c-path containing one of the c-paths v′1,
u′−1
1 , v′2, or u

′−1
2 as a subpath is mapped by h to Ψ. Thus, the weight of

every degenerate element of K ′′
2 is at least 1.

Suppose Ψ is non-degenerate. By Lemma 49, there is a simple disc
submap Φ of Ψ whose contour either is a subpath of one of the paths q1
or q2, or is the product of a subpath of q1 and a subpath of q2. Since ∆
satisfies Z(2) relative to Φ, at least one of the c-paths q′1 or q′2 is nontrivial
but not selected. Therefore, the full pre-image of Ψ under h is not empty,
and the weight of Ψ is at least 1.

On one hand, the sum of the weights of all elements of K ′′
1 ⊔K

′′
2 is at least

2‖K ′′
1 ‖ + ‖K ′′

2 ‖. On the other hand, it equals the sum of the weights of all
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elements of L, which is ‖L‖+ ‖L′‖. Therefore,

2‖K ′
1‖+ ‖K ′

2‖ = 2‖K ′′
1 ‖+ ‖K ′′

2 ‖+ 2‖K ′
1 \K

′′
1 ‖+ ‖K ′

2 \K
′′
2 ‖

≤ ‖L‖+ ‖L′‖+ 2‖D \ C‖

≤
∑

Π∈C

(

κ∆(Π) + κ′∆(Π)
)

+ 2‖D \ C‖.

This gives

‖A‖ ≤
∑

Π∈C

(

3 + κ∆(Π) + κ′∆(Π)
)

+ 2‖D \ C‖ − 3χ∆.

Now the first part of the statement of the lemma is proved. Apply it to
all subset of A. More precisely, take an arbitrary subset X of A, take the
subset Y of C consisting of all the faces incident to elements of X, and apply
the proved part of the lemma to conclude that

‖X‖ ≤
∑

y∈Y

(

3 + κ∆(y) + κ′∆(y)
)

+ 2‖D \ Y ‖ − 3χ∆.

Let w be the function on C defined as follows:

w(Π) =

{

3 + κ∆(Π) + κ′∆(Π) for Π ∈ C \D,

1 + κ∆(Π) + κ′∆(Π) for Π ∈ C ∩D.

In terms of w, have

‖X‖ ≤
∑

y∈Y

w(y) + 2‖D‖ − 3χ∆

≤
∑

y∈(Y ∩B)

w(y) +
∑

y∈(C\B)

w(y) + 2‖D‖ − 3χ∆.

Now apply the corollary of Hall’s Lemma to verify the remaining part of
the lemma. Let ω be an arbitrary element not in B. Define a binary relation
R ⊂ A× (B ∪ {ω}) as follows: x R y if and only if x ∈ A and either y = ω,
or y ∈ B and y is incident to x. Use the corollary of Hall’s Lemma and the
last inequality to conclude that there is a function h : A → B ∪ {ω} such
that:

(1) ‖h−1(ω)‖ ≤ max{0,
∑

y∈(C\B)w(y) + 2‖D‖ − 3χ∆};

(2) for every x ∈ A, either h(x) is incident to x, or h(x) = ω;
(3) for every y ∈ B, ‖h−1(y)‖ ≤ w(y).

To complete the proof of the second part, take E = h−1(ω) and f = h|A\E .
�

Definition 51. A graded map is a map ∆ together with a function rk∆ :
∆(2) → J where J is an arbitrary set or algebraic structure. The rank of a
face Π of ∆ is rk(Π). Two faces are called rank-equivalent if their ranks are
equal.

Definition 52. An S2-map is a graded map together with a system of
exceptional arcs such that:

(1) distinct exceptional arcs do not overlap,
(2) every exceptional arc is incident to a face, and
(3) faces incident to the same exceptional arc are of the same rank.
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Assign a rank to every exceptional arc of an S2-map according to the
rank of the incident faces. Exceptional arcs of the same rank shall be called
rank-equivalent.

Consider an arbitrary connected S2-map ∆. For every j, let Γj denote
the subcomplex of ∆ obtained by removing all the faces of rank j and all
the internal exceptional arcs of rank j.

Definition 53. The S2-map ∆ is said to satisfy the condition Y if for
every j such that ∆ has an internal exceptional arc of rank j, the number of
connected component of Γj that either have Euler characteristic 1 or contain
a rank-j (external) exceptional arc of ∆ is less than or equal to the number
of faces of ∆ of rank j.

Note that every connected component of Γj which contains an (external)
exceptional arc of ∆ of rank j is the underlying subcomplex of a map with
at least 2 contours, and hence has non-positive Euler characteristic.

Estimating Lemma 54 (Second Estimating Lemma). Let ∆ be a con-

nected S2-map satisfying the condition Y. For every j, let Aj denote the

set of all the internal exceptional arcs of ∆ of rank j, and Bj denote the

set of all the faces of ∆ of rank j. For every j, let ε(j) = 1 if ∆ has an

external exceptional arc of rank j, and let ε(j) = 0 otherwise. Then for

every j, either Aj is empty, or

‖Aj‖ ≤ 2‖Bj‖ − ε(j) − χ∆.

Furthermore, there exists a set E such that :

(1) either E is empty, or ‖E‖ ≤ −χ∆, and
(2) for every j, ‖Aj \ E‖ ≤ 2‖Bj‖ − ε(j).

Proof. For every set J , let AJ =
⋃

j∈J Aj , BJ =
⋃

j∈J Bj , and let ΓJ be the
subcomplex obtained from the underlying complex of ∆ by removing all the
faces that are in BJ and all the arcs that are in AJ .

It follows from the condition Y that for every j such that Aj 6= ∅, the
number of connected components of Γ{j} of Euler characteristic 1 is at most
‖Bj‖ − ε(j). Observe also that for every j, ‖Bj‖ − ε(j) ≥ 0.

Let J be an arbitrary set such that AJ is non-empty. It is to be shown
that

χΓJ
≤ ‖BJ‖ −

∑

j∈J

ε(j).

Let K be the set of all connected components of ΓJ . By Lemmas 18
and 26, the Euler characteristic of each elements of K is at most 1, and
every element of K of Euler characteristic 1 is the underlying complex of
a disc submap of ∆. Let K ′ be the set of all the elements of K of Euler
characteristic 1.

Define a function f : K ′ → J as follows. Consider an arbitrary Ψ ∈ K ′.

Let A
(Ψ)
J be the set of all the elements of AJ that have an end-vertex in

Ψ. Since ∆ is connected and AJ 6= ∅ (and hence at least one arc has been

removed in the process of obtaining ΓJ), the set A
(Ψ)
J is non-empty. Since Ψ

is the underlying complex of a disc submap of ∆ (and a disc map has only
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1 contour), all elements of A
(Ψ)
J are of the same rank (see Lemma 30). Let

f(Ψ) be the rank of the elements of A
(Ψ)
J . Then Af(Ψ) ⊃ A

(Ψ)
J 6= ∅.

Because ∆ satisfies the condition Y, and every Ψ ∈ K ′ is a connected
component of Γ{f(Ψ)}, it follows that

‖{Ψ ∈ K ′ | f(Ψ) = j }‖ ≤ ‖Bj‖ − ε(j) for every j.

Therefore,

χΓJ
=

∑

Ψ∈K

χΨ ≤ ‖K ′‖ ≤
∑

j∈J

(

‖Bj‖ − ε(j)
)

.

Let J be an arbitrary set. Then χ∆ = χΓJ
−‖AJ‖+ ‖BJ‖, and therefore

‖AJ‖ = ‖BJ‖+ χΓJ
− χ∆.

In the case AJ is non-empty, obtain:

‖AJ‖ ≤
∑

j∈J

(

2‖Bj‖ − ε(j)
)

− χ∆ ≤
∑

j

(

2‖Bj‖ − ε(j)
)

− χ∆.

In particular this proves the first part of the statement (take J to be the
one-element set {j}). To prove the second part, take J to be the set of all
j such that ‖Aj‖ > 2‖Bj‖ − ε(j), and observe from the last inequality that
a desired set E ⊂ AJ exists. �

5. S-maps

Definition 55. An S-map is a map together with structures of an S1-map
and an S2-map such that every internal exceptional arc is selected, and every
external exceptional arc lies on the image of a selected c-path.

Every submap of an S-map has a natural structure of an S-map. If Γ is
an S-submap of an S-map ∆, then an arc of Γ is exceptional in Γ if and
only if it is exceptional in ∆ and is incident to a face of Γ.

Definition 56. An S-map ∆ is said to satisfy the condition D(λ, µ, ν) rela-
tive to a submap Γ if λ, µ, and ν are functions defined on Γ(2) (and possibly
elsewhere) with values in [0, 1] such that the following three conditions hold:

D1(λ): if Π is a face of Γ, and L is the number of non-selected c-edges
of Π, then

L ≤ λ(Π)|∂Π|;

D2(µ): if Π is a face of Γ, u is a selected internal arc of ∆ incident to
Π, and M is the number of the edges of u that do not lie on any
exceptional arc, then

M ≤ µ(Π)|∂Π|;

D3(ν): if Π is a face of ∆, p is a simple path in ∆ which is the image
of a selected c-path of Π, and N is the sum of the lengths of all the
exceptional arcs of Γ that lie on p, then

N ≤ ν(Θ)|∂Θ|

for every face Θ of Γ such that rk(Θ) = rk(Π).

The S-map ∆ is said to satisfy the condition D(λ, µ, ν) (absolutely) if it
satisfies it relative to itself.
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Let D
′
2(µ) denote the condition obtained from D2(µ) by replacing “. . .

M ≤ µ(Π)|∂Π|” with “. . . M ≤ µ(Θ)|∂Θ| for every face Θ of Γ such that
rk(Θ) ≥ rk(Π).”

Let D
′
3(ν) denote the condition obtained from D3(ν) by replacing “. . .

such that rk(Θ) = rk(Π)” with “. . . such that rk(Θ) ≥ rk(Π).”

Definition 57. The condition D
′(λ, µ, ν) is the conjunction of the condi-

tions D1(λ), D
′
2(µ), and D

′
3(ν). An S-map ∆ is said to satisfy the condition

D
′(λ, µ, ν) absolutely if it satisfies it relative to itself.

Note that if an S-map ∆ satisfies D(λ, µ, ν) or D
′(λ, µ, ν) relative to a

submap Γ, then ∆ satisfies the same condition relative to every submap of
Γ as well.

The condition D will be used in the proof of Theorem 4, and the somewhat
stronger condition D

′ will be used in the proof of Theorem 5.

Inductive Lemma 58 (Inductive Lemma). Let ∆ be an S-map, and Φ
be a simple disc S-submap of ∆. Assume ∆ satisfies the condition Z(2)
relative to every proper simple disc submap of Φ, Φ satisfies the condition

Y, and ∆ satisfies D(λ, µ, ν) relative to Φ. Suppose

λ+ (3 + κ+ κ′)µ+ 2ν ≤
1

2

point-wise on Φ (i.e., for every face of Φ). Then ∆ satisfies Z(2) relative

to Φ.

Proof. Suppose ∆ does not satisfy Z(2) relative to Φ.
Let Φ̄ be a (spherical) closure of Φ. Note that the 1-skeleton of Φ̄ is a

subcomplex of the 1-skeleton of ∆. Let Θ be the face of Φ̄ that is not in Φ
(the improper face). Endow Φ̄ with a structure of an S1-map by selecting all
the c-paths of faces of Ψ that are selected in Ψ, and selecting those c-paths
of Θ whose images in Φ coincide with images of selected c-paths of faces
that are in ∆(2) \Φ(2).

Since ∆ satisfies Z(2) relative to every proper simple disc submap of Φ,
so does Φ̄.

Since ∆ does not satisfy Z(2) relative to Φ, it follows that κ′
Φ̄
(Θ) = 0 and

κΦ̄(Θ) ≤ 2.
Let A′ be the set of all the exceptional arcs of ∆ that are internal in Φ,

and A′′ be the set of all the exceptional arcs of ∆ that are external in Φ.
Let A be a set of pair-wise non-overlapping selected (internal) arcs of Φ̄

such that every selected edge of Φ̄ lies on an element of A, every element
of A′ ⊔A′′ lies on an element of A, and the cardinality of A is the minimal
possible. Then it is easy to see that no two distinct elements of A are subarcs
of the same selected arc.

Consider a special case: suppose that Φ̄ is an elementary map in which
all c-paths are selected. This implies that ∆ itself is an elementary map in
which all c-paths are selected. Then Φ has a single face Π, the set A consists
of a single element u, and one of the oriented arcs representing u is a cyclic
shift of ∂Π. Hence, as follows from D2(µ) and D3(ν),

|∂Π| = |u| ≤ (µ(Π) + ν(Π))|∂Π| <
1

2
|∂Π|.
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This gives a contradiction, and hence either Φ̄ is non-elementary, or at least
it has a maximal selected c-path. Therefore, Estimating Lemma 50 can be
applied.

Apply Estimating Lemma 50 to Φ̄, A, Φ(2) (in the role of the set B),
Φ̄(2) (in the role of the set C), and {Θ} (in the role of the set D). Let f be
a function A→ Φ(2) such that:

(1) for every x ∈ A, f(x) is incident to x, and
(2) for every y ∈ Φ(2), the full pre-image of y under f consists of at

most 3 + κΦ̄(y) + κ′
Φ̄
(y) elements.

(Since 1 + κΦ̄(Θ) + κ′
Φ̄
(Θ) + 2− 3χΦ̄ ≤ −1 ≤ 0, the “set E” is empty.)

For every j, let Bj be the the set of all rank-j faces of Φ, and A′
j be the

the set of all rank-j elements of A′. As in Estimating Lemma 54, for every
j, let ε(j) = 1 if A′′ has an element of rank j, and ε(j) = 0 otherwise.

By Estimating Lemma 54 applied to Φ,

‖A′
j‖ ≤ max{0, 2‖Bj‖ − ε(j) − 1} for every j.

Let p1 and p2 be paths such that 〈p1p2〉 = 〈∂Φ〉, p1 is the image of a
selected c-path of some face Π1 ∈ ∆(2) \ Φ(2), and p2 either is trivial, or
is the image of a selected c-path of some Π2 ∈ ∆(2) \ Φ(2) (Π1 and Π2 are
not assumed to be distinct). Moreover, choose such paths p1 and p2 so that
every element of A′′ lie on one of them. Such paths p1 and p2 exist because
∆ does not satisfy Z(2) relative to Φ.

For i = 1, 2, let A′′(i) be the set of those elements of A′′ that lie on pi.
Clearly, for each i, all elements of A′′(i) have the same rank. If A′′(i) 6= ∅

and j is the rank of elements of A′′(i), then ε(j) = 1.
Let J be the set of ranks of all elements of A′ ⊔A′′. For every j ∈ J , let

n(j) = min
Π∈Bj

ν(Π)|∂Π|.

Then, as follows from D3(ν),
∑

x∈A′′(i)

|x| ≤
∑

j∈J

ε(j)n(j) ≤
∑

j∈J

n(j) for i = 1, 2.

Estimate the total number of edges of all the elements of A′⊔A′′. Denote
this number by N . By D3(ν), obtain:

N =
∑

j∈J

∑

x∈A′

j

|x|+
∑

x∈A′′(1)

|x|+
∑

x∈A′′(2)

|x|

≤
∑

j∈J

(2‖Bj‖ − ε(j) − 1)n(j) +
∑

j∈J

ε(j)n(j) +
∑

j∈J

n(j)

=
∑

j∈J

2‖Bj‖n(j) ≤
∑

Π∈Φ(2)

2ν(Π)|∂Π|.

Estimate the total number of the edges of elements of A that are not
edges of elements of A′ ⊔A′′. Denote this number by M . By D2(µ), obtain:

M =
∑

Π∈Φ(2)

∑

x:f(x)=Π

|x| ≤
∑

Π∈Φ(2)

(3 + κ(Π) + κ′(Π))µ(Π)|∂Π|.
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Estimate the total number of the edges of Φ that are not edges of elements
of A. Denote this number by L. By D1(λ), obtain:

L ≤
∑

Π∈Φ(2)

λ(Π)|∂Π|.

Thus, on one hand,

‖Φ(1)‖ = L+M +N

≤
∑

Π∈Φ(2)

(

λ(Π) + (3 + κ(Π) + κ′(Π))µ(Π) + 2ν(Π)
)

|∂Π|

≤
∑

Π∈Φ(2)

1

2
|∂Π|;

on the other hand,

‖Φ(1)‖ =
1

2

∑

Π∈Φ(2)

|∂Π|+
1

2
|∂Φ|.

This gives a contradiction. �

Lemma 59. Let ∆ be an S-map, c∆ be the number of contours of ∆.
Suppose c∆ +3χ∆ ≥ 0. Assume ∆ satisfies the conditions Y and D(λ, µ, ν)
(absolutely). Let γ = λ + (3 + κ∆ + κ′∆)µ + 2ν. Suppose γ(Π) ≤ 1/2 for

every face Π of ∆. Let T be the set of all the edges of ∆ that are incident

to faces. Let S be the set of all those elements of T that are external edges

of ∆ and are the images of selected c-edges, Then
∑

i

|∂i∆| ≥ ‖S‖ ≥ ‖T‖ −
∑

Π∈∆(2)

γ(Π)|∂Π| ≥
∑

Π∈∆(2)

(1− 2γ(Π))|∂Π|.

Proof. It suffices to prove that

‖S‖ ≥ ‖T‖ −
∑

Π∈∆(2)

γ(Π)|∂Π|.

One of the other two inequalities is obvious, and the other follows form a
simple computation similar to that in Remark 6.1 of [Mur05] or in Proposi-
tion 4.1 of [Mur07].

Using induction and Inductive Lemma, obtain that ∆ satisfies the condi-
tion Z(2) relative to every simple disc submap.

Let N be the sum of the lengths of all the internal exceptional arcs of ∆,
M be the number of the selected internal edges of ∆ that do not belong to
any exceptional arc, and L be the number of (non-selected) edges of ∆ that
are the images of non-selected c-edges. Then

‖S‖ = ‖T‖ − L−M −N.

Using Estimating Lemma 54 and the condition D3(ν), obtain:

N ≤
∑

Π∈∆(2)

2ν(Π)|∂Π|.
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Similarly to the proof of Inductive Lemma (but with no need for using a
closure of ∆) obtain that

M ≤
∑

Π∈∆(2)

(3 + κ∆(Π) + κ′∆(Π))µ(Π)|∂Π|

(using Estimating Lemma 50 and the condition D2(µ)), and

L ≤
∑

Π∈∆(2)

λ(Π)|∂Π|

(using the condition D1(λ)). Therefore,

L+M +N ≤
∑

Π∈∆(2)

γ(Π)|∂Π|,

which completes the proof. �

6. Asphericity and torsion

Definitions of aspherical (A), combinatorially aspherical (CA), diagram-

matically aspherical (DA), singularly aspherical (SA), and Cohen-Lyndon

aspherical (CLA) presentations may be found in [CCH81]. It should be
noted that none of these definitions requires the set of relators to consist
of only reduced elements. Moreover, group presentations are regarded in a
way that a priori allows for repetition of relators (instead of sets of relators,
presentations have indexed families of relators). Only diagrammatic and
singular asphericities shall be used in this paper.

The version of asphericity defined in [Ol’89, Ol’91] is equivalent to dia-
grammatic asphericity by Theorem 32.2 therein.

The following is another equivalent definition of diagrammatic asphericity:

Definition 60. A group presentation is diagrammatically aspherical if every
spherical diagram over this presentation can be transformed by a sequence
of diamond moves into a diagram whose all connected components are ele-
mentary spherical diagrams.

Proof of equivalence is left to the reader.

Definition 61. A group presentation 〈A ‖R 〉 is singularly aspherical if it
is diagrammatically aspherical, no element of R represents a proper power
in the free group 〈A ‖∅ 〉, and no two distinct elements of R are conjugate
or conjugate to each other’s inverses in 〈A ‖∅ 〉.

Definition 62. Call a group (A), (CA), (DA), (SA), or (CLA), accordingly,
if it has a presentation which is such.

Interesting results on relations between different concepts of aspheric-
ity (of which, by the way, combinatorial asphericity is the weakest, and
singular asphericity is in a sense one of the strongest), and classification
of torsion elements in combinatorially aspherical groups may be found in
[Hue79, CCH81]. Combinatorial asphericity is also discussed in [Hue80] in
great detail.
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Remark 63. It follows directly from the definition of singular asphericity
that a group is singularly aspherical if and only if it has a diagrammatically
aspherical presentation without proper powers among relators, relators being
viewed as elements of the free group on the set of generators.

Lemma 64. Singularly aspherical groups are torsion-free.

Proof. Let G be an arbitrary singularly aspherical group. Let 〈A ‖R 〉 be
a singularly aspherical presentation of G. Then the relation module M of
〈A ‖R 〉 is a free G-module by Corollary 32.1 in [Ol’89, Ol’91]. Therefore,
there exists a finite-length free resolution of Z over ZG:

0 →M →
⊕

x∈A

ZG→ ZG→ Z → 0,

where ZG and
⊕

x∈AZG are identified with the (free) G-modules of, re-
spectively, 0- and 1-dimensional cellular chains of the Cayley complex of
〈A ‖R 〉.

Suppose now that G has torsion. Let C be a nontrivial finite cyclic
subgroup of G. Every free G-module may be naturally regarded as a free
C-module. Hence the above resolution may be viewed a free resolution of
Z over ZC. This contradicts the fact that all odd-dimensional homology
groups of any nontrivial finite cyclic group are nontrivial (see [Bro94]). �

7. Proof of the theorems

Theorems 4 and 5 are proved in this section by parallel series of similar
arguments. It is convenient in both cases to use the notation of Section 2.

There is a conflict in notation between Subsections 2.1 and 2.2, but it
shall not cause confusion if the notation of Subsection 2.1 is used only in the
context of proving Theorem 4, while considering 〈A ‖Rn 〉, n ∈ N, and the
notation of Subsection 2.2 is used only in the context of proving Theorem 5,
while considering 〈A ‖R∞ 〉.

It is convenient to assume in this section that to every diagram under
consideration there is assigned a sort which is either (I.n), n ∈ N, or (II).
More precisely, every diagram or presentation considered in this section is
always equipped with a sort attribute. Diagrams of sorts (I.n), n ∈ N,
will be used for proving Theorem 4, and most diagrams of sort (I.n) under
consideration will be diagrams over 〈A ‖Rn 〉. Similarly, diagrams of sort
(II) will be used for proving Theorem 5, and most diagrams of this sort
under consideration will be diagrams over 〈A ‖R∞ 〉. Whenever the sort is
not assigned explicitly, it shall be assumed in the most natural way, but a
priori the sort is not determined by the diagram itself. The purpose of this
convention is to unambiguously use the same term in relation to a diagram
in different senses depending on the context (on the sort of the diagram).

Define sets of indices In, n ∈ N, and I∞ as follows:

In = { j |R(j)
n 6= R(j−1)

n }, I∞ = { j |R(j)
∞ 6= R(j−1)

∞ }.

Then

Rn = { rj | j ∈ In }, R∞ = { rj,1, rj,2 | j ∈ I∞ }.
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Let Wn = {wj | j ∈ In } where wj are the group words defined in Subsec-
tion 2.1. Let W∞ = {wj | j ∈ I∞ } where wj are the group words defined in
Subsection 2.2.

Definition 65. A graded S1-diagram ∆ of sort (I.n) is called correct if

(1) the rank of every face of ∆ is in In ⊔ {0};
(2) for every face Π of rank j, ℓ(∂Π) ∈ {r±1

j } if j ∈ In, and ℓ(∂Π) is the

concatenation of several copies of z±1
1 and z±1

2 if j = 0;
(3) for every face Π of rank j 6= 0, Π has c-paths s1, . . . , s2n+2, s

′
1, . . . ,

s′2n+2, t1, . . . , t2n+2, and t0 such that:

(a) s1t1s
′
1s2t2s

′
2 . . . s2n+2t2n+2s

′
2n+2t0 ∈ {∂⋆Π, (∂⋆Π)−1},

(b) (i) ℓ(si) = uji and ℓ(s
′
i) = u−1

ji for every i = 1, . . . , 2n + 2,

(ii) ℓ(t1) = · · · = ℓ(t2n+2) = wj ,

(iii) ℓ(t0) = v−1
j ,

(c) a c-path of Π is selected if and only if it is a nontrivial subpath
of one of the following 8n + 8 paths: s±1

1 , . . . , s±1
2n+2, s

′±1
1 , . . . ,

s′±1
2n+2

(in particular, κ∆(Π) = 4n + 4);
(4) for every face Π of rank 0, all c-pseudo-arcs of Π are selected (in

particular, κ∆(Π) = 0);
(5) if two faces are congruent (i.e., their contour labels are cyclic shifts of

each other or cyclic shifts of the inverses of each other), then either
these faces have the same rank, or the rank of at least one of these
faces is 0.

Definition 66. A graded S1-diagram ∆ of sort (II) is called correct if

(1) the rank of every face of ∆ is in I∞ ⊔ {0};
(2) for every face Π of rank j, ℓ(∂Π) ∈ {r±1

j,1 , r
±1
j,2 } if j ∈ I∞, and ℓ(∂Π)

is the concatenation of several copies of z±1
1 and z±1

2 if j = 0;
(3) for every face Π of rank j 6= 0, Π has c-paths q, s1, . . . , s2j+2, s

′
1,

. . . , s′2j+2, t1, . . . , t2j+2, and t0 such that:

(a) s1t1s
′
1s2t2s

′
2 . . . s2j+2t2j+2s

′
2j+2t0 = q ∈ {∂⋆Π, (∂⋆Π)−1},

(b) either
(i) ℓ(q) = rj,1,

(ii) ℓ(si) = uji and ℓ(s
′
i) = u−1

ji for every i = 1, . . . , 2j + 2,

(iii) ℓ(t1) = · · · = ℓ(t2j+2) = wj,
(iv) ℓ(t0) = a−1,

or
(i) ℓ(q) = rj,2,

(ii) ℓ(si) = uj,2j+2+i and ℓ(s′i) = u−1
j,2j+2+i for every i =

1, . . . , 2j + 2,
(iii) ℓ(t1) = · · · = ℓ(t2j+2) = wj,
(iv) ℓ(t0) = b−1,

(c) a c-path of Π is selected if and only if it is a nontrivial subpath
of one of the following 8j + 8 paths: s±1

1 , . . . , s±1
2j+2, s

′±1
1 , . . . ,

s′±1
2j+2

(hence κ∆(Π) = 4 rk(Π) + 4);
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(4) for every face Π of rank 0, all c-pseudo-arcs of Π are selected (in
particular, κ∆(Π) = 0);

(5) if two faces are congruent, then either they have the same rank, or
at least one of them has rank 0.

(The last conditions in these two definitions may be redundant, but are
easy to satisfy, and they facilitate the proof of Lemma 74.)

Definition 67. Faces of rank 0 in a correct graded S1-diagram of any sort
are called alien, all the other faces are called native. Correct graded S1-
diagrams without alien faces are called restricted.

For every diagram over 〈A ‖Rn 〉, and for every diagram over 〈A ‖R∞ 〉,
there is an essentially isomorphic diagram that has a selection and a grading
which turn it into a restricted correct graded S1-diagram of sort (I.n) or (II),
respectively.

Definition 68. An S-diagram ∆ of any sort is called correct if

(1) ∆ is correct as a graded S1-diagram;
(2) an internal arc u of ∆ is exceptional if an only if there exist c-paths

s1, s1−, s10, s1+, s2, s2−, s20, s2+ such that:
(a) s1 = s1−s10s1+ and s2 = s2−s20s2+,
(b) s1 and s2 are maximal selected c-paths,
(c) s10 and s20 are distinct c-paths with a common image (in the

1-skeleton of ∆) which coincides with one of the oriented arcs
associated with u, and

(d) ℓ(s1) = ℓ(s2), |s1−| = |s2−|, |s1+| = |s2+|;
(3) exceptional arcs are not incident to faces of rank 0

(in particular, every internal exceptional arc of ∆ is a maximal selected arc,
and there are no exceptional arcs of rank 0).

Every correct graded S1-diagram of any sort has a structure of a correct
S-diagram that extends the given structure of a graded S1-diagram and is
unique up to choice of external exceptional arcs. Every maximal selected
internal arc of a correct S-diagram either is exceptional, or does not overlap
with any exceptional arc.

Definition 69. An internal exceptional arc u of a correct S-diagram is called
non-extendible if it is the image of two maximal selected c-arcs; otherwise u
is called extendible.

Every extendible exceptional arc of a correct S-diagram of any sort can
be “extended” to a longer exceptional arc by a diamond move. (Diamond
moves are viewed here as operations on correct S-diagrams of a given sort.)

Definition 70. An S-diagram ∆ of any sort is called special if it is correct,
weakly reduced, and has no extendible internal exceptional arcs.

Clearly, every S-subdiagram of every special S-diagram is special.

Lemma 71. Every correct S-diagram of any sort can be transformed by a

series of diamond moves into an S-diagram each connected component of

which is either special and reduced, or elementary spherical. In particular,
every reduced correct S-diagram can be transformed by diamond moves into

a special S-diagram.
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Note that even when the diagrams under consideration are graded, the
property of being reduced is the same as for non-graded ones, unlike [Ol’89,
Ol’91].

Proof of the lemma. The number of connected components and the Euler
characteristic of any map that can be obtained from a given map Γ by dia-
mond moves are bounded from above. Indeed, the number of connected com-
ponents is bounded by ‖Γ(2)‖+ cΓ, and the Euler characteristic is bounded
by 2‖Γ(2)‖+ cΓ, as follows from Lemma 26. Here cΓ denotes the number of
contours of Γ.

Since diamond moves do not decrease the Euler characteristic, and im-
proper diamond moves increase it (see Lemma 34), it follows that in any se-
quence of diamond moves applied to a given diagram, there is only bounded
number of improper ones.

Consider an arbitrary correct S-diagram ∆. Assume without loss of gen-
erality that no improper diamond move is applicable to ∆, nor to any (cor-
rect) S-diagram obtained from ∆ by proper diamond moves. In particular,
neither the number of connected components of ∆, nor the Euler character-
istic of ∆ can be increased by any sequence of diamond moves. Then every
connected component of ∆ either is reduced or otherwise can be turned into
an elementary spherical diagram by a sequence of proper diamond moves.
Thus it is left to show that every reduced connected component of ∆ can
be made special by (proper) diamond moves.

Let Ψ be a reduced connected component of ∆. Diamond moves allow
one to “extend” all extendible internal exceptional arcs one-by-one. Any
S-diagram obtained from Ψ in this manner will be special. �

For every n, denote 1/(4n + 4) by νn.
If ∆ is a restricted special S-diagram of sort (I.n), then let λ∆, µ∆, and

ν∆ be the constant functions on ∆(2) defined as follows:

λ∆ = λn, µ∆ = µn, ν∆ = νn =
1

4n+ 4
.

Then, as follows from (1),

(5) 2λ∆ + (2κ∆ + 6n)µ∆ + (2n+ 1)ν∆ <
1

2
.

If ∆ is a restricted special S-diagram of sort (II), then let λ∆, µ∆, and
ν∆ be the functions on ∆(2) defined as follows:

λ∆(Π) = λrk(Π), µ∆(Π) = µrk(Π), ν∆(Π) = νrk(Π).

Then, as follows from (1),

(6) 2λ∆ + (2κ∆ + 6 rk)µ∆ + (2 rk+1)ν∆ <
1

2
.

Lemma 72. Let ∆ be an arbitrary correct and weakly reduced (or special)
S-diagram, and Γ be a restricted S-subdiagram. Then ∆ satisfies the con-

dition D(λΓ, µΓ, νΓ) relative to Γ. In the case ∆ is of sort (II), it satisfies
D
′(λΓ, µΓ, νΓ) relative to Γ.

This lemma follows directly from the construction of the presentations
〈A ‖Rn 〉, n ∈ N, and 〈A ‖R∞ 〉 in Section 2.
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Lemma 73. Let j be a natural number and ∆ be a restricted special disc

S-diagram satisfying the condition Y and containing a face of rank at least

j. Let w = wj where wj is defined in Subsection 2.1 or 2.2 depending on

the sort of ∆. Then |∂∆| > |w|.

Proof. By Lemma 72, the S-map ∆ satisfies the condition D(λ∆, µ∆, ν∆)
absolutely.

Let

γ = λ∆ + (3 + κ∆ + κ′∆)µ∆ + 2ν∆.

It follows from inequality (5) or (6), depending to the sort of ∆, that γ(Π) <
1/2− λ∆(Π) for every face Π of ∆.

By Lemma 59,

|∂∆| ≥
∑

Π∈∆(2)

(1− 2γ(Π))|∂Π| >
∑

Π∈∆(2)

2λ∆(Π)|∂Π|.

Let Π be a face of ∆ of rank ≥ j. It follows from one of the conditions
imposed on the group presentations in Section 2 that |w| ≤ λ∆(Π)|∂Π|.
Hence |∂∆| > |w|. �

Lemma 74. Let ∆ be a connected restricted special S-diagram (of any

sort) over a group presentation 〈A ‖S 〉. Suppose that every proper (finite)
subpresentation of 〈A ‖S 〉 defines a torsion-free group. Then ∆ satisfies

the condition Y.

Proof. Without loss of generality, assume that every connected special S-
diagram over 〈A ‖S 〉 whose set of face ranks is a proper subset of the set
of face ranks of ∆, does satisfy Y. (Alternatively, one can induct on the
number of different face ranks of a diagram.)

Let j be the rank of an arbitrary internal exceptional arc of ∆. Let A be
the set of all the internal exceptional arcs of ∆ of rank j, and B be the set
of all the faces of ∆ of rank j. Let Γ be the S-subdiagram obtained from ∆
by removing all the faces and internal exceptional arcs of rank j.

Let T be the minimal subset of S such that Γ is a diagram over 〈A ‖ T 〉.
The set of face ranks of Γ is a proper subset of that of ∆; therefore, T is a
proper subset of S. Hence the groups presented by 〈A ‖ T 〉 is torsion-free.

Let k = κ∆(Π) for an arbitrary face Π of rank j (k = 4n + 4 if the sort
is (I.n), and k = 4j + 4 if the sort is (II)). Let C be the set of corners of
elements of B chosen as follows: If Π is an arbitrary element of B, let s1,
. . . , sk/2, s

′
1, . . . , s

′
k/2, t1, . . . , tk/2, and t0 be the c-paths of Π such as in

the definition of correct graded S1-diagrams (s1, . . . , sk/2, s
′
1, . . . , s

′
k/2 are

maximal selected); let C contain the initial corners of the c-paths s1t1s
′
1,

. . . , sk/2tk/2s
′
k/2, and no other corners of Π. Thus C contains exactly k/2

corners of each element of B.
The image (under the attaching morphism) of each element of C is a

vertex of Γ. As follows from Lemma 26, every connected component of Γ
of Euler characteristic 1 is a disc S-diagram. It suffices to prove now that
for every connected component Ψ of Γ, if either Ψ is a disc submap, or it
contains the image of a selected c-edge of a face of ∆ of rank j, then the
number of elements of C whose images are in Ψ is at least k/2.
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Since ∆ is weakly reduced, it follows from the definition of exceptional
arcs in a correct S-diagram that for every connected component Ψ of Γ, the
number of elements of C whose images are in Ψ is divisible by k/2 (recall
Lemma 30).

Consider an arbitrary connected component Ψ of Γ which contains the
image of a selected c-edge of an element of B. Let Π be an element of B
and x be a selected c-edge of Π such that the image of x is in Ψ. Let s be
the maximal selected c-path of Π such that x lies on s, and the label of s
is of the form uji (i ∈ {1, . . . , 2n + 2} if the diagrams are of sort (I.n), and
i ∈ {1, . . . , 4j+4} if the diagrams are of sort (II)). Let c be the element of C
which is the corner of Π “closest” to the initial vertex of s. More precisely,
c is the only element of C which is a corner of Π and either coincides with
the initial vertex of s, or can be connected to the initial vertex of s by a
path (c-path of Π) without selected oriented c-edges. Then the image of c
is in Ψ, and hence the number of elements of C mapped to Φ is at least k/2
(since it is not 0 and is divisible by k/2).

Now consider an arbitrary connected component Ψ of Γ endowed with the
inherited structure of a special disc S-diagram. Suppose Ψ does not contain
the image of any element of C. It follows from Lemma 30 and from ∆’s
being weakly reduced that some cyclic shift of (∂Ψ)±1 can be decomposed
into the product of paths each of which is labelled by wj . Therefore, wj

represents a finite-order element in the group presented by 〈A ‖ T 〉. Since
that group is torsion-free, wj represents the identity element in it.

Let Φ be a restricted special disc S-diagram over 〈A ‖ T 〉 whose con-
tour label is wj , and whose set of face ranks is a subset of that of Γ (here
Lemma 71 is used to find such a special Φ). By the inductive assumption
at the beginning of this proof, Φ satisfies Y.

By the construction of group presentations in Section 2, wj is not trivial

modulo 〈A ‖R
(j−1)
n 〉 or 〈A ‖R

(j−1)
∞ 〉, whichever corresponds to the sort of

the diagrams under consideration. Therefore, Φ contains at least one face
whose rank is j or greater. This contradicts Lemma 73.

Thus Ψ does contain the image of some element of C, and hence Ψ con-
tains the images of at least k/2 element of C.

On one hand, ‖C‖ = (k/2)‖B‖ (recall that B is the set of all rank-j faces).
On the other hand, all elements of C can be distributed among connected
components of Γ so that there are at least k/2 elements assigned to each
component that either is disc, or contains an external exceptional arc of ∆
of rank j. Therefore, the number of such components does not exceed the
number of faces of rank j. The same is true for every j such that ∆ has an
internal exceptional arc of rank j. Hence the condition Y. �

Lemma 75. No element of
⋃

n∈NRn∪R∞ represents a proper power in the

free group on A. Distinct element of Rn, n ∈ N, or of R∞ do not represent

conjugate elements of the free group on A, nor elements conjugate to each

other’s inverses.

Proof. Most likely there is a straightforward way to prove these facts using
only the small-cancellation conditions imposed on the (subwords of) defining
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relations in Section 2, or they can be obtained for free by imposing addi-
tional restrictions on the defining relators of the constructed presentations.
Following is a proof which is more in the spirit of this paper.

Suppose r ∈ R∞ or r ∈ Rn for some n, and r represents a proper power
in the free group on A. Then r is freely conjugate to sm where s is cyclically
reduced and m > 1. Let Φ be a special simple single-face disc S-diagram
over 〈A ‖ {r} 〉 such that ℓ(∂Φ) = sm.

Let ∆ be a special spherical S-diagram obtained from two copies of Φ by
attaching them to each other along their contour cycles with a shift by |s|
edges. More precisely, let Φ1 and Φ2 be two copies of the S-diagram Φ. Let
q1 = ∂Φ1, and let q2 be a cyclic shift of ∂Φ2 by |s| edges (in either direction).
Observe that ℓ(q1) = sm = ℓ(q2). Let ∆ be the correct spherical S-diagram
obtained by “gluing” Φ1 and Φ2 together along the pair of paths q1 and q2.

Because of the shift in “gluing” the copies of Φ, the S-diagram ∆ does
not have any exceptional arcs, and hence satisfies the condition Y. For the
same reason, ∆ satisfies the condition D(λ∆, µ∆, 0) absolutely.

Let Π1 and Π2 be the two faces of ∆. Let κ̂ = κ∆(Π1) = κ∆(Π2),

λ̂ = λ∆(Π1) = λ∆(Π2), and µ̂ = µ∆(Π1) = µ∆(Π2).
By Lemma 59 and inequalities (5) and (6),

0 ≥
(

1− 2
(

λ̂+ (3 + 2κ̂)µ̂
))(

|∂Π1|+ |∂Π2|
)

> 0.

This gives a contradiction.
Suppose two distinct defining relators of one of the constructed presenta-

tions represent conjugate elements of the free group 〈A ‖∅ 〉. This situation
also gives rise to a special spherical S-diagram ∆ without exceptional arcs
and satisfying D(λ∆, µ∆, 0). (Such ∆ is also obtained by “gluing” together
two single-face simple disc diagrams.) This again leads to a contradiction
with Lemma 59.

The case of two relators conjugate to the inverses of each other is dealt
with similarly. �

Lemma 76. Let 〈A ‖S 〉 be a finite subpresentation of 〈A ‖R∞ 〉 or of

〈A ‖Rn 〉 for some n ∈ N. Then 〈A ‖S 〉 is singularly aspherical, and every

connected restricted special S-diagram (of appropriate sort) over 〈A ‖S 〉
satisfies the condition Y.

Proof. Induction on S: if S = ∅, then the conclusion is obvious; assume
S 6= ∅, and the statement is true for all proper subpresentations of 〈A ‖S 〉.

By the inductive assumption and Lemma 64, every proper subpresentation
of 〈A ‖S 〉 defines a torsion-free group. By Lemma 74, every connected
restricted special S-diagram over 〈A ‖S 〉 satisfies the condition Y.

It is left to show that 〈A ‖S 〉 is singularly aspherical. Suppose it is
not. Due to Lemma 75, this means that 〈A ‖S 〉 is not diagrammatically
aspherical.

Let ∆0 be a restricted correct reduced spherical S-diagram over 〈A ‖S 〉
(it exists since the presentation is not diagrammatically aspherical). Let ∆1

be a special S-diagram obtained from ∆0 by diamond moves (see Lemma 71).
Then, as follows from Lemmas 34 and 26, every connected component of ∆1

is a reduced spherical diagram. Let ∆ be an arbitrary connected component
of ∆1. It is already shown that such ∆ must satisfy the condition Y. By
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Lemma 72, ∆ satisfies the condition D(λ∆, µ∆, ν∆). By Lemma 59 and
inequalities (5) and (6),

0 ≥
∑

Π∈∆(2)

(

1− 2
(

λ∆(Π) + (3 + 2κ∆(Π))µ∆(Π) + 2ν∆(Π)
))

|∂Π| > 0,

which gives a contradiction. Thus 〈A ‖S 〉 is singularly aspherical. �

Proposition 77. For every n ∈ N, the group Gn constructed in Subsec-

tion 2.1 is singularly aspherical, torsion-free, and the elements [z1]Gn and

[z2]Gn freely generate a free subgroup H such that
(

∀h ∈ H \ {1}
) (

∀m ≥ 2n
) (

clGn(h
m) > n

)

.

Proof. By Lemma 76, every finite subpresentation of 〈A ‖Rn 〉 is singularly
aspherical. Therefore, 〈A ‖Rn 〉 itself is singularly aspherical. Therefore, by
Lemma 64, the group Gn is torsion-free.

Let w be an arbitrary nontrivial reduced product of several copies of z±1
1

and z±1
2 . Let m be an arbitrary integer such that m ≥ 2n. Since, by

Proposition 7, Gn is simple or trivial, the commutator length of [wm] in Gn

is defined. To complete the proof, it is only left to show that clGn([w
m]) > n.

Suppose that on the contrary clGn([w
m]) ≤ n. By Lemma 42, there exists

a one-contour reduced diagram over 〈A ‖Rn 〉, the underlying complex of
whose closure is a combinatorial handled sphere with n or fewer handles,
and whose contour label is wm. Denote such a diagram by ∆0. Then
χ∆0 ≥ 1− 2n.

After cyclically shifting, if necessary, the c-contours of some of the faces of
∆0, endow ∆0 with the structure of a restricted correct S-diagram (of sort
(I.n)) without external exceptional arcs. Transform ∆0 into a special S-
diagram ∆1 by diamond moves. This is possible by Lemma 71 and because
∆0 is reduced. Let ∆ be the connected component of ∆1 containing ∂∆1.
Then a closure of ∆ is a handled sphere. Since diamond moves do not
decrease the Euler characteristic, the maximal possible Euler characteristic
of a connected component is 2, and every diamond move that increases the
number of connected components increases it by 1 and increases the Euler
characteristic by 2, it follows that χ∆ ≥ χ∆0 . Note also that ℓ(∂∆) = wm.

Case 1: ∆ has no faces. Let FA be the free group presented by 〈A ‖∅ 〉.
Then, by Lemma 42, [wm]FA

∈ [FA, FA] (hence [w]FA
∈ [FA, FA]) and

clFA
[wm]FA

≤ n. This contradicts with Corollary 5.2 in [DH91]. (That
corollary implies, in particular, that for every nontrivial element x of the
derived subgroup of an arbitrary free group F , and for every m ∈ N,
clF (x

m) ≥ (m+ 1)/2.)
Case 2: ∆ has at least one face. Let ∆̄ be a closure of ∆. Clearly, ∆̄

cannot be elementary spherical (otherwise some cyclic shift of w±m would
be a relator, which is clearly not possible under the conditions imposed in
Subsection 2.1). The underlying complex of ∆̄ is a handled sphere with at
most n handles since χ∆̄ ≥ 2− 2n. Let Θ be the face of ∆̄ that is not in ∆
(the “improper” face). Extend the existing structure of a (restricted special)
S-diagram on ∆ to a structure of an (unrestricted special) S-diagram on ∆̄,
assigning to Θ rank 0 and choosing all c-paths of Θ as selected. Then
κ∆̄(Θ) = κ′

∆̄
(Θ) = 0.
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By Lemma 72, ∆̄ satisfies D(λn, µn, νn) relative to ∆. By Lemma 76, ∆
satisfies Y. By induction and Inductive Lemma, using inequality (5), obtain
that ∆̄ satisfies Z(2) relative to every simple disc subdiagram of ∆.

Let N be the sum of the lengths of all exceptional arcs of ∆̄ (of ∆),
M be the sum of the lengths of all the non-exceptional maximal selected
arcs of ∆̄ that are incident to faces of ∆ (recall that every non-exceptional
maximal selected internal arc of a correct S-diagram does not overlap with
any exceptional arc), and L be the number of non-selected edges of ∆̄. Note
that every non-selected edge of ∆̄, as well as every exceptional arc, is incident
to a face of ∆.

Let T be the set of all the edges of ∆̄ that are incident to faces of ∆.
Then L+M +N = ‖T‖. To come to a contradiction, it is left to show that
L+M +N ≤ (1/2)

∑

Π∈∆(2)|∂Π|, because
∑

Π∈∆(2)|∂Π| < 2‖T‖ (here it is

used that ∆ is non-degenerate).
The following upper estimate on L follows from the condition D1(λ∆):

L ≤
∑

Π∈∆(2)

λn|∂Π|.

To estimate M , Estimating Lemma 50 and the condition D2(µn) shall be
applied. Let A be the set of all the non-exceptional maximal selected arcs
that are incident to faces of ∆. Clearly, distinct elements of A do not overlap
and are not subarcs of the same selected arc. Let B = ∆(2), C = ∆̄(2),
D = {Θ}. By Estimating Lemma 50 applied to ∆̄, A, B, C, D, there exist
a subset E of A and a function h : A \ E → ∆(2) such that:

(1) either E is empty, or

‖E‖ ≤ 1 + κ∆̄(Θ) + κ′∆̄(Θ) + 2− 3χ∆̄ ≤ 3− 3(2− 2n) = 6n− 3;

(2) for every x ∈ A \ E, the face h(x) is incident to x;
(3) for every face Π, the number of arcs mapped to Π by h is at most

3 + κ∆(Π) + κ′∆(Π) ≤ 3 + 2(4n + 4) = 8n+ 11.

Let f : A → ∆(2) be an arbitrary extension of h such that for every x ∈ A,
the face f(x) is incident to x. Then for every face Π of ∆, the number
of arcs mapped to Π by f is at most 14n + 8. As follows from D2(µn),
|x| ≤ µn|∂(f(x))| for every x ∈ A. Therefore,

M ≤
∑

Π∈∆(2)

(14n + 8)µn|∂Π|.

It easily follows from Estimating Lemma 54 applied to ∆, that for every
j, the number of exceptional arcs of ∆ of rank j is at most 2n+1 times the
number of faces of ∆ of rank j. Then it follows from D3(νn) that

N ≤
∑

Π∈∆(2)

(2n + 1)νn|∂Π|.

Thus, by inequality (1) and because ∆ is non-degenerate,

L+M +N <
∑

Π∈∆(2)

1

2
|∂Π|.

This leads to a contradiction in Case 2. �
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Proposition 78. The group G∞ constructed in Subsection 2.2 is singularly

aspherical, torsion-free, and the elements [z1]G∞
and [z2]G∞

freely generate

a free subgroup H such that
(

∀h ∈ H \ {1}
) (

lim
n→+∞

clG∞
(hn) = +∞

)

.

Proof. The same way as in Proposition 77, obtain that 〈A ‖R∞ 〉 is singu-
larly aspherical and G∞ is torsion-free.

Let w be an arbitrary nontrivial reduced product of several copies of z±1
1

and z±1
2 , and n be an arbitrary positive integer. To complete this proof

it is only left to show that for every large enough m, clG∞
([wm]) > n.

Without loss of generality, assume that w is cyclically reduced, and that
|w| ≤ µj|rj,1| = µj|rj,2| for every j ≥ n.

Letm be an arbitrary integer such that |wm| ≥ |rn,1| and 1/m ≤ µn. Sup-
pose that clG∞

([wm]) ≤ n. By the same argument as in the proof of Propo-
sition 77, there exists a one-contour reduced restricted special S-diagram
over 〈A ‖R∞ 〉 (of sort (II)), the underlying complex of whose closure is a
combinatorial handled sphere with at most n handles, and whose contour
label is wm. Let ∆ be such an S-diagram.

Let ∆̄ be a closure of ∆. The diagram ∆̄ cannot be elementary spherical
because of the conditions imposed in Subsection 2.2. Let Θ be the face of
∆̄ that is not in ∆. Extend the existing structure of a (restricted special)
S-diagram on ∆ to a structure of an (unrestricted special) S-diagram on
∆̄, assigning to Θ rank 0 and choosing all c-paths of Θ as selected. Then
κ∆̄(Θ) = κ′

∆̄
(Θ) = 0.

By Lemma 72, ∆̄ satisfies D′(λ∆, µ∆, ν∆) relative to ∆. By Lemma 76, ∆
satisfies Y. By induction and Inductive Lemma, using inequality (6), obtain
that ∆̄ satisfies Z(2) relative to every simple disc subdiagram of ∆.

LetN be the sum of the lengths of all exceptional arcs of ∆̄,M be the sum
of the lengths of all non-exceptional maximal selected arcs of ∆̄, and L be the
number of non-selected edges of ∆̄. Then L+M +N = ‖∆̄(1)‖. To obtain
a contradiction, it suffices to show that L+M +N < (1/2)

∑

Π∈∆̄(2)|∂Π|.

The following upper estimate on L follows from the condition D1(λ∆)
relative to ∆, because every c-edge of Θ is selected:

L ≤
∑

Π∈∆(2)

λ∆(Π)|∂Π|.

Let A be the set of all maximal selected arcs of ∆̄. Then M + N =
∑

x∈A|x|.

Apply Estimating Lemma 50 to the S-diagram ∆̄ and the sets A, B =
∆(2), C = ∆̄(2), D = {Θ}. Let E be a subset of A and h be a function
A \ E → ∆(2) such that:

(1) either E is empty, or

‖E‖ ≤ 3− 3χ∆̄ ≤ 6n− 3;

(2) for every x ∈ A \ E, the face h(x) is incident to x;
(3) for every face Π, the number of arcs mapped to Π by h is at most

3 + κ∆(Π) + κ′∆(Π) ≤ 8 rk(Π) + 11.
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Let M1 be the sum of the lengths of all non-exceptional elements of A \ E,
andM2 be the sum of the lengths of all non-exceptional elements of E. Then
M1 +M2 =M , and, by the condition D2(µ∆),

M1 ≤
∑

Π∈∆(2)

(8 rk(Π) + 11)µ∆(Π)|∂Π|,

while M2 is less than or equal to 6n − 3 times the maximal length of a
non-exceptional maximal selected arc.

Apply Estimating Lemma 54 to ∆. Let F be a set of exceptional arcs of
∆ such that:

(1) either F is empty, or ‖F‖ ≤ −χ∆ ≤ 2n− 1, and
(2) for every j, the number of exceptional arcs of rank j that are not in

F is at most twice the number of faces of ∆ of rank j.

Let N1 be the sum of the lengths of all the exceptional arcs that are not
elements of F , and N2 be the sum of the lengths of all the elements of F .
Then N1 +N2 = N , and, by the condition D3(ν∆),

N1 ≤
∑

Π∈∆(2)

2ν∆(Π)|∂Π|,

while N2 is less than or equal to 2n − 1 times the maximal length of an
exceptional arc.

It is left to find suitable “global” estimates on the lengths of non-exceptional
maximal selected arc, and on the lengths of exceptional ones.

Observe that the length of every arc of ∆̄ that is incident to Θ and not
incident to any other faces is at most |w|−1 < (1/m)|∂Θ| ≤ µn|∂Θ|. Indeed,
the label of each of the oriented arcs associated with such an arc is a common
subword of a power of w and of a power of w−1 (because ∆̄ is orientable).
Any such word of length |w| would be a cyclic shift of w and of w−1 in the
same time, but in a free group a nontrivial element is not conjugate to its
own inverse (if it was, it would commute with the square of the conjugating
element, and hence would commute with the conjugating element itself).

Case 1: the rank of every face of ∆ is less than n. If follows from conditions
of Subsection 2.2 and from the inequality |∂Θ| ≥ |rn,1|, that the length
of any non-exceptional maximal selected arc of ∆̄ cannot be greater than
µn|∂Θ|, the length of any exceptional arc of ∆̄ cannot be greater than νn|∂Θ|.
Therefore,

M2 ≤ (6n − 3)µn|∂Θ| and N2 ≤ (2n − 1)νn|∂Θ|.
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Thus, by inequalities (1) and (6), obtain a contradiction:

L+M +N ≤
∑

Π∈∆(2)

λ∆(Π)|∂Π|

+
∑

Π∈∆(2)

(8 rk(Π) + 11)µ∆(Π)|∂Π| + (6n − 3)µn|∂Θ|

+
∑

Π∈∆(2)

2ν∆(Π)|∂Π| + (2n − 1)νn|∂Θ|

<
∑

Π∈∆̄(2)

1

2
|∂Π|.

Case 2: ∆ has a face of rank at least n. Let Π̂ be a face of ∆ of
maximal rank, rk(Π̂) ≥ n. By the condition D

′
2(µ∆) and by inequality

|w| ≤ µ∆(Π̂)|∂Π̂|, the length of every non-exceptional maximal selected arc

of ∆̄ is at most µ∆(Π̂)|∂Π̂|. By the condition D
′
3(ν∆), the length of every

exceptional arc of ∆̄ is at most ν∆(Π̂)|∂Π̂|. By inequality (6), obtain a
contradiction:

L+M +N ≤
∑

Π∈∆(2)

λ∆(Π)|∂Π|

+
∑

Π∈∆(2)

(8 rk(Π) + 11)µ∆(Π)|∂Π| + (6n − 3)µ∆(Π̂)|∂Π̂|

+
∑

Π∈∆(2)

2ν∆(Π)|∂Π| + (2n − 1)ν∆(Π̂)|∂Π̂|

≤
∑

Π∈∆(2)

(

λ∆(Π) + (14 rk(Π) + 8)µ∆(Π)

+ (2 rk(Π) + 1)ν∆(Π)
)

|∂Π|

<
∑

Π∈∆(2)

1

2
|∂Π|.

�

It remains to show that the word and conjugacy problems in the con-
structed groups are decidable. Proving this fact could be facilitated by
imposing additional restrictions on the constructed presentations, but this
is not necessary.

Observe that inequality (1) implies that for every n ∈ N,

λn + (8n + 11)µn + 2νn <
19

44
< 0.45.

The following lemma is helpful for solving the word and conjugacy prob-
lems in the constructed groups.

Lemma 79. Let 〈A ‖S 〉 be a subpresentation of one of the presentations

〈A ‖Rn 〉, n ∈ N, or 〈A ‖R∞ 〉. Let K be the group presented by 〈A ‖S 〉.
Then
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(1) if w is a nontrivial group word over A, and ∆ is a minimal by the

number of faces disc diagram over 〈A ‖S 〉 such that ℓ(∂∆) = w,
then

|w| >
1

10

∑

Π∈∆(2)

|∂Π|

(in particular, K is hyperbolic if S is finite);
(2) if w1 and w2 are group words over A such that [w1]K 6= 1K , and

∆ is a minimal by the number of faces contour-oriented annular

diagram over 〈A ‖S 〉 such that ℓ(∂1∆) = w1 and ℓ(∂2∆)−1 = w2,
then

|w1|+ |w2| >
1

10

∑

Π∈∆(2)

|∂Π|.

Proof. First, let w be a group word over A, and ∆ be a minimal by the
number of faces disc diagram over 〈A ‖S 〉 such that ℓ(∂∆) = w. Because
of minimality, ∆ is reduced. After cyclically shifting, if necessary, the c-
contours of some of the faces of ∆, endow ∆ with a structure of a restricted
correct S-diagram of appropriate sort. Transform ∆ into a special S-diagram
Γ by diamond moves. The connected component of Γ containing ∂Γ is a disc
diagram. By the minimality of ∆, this implies that Γ is connected. The S-
diagram Γ satisfies the conditions Y and D(λΓ, µΓ, νΓ). Let

γ = λΓ + (3 + κΓ + κ′Γ)µΓ + 2νΓ.

By inequalities (5) and (6), γ(Π) < 0.45 for every Π ∈ Γ. By Lemma 59,

|w| = |∂Γ| ≥
∑

Π∈Γ(2)

(1− 2γ(Π))|∂Π| ≥
1

10

∑

Π∈Γ(2)

|∂Π| =
1

10

∑

Π∈∆(2)

|∂Π|,

and the equality in the both inequalities simultaneously is not possible be-
cause |w| > 0.

Second, let w1 and w2 be group words over A such that [w1]G 6= 1G, and
∆ be a minimal by the number of faces contour-oriented restricted correct
annular S-diagram of appropriate sort over 〈A ‖S 〉 such that ℓ(∂1∆) = w1

and ℓ(∂2∆)−1 = w2. Because of minimality, ∆ is reduced. Transform ∆ into
a special S-diagram Γ by diamond moves. The connected component of Γ
that contains ∂1Γ is either disc or annular, and is contour-oriented. By the
minimality of ∆, and because [w1]G 6= 1G, this implies that Γ is connected.
The S-diagram Γ satisfies the conditions Y and D(λΓ, µΓ, νΓ). Let γ be as
above. Then γ(Π) < 0.45 for every Π ∈ Γ. By Lemma 59,

|w1|+ |w2| = |∂1Γ|+ |∂2Γ| ≥
∑

Π∈Γ(2)

(1− 2γ(Π))|∂Π| ≥
1

10

∑

Π∈∆(2)

|∂Π|,

and the equality in the both inequalities is not possible simultaneously. �

Proposition 80. The groups Gn, n ∈ N, and G∞ constructed in Section 2
have decidable word and conjugacy problems.

Proof. Here follows a proof of decidability of the word an conjugacy problems
for the group G∞. For the groupsGn, n ∈ N, there is a completely analogous
proof which therefore shall not be given here.
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For every i ∈ N, let wi, ri,1 and ri,2 be the same wi, ri,1 and ri,2 as in
Subsection 2.2.

It is clear that the sequence r1,1, r1,2, r2,1, r2,2, r3,1, . . . is recursive, and
the sequence |r1,1|, |r1,2|, |r2,1|, |r2,2|, |r3,1|, . . . is bounded from below by an
increasing recursive sequence (of rational numbers) tending to +∞.

Consider an arbitrary subset S of R∞. Let K be the group presented by
the (sub)presentation 〈A ‖S 〉. It follows from Lemmas 42 and 79 that:

(1) for every group word x over A, [x]K = 1K (if and) only if there
exists a disc diagram ∆ over 〈A ‖S 〉 such that ℓ(∂∆) = x and
‖∆(1)‖ ≤ 6|x| (because (10 + 1)/2 < 6);

(2) for every group words x and y over A such that [x]K 6= 1K , [x]K
and [y]K are conjugate in K (if and) only if there exists a contour-
oriented annular diagram ∆ over 〈A ‖S 〉 such that ℓ(∂1∆) = x,
ℓ(∂2∆)−1 = y, and ‖∆(1)‖ < 6(|x| + |y|).

The following algorithm decides the conjugacy problem for 〈A ‖R∞ 〉:
Let x and y be arbitrary group words over A given as an input. Using the
(effective) lower bound on |ri,j |, find a k such that for every r ∈ R∞, if

(1/10)|r| ≤ |x|+ |y|, then r ∈ R
(k)
∞ . (Then, by Lemmas 42 and 79, x and y

represent conjugate elements of G∞ if and only if they represent conjugate

elements of 〈A ‖R
(k)
∞ 〉.) Determine the (finite) set R

(k)
∞ by finding all the

sets R
(1)
∞ , R

(2)
∞ , . . . , R

(k)
∞ one-by-one in this order. Do so in k steps. On

the step number i, the set R
(i−1)
∞ is already determined. To determine R

(i)
∞ ,

decide first whether [wi]R(i−1)
∞

= 1 by checking if there exists a disc diagrams

∆ over 〈A ‖R
(i−1)
∞ 〉 with at most 6|wi| edges and with the contour label wi.

If [wi]R(i−1)
∞

= 1, then R
(i)
∞ = R

(i−1)
∞ , otherwise R

(i)
∞ = R

(i−1)
∞ ∪ {ri,1, ri,2}.

After the set R
(k)
∞ is found, decide whether [x]G∞

= 1G∞
. Do so by checking

if there exists a disc diagram ∆ over 〈A ‖R
(k)
∞ 〉 with at most 6|x| edges and

with the contour label x. If found that [x]G∞
= 1G∞

, then similarly decide
whether [y]G∞

= 1G∞
. In the case [x]G∞

= 1G∞
= [y]G∞

, the elements
[x]G∞

and [y]G∞
are conjugate in G∞, and in the case [x]G∞

= 1G∞
6= [y]G∞

,
they are not. If found that [x]G∞

6= 1G∞
, decide whether [x]G∞

and [y]G∞

are conjugate in G∞ by checking whether there exists a contour-oriented

annular diagram ∆ over 〈A ‖R
(k)
∞ 〉 with less than 6(|x| + |y|) edges and

with the contour labels x and y−1.
Thus the group G∞ has decidable word and conjugacy problems. �

Theorems 4 and 5 are direct corollaries of Propositions 7, 8, 77, 78, 80.
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Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 blvd du 11

novembre 1918, 69622 Villeurbanne Cedex, France
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