AUTOMORPHISMS OF THE SEMIGROUP OF ENDOMORPHISMS OF FREE ASSOCIATIVE ALGEBRAS

A. KANEL-BELOV, A. BERZINS AND R. LIPYANSKI

ABSTRACT. Let $A = A(x_1, ..., x_n)$ be a free associative algebra in the variety of associative algebras \mathcal{A} freely generated over K by a set $X = \{x_1, ..., x_n\}$, $End\ A$ be the semigroup of endomorphisms of A, and $Aut\ End\ A$ be the group of automorphisms of the semigroup $End\ A$. We investigate the structure of the groups $Aut\ End\ A$ and $Aut\ \mathcal{A}^\circ$, where \mathcal{A}° is the category of finitely generated free algebras from \mathcal{A} . We prove that the group $Aut\ End\ A$ is generated by semi-inner and mirror automorphisms of $End\ F$ and the group $Aut\ \mathcal{A}^\circ$ is generated by semi-inner and mirror automorphisms of the category \mathcal{A}° . This result solves an open Problem formulated in [14].

1. Introduction

Let Θ be a variety of linear algebras over a commutative-associative ring K and F = F(X) be a free algebra from Θ generated by a finite set X. Here X is supposed to be a subset of some infinite universum X^0 . Let G be an algebra from Θ and $K_{\Theta}(G)$ be the category of algebraic sets over G. Here and bellow we refer to [15, 16] for Universal Algebraic Geometry (UAG) definitions used in our work.

The category $K_{\Theta}(G)$ can be considered from the point of view of the possibility to solve systems of equations in the algebra G. Algebras G_1 and G_2 from Θ are categorically equivalent if the categories $K_{\Theta}(G_1)$ and $K_{\Theta}(G_2)$ are correctly isomorphic. Algebras G_1 and G_2 are geometrically equivalent if

$$T_{G_1}'' = T_{G_2}''$$

holds for all finite sets X and for all binary relations T on F and ' is Galois correspondence between sets in Hom(F, G) and the binary relations on F.

It has been shown in [16] that categorical and geometrical equivalences of algebras are related and their relation is determined by the structure of the group $Aut \Theta^0$, where Θ^0 is the category of free finitely generated algebras of Θ . There is a natural connection between a structure of the groups $Aut \, End \, F, \, F \in \Theta$, and $Aut \, \Theta^0$.

Let \mathcal{A} be the variety of associative algebras with (or without) 1, $A = A(x_1, ..., x_n)$ be a free associative algebra in \mathcal{A} freely generated over K by a set $X = \{x_1, ..., x_n\}$. One of our aim here is to describe the group $Aut \, End \, A$ and, as a consequence, to obtain a description of the group $Aut \, \mathcal{A}^{\circ}$ for the variety of associative algebras over a field K.

Date: November 27, 2005.

¹⁹⁹¹ Mathematics Subject Classification. 08A35, 08C05, 17B01.

Key words and phrases. Variety of associative algebras, free algebra, semi-inner automorphism.

We prove that the group $Aut \, End \, A$ is generated by semi-inner and mirror automorphisms of $End \, A$ and the group $Aut \, \mathcal{A}^{\circ}$ is generated by semi-inner and mirror automorphisms of the category \mathcal{A}° .

Earlier, the description of $Aut \mathcal{A}^{\circ}$ for the variety \mathcal{A} of associative algebras over algebraically closed fields has been given in [11] and, over infinite fields, in [3]. Also in the same works, the description of $Aut End F(x_1, x_2)$ has been obtained.

Note that a description of the groups $Aut \, End \, F, \, F \in \Theta$, and $Aut \, \Theta^{\circ}$ for some other varieties Θ has been given in [2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 18].

2. Automorphisms of the semigroup End F and of the category Θ^0

We recall the basic definitions we use in the case of the variety \mathcal{A} of associative algebras over a field K.

Let $F = F(x_1, ..., x_n)$ be a finitely generated free algebra of a variety Θ of linear algebras over K generated by a set $X = \{x_1, ..., x_n\}$.

Definition 2.1. [2] An automorphism Φ of the semigroup $End\ F$ of endomorphisms of F is called quasi-inner if there exists a bijection $s: F \to F$ such that $\Phi(\nu) = s\nu s^{-1}$, for any $\nu \in End\ F$; s is called adjoint to Φ .

Definition 2.2. [15] A quasi-inner automorphism Φ of End F is called semi-inner if its adjoint bijection $s: F \to F$ satisfies the following conditions:

- 1. s(a+b) = s(a) + s(b),
- $2. s(a \cdot b) = s(a) \cdot s(b),$
- 3. $s(\alpha a) = \varphi(\alpha)s(a)$,

for all $\alpha \in K$ and $a, b \in F$ and an automorphism $\varphi : K \to K$. If φ is the identity automorphism of K, we say that Φ is an inner.

Let $A = A(x_1, ..., x_n)$ be a finitely generated free associative algebra over a field K of the variety A. Further, without loss of generality, we assume that associative algebras of A contain 1.

Definition 2.3. [11] A quasi-inner automorphism Φ of End A is called mirror if its adjoint bijection $s: A \to A$ is anti-automorphism of A.

Recall the notions of category isomorphism and equivalence [10]. An isomorphism $\varphi: \mathcal{C} \to \mathcal{D}$ of categories is a functor φ from \mathcal{C} to \mathcal{D} which is a bijection both on objects and morphisms. In other words, there exists a functor $\psi: \mathcal{D} \to \mathcal{C}$ such that $\psi \varphi = 1_{\mathcal{C}}$ and $\varphi \psi = 1_{\mathcal{D}}$.

Let φ_1 and φ_2 be two functors from \mathcal{C}_1 to \mathcal{C}_2 . A functor isomorphism $s: \varphi_1 \longrightarrow \varphi_2$ is a collection of isomorphisms $s_D: \varphi_1(D) \longrightarrow \varphi_2(D)$ defined for all $D \in Ob \ \mathcal{C}_1$ such that for every $\nu: D \longrightarrow B, \ \nu \in Mor \ \mathcal{C}_1, \ B \in Ob \ \mathcal{C}_1$, holds

$$s_B \cdot \varphi_1(\nu) = \varphi_2(\nu) \cdot s_D,$$

i.e., the following diagram is commutative

$$\begin{array}{c|c} \varphi_1(D) \xrightarrow{s_D} \varphi_2(D) \\ \varphi_1(\nu) \downarrow & & \varphi_2(\nu) \\ \varphi_1(B) \xrightarrow{s_B} \varphi_2(B) \end{array}$$

The isomorphism of functors φ_1 and φ_2 is denoted by $\varphi_1 \cong \varphi_2$.

An equivalence between categories \mathcal{C} and \mathcal{D} is a pair of functors $\varphi : \mathcal{C} \to \mathcal{D}$ and $\psi : \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $\psi \varphi \cong 1_{\mathcal{C}}$ and $\varphi \psi \cong 1_{\mathcal{D}}$. If $\mathcal{C} = \mathcal{D}$, then we get the notions of automiorphism and autoequivalence of the category \mathcal{C} .

For every small category \mathcal{C} denote the group of all its automorphisms by $Aut \mathcal{C}$. We will distinguish the following classes of automorphisms of \mathcal{C} .

Definition 2.4. [7, 13] An automorphism $\varphi : \mathcal{C} \to \mathcal{C}$ is equinumerous if $\varphi(D) \cong D$ for any object $D \in Ob\mathcal{C}$; φ is stable if $\varphi(D) = D$ for any object $D \in Ob\mathcal{C}$; and φ is inner if φ and $1_{\mathcal{C}}$ are naturally isomorphic, i.e., $\varphi \cong 1_{\mathcal{C}}$.

In other words, an automorphism φ is inner if for all $D \in Ob\mathcal{C}$ there exists an isomorphism $s_D: D \to \varphi(D)$ such that

$$\varphi(\nu) = s_B \nu s_D^{-1} : \varphi(D) \to \varphi(B)$$

for any morphism $\nu: D \to B, B \in Ob\mathcal{C}$.

Let Θ be a variety of linear algebras over K. Denote by Θ^0 the full subcategory of finitely generated free algebras $F(X), |X| < \infty$, of the variety Θ .

Definition 2.5. [13] Let A_1 and A_2 be algebras from Θ , δ be an automorphism of K and $\varphi: A_1 \to A_2$ be a ring homomorphism of these algebras. A pair (δ, φ) is called semimomorphism from A_1 to A_2 if

$$\varphi(\alpha \cdot u) = \alpha^{\delta} \cdot \varphi(u), \ \forall \alpha \in K, \ \forall u \in A_1.$$

Define the notion of a semi-inner automorphism of the category Θ^0 .

Definition 2.6. [13] An automorphism $\varphi \in Aut \Theta^0$ is called semi-inner if there exists a family of semi-isomorphisms $\{s_{F(X)} = (\delta, \tilde{\varphi}) : F(X) \to \tilde{\varphi}(F(X)), F(X) \in Ob \Theta^0\}$, where $\delta \in Aut K$ and $\tilde{\varphi}$ is a ring isomorphism from F(X) to $\tilde{\varphi}(F(X))$ such that for any homomorphism $\nu : F(X) \longrightarrow F(Y)$ the following diagram

$$\begin{array}{ccc} F(X) & \stackrel{s_{F(X)}}{\longrightarrow} & \tilde{\varphi}(F(X)) \\ \nu \downarrow & & \downarrow \varphi(\nu) \\ F(Y) & \underset{s_{F(Y)}}{\longrightarrow} & \tilde{\varphi}(F(Y)) \end{array}$$

is commutative.

Now we define the notion of a mirror automorphism of the category \mathcal{A}° .

Definition 2.7. [16] An automorphism $\varphi \in Aut \mathcal{A}^{\circ}$ is called mirror if it does not change objects of \mathcal{A}° and for every $\nu : A(X) \to A(Y)$, where $A(X), A(Y) \in Ob \mathcal{A}^{\circ}$, it holds

$$\varphi(\nu): A(X) \to A(Y)$$
 such that $\varphi(\nu)(x) = \delta(\nu(x)), \ \forall x \in X$,

where $\delta: A(Y) \to A(Y)$ is the mirror automorphism of A(Y).

Further, we will need the following

Proposition 2.8. [7, 13] For any equinumerous automorphism $\varphi \in Aut \mathcal{C}$ there exists a stable automorphism φ_S and an inner automorphism φ_I of the category \mathcal{C} such that $\varphi = \varphi_S \varphi_I$.

3. Quasi-inner automorphisms of the semigroup $\operatorname{End} F$ for associative and Lie varieties

We will need the standard endomorphisms of free algebra $F = F(x_1, ..., x_n)$ of the variety Θ .

Definition 3.1. [9] Standard endomorphisms of F in the base $X = \{x_1, ..., x_n\}$ are the endomorphisms e_{ij} of F which are determined on the free generators $x_k \in X$ by the rule: $e_{ij}(x_k) = \delta_{jk}x_i$, $x_i \in X$, $i, j, k \in [1n]$, δ_{jk} is the Kronecker delta.

Denote by S_0 a subsemigroup of $End\ F$ generated by $e_{ij},\ i,j\in[1n]$. Further, we will use the following statements

Proposition 3.2. [9] Let $\Phi \in Aut \, End \, F(X)$. Elements of the semigroup $\Phi(S_0)$ are standard endomorphisms in some base $U = \{u_1, ..., u_n\}$ of F if and only if Φ is a quasi-inner automorphism of $End \, F$.

The description of quasi-inner automorphisms of End A(X), where A(X) is a free associative algebra with or without 1 over a field K, is following

Proposition 3.3. [4, 9] Let $\Phi \in Aut \, End \, A(X)$ be a quasi-inner automorphism of $End \, A(X)$. Then Φ is either a semi-inner or a mirror automorphism, or a composition of them.

Let us investigate the images of standard endomorphisms under automorphisms of $End\ A$. To this end we introduce endomorphisms of rank 1.

Definition 3.4. We say that an endomorphism φ of A has rank 1, and write this as $rk(\varphi) = 1$, if its image $Im \varphi$ is a commutative subalgebra of F.

Note that according to Bergman's theorem [1], the centralizer of any non-scalar element of A is a polynomial ring in one variable over K. Thus, an endomorphism φ of A is of rank 1 if and only if $\varphi(A) = K[z]$ for some element $z \in A$.

Proposition 3.5. An endomorphism φ of A is of rank 1 if and only if there exists a non-zero endomorphism $\psi \in End A$ such that for any $h \in End A$

$$(3.1) \varphi \circ h \circ \psi = 0$$

Proof. Let $\varphi \in End\,A$ be an endomorphism of rank 1. Let us take the endomorphism $\psi \in End\,A$ such that

$$\psi(x_1) = [x_1, x_2]$$
 and $\psi(x_i) = 0$ for all $i \neq 1$.

Since $\varphi(A)$ is a commutative subalgebra of F, the condition (3.1) is fulfilled for any $h \in End A$.

Conversely, let the condition (3.1) is fulfilled for the endomorphism φ . Assume, on the contrary, that $Im \varphi$ is not a commutative algebra. Without loss of generality, it can be supposed that $[\varphi(x_1), \varphi(x_2)] \neq 0$, $x_1, x_2 \in X$. Denote by $R = K[\varphi(x_1), \varphi(x_2)]$ a subalgebra of A generated by $\varphi(x_1)$ and $\varphi(x_2)$. It is well known (see [5]) that R is a free non-commutative subalgebra of A.

Since ψ is a non-zero endomorphism of A, there exists $x_i \in X$ such that $\psi(x_i) \neq 0$. Set $P = P(x_1, ..., x_n) = \psi(x_i)$. We wish to show that P is an identity of the algebra R. Assume, on the contrary, that there exist elements $z_1, ..., z_n \in R$ such that $P(z_1, ..., z_n) \neq 0$. Consider sets $\varphi^{-1}(z_i)$, $i \in [1n]$, and choose elements

 $y_i \in \varphi^{-1}(z_i), i \in [1n],$ from them. We may construct an endomorphism h of A such that $h(x_i) = y_i, i \in [1n]$. Then we have

$$0 = \varphi \circ h \circ \psi(x_i) = P(\varphi \circ h(x_1), ..., \varphi \circ h(x_n)) = P(\varphi(y_1), ..., \varphi(y_n)) = P(z_1, ..., z_n).$$

We arrived at a contradiction. Therefore, P is an identity of R. Since R is a free noncommutative subalgebra of A, it has no non-trivial identities. Thus, P=0. We get a contradiction again. Therefore, $\operatorname{Im}\varphi$ is a commutative algebra and Proposition is proved.

It follows directly from this Proposition

Corollary 3.6. Let $\Phi \in Aut \, End \, A$ and $rk(\varphi) = 1$. Then $rk(\Phi(\varphi)) = 1$.

Definition 3.7. A set of endomorphisms $\mathcal{B}_e = \{e'_{ij} \mid e'_{ij} \in End A, i, j \in [1n]\}$ of A is called a subbase of End A if

- 1. $e'_{ij}e'_{km}=\delta_{jk}e'_{im}, \forall i,j,k,m\in[1n],$ 2. $rk\left(e'_{ij}\right)=1, \forall i,j\in[1n],$ i.e., there exist elements $z_{ij}\in A,\,i,j\in[1n],$ such that $e'_{ij}(A(X)) = K[z_{ij}]$ for all $i, j \in [1n]$.

Further, for simplicity, we write $z_{ii} = z_i$, $i \in [1n]$.

Definition 3.8. We say that a subbase \mathcal{B}_e is a base collection of endomorphisms of A (or a base of End A, for short) if $Z = \langle z_i \mid z_i \in A, i \in [1n] \rangle$ is a base of A.

Proposition 3.9. A subbase of endomorphisms \mathcal{B}_e is a base if and only if for any collection of endomorphisms $\alpha_i: A \to A, \forall i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{ and any subbase } \mathcal{B}_f = \{f'_{ij} \mid i \in [1n], \text{$ $i, j \in [1n]$ of End A there exist endomorphisms $\varphi, \psi \in End A$ such that

(3.2)
$$\alpha_i \circ f'_{ii} = \psi \circ e'_{ii} \circ \varphi$$
, for all $i \in [1n]$.

Proof. Let a subbase of endomorphisms \mathcal{B}_e be base. Since $rk(f'_{ij}) = 1, \forall i, j \in [1n],$ there exist elements $y_{ij} \in A$, $i, j \in [1n]$, such that $f'_{ij}(A(X)) = K[y_{ij}]$ for all $i, j \in [1n]$ [1n]. We define an endomorphisms ψ and φ of A in the following way:

$$\varphi(x_i) = z_i$$
 and $\psi(z_i) = \alpha_i(y_i)$, for all $i \in [1n]$

where $y_i = y_{ii}, \forall i \in [1n]$. Since $Z = \langle z_i \mid z_i \in A, i \in [1n] \rangle$ is a base of A, the definition of the endomorphism ψ is correct. Now, it is easy to check that the condition (3.2) with the given ϕ and ψ is fulfilled.

Conversely, assume that the condition (3.2) is fulfilled for the subbase \mathcal{B}_e . Let us prove that $Z = \langle z_i \mid z_i \in A, i \in [1n] \rangle$ is a base of A. Choosing in (3.2) $\alpha_i = e_{ii}$ and $f'_{ij} = e_{ij}$ for all $i, j \in [1n]$, we obtain

$$e_{ii} = \psi \circ e'_{ii} \circ \varphi,$$

i.e., $\psi(e'_{ii}\varphi(x_i)) = x_i$ for all $i \in [1n]$. Denote $t_i = e'_{ii}\varphi(x_i)$. We have $\psi(t_i) = x_i$. Since A is Hopfian, the elements t_i , $i \in [1n]$, form a base of A. Taking into account the equality $e'_{ii}(A(X)) = K[z_i]$, we obtain $t_i = \chi_i(z_i) \in K[z_i]$. Since $t_i z_i = z_i t_i, i \in$ [1n], by Bergman's theorem we have $z_i = g_i(t_i)$. Thus, $z_i = g_i(\chi_i(z_i))$. Similarly, $t_i = \chi_i(g_i(t_i))$. Therefore, there exists non-zero elements a_i and b_i in K such that $z_i = a_i t_i + b_i, i \in [1n]$. Thus, $Z = \langle z_i \mid z_i \in F, \forall i \in [1n] \rangle$ is also a base of A as claimed.

Now we deduce

Corollary 3.10. Let $\Phi \in Aut \, End \, A$. Then $\mathcal{C} = \{\Phi(e_{ij}) \mid i, j \in [1n]\}$ forms a base collection of endomorphisms of A.

Proof. Since $\Phi(e_{ij})\Phi(e_{km}) = \delta_{jk}\Phi(e_{im})$ and by Corollary 3.6, $rk\left(\Phi(e_{ij})\right) = 1$, the set \mathcal{C} is a subbase of $End\ A$. It is evident that the condition (3.2) is fulfilled for the subbase \mathcal{C} . By Proposition 3.9, \mathcal{C} is a base of $End\ A$.

Lemma 3.11. Let $\mathcal{B}_e = \{e'_{ij} \mid e'_{ij} \in End A, i, j \in [1n]\}$ be a base collection of endomorphisms of End A. Then there exists a base $S = \langle s_k | s_k \in A, k \in [1n] \rangle$ of A such that the endomorphisms from \mathcal{B}_e are standard endomorphisms in S.

Proof. Since $(e'_{ii})^2 = e'_{ii}$, we have $e'_{ii}(z_i) = z_i$, $i \in [1n]$. The equality $e'_{ii}e'_{ij}z_j = e'_{ij}z_j$ implies the existence of a polynomial $f_j(z_i) \in K[z_i]$ such that $e'_{ij}z_j = f_j(z_i)$. Similarly, there exists a polynomial $g_i(z_j) \in K[z_j]$ such that $e'_{ji}z_i = g_i(z_j)$. We have

$$z_j = e'_{ji}z_j = e'_{ji}e'_{ij}z_j = e'_{ji}(f_j(z_i)) = f_j(g_i(z_j))$$
 for all $i, j \in [1n]$.

and, in similar way, $z_i = g_i(f_j(z_i))$ for all $i, j \in [1n]$. Thus f_j and g_i are linear polynomials over K in variables z_i and z_j , respectively. Therefore,

(3.3)
$$e'_{ij}z_j = a_jz_i + b_j, \ a_i, b_i \in K \text{ and } a_i \neq 0.$$

Note that $e'_{ij}z_k = e'_{ij}e'_{kk}z_k = 0$ if $k \neq j$. Now we have for $i \neq j$

$$0 = e'_{ij}^2 z_j = e'_{ij}(a_j z_i + b_j) = e'_{ij}((b_j) = b_j,$$

i.e., $e'_{ij}z_j=a_jz_i,\ a_j\neq 0$. Let $V=Span(z_1,...,z_n)$. Then V is the vector space over K with a basis $Z=\langle z_k\mid z_k\in A, k\in [1n]\rangle$ and $e'_{ij},\ i,j\in [1n]$, are linear operators on V. Set

$$S = \langle s_i = e'_{i1}z_1 \mid z_1 \in Z, i \ge 1 \rangle.$$

Since $s_i = a_1 z_i$, $a_1 \neq 0, i \in [1n]$, we have that S is a base of A. In this base we obtain $e'_{ij}s_k = \delta_{jk}s_i$, $i, j, k \in [1n]$. The proof is complete.

4. Structure of automorphisms of the semigroup $\operatorname{End} F$ for associative and Lie varieties

Now we give the description of the groups $Aut \, End \, A$ and $Aut \, A^{\circ}$.

Theorem 4.1. The group $Aut \, End \, A$ is generated by semi-inner and mirror automorphisms of $End \, A$.

Proof. By Corollary 3.10, the set of endomorphisms $C = \{\Phi(e_{ij}) \mid \forall i \in [1n]\}$ is a base collection of endomorphisms of A. By Lemma 3.11, there exists a base $S = \langle s_k \mid s_k \in A, k \in [1n] \rangle$ such that the endomorphisms $\Phi(e_{ij})$ are standard endomorphisms in S. According to Proposition 3.2, we obtain that Φ is quasi-inner. By virtue of Proposition 3.3, the group $Aut \, End \, A$ is generated by semi-inner and mirror automorphisms of $End \, A$ as claimed.

Using Theorem 4.1 we prove

Theorem 4.2. The group Aut \mathcal{A}° of automorphisms of the category \mathcal{A}° is generated by semi-inner and mirror automorphisms of the category \mathcal{A}° .

Proof. Let $\varphi \in Aut \mathcal{A}^{\circ}$. It is clear that φ is an equinumerous automorphism. By Proposition 2.8, φ can be represented as the composition of a stable automorphism φ_S and an inner automorphism φ_I . Since a stable automorphism does not change free algebras from \mathcal{A}° , we obtain that $\varphi_S \in Aut \, End \, A(x_1, ..., x_n)$. By Theorem 4.1, φ_S is generated by semi-inner and mirror automorphisms of $End \, A$. Using this

fact and Reduction Theorem [7, 13], we obtain that the group $Aut \mathcal{A}^{\circ}$ generated by semi-inner and mirror automorphisms of the category \mathcal{A}° . This ends the proof. \square

5. Acknowledgments

The authors are grateful to B. Plotkin for attracting their attention to this problem and interest to this work.

References

- [1] G. Bergman, Centralizers in free associative algebras, *Trans. Amer. Math. Soc.* **137** (1969) 327-344.
- [2] A. Berzins, B. Plotkin, E. Plotkin, Algebric geometry in varieties of algebras with the given algebra of constants, *Journal of Math. Sciences* 102 (3) (2000) 4039-4070.
- [3] A. Berzins, The group of automorphisms of the category of free associative algebra, *Preprint* (2004).
- [4] A. Berzins, The group of automorphisms of semigroup of endomorphisms of free commutative and free associative algebra, *Preprint*, (2004)
- [5] P. Cohn, Free rings and their relations, (Academic Press, London, 1985).
- [6] E. Formanek, A question of B. Plotkin about the semigroup of endomorpjsms of a free group, Proc. American Math. Soc. 130 (2001) 935-937.
- [7] Y. Katsov, R. Lipyanski, B. Plotkin, Automorphisms of categories of free modules and free Lie algebras, (2004) pp. 18, to appear.
- [8] R. Lipyanski, B. Plotkin, Automorphisms of categories of free modules and free Lie algebras, Preprint. Arxiv:math. RA//0502212 (2005).
- [9] R. Lipyanski, Automorphisms of the semigroup of endomorphisms of free algebras of homogeneous varieties, *Preprint. Atxiv: math. RA//0511654v1* (2005).
- [10] S. Mac Lane, Categories for the Working Mathematician, (New York-Berlin: Spinger-Verlag, 1971).
- [11] G. Mashevitzky, Automorphisms of the semigroup of endomorphisms of free ring and free associative algebras, Preprint
- [12] G. Mashevitzky, B. Schein, Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup, *Proc. Amer. math. Soc.* 8 (2002) 1-10.
- [13] G. Mashevitzky, B. Plotkin, E. Plotkin, Automorphisms of the category of free Lie algebras, Journal of Algebra 282 (2004) 490-512.
- [14] G. Mashevitzky, B. Plotkin, E. Plotkin, Automorphisms of the category of free algebras of varieties, Electron. Res. Announs. Amer. Math. Soc. 8 (2002) 1-10.
- [15] B. Plotkin, Seven lectures in universal algebraic geometry, Preprint. Arxiv:math. RA/0502212 (2002).
- [16] B. Plotkin, Algebra with the same (algebraic geometry), in Proc. of the Steklov Institut of Mathematics 242 (2003) 176-207.
- [17] B. Plotkin, G. Zhitomirskii, On automorphisms of categories of free algebras of some varieties. Preprint. Arxiv:math. RA/0501331 (2005).
- [18] G. Zhitomirskii, Automorphisms of the semigroup of all endomorphisms of free algebras, *Preprint. Arxiv:math. GM/0510230 v1* (2005).

Department of Mathematics, The Hebrew University, Jerusalem, 91904, Israel E-mail address: kanel@huji.ac.il

University of Latvia, Riga LV 1586, Latvia E-mail address: aberzins@latnet.lv

Department of Mathematics, Ben Gurion University, Beer Sheva, 84105, Israel E-mail address: lipyansk@cs.bgu.ac.il