
ar
X

iv
:m

at
h/

05
12

18
0v

1 
 [

m
at

h.
G

T
] 

 8
 D

ec
 2

00
5 Property (FA) and lattices in SU(2, 1)

M. Stover

University of Texas at Austin

mstover@math.utexas.edu

November 9, 2018

Abstract

In this article we consider Property (FA) for lattices in SU(2, 1). First, we

prove that SU(2, 1;O3) has Property (FA). Also, we prove that cocompact lattices

in SU(2, 1) corresponding to complex hyperbolic surfaces with Picard number

one and b1 = 0 cannot split as a nontrivial free product with amalgamation. In

particular, this applies to the arithmetic lattices in SU(2, 1) of the second type

arising from congruence subgroups studied by Rapoport–Zink and Rogawski; one

such example is Mumford’s fake projective plane.

1 Introduction

Two important questions in the study of lattices in semisimple Lie groups, and more

generally the fundamental groups of any class of manifolds, are whether a lattice or

fundamental group splits as a nontrivial free product with amalgamation or admits

a homomorphism onto Z. Property (FA), originally due to Bass and Serre, encodes

precisely when a finitely generated group has neither of these properties - see Theorem

2.3. More generally, one can also ask for these properties in a finite sheeted cover;

the virtual-b1 conjecture asks, most famously in the setting of closed hyperbolic

3-manifolds, whether a finite sheeted cover of a closed hyperbolic 3-manifold has

fundamental group admitting a homomorphism onto Z. Using Kazhdan’s Property

(T), one can prove that irreducible lattices in the so-called superrigid Lie groups,

Sp(n, 1) for n ≥ 2, F4(−20), and semisimple Lie groups with R-rank at least 2,

never have Property (FA) - see [10]. Therefore, all the interesting questions relative

to Property (FA) and irreducible lattices in semisimple Lie groups occur for the

fundamental groups of real and complex hyperbolic manifolds - lattices in SO(n, 1)
and SU(n, 1).

Splittings as a free product with amalgamation for cocompact Fuchsian groups,

lattices in PSL(2;R), are well understood. For example, by considering a separating

curve on a compact Riemann surface it follows that many finite covolume Fuchsian

groups split as nontrivial amalgamated products. Cocompact Fuchsian triangle groups

are well known to have Property (FA), but PSL(2;Z), the (2, 3,∞) triangle group,
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splits as a free product. Furthermore, all Fuchsian groups str known to virtually

surject Z. See [13] for more on splittings of Fuchsian groups.

However, the situation becomes much more complicated for lattices in PSL(2;C).
If d is a square free natural number, Frohman and Fine [7] prove that the Bianchi group

PSL(2;Od) splits as a nontrivial free product with amalgamation for d 6= 3, where

Od denotes the ring of integers in Q(
√
−d), and Serre proves in [20] that PSL(2;O3)

has Property (FA). Using similar techniques to Serre, we prove the following theorem.

Theorem 1.1. SU(2, 1;O3) and PU(2, 1;O3) have Property (FA).

The relative similarity of the proofs for PSL(2;O3) and SU(2, 1;Od) begs the

question as to how much further this analogy between PSL(2;Od) to SU(2, 1;Od)
carries. A theorem of Kazhdan [11] implies that all SU(2, 1;Od) virtually surject

Z, but no explicit homomorphisms are known for d 6= 3 - neither is there a known

presentation for these groups when d 6= 3 - so we pose:

Question. Does SU(2, 1;Od) (see Example 2.1) or PU(2, 1;Od) have Property (FA)

for d 6= 3?

Also of particular interest is recent work of F. Calageri and N. Dunfield in [3].

They construct, assuming certian conjectures in number theory, an infinite tower

of hyperbolic rational homology 3-spheres Mn so that the injectivity radius grows

arbitrarily large as n → ∞. However, for all n, π1(Mn) splits as a nontrivial free

product with amalgamation (so Mn is Haken - see §2.14 of [3]). In particular, the

question of whether there are non-Haken hyperbolic 3-manifolds with arbitrarily large

injectivity radius remains open. In contrast, as a consequence of this article, all fake

projective planes (complex hyperbolic cousins to rational homology 3-spheres) cannot

admit such a decomposition.

The arithmetic lattices of second type, which are constructed using cyclic divi-

sion algebras of degree three equipped with an involution of the second kind, also

admit some higher rank features. The combination of work of Corlette [4] and

Gromov–Schoen [9] implies that irreducible quaternionic hyperbolic lattices satisfy

the arithmeticity and superrigidity of higher rank lattices, as proven by Margulis (see

[14] chapter 0). This leads to the natural question as to what extent these types of

rigidity results can hold for real and complex hyperbolic lattices - i.e. lattices in

SO(n, 1) and SU(n, 1). For example, it is known that non-arithmetic lattices exist in

SO(n, 1) for all n [8] and in SU(n, 1) for n = 2, 3 [5].

When arising from congruence subgroups, arithmetic lattices of the second type

also have several properties that are remarkably similar to the superrigid lattices, in-

cluding non-archimedean and archimedean superrididity-like properties and vanishing

first cohomology - see §4. As Rogawski proves in [19], these lattices have b1 = 0, and

Blasius and Rogawski prove in [1] that these lattices have Picard number one. In fact,

it is a question attributed to Rogawski as to whether all lattices in SU(2, 1) satisfying

these criteria are necessarily arithmetic and of the second type. We strengthen the

superrigid-like analogy for these lattices with the following theorem.

Theorem 1.2. Let Γ < SU(2, 1) be a torsion-free cocompact lattice such that H2
C
/Γ

has Picard number one and b1 = 0. Then Γ does not split as a nontrivial free product

with amalgamation.

2



With the assumption that b1 = 0, this immediately implies that Γ has Property

(FA). The manifold assumption of Theorem 4.1 restricts us to the torsion free setting,

however with Selberg’s lemma we also prove the following corollary.

Corollary 1.3. Every arithmetic lattice Γ < SU(2, 1) of second type arising from a

congruence subgroup has Property (FA).

Proof. If Γ is torsion free, this is a direct application of Theorem 1.2. If Γ has

torsion, it suffices to show that Γ has a finite index normal subgroup with Property

(FA). Selberg’s lemma implies that Γ has a finite index torsion-free subgroup Γ′ that

by construction arises from a congruence subgroup. Theorem 1.2 implies that Γ′ has

Property (FA), so Γ must have Property (FA).

As mentioned above, one important class of complex hyperbolic manifolds that

satisfy the conditions of Theorem 1.2 are fake projective planes, compact algebraic

surfaces with the same betti numbers as CP
2. It follows from Yau’s solution to the

Calabai conjecture (see [12]) that all fake projective places are complex hyperbolic

surfaces and that there are only finitely many up to homeomorphism. In fact, it is

proven independently in [12] and [21] that all fake projective planes are arithmetic

of the second type. The first such example was constructed by Mumford in [16], and

his construction implies that the corresponding lattice is SU(2, 1) is of the second

kind arising from a congruence subgroup, and more recently, Prasad and Yeung

[17] classified all fake projective planes using arithmetic techniques. As any fake

projective plane satisfies the conditions of Theorem 1.2 by assumption, we have:

Corollary 1.4. The fundamental group of any fake projective plane does not split as

a nontrivial free product with amalgamation.
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2 Preliminaries

Here, we collect the definitions and facts necessary for later sections.

2.1 Complex Hyperbolic Surfaces

Here, we briefly recall the construction of the complex hyperbolic plane, H2
C

. Con-

sider the Hermitian form on C3 of signature (2, 1) given by

J =





0 0 1
0 1 0
1 0 0



 ,
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which in coordinates is

〈z, w〉 = z1w3 + z2w2 + z3w1,

and let N− denote the collection of z ∈ C3 such that 〈z, z〉 < 0. Then, H2
C

is the

projective image of N−, which can be canonically identified with the open unit ball

in C2 with the Bergman metric. It is clear from this construction that we obtain

biholomorphic isometries of H2
C

from the group

SU(J) = {A ∈ SL(3;C) : A∗JA = J},

where * denotes conjugate transpose. We shall denote SU(J) by SU(2, 1). We

should remark that this is somewhat nonstandard notation, but will be convienent for

consistency with the notation of Falbel and Parker [6] that we will need later.

Then, since we project to obtain H2
C

, the group of biholomorphic isometries

of H2
C

are isomorphic to PU(2, 1), where SU(2, 1) is a 3-fold cover of PU(2, 1)
by the subgroup generated by ζ3I , for I the identity matrix and ζ3 a primative

cube root of unity. This allows us to identify the fundamental groups of complex

hyperbolic surfaces and 2-orbifolds, finite volume quotients of H2
C

by discrete groups

of isometries, with lattices in SU(2, 1).

2.2 Arithmetic lattices in SU(2, 1)

See [15] for a complete treatment of arithmetic lattices in SU(n, 1); our treatment is

heavily influenced by these notes. For n = 2 there are two distinct constructions of

arithmetic lattices, which we will call arithmetic lattices of the first and second type.

To construct arithmetic lattices of the first type, we start with a totally real num-

ber field F and an imaginary quadratic extension E/F with Galois embeddings

σ1, . . . , σn : E −→ C and ring of integers OE . Then, choose an E-defined Her-

mitian matrix H ∈ GL(3;C) such that H has signature (2, 1) at σ1 and signature

(3, 0) at σi for all i arising from a different Galois embedding of F . Finally, for an

OE-order O we define

SU(H ;O) = {A ∈ SL(3;O) : A∗HA = H}

where ∗ denotes the conjugate transpose. Under equivalence of Hermitian forms, we

can associate SU(H,O) with a lattice in SU(2, 1) under the isomorphism SU(H) ∼=
SU(2, 1). Then, we call any lattice in SU(2, 1) commensurable with SU(H,O) an

arithmetic lattice of the first type.

Example 2.1. Let F = Q, E = Q(
√
−d) for d a square free natural number, and

let Od denote the ring of ingeters in E. We take J as in §2.1, and then SU(J ;Od) =
SU(2, 1;Od) is a non-cocompact arithmetic lattice of the first type. As these lattices

visibly contain unipotent elements, Godement’s compactness criterion implies that

SU(2, 1;Od) is a non-cocompact lattice.

Arithmetic lattices of the second type are constructed as follows. Again, choose

a totally real number field F , an imaginary quadratic extension E/F with ring of
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integers OE . Also, choose a degree three Galois extension L/E with Gal(L/E) = 〈θ〉
and let K/F be the degree three totally real subfield of L. For an element α ∈ E
such that

NE/F (α) ∈ NK/F (K
×), α /∈ NL/E(L

×),

where Nk/k′ denotes the field norm, we define the degree three cyclic algebra

A = (L/E, θ, α) =

{

2
∑

i=0

βiX
i : X3 = α,Xβ = θ(β)X for β, βi ∈ L

}

.

A theorem of Wedderburn implies that this is a division algebra by our specific choice

of α. Also, our selection of α also ensures, by a theorem of Albert, that A admits

an involution τ such that the restriction τ |E from the natural inclusion E −→ A is

complex conjugation. We call such an involution an involution of the second kind,

and we define a Hermitian element h of an algebra equipped with such an involution

τ to be an element such that h = τ(h); notice that this is precisely the usual notion

of Hermitian when h is a matrix and τ is conjugate transposition.

Then, for a Hermitian element h ∈ A and an OE-order O of A, we define

SU(h,O) = {x ∈ O : τ(x)hx = h}.

Since A ⊗E C ∼= M(3,C) gives us an isomorphism SU(h) ∼= SU(2, 1), we can

identify SU(h,O) with a lattice in SU(2, 1), and we call any lattice commensurable

with SU(h,O) an arithmetic lattice of the second type. Since A is a division algebra,

Godement’s compactness criterion implies that all such lattices are cocompact.

Example 2.2 (Mumford’s Fake CP
2 [16]). We will not construct Mumford’s exam-

ple [16]; we only give the arithmetic construction commensurable with it. However,

Mumford’s construction also implies that the corresponding lattice in SU(2, 1) com-

mensurable with ours actually arises from a congruence subgroup.

For ζ7 a primative 7th root of unity, F = Q, E = Q(
√
−7), and L = Q(ζ7), let

λ = (−1+
√
−7)/2, α = λ/λ, and θ, the generator of Gal(L/E), which is given by

ζ7 7→ ζ27 . Then, A = (L/E, θ, α) has the involution of the second kind τ(X) = αX2,

τ(β) = β for β ∈ E. Finally, define the Hermitian form h and OE-order O in A
given respectively by

h = λX2 − λX + (λ − λ)

O = OL ⊕ λXOL ⊕ λX2
OL.

The involution τ of second kind is explicitly given by

τ(β) = β, τ(X) = αX2.

Then, Γ = SU(h,O) is an arithmetic lattice of the second type commensurable with

Mumford’s fake CP
2.
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2.3 Property (FA)

If T is a tree with an action by a group G (without inversion), we denote by TG the

subtree of fixed points of the G-action. We say G has Property (FA) if TG 6= ∅ for

every tree T. We now quote three fundamental results in the study of groups with

Property (FA).

Theorem 2.3 (Theorem 15 on p. 58 of [20]). A group G has Property (FA) if and

only if

1. G is finitely generated.

2. G does not split as a nontrivial free product with amalgamation.

3. G does not admit a homomorphism onto Z.

The following two propositions will be crucial in the proof of Theorem 1.1.

Proposition 2.4 (Proposition 26 on p. 64 of [20]). Suppose G is a group with

subgroups A = 〈ai〉 and B = 〈bj〉 with G = 〈A,B〉 and that G acts on a tree T. If

TA,TB 6= ∅ and every aibj has a fixed point on T, then TG 6= ∅.

Proposition 2.5 (see ex. 4 on p. 66 of [20]). Suppose G is a finitely presented group

and N E G a nilpotent subgroup such that every subgroup H E N with N/H ∼= Z

is not normal in G. If G/N has Property (FA), then G also has Property (FA).

3 The proof of Theorem 1.1

Let Γ3 denote the group SU(2, 1;O3), where we consider SU(2, 1;Od) to be the

subgroup of SL(3;Od) preserving the Hermitian form

J =





0 0 1
0 1 0
1 0 0





of signature (2,1). Also, let D(O3) denote the diagonal subgroup of Γ3 and N(O3) the

subgroup of strictly upper triangular matrices, which is a lattice in the 3-dimensional

Heisenberg group N; the Borel subgroup of upper triangular matrices is then

B(O3) = N(O3)⋊D(O3).

Similar to Serre’s proof for PSL(2;O3), we will make use of a particular presentation

of PU(2, 1;O3).

Theorem 3.1 (Falbel–Parker [6]).

PU(2, 1,O3) = 〈W,P,QP−1 : W 2, (QP−1)6, (WP )3, [W,QP−1], P 3Q−2〉,

where 〈P,QP−1〉 generates the Borel subgroup.
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First, we claim that the Borel subgroup, B(O3), has Property (FA). It follows

immedietly from the presentation that the Borel subgroup has finite abelianization,

so in cannot map onto Z. Indeed, the abelianization has P 3 = Q2 and P 6 = Q6,

implying that Q4 = Q6, so Q2 = 1, which implies that P 3 = 1.

To show that it cannot split as a nontrivial free product with amalgamation, Falbel

and Parler also prove that the Borel subgroup fits into a short exact sequence

1 −→ Z −→ B(O3) −→ ∆(2, 3, 6) −→ 1.

It follows from Proposition 2.4 that ∆(2, 3, 6) has Property (FA), it cannot split

as a free product with amalgamation. Since the Z factor is central in B(O3), if

B(O3) splits as a free product with amalgamation then the Z subgroup must be

contained in the amalgamating subgroup. However, this implies that the short exact

sequence induces a nontrivial free product with amalgamation for ∆(2, 3, 6), which

is a contradiction.

Now, we apply Proposition 2.4 to PU(2, 1;O3) = 〈W,B(O3)〉 = 〈A,B〉, where

〈W 〉 ∼= Z/2Z has Property (FA) since it is a finite group. In other words, given an

action of PU(2, 1;O3) on a tree T, we know that TA,TB 6= ∅, so we need only

prove that the products WP and W (QP−1) have fixed points on T. This follows

from our presentation, as finite order elements neessarily have fixed points on T and

(WP )3 = 1, (WQP−1)6 = W 6(QP−1)6 = 1.

Therefore, PU(2, 1;O3) has Property (FA).

Finally, to show that SU(2, 1;O3) has Property (FA), we apply Proposition 2.5 to

the short exact sequence

1 −→ Z/3Z −→ SU(2, 1;O3) −→ PU(2, 1;O3) −→ 1

and the proof is complete.

4 The proof of Theorem 1.2

In order to prove Theorem 1.2, we will need some additional results about the Kähler

structure of compact complex hyperbolic surfaces. Recall that a Riemannian manifold

(X, g) is a Kähler manifold if it admits an integrable almost complex structure J ∈
End(TX) with J2 = −Id such that the form ω(X,Y ) = g(JX, Y ) is closed. We

call a group Γ a Kähler group if it is the fundamental group of a compact Kähler

manifold. In particular, all cocompact lattices in SU(n, 1) are Kähler groups, as

they are complex projective varieties. The following striking theorem connects the

geometry of a Kähler manifold with the structure of its fundamental group.

Theorem 4.1 (Gromov–Schoen [9]). Let X be a compact Kähler manifold with

fundamental group Γ = Γ1 ∗∆Γ2 where ∆ is index at least 2 in Γ1 and index at least

3 in Γ2, where either index is allowed to be infinite. Then X maps holomorphically

onto a compact Riemann surface.
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If H1,1(X) denotes the collection of 2-forms on a complex manifold X that split

into holomorphic and antiholomorphic part, define the Picard number of X to be the

rank of H1,1(X)∩H2(X,Q). We will say that a torsion-free lattice Γ < SU(2, 1) has

Picard number one if the corresponding quotient manifold H2
C
/Γ has Picard number

one. Finally, we make use of the following lemma, due to Yeung [21], whose proof

we include for completeness.

Lemma 4.2 (Yeung [21]). If X is an algebraic surface with Picard number one then

X admits no nontrivial holomorphic map onto a compact Riemann surface.

Proof. Let f : X −→ Σ be a nontrivial holomorphic map from X to a compact

Riemann surface Σ. Then, the fundamental class [Σ] pulls back to a non-torsion

element σ ∈ H1,1 ∩ H2(X ;Z). Since X is of Picard number one, this is some

nonzero multiple of the generator θ of H1,1∩H2(X ;Z), which implies that the push-

forward of θ is a nontrivial cycle. Then, generic fibers of f are one-dimensional over

C, and if α is the cohomology class representing a generic fiber it is also a nonzero

multiple of θ. Then, since θ has a nontrivial push-forward, α must also have a

nonzero push-forward. However, generic fibers necessarily have trivial push-forward,

which is a contradiction.

Finally, we cite three theorems that will allow us to apply the above results to the

complex hyperbolic surfaces under consideration.

Theorem 4.3 (Rogawski [19]). Let Γ be an arithmetic lattice in SU(2, 1) of the

second type arising from a congruence subgroup and X = H2
C
/Γ. Then

H1(X,Q) = H1(Γ,Q) = 0.

In particular, rank(H1(X,Q)) = b1(X) = 0.

The following theorem is often credited to [19], but the book contains no mention

of such a result. In fact, for our lattices [19] tells us about the cohomology in every

dimension except 2. Rogawski kindly provided a copy of the correct reference - see

Theorem 3 of [1].

Theorem 4.4 (Blasius–Rogawski [1]). If Γ is an arithmetic lattice in SU(2, 1) of the

second kind arising from a congruence subgroup, then Γ has Picard number one.

As mentioned briefly in §1, it is a question attributed to Rogawski as to whether

arithmetic lattices of the second kind are the only lattices with Picard number one

and b1 = 0. Remarkable as such a question may sound, Klingler [12] and Yeung [21]

give serious credibility to this question. The first indication that such a result may

hold was given by the following archimedian superrigidity-like theorem.

Theorem 4.5 (Reznikov [18]). Let X = H2
C
/Γ be a complex hyperbolic manifold

with Picard number one and b1 = 0. Then, any representation of Γ to SL(3;C) has

compact Zariski closure or can be extended to a totally geodesic homomorphism of

SU(2, 1) into SL(3;C).

Now, we are ready to begin the proof of Theorem 1.2.
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Proof of Theorem 1.2. Let Γ < SU(2, 1) be a torsion-free cocompact lattice with

Picard number one and b1 = 0, and suppose that Γ splits as a nontrivial free product

with amalgamation Γ1 ∗∆ Γ2. Theorem 4.1 combined with Lemma 4.2 allows us to

assume that we have [Γi : ∆] = 2 for i = 1, 2. To see this, notice that if ∆ has index

at least 3 (possibly infinite) in either of the Γi, Theorem 4.1 gives a holomorphic map

onto a compact Riemann surface, which is in contradiction with Lemma 4.2. Also,

notice that Γ = Γ1 ∗∆ Γ2 with [Γi : ∆] = 2 for i = 1, 2 if and only if Γ surjects the

infinite dihedral group D∞.

Remark. It is tempting at this point to say that we are done, since Γ must then have an

index two subgroup Γ′ admitting a homomorphism onto Z arising from the index two

subgroup of D∞. However, we do not know whether this subgroup is congruence,

so we do not know that b1(Γ
′) = 0. In fact, it is a theorem of Buser and Sarnak [2]

that all but finitely many arithmetic Fuchsian groups admit an index (at most) two

non-congruence subgroup. As the congruence subgroup problem is unknown for the

lattices under consideration here, we cannot rule out this phenomenon.

We now construct a family of faithful representations of D∞ into SL(3;C) that

factor through the inclusion GL(2;C) −→ SL(3;C) given by

A 7→
(

A 0
0 1

detA

)

,

and that have eigenvalues off the unit circle S1. To complete the proof with such a

representation ρ, let ρ : Γ −→ SL(3;C) be the representation obtained by composing

the natural surjection Γ −→ D∞ with ρ. It follows that ρ(Γ) cannot have compact

Zariski closure, since it has arbitrarily large eigenvalues. It also follows that it does

not arise from a totally geodesic embedding SU(2, 1) −→ SL(3;C), since this would

produce a totally geodesic embedding of SU(2, 1) in GL(2;C), which is impossible.

This contradicts Theorem 4.5 and completes our proof.

To construct the representation of D∞, present D∞ as 〈r, s : s2, srsr〉 and

consider the matrices in GL(2;C) given by

R =

(

α β
2Im(α)i α

)

, S =

(

1 −1
0 −1

)

.

A pair of calculations shows that S2 = I and

SRS−1 = det(R)R−1,

so if det(R) = αα − 2Im(α)βi = 1, we obtain a representation ρ of D∞ into

SL(2;C). Furthermore, if the eigenvalues of R lie off the unit circle, it follows that

this representation will be faithful and that the image cannot lie in a conjugate of the

unitary group, and thus does not have compact Zariski closure. Since the equation

for the eigenvalues of R is

1− 2Re(α)λ + λ2 = 0,
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we can obatain any nonzero eigenvalue λ0 we like by selecting

Re(α) =
1 + λ2

0

2λ0
,

as long as this number lies in R. As β and Im(α) do not factor into this equation,

we still have the necessary freedom to assure that det(R) = 1. This provides us with

the representation ρ required above.
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