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Several transfer results for rational subsets and finitely generated subgroups of HNN-
extensions G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 and amalgamated free products G = H ∗A J

such that the associated subgroup A is finite. These transfer results allow to transfer
decidability properties or structural properties from the subgroup H (resp. the subgroups
H and J) to the group G.

1. Introduction

This paper is the first paper in a series of papers dealing with algorithmic problems

for equations over HNN-extensions [HNN49] and amalgamated free products of

groups. These two operations are of fundamental importance in combinatorial group

theory [LS77]. Recall that an amalgamated free product

G = 〈H1 ∗H2, a = ϕ(a)(a ∈ A)〉 (1)

of two groups H1 and H2 with subgroups A ≤ H1, B ≤ H2 and an isomorphism

ϕ : A→ B, results from the free product H1∗H2 by identifying every element a ∈ A1

with ϕ(a) ∈ A2. We also say that A and B in (1) are the identified subgroups. An

HNN extension

G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 (2)

of a group H, where A and B are isomorphic subgroups of H and ϕ : A→ B is an

isomorphism, results from adding to H a new generator t such that the conjugation

of the subgroup A ≤ H by t realizes the isomorphism ϕ. We also say that A and B

in (2) are the associated subgroups.

One of the first important applications of HNN-extensions was a more transpar-

ent proof of the celebrated result of Novikov and Boone on the existence of a finitely

presented group with an undecidable word problem, see e.g. [LS77]. Such a group

can be constructed by a series of HNN-extensions starting from a free group. This

shows that arbitrary HNN-extensions do not have good algorithmic properties. In
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this paper, we restrict to HNN-extensions (resp. amalgamated free products), with

finite associated (resp. identified) subgroups. This is an important special case. For

instance, a famous result of Stallings states that a group G has more than one

end if and only if it is either an HNN-extension with finite associated subgroups or

an amalgamated free product with finite identified subgroups [Sta71]. Moreover, a

group is virtually-free (i.e., has a free subgroup of finite index) if and only if it can be

built up from finite groups using amalgamated free products with finite identified

subgroups and HNN-extensions with finite associated subgroups [DD90]. Finally,

many important structural and algorithmic properties of groups are preserved by

HNN-extensions (resp. amalgamated free products) with finite associated (resp.

identified) subgroups, see e.g. [AG73,Bez98,KSS06,KS70,KS71,KWM05,MR04].

In this paper, we will prove several such preservation results for rational subsets

and finitely generated subgroups of HNN-extensions and amalgamated free products

of groups. Recall that the set of rational subsets of a monoid M is the smallest class

of subsets of M which contains all finite subsets of M and which is closed under

union, product and the Kleene star (which associates with a subset U ⊆ M the

submonoid of M generated by U). By Kleene’s theorem, the rational subsets of a

free monoid are a Boolean algebra. This result also holds for free groups [Ben69]

and even virtually-free groups [Sén96]. Further results on rational subsets of groups

can be found in [Gru90,KSS06,Ned00].

Some of our results are already known, others appear to be new. Apart from

proving these new results, the purpose of our investigations is two-fold: first, we

prepare the background for our further considerations on equations over HNN-

extensions and amalgamated free products [LS06a,LS06b]. Second, we present a

unified automata-theoretic framework, which is partly inspired by [Reu85,Sak87,

Sak92], for reasoning about rational subsets of HNN-extensions and amalgamated

free products. This framework allows us to deduce transfer theorems in a unified way.

Moreover, our approach allows us to prove results about rational subsets even for

HNN-extensions and amalgamated free products of monoids, in case the associated

parts A and B in (1) and (2) are groups. Let us now describe in more detail the

content of this paper.

Section 2 contains necessary preliminaries concerning monoids, groups, and ra-

tional sets. Section 3 contains basic definitions and facts for HNN-extensions. In

Section 4.1, we introduce finite t-automata, which are a specific automaton model

in order to recognize subsets of an HNN-extension G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉,

where H is a monoid and A and B = ϕ(A) are finite groups. The transitions of such

an automaton are either labelled with t, t−1, or sets from some subset F ⊆ P(H)

(which has to contain every singleton subset consisting of an element from A ∪B).

For our specific applications concerning rational subsets (resp. finitely generated

subgroups) of the HNN-extension G, F is the set of rational subsets of H (resp.

the set of left cosets of finitely generated subgroups of H). In Section 4.2–4.3 we

prove several basic facts about finite t-automata and in Section 4.4 we prove two
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fundamental normalization results for finite t-automata (Propositions 22, 28 and

33). Roughly speaking, these normalization results state that we can always en-

force some nice properties for finite t-automata. Based on these results we can show

in Section 4.5 Theorem 37, which is our main result for rational subsets of HNN-

extensions. It says that the following four properties can be transfered from the

monoid H to the HNN-extension G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 (with A and B

finite groups):

(a) The set of rational subsets is closed under intersection.

(b) The set of rational subsets is closed under complement (i.e., it is a Boolean

algebra).

(c) The membership problem for rational subsets is decidable.

(d) The emptiness problem for boolean combinations of rational subsets is decid-

able.

Statement (c) is covered by [KSS06, Theorem 5.1] in the case that H (and hence

G) is a group, whereas (a), (b), and (d) are new to the knowledge of the authors. It

should be remarked that properties (a) and (b) (resp. (c) and (d)) are independent

in the following sense: Clearly, closure under complement for the rational subsets

implies closure under intersection. On the other hand, in Appendix B, we construct a

finitely generated monoid for which the rational subsets are closed under intersection

but are not closed under complement (we don’t know, whether a finitely generated

group with this property exists as well). Similarly, decidability of the emptiness

problem for boolean combinations of rational subsets implies decidability of the

membership problem for rational subsets. On the other hand, for the group F × Z

(where F is the free group of rank 2), the membership problem for rational subsets

is decidable [KSS06], whereas the inclusion problem for rational subsets (which is

a special instance of the emptiness problem for boolean combinations of rational

subsets) is undecidable [AH89].

Let us mention that more general notions of HNN-extensions for monoids were

defined in the literature (see for instance [How63]) where A and B in (2) are not

necessarily groups. It is not clear whether our results hold for these HNN-extensions

as well.

In Section 4.6 we deal with finitely generated subgroups of HNN-extensions. Here

we assume that H (and hence G) in (2) is a group. Our main result is Theorem 43,

which states that the following three properties can be transfered from a group H

to the HNN-extension G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 (with A and B finite):

(a) Decidability of the generalized word problem (i.e., the question whether a given

group element belongs to a given finitely generated subgroup).

(b) The Howson property.

(c) The LERF property.
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Recall that a group G has the Howson property if the intersection of two finitely

generated subgroups is again finitely generated. The group G has the LERF prop-

erty [Hal49] if for every finitely generated subgroup H < G and every g ∈ G \ H

there exists a subgroup Z of finite index in G with H ≤ Z < G and g ∈ G \ Z.

Statement (a) is covered by [KWM05, Corollary 5.15], statement (b) was shown in

[Bez98,KS71], and statement (c) was shown in [MR04].

Finally, in Section 6 we briefly sketch the proof of analogous transfer results for

amalgamated free products (Theorem 51 and 53). Since the treatment of amalga-

mated free products exactly follows our treatment of HNN-extensions, we will just

state the necessary adaptations but omit most of the proof details. For the special

case of an amalgamated free product of two finite groups, algorithmic problems for

finitely generated subgroups were recently studied in [ME07b,ME07a] by extending

Stalling’s folding technique [Sta83].

2. Preliminaries

We recall in this section all needed definitions and classical results concerning

groups, monoids, finite automata, and rational subsets of a monoid. We also re-

call some classical algorithmic problems about rational subsets of finitely generated

monoids.

We assume that the reader has some familiarity with monoid presentations and

group theory. For a monoid homomorphism π : M1 →M2 we denote with Ker(π) =

{(x, y) | π(x) = π(y)} the kernel of π, it is a monoid congruence on M1. The neutral

element 1 of a monoid M will be identified with the submonoid {1} in the rest of

this paper.

The powerset of a set S is denoted by P(S). For an equivalence relation ≡ on S

and s ∈ S we denote with [s]≡ the equivalence class of ≡ containing s. For a subset

T ⊆ S let [T ]≡ =
⋃

s∈T [s]≡. The boolean closure of a set F ⊆ P(S) is denoted

by Bool(F ). It contains all subsets of S, which can be obtained by finitely many

applications of complement and binary union, starting with subsets from F .

A semi-Thue system ST over the (not necessarily finite) alphabet X is just a

(possibly infinite) subset of X∗ × X∗. We associate with ST the one-step rewrite

relation →ST, where x →ST y for x, y ∈ X∗ if and only if there are u, v ∈ X∗ and

(ℓ, r) ∈ ST such that x = uℓv and y = urv. The set of irreducible words with respect

to ST is

Irr(ST) = {x ∈ X∗ | ¬∃y ∈ X∗ : x→ST y}.

A binary relation → over a set E is confluent if for all e, f, f ′ ∈ E:

(e→∗ f ∧ e→∗ f ′)⇒ (∃g ∈ E : f →∗ g ∧ f ′ →∗ g)

Suppose that a semi-Thue system ST has no overlapping left-hand sides, i.e., for all

(ℓ, r), (ℓ′, r′) ∈ ST and u, v ∈ X∗ we have

(uℓ = ℓ′v)⇒ |u| ≥ |ℓ′| and (uℓv = ℓ′)⇒ (u = v = ε ∧ r = r′).
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Then it can be easily shown that the relation→ST is confluent. See [DJ91] for more

information about confluence and other properties of rewriting systems.

2.1. Finite automata over a free monoid

Let X be an alphabet (that we do not assume to be finite, in general). A finite

automaton over the free monoid X∗ is a 5-tuple

A = 〈X ,Q, δ, I,T〉, (3)

where X is a finite subset of X, Q is the finite set of states, I ⊆ Q is the set of initial

states, T ⊆ Q is the set of terminal states, and δ, the set of transitions, is a subset

of Q×X × Q. Let

BR(Q) = P(Q× Q)

be the monoid of binary relations over the set Q. We recall that, given two binary

relations m,m′ ∈ BR(Q), their composition is defined by

m ◦m′ = {(q, q′′) ∈ Q× Q | ∃q′ ∈ Q : (q, q′) ∈ m ∧ (q′, q′′) ∈ m′}.

The automaton (3) induces a representation map

µA : (X∗, ·, ε)→ (BR(Q), ◦, IdQ)

defined as the unique monoid homomorphism such that for every x ∈ X:

µA(x) = {(q, r) ∈ Q× Q | (q, x, r) ∈ δ}.

We denote by ⊙ the natural right-action of the monoid BR(Q) over P(Q), i.e., for

every P ⊆ Q and m ∈ BR(Q) let

P ⊙m = {q ∈ Q | ∃p ∈ P : (p, q) ∈ m}. (4)

The language recognized by A is

L(A) = {u ∈ X∗ | µA(u) ∩ (I× T) 6= ∅}.

A subset L ⊆ X∗ is called regular if and only if there exists some finite automaton A

such that L = L(A). Given a subset Y ⊆ X and two states p, q ∈ Q, the automaton

A[Y, p, q] over Y ∗ is defined by

A[Y, p, q] = 〈X ∩ Y,Q, δ ∩ (Q× Y × Q), {p}, {q}〉. (5)

2.2. Rational subsets of a monoid

Let M be a monoid together with a generating set X. Thus M = X∗/ ≡, for some

monoid congruence ≡ over X∗. We denote by

π : X∗ → X∗/ ≡

the canonical homomorphism with π(u) = [u]≡ for u ∈ X∗.
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The set

Rat(M) ⊆ P(M)

is the smallest subset of P(M) which contains the finite subsets of M and which is

closed under the operations ∪ (the union operation), · (the product operation) and

∗ (the star operation, associating with a subset P ⊆ M the smallest submonoid of

M containing P ).

One can derive from Kleene’s theorem about rational subsets of X∗ that the

rational subsets of M are exactly the subsets of the form π(L(A)), where A is a

finite automaton over the free monoid X∗. For such an automaton A = 〈X ,Q, δ, I,T〉

let the representation map

µA,M : M→ (BR(Q), ◦, IdQ)

by defined by

µA,M(m) =
⋃
{µA(u) | u ∈ X∗, π(u) = m}

for m ∈M. Notice that

IdQ ⊆ µA,M(1) and µA,M(m) ◦ µA,M(m′) ⊆ µA,M(m ·m′) (6)

but in general the map µA,M is not a monoid homomorphism. In Section 4.1, we

introduce in the particular case where M is an HNN-extension a new kind of finite

automaton, called finite t-automata, which do not even fulfil property (6). We will

show that, nevertheless, we can always normalize finite t-automata in such a way

that the map µ fulfils some nice algebraic property, see Definition 9 and Proposition

33.

Anissimov and Seifert have shown:

Theorem 1 ([AS75]). Let G be a group. The rational subgroups of G are exactly

the finitely generated subgroups of G.

We present a proof sketch for Theorem 1, because the underlying idea will be

used later in a slightly modified form.

Proof sketch for Theorem 1. Let G = X∗/ ≡ be a group, where X is some

alphabet and ≡ is a congruence over X∗. We suppose that X is endowed with an

involution x 7→ x−1 such that for every x ∈ X, xx−1 ≡ x−1x ≡ ε. We extend

this involution to X∗ by setting (x1 · · ·xn)−1 = x−1
n · · ·x

−1
1 , where x1, . . . , xn ∈ X.

We denote by π : X∗ → G the canonical projection, i.e., π(u) = [u]≡. Let A =

〈X ,Q, δ, I,T〉 be some finite automaton over X∗ such that

π(L(A)) = K

is a subgroup of G. Without loss of generality, we can suppose that A has a unique

initial state q0 and that A is trim, i.e., that every state is accessible from I = {q0}
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and co-accessible from T. Let us define δ−1 = {(r, x−1, q) | (q, x, r) ∈ δ} and

δ′ = δ ∪ δ−1. Since π(L(A)) = K is a subgroup of G, it follows easily that

π(L(A)) = π(L(〈X ,Q, δ′, I,T〉)).

Let us fix some subset λ ⊆ δ′ which is a covering tree in the sense that for every

q ∈ Q, there exists a unique path Λ(q) from q0 to q, using only edges in λ. We

denote by W (q) ∈ X∗ the sequence of labels of this path. Note that W (q0) = ε. Let

us define

G = {W (q)xW (r)−1 | (q, x, r) ∈ δ} ∪ {W (q) | q ∈ T} ⊆ X∗.

One can check that K = π((G ∪ G−1)∗). Thus, K is finitely generated.

The idea above is reminiscent of that of defining a set of generators for the funda-

mental group of a graph, see e.g. [Ser03, Section 5.1].

Definition 2 (Howson property). A group G is said to have the Howson prop-

erty if for every two finitely generated subgroups K1 and K2 of G, the subgroup

K1 ∩K2 is finitely generated, too.

Definition 3 (subgroup separation property, LERF). A group G is said to

have the subgroup separation property (also called local extended residual finiteness

property — LERF for short) if for every finitely generated proper subgroup K < G

and every element g ∈ G \K, there exists a subgroup Z which has finite index in G

and such that K ≤ Z and g 6∈ Z.

The LERF property has been investigated in several works, see e.g. [AG73,Git97,

Hal49,MR04,Sco78,Wis00].

Remark 4. The following two conditions are easily seen to be equivalent to the

LERF property for G, see e.g. [MR04,Wis00]:

• For every finitely generated proper subgroup K < G and every element

g ∈ G \K, there exists a normal subgroup N which has finite index in G

and such that g 6∈ NK.

• For every finitely generated proper subgroup K < G and every element

g ∈ G \K, there exists a homomorphism π : G → S with S a finite group

such that π(g) 6∈ π(K).

2.3. Algorithmic problems

Let M = X∗/≡ be a countably-generated monoid, where X is a countable generat-

ing set. Let π : X∗ → X∗/≡ be the canonical homomorphism. We assume M to be

countably generated in order to have a finite description of elements of M by words

over X.

The word problem for M is the following decision problem:
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instance: words u, v ∈ X∗

question: π(u) = π(v)?

Beside the word problem we shall investigate the following (more general) decision

problems:

The membership problem for rational subsets of M is the following decision prob-

lem:

instance: a finite automaton A over X∗ and a word u ∈ X∗.

question: π(u) ∈ π(L(A))?

The emptiness problem for boolean combinations of rational subsets of M is the

following decision problem:

instance: a set B ∈ Bool(Rat(M)) (represented by a boolean combination B of

finite automata over X∗)

question: B = ∅?

Let us now assume that M = X∗/≡ is a group. The membership problem for finitely

generated subgroups of M, also called the generalized word problem (GWP for short),

is the following decision problem:

instance: words u1, . . . , un, u ∈ X∗.

question: π(u) ∈ {π(u1), π(u1)
−1, . . . , π(un), π(un)−1}∗, i.e., does π(u) belong to

the subgroup of M generated by π(u1), . . . , π(un)?

It is easy to see that the decidability status of all these decision problems is inde-

pendent of the chosen generating set X for M, i.e., they are indeed properties of

M.

3. HNN-extensions

Let us fix throughout this section a monoid H (the base monoid). In this paper,

a subgroup of H is a submonoid of H, which forms a group.a Equivalently, A is a

subgroup of H if A is a subgroup of the group of units of H. Let us also fix two

finite, isomorphic subgroups A ≤ H,B ≤ H and an isomorphism ϕ : A → B. We

also fix some presentation 〈X;≡H〉 of H, i.e., an alphabet X and a congruence ≡H

over the free monoid X∗ such that H = X∗/ ≡H . Note that X is not supposed

to be finite, in general. Without loss of generality we assume that every element

h ∈ A∪B is of the form [x]≡H
for some letter x ∈ X. In particular, there is a letter

1 for the neutral element of H. Of course 1 ≡H ε. We consider the HNN-extension

G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉. (7)

aNote that usually, a subgroup A of H is defined to be a subsemigroup of H, which forms a group.
In particular, the identity element of A may be an idempotent of H different from the identity of

H. Nevertheless, we prefer to use the term subgroup for our definition in order to avoid too many
different notions.
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This means that G = (X ∪ {t, t−1})∗/≡ where ≡ is the smallest congruence over

the free monoid (X ∪ {t, t−1})∗ such that:

≡H ⊆ ≡

tt−1 ≡ t−1t ≡ ε

t−1at ≡ ϕ(a) for all a ∈ A

Let

π : (X ∪ {t, t−1})∗ → G (8)

denote the canonical morphism defined by π(w) = [w]≡ for w ∈ (X ∪ {t, t−1})∗.

This morphism naturally factorizes as

π = πt ◦ πG, (9)

where

πt : (X ∪ {t, t−1})∗ → H ∗ {t, t−1}∗ and (10)

πG : H ∗ {t, t−1}∗ → G. (11)

The kernel of πG coincides with the smallest congruence ≈ over H ∗ {t, t−1}∗ such

that:

tt−1 ≈ t−1t ≈ 1 (12)

at ≈ tϕ(a) for all a ∈ A (13)

bt−1 ≈ t−1ϕ−1(b) for all b ∈ B (14)

Note that (12) and (13) together imply (14) but below we will need (13) and (14)

without assuming (12). Clearly, G = H ∗ {t, t−1}∗/ ≈.

An element of s ∈ H ∗ {t, t−1}∗ can be viewed as a word over the alphabet

H ∪ {t, t−1} which has the form

s = h0t
α1h1 · · · t

αihi · · · t
αnhn, (15)

where n ≥ 0, αi ∈ {1,−1}, and hi ∈ H. Such an element s ∈ H ∗ {t, t−1}∗ is also

called a t-sequence. The t-sequence s is said to be a reduced sequence if it neither

contains a factor of the form t−1at (with a ∈ A) nor tbt−1 (with b ∈ B). Let

Red(H, t) = {s ∈ H ∗ {t, t−1}∗ | s is reduced}.

We define the binary relation
1
∼ over H ∗ {t, t−1}∗ as follows: For all s, s′ ∈ H ∗

{t, t−1}∗ let

s
1
∼ s′ ⇔ ∃s1, s2 ∈ H ∗ {t, t−1}∗, a ∈ A, b ∈ B :

{
(s = s1ts2 ∧ s′ = s1a

−1tϕ(a)s2) ∨

(s = s1t
−1s2 ∧ s′ = s1b

−1t−1ϕ−1(b)s2)

}
.
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Let us denote by ∼ the congruence over H ∗ {t, t−1}∗ generated by all the rules of

type (13) and (14) above. It coincides with the reflexive and transitive closure of
1
∼.

Equivalently, if

s = h0t
α1h1 · · · t

αnhn and

s′ = h′
0t

α′

1h′
1 · · · t

α′

mh′
m

(with n,m ≥ 0, αi, α
′
j ∈ {1,−1} and hi, h

′
j ∈ H), then s ∼ s′ if and only if n = m,

αi = α′
i for 1 ≤ i ≤ n, and there exist c1, . . . , c2n ∈ A ∪B such that:

• if αi = 1 then c2i−1 ∈ A and c2i = ϕ(c2i−1) ∈ B (1 ≤ i ≤ n)

• if αi = −1 then c2i ∈ A and c2i−1 = ϕ(c2i) ∈ B (1 ≤ i ≤ n)

• hic2i+1 = c2ih
′
i in H for 0 ≤ i ≤ n (here we set c0 = c2n+1 = 1)

This situation can be visualized by a diagram of the following form (also called

a Van Kampen diagram, see [LS77] for more details), where n = m = 4. Light-

shaded (resp. dark-shaded) areas represent relations in H (resp. relations of the

form at = tϕ(a) (a ∈ A) or bt−1 = t−1ϕ−1(b) (b ∈ B)).

(†)

h0

tα1
h1 tα2 h2 tα3 h3 tα4

h4

h′
0

tα1

h′
1 tα2 h′

2 tα3 h′
3

tα4

h′
4

c1 c2 c3 c4 c5 c6 c7 c8

The elements c1, . . . , c2n in such a diagram are also called connecting elements.

The set Red(H, t) is saturated by the congruence ∼, i.e., s ∼ s′ implies s ∈

Red(H, t) ⇔ s′ ∈ Red(H, t): just notice that, since A and B are groups, aha′ ∈

A ⇔ h ∈ A for all h ∈ H, a, a′ ∈ A and bhb′ ∈ B ⇔ h ∈ B for all h ∈ H, b, b′ ∈ B.

This property would fail if A and B were assumed to be merely submonoids of H.

One has ∼ ⊆ ≈. Moreover, for reduced sequences the following fundamental

lemma holds.

Lemma 5. Let s, s′ ∈ Red(H, t). Then s ≈ s′ if and only if s ∼ s′.

In the case where H is a group, Lemma 5 is an immediate consequence of [LS77,

Theorem 2.1, p.182]. The extension to monoids can be proved in the same way as for

groups using an idea of Artin and Van der Waerden (see Appendix A for a detailed

verification). Lemma 5 implies that H is a submonoid of G. Another consequence

is:

Corollary 6. If H has a decidable word problem, then also has G a decidable word

problem.

Proof. Let w,w′ ∈ (X ∪ {t, t−1})∗ (recall that X is a monoid generating set for

H). We describe a procedure for checking whether w ≡ w′ or not. The words w and
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w′ have unique decompositions

w = u0t
α1u1 · · · t

αiui · · · t
αnun and w′ = u′

0t
α′

1u′
1 · · · t

α′

j u′
j · · · t

α′

mu′
m,

where n,m ≥ 0, ui, u
′
j ∈ X∗, and αi, α

′
j ∈ {1,−1}. Let the semi-Thue system ST

over the alphabet X ∪ {t, t−1} consist of the following rules:

t−1ut→ ϕ([u]≡H
) for [u]≡H

∈ A (16)

tut−1 → ϕ−1([u]≡H
) for [u]≡H

∈ B (17)

Note that Red(H, t) = πt(Irr(ST)). Since the word problem for H is decidable and

A and B are finite, we can effectively compute from w and w′ words z and z′ such

that w →∗
ST z ∈ Irr(ST) and w →∗

ST z′ ∈ Irr(ST). Assume that

z = v0t
β1v1 · · · t

βivi · · · t
βpvp and z′ = v′

0t
β′

1v′
1 · · · t

β′

iv′
i · · · t

β′

qv′
q, (18)

where p, q ≥ 0, vi, v
′
j ∈ X∗, and βi, β

′
j ∈ {1,−1}. Note that →ST ⊆ ≡. Hence,

w ≡ w′ ⇔ z ≡ z′

⇔ πG(πt(z)) = πG(πt(z
′))

⇔ πt(z) ≈ πt(z
′)

⇔ πt(z) ∼ πt(z
′),

where the last equivalence holds due to Lemma 5 and the fact that πt(z), πt(z
′) ∈

πt(Irr(ST)) = Red(H, t). If p 6= q or (p = q and βi 6= β′
i for some 1 ≤ i ≤ p) in (18),

then πt(z) 6∼ πt(z
′) and thus w 6≡ w′. Hence, assume that

z = v0t
β1v1 · · · t

βivi · · · t
βpvp and z′ = v′

0t
β1v′

1 · · · t
βiv′

i · · · t
βpv′

p.

We now guess the connecting elements between πt(z) and πt(z
′) in a diagram of the

form (†). More precisely, we nondeterministically guess elements c1, . . . , c2n ∈ A∪B

such that:

• if βi = 1 then c2i−1 ∈ A and c2i = ϕ(c2i−1) ∈ B (1 ≤ i ≤ p) and

• if βi = −1 then c2i ∈ A and c2i−1 = ϕ(c2i) ∈ B (1 ≤ i ≤ p).

Since A and B are finite, this guessing can be done by a nondeterministic Turing

machine. Finally, using the decidability of the word problem for H, we check whether

vic2i+1 ≡H c2iv
′
i for 0 ≤ i ≤ p (here we set c0 = c2p+1 = 1). If this is true for some

choice of c1, . . . , c2n ∈ A ∪B, then we know that indeed w ≡ w′.

3.1. HNN-extensions and morphisms

Suppose we are given a monoid homomorphism: π′ : H → H ′ fulfilling

Ker(π′) ∩A×A = IdA and Ker(π′) ∩B ×B = IdB . (19)

Thus, A and B are subgroups of H ′. Hence, we can define the HNN-extension

G′ = 〈H ′, t; t−1at = ϕ(a)(a ∈ A)〉. (20)

11
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H ′ ∗ {t, t−1}∗

G

H ∗ {t, t−1}∗

G′

π′

πG πG′

π′
∗

Fig. 1. Maps induced by π′

In the presentation (20), every relation t−1at = ϕ(a) should be written as

t−1π′(a)t = π′(ϕ(a)), but (19) allows us to identify every a ∈ A with its image

π′(a) ∈ π′(A). The map π′ induces a map π′
∗ : H ∗ {t, t−1}∗ → H ′ ∗ {t, t−1}∗, which

is the unique monoid homomorphism such that

∀h ∈ H : π′
∗(h) = π′(h), π′

∗(t) = t, π′
∗(t

−1) = t−1.

The composite morphism π′
∗ ◦ πG′ : H ∗ {t, t−1}∗ → G′ has a kernel which contains

the congruence ≈. Hence, it induces a map π̃′ : G→ G′ such that

π′
∗ ◦ πG′ = πG ◦ π̃′.

One can check that

∀h ∈ H : π̃′(h) = π′(h), π̃′(t) = t, π̃′(t−1) = t−1.

Hence π̃′ is an extension of π′, therefore we shall (abusively) also use the symbol π′

to denote π̃′. We represent the situation by the commutative diagram in Figure 1.

4. Finite automata for HNN-extensions

Let us fix throughout this section an HNN-extension G of a base monoid H as

described by (7) with A and B = ϕ(A) finite. We define below a special kind of finite

automata, which will be well-suited for our aim of showing that some decidability

and structural properties of rational subsets of H are transfered to G.

4.1. Finite t-automata

We define here a kind of finite automata that recognize subsets of H ∗ {t, t−1}∗

via transitions that either read one of the letters t, t−1 or read an element of H,

provided it belongs to some definite set F ∈ F . The typical class F that we have in

mind is the set Rat(H) of all rational subsets of H, or the set S of all right-cosets

of finitely generated subgroups of H (in case H is a group), or some other families

of subsets of H derived in a natural way from the two above families.

Let F ⊆ P(H) be a set of subsets of H such that

∀c ∈ A ∪B : {c} ∈ F .

A finite t-automaton, briefly fta, over H ∗ {t, t−1}∗ with labelling set F is a 5-tuple

A = 〈L,Q, δ, I,T〉, (21)

12
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where

L ⊆ F ∪ {{t}, {t−1}}

is finite, Q is a finite set of states, I ⊆ Q is the set of initial states, T ⊆ Q is the set

of terminal states, and δ (the set of transitions) is a subset of Q×L×Q such that

∀q ∈ Q ∃L ⊆ L : 1 ∈ L ∧ (q, L, q) ∈ δ. (23)

We define

δ̂ = {(p, h, q) ∈ Q× (H ∪ {t, t−1})× Q | ∃L ⊆ L : h ∈ L ∧ (p, L, q) ∈ δ}. (24)

The automaton A induces a representation map

µA : H ∗ {t, t−1}∗ → BR(Q)

defined as follows: First, define µA,0 : H ∪ {t, t−1} → BR(Q) as follows, where

h ∈ H ∪ {t, t−1}:

µA,0(h) = {(q, r) ∈ Q×Q | (q, h, r) ∈ δ̂ } (25)

(note that IdQ ⊆ µA,0(1) due to (23)). For h ∈ H ∪ {t, t−1} and q, r ∈ Q we will

also write q
h
−→A r instead of (q, r) ∈ µA,0(h).

Now, let s ∈ H ∗ {t, t−1}∗ be a sequence of the form (15). Then

µA(s) = µA,0(h0) ◦ µA,0(t
α1) ◦ µA,0(h1) · · ·

µA,0(t
αi) ◦ µA,0(hi) · · ·µA,0(t

αn) ◦ µA,0(hn). (26)

Notice that for the definition of the map µA we only consider paths inA, which alter-

nate strictly between H-edges and t±1-edges. As a consequence of this definition, the

second property stated in (6) need not be fulfilled by this kind of automata in case

m,m′ ∈ H. Instead of (q, r) ∈ µA(s) we also write q
s
−→A r (since µA,0(h) = µA(h)

for h ∈ H ∪ {t, t−1}, this notation extends our notation introduced earlier).

The subset of H ∗ {t, t−1}∗ recognized by A is

L(A) = {s ∈ H ∗ {t, t−1}∗ | µA(s) ∩ (I× T) 6= ∅}.

Let us introduce a finite set T6 of 6 types, which will induce a partition of the states

of an fta:

T6 = {(A, T ), (B, T ), (1,H), (1, 1), (A,H), (B,H)} (27)

The first component of the types will serve below for defining a normal form for

automata; the second component suggests the possible labels going out of a state

of that type. We define a directed, edge-labeled graph G6 = (T6, E6) by

E6 = {((C,D), C, (C,D)) | (C,D) ∈ T6}

∪{((A, T ), t, (B,H)), ((B, T ), t−1, (A,H))}

∪{((C,H),H, (C, T )), ((1,H),H, (C, T )) | C ∈ {A,B}}

∪{((C,H),H, (1, 1)) | C ∈ {1, A,B}}

∪{((B,H),H, (A, T )), ((A,H),H, (B, T ))}.

13
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(1,H)

(B, T )

(A, T )

(A,H)

(B,H)

(1, 1)

H

H

t−1

H

H

t

H

H
HH

1

B A

1

A B

H

Fig. 2. The graph G6 = (T6, E6)

(1,H)

(B, T )

(A, T )

(A,H)

(B,H)

(1, 1)

H

H

t−1

H

H

t

H

H
H \BH \A

1

B A

1

A B

H

Fig. 3. The graph R6 = (T6, E ′

6
)

The graph G6 is represented in Figure 2. We sometimes use also the graph R6 =

(T6, E
′
6) where

E ′6 = E6 \ {((A,H),H, (A, T )), ((B,H),H, (B, T ))} ∪

{((A,H),H \A, (A, T )), ((B,H),H \B, (B, T ))};

it is shown in Figure 3. One can check that the graph G6 (resp. R6) endowed with

the set of initial states I6 = {(1,H)} and the set of final states T6 = {(1, 1)} is an

fta recognizing H ∗ {t, t−1}∗ (resp. Red(H, t)).b For this, the A-loops and B-loops

are not really relevant, but these loops will be useful later, when we introduce the

property of ∼-saturation, see Definition 9.

Since G6 and R6 contain only a single t-transition (resp. t−1-transition), one can

easily check the following (recall the definition of the ̂-operator from (24):

Lemma 7. For every sequence s ∈ H ∗ {t, t−1}∗ of the form (15) there is exactly

one sequence Θ0,Θ1, . . . ,Θ2n+1 ∈ T6 of types such that

bFormally, the label tα (α ∈ {1,−1}) of G6 (resp. R6) has to be replaced by a transition labelled

with the singleton set {tα} in order to make G6 (resp. R6) an fta. In the rest of this paper, we
will repeatedly write tα, when we formally have to write {tα}.

14
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(1) Θ0 = (1,H), Θ2n+1 = (1, 1),

(2) (Θ2i, hi,Θ2i+1) ∈ Ê6 for all 0 ≤ i ≤ n, and

(3) (Θ2i−1, t
αi

i ,Θ2i) ∈ Ê6 for all 1 ≤ i ≤ n.

Moreover, we must have Θi 6= Θi+1 for all 0 ≤ i ≤ 2n.

Lemma 7 implies that that every sequence s can be accepted in a unique way by

the fta G6. The same statement also holds for R6 if we restrict to reduced sequences.

Definition 8 (partitionned fta). A partitioned fta with labelling set F is a 6-

tuple

A = 〈L,Q, τ, δ, I,T〉, (28)

where L, Q, δ, I, and T are as in (21), and τ : Q → T6 assigns a type to every

state, and the transitions of δ and the sets I and T respect the types in the following

sense:

∀(q, h, r) ∈ δ̂ : (τ(q), h, τ(r)) ∈ Ê6 (29)

τ(I) = {(1,H)} ∧ τ(T) = {(1, 1)}. (30)

Recall the equivalences ∼ and ≈ over H ∗ {t, t−1}∗ defined in Section 3.

Definition 9 (≈-compatible, ∼-saturated). An fta A is said to be ≈-compatible

if and only if

[L(A)]≈ = [L(A) ∩ Red(H, t)]≈. (31)

It is said to be ∼-saturated if and only if

∀s, s′ ∈ H ∗ {t, t−1}∗ : s ∼ s′ ⇒ µA(s) = µA(s′). (32)

Remark 10. The following observations are easy to verify:

• Property (31) is equivalent to L(A) ⊆ [L(A) ∩ Red(H, t)]≈, i.e., for every

sequence s ∈ L(A) there must exist a reduced sequence s′ ∈ L(A) such that

s ≈ s′.

• If L(A) ⊆ Red(H, t), then A is ≈-compatible.

• A is ∼-saturated if and only if for all states q1, q2, q3, q4 ∈ Q, all h1, h2 ∈ H,

and all a ∈ A, b ∈ B such that

q1
h1−→A q2

t
−→A q3

h2−→A q4

(resp. q1
h1−→A q2

t−1

−−→A q3
h2−→A q4),

there exist q′2, q
′
3 ∈ Q with

q1
h1a−1

−−−−→A q′2
t
−→A q′3

ϕ(a)h2

−−−−→A q4

(resp. q1
h1b−1

−−−−→A q′2
t−1

−−→A q′3
ϕ−1(b)h2

−−−−−−→A q4).

15
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• Whereas ≈-compatibility depends on L(A) only, ∼-saturation does really

depend on the automaton A itself.

• If A is ∼-saturated, then the set L(A) is ∼-saturated, i.e., if s ∼ s′, then

s ∈ L(A) if and only if s′ ∈ L(A).

• The partitioned fta G6 and R6 are both ≈-compatible and ∼-saturated.

Since we require (23), the A-labeled (resp. B-labeled) loops at state (A, T )

and (A,H) (resp. (B, T ) and (B,H)) in Figure 2 and 3 are crucial for

∼-saturations of G6 and R6.

Definition 11 (unitary fta). The partitioned fta A = 〈L,Q, τ, δ, I,T〉 is said to

be unitary if and only if for every type Θ ∈ T6 we have

µA,0(1) ∩ (τ−1(Θ)× τ−1(Θ)) = IdQ ∩ (τ−1(Θ)× τ−1(Θ)).

This last technical condition turns out to be useful in [LS06a]. It means that no

edge between two different states of the same type is labelled with a set containing

1.

Definition 12 (deterministic fta). The partitioned fta A = 〈L,Q, τ, δ, I,T〉 is

said to be deterministic if and only if

Card(I) = 1 (33)

(i.e. it has exactly one initial state) and for all q, r, r′ ∈ Q and all L,L′ ∈ L,

((q, L, r), (q, L′, r′) ∈ δ ∧ L ∩ L′ 6= ∅ ∧ τ(r) = τ(r′)) ⇒ (L = L′ ∧ r = r′). (34)

Clearly, G6 and R6 are both deterministic, since these fta both have only one

initial state and for every type there exists only one state of that type.

Finally, we define the notion of a complete partitioned fta. The intuitive idea is

that of a local condition over the labels of transitions, which ensures that for every

reduced sequence s ∈ Red(H, t) and every state q of type (1,H), we have q
s
−→A r

for some state r of type (1, 1). For every q ∈ Q and every Θ ∈ T6 we thus introduce

the set

L1(q,Θ) =
⋃
{L | ∃r ∈ τ−1(Θ) : (q, L, r) ∈ δ}. (35)

Definition 13 (complete fta). The partitioned fta A = 〈L,Q, τ, δ, I,T〉 is said to

be complete if and only if

∀(Θ, C,Θ′) ∈ E ′6 ∀q ∈ τ−1(Θ) : C ⊆ L1(q,Θ′).

Note that G6 and R6 are both complete.

16
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4.2. Operations on fta

In this section we introduce operations on fta, which are analogues of the classical

complement and product construction for finite automata.

Definition 14 (product automaton). Given two fta Ai = 〈Li,Qi, δi, Ii,Ti〉 (i ∈

{1, 2}), we define the product fta A1 ×A2 = 〈L,Q, δ, I,T〉, where:

L = {L1 ∩ L2 | L1 ∈ L1, L2 ∈ L2} \ {∅}

Q = Q1 × Q2,

I = I1 × I2

T = T1 × T2

δ = {((p1, p2), L1 ∩ L2, (q1, q2)) | (p1, L1, q1) ∈ δ1, (p2, L2, q2) ∈ δ2}

For two partitioned fta Ai = 〈Li,Qi, τi, δi, Ii,Ti〉 the product automaton is the par-

titioned fta A1 ×A2 = 〈L,Q, τ, δ, I,T〉, where L, I, and T are defined as above, but

Q =
⋃

Θ∈T6

τ−1
1 (Θ)× τ−1

2 (Θ),

δ ={((p1, p2), L1 ∩ L2, (q1, q2)) | (p1, L1, q1) ∈ δ1, (p2, L2, q2) ∈ δ2} ∩ Q× L× Q,

and τ(p1, p2) = τ1(p1) = τ2(p2) for (p1, p2) ∈ Q.

Lemma 15. For two fta (resp. partitioned fta) A1 and A2 we have L(A1 ×A2) =

L(A1) ∩ L(A2).

Proof. For ordinary (non-partitioned) fta the statement of the lemma is obvious.

For partitioned fta one has to use Lemma 7. It implies that if s ∈ L(A1)∩L(A2), then

the state sequences in accepting runs of A1 and A2, respectively, on s are mapped

to the same sequence of types via the type functions of A1 and A2, respectively.

Lemma 15 implies:

Lemma 16. Let A be some fta with labelling set F . The fta A×G6 endowed with the

map τ : (p,Θ) 7→ Θ is a partitioned fta with labelling set F and L(A×G6) = L(A).

Lemma 17. Let A1 and A2 be fta (resp. partitioned fta). Then we have:

(a) If A1 and A2 are both ∼-saturated, then A1 ×A2 is ∼-saturated, too.

(b) If A1 and A2 are both ≈-compatible and ∼-saturated, then A1 × A2 is ≈-

compatible and ∼-saturated, too.

Proof. For statement (a) and non-partitioned fta assume that in the product au-

tomaton A = A1 ×A2 we have

(q1, p1)
h1−→A (q2, p2)

t
−→A (q3, p3)

h2−→A (q4, p4).

17
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Hence,

q1
h1−→A1

q2
t
−→A1

q3
h2−→A1

q4 and

p1
h1−→A2

p2
t
−→A2

p3
h2−→A2

p4.

Since A1 and A2 are both ∼-saturated, we have, for every a ∈ A,

q1
h1a−1

−−−−→A1
q′2

t
−→A1

q′3
ϕ(a)h2

−−−−→A1
q4 and

p1
h1a−1

−−−−→A2
p′2

t
−→A2

p′3
ϕ(a)h2

−−−−→A2
p4

for states q′2 and q′3 (resp. p′2 and p′3) of A1 (resp. A2). Hence,

(q1, p1)
h1a−1

−−−−→A (q′2, p
′
2)

t
−→A (q′3, p

′
3)

ϕ(a)h2

−−−−→A (q4, p4).

An analogous argument for t−1 shows that A = A1 × A2 is indeed ∼-saturated.

For partitioned fta we can reason similarly, we just have to note that the states

q2, q
′
2, p2, p

′
2 (resp. q3, q

′
3, p3, p

′
3) have to be of type (A, T ) (resp. (B,H)). This, en-

sures that (q′2, p
′
2) and (q′3, p

′
3) are states of the partitioned fta A.

For (b) it suffices by Lemma 15 and statement (a) to prove that L(A1)∩L(A2) ⊆

[L(A1) ∩ L(A2) ∩ Red(H, t)]≈. So, assume that

s ∈ L(A1) ∩ L(A2).

Since A1 and A2 are both ≈-compatible, we have

s ∈ [L(A1) ∩ Red(H, t)]≈ ∩ [L(A2) ∩ Red(H, t)]≈.

Thus, there exist sequences s1 and s2 such that

s ≈ s1 ∈ L(A1) ∩ Red(H, t) and s ≈ s2 ∈ L(A2) ∩ Red(H, t).

Hence, s1 ≈ s2 and Lemma 5 implies s1 ∼ s2 ∈ L(A2). Since A2 is ∼-saturated, we

have s1 ∈ L(A2). Thus,

s ≈ s1 ∈ L(A1) ∩ L(A2) ∩ Red(H, t),

i.e., s ∈ [L(A1) ∩ L(A2) ∩ Red(H, t)]≈.

The next lemma is straightforward to prove.

Lemma 18. Let A1 and A2 be partitioned fta. Then we have:

(a) If A1 and A2 are both deterministic, then A1 ×A2 is deterministic, too.

(b) If A1 and A2 are both complete, then A1 ×A2 is complete, too.

Definition 19 (complement automaton). For a partitioned, deterministic,

and complete fta A = 〈L,Q, τ, δ, I,T〉 we define the complement fta A =

〈L,Q, τ, δ, I, τ−1(1, 1)\T〉×R6. It is again a partitioned, deterministic, and complete

fta (by Lemma 18 and the fact that R6 is deterministic and complete).

18
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Lemma 20. Let A be a partitioned, deterministic, and complete fta. Then L(A) =

Red(H, t) \ L(A). Moreover, if A is ∼-saturated, then A is again ∼-saturated.

Proof. For the first statement, note that L(A) ⊆ Red(H, t) since we take the

product with R6. Moreover, for a partitioned, deterministic, and complete fta A,

there exists for every reduced sequence s ∈ Red(H, t) exactly one state q ∈ τ−1
A (1, 1)

such that (q0, q) ∈ µA(s), where q0 is the unique initial state of A. This implies

L(A) = Red(H, t) \ L(A).

For the second statement, note that 〈L,Q, τ, δ, I, τ−1(1, 1) \ T〉 is ∼-saturated,

since this automaton has the same µ-mapping as the ∼-saturated fta A. Hence, A

is ∼-saturated by Lemma 17 and the fact that R6 is ∼-saturated.

4.3. Automata and morphisms

Let us consider another HNN-extension G′ defined by an homomorphism π′ : H →

H ′ satisfying (19) as described in Section 3.1 by (20). Given an ftaA = 〈L,Q, δ, I,T〉,

we define

π′
∗(A) = 〈L′,Q, δ′, I,T〉 (36)

with L′ = {π′(L) | L ∈ L} and

δ′ = {(q, π′(L), r) ∈ Q× L′ × Q | (q, L, r) ∈ δ}.

We denote the congruence on H ′ ∗ {t, t−1}, which is defined in the same way as ∼

on H ∗ {t, t−1}, with ∼′.

Lemma 21. Let A be some fta. Then we have:

(a) L(π′
∗(A)) = π′

∗(L(A))

(b) If A is ∼-saturated, then π′
∗(A) is ∼′-saturated.

Proof. Statement (a) is obvious. For statement (b) assume that A is ∼-saturated

and that

q1
h1−→π′

∗
(A) q2

t
−→π′

∗
(A) q3

h2−→π′

∗
(A) q4.

Hence, there exist k1, k2 ∈ H with h1 = π′(k1), h2 = π′(k2), and

q1
k1−→A q2

t
−→A q3

k2−→A q4.

Let a ∈ A. Since A is ∼-saturated, there are states p2, p3 ∈ Q such that

q1
k1a−1

−−−−→A p2
t
−→A p3

ϕ(a)k2

−−−−→A q4

and hence

q1
π′(k1a−1)
−−−−−−→π′

∗
(A) p2

t
−→π′

∗
(A) p3

π′(ϕ(a)k2)
−−−−−−−→π′

∗
(A) q4.
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Since π′(c) = c for all c ∈ A ∪B, we obtain

q1
h1a−1

−−−−→π′

∗
(A) p2

t
−→π′

∗
(A) p3

ϕ(a)h2

−−−−→π′

∗
(A) q4.

An analogous argument for t−1 shows that π′
∗(A) is ∼′-saturated.

4.4. Normalization of automata

The following proposition is crucial for our further considerations.

Proposition 22. From a given partitioned and ≈-compatible fta A with labelling set

F ⊆ P(H) one can effectively construct a partitioned, ≈-compatible, ∼-saturated,

and unitary fta B with labelling set {cFc′ | F ∈ F , c, c′ ∈ A∪B} such that [L(A)]≈∩

Red(H, t) = L(B) ∩ Red(H, t).

Proof. Let A = 〈L,Q, τ, δ, I,T〉 be some partitioned and ≈-compatible fta with

labeling set F ⊆ P(H). Thus, we have

[L(A)]≈ = [L(A) ∩ Red(H, t)]≈. (37)

Since A is partitioned, Lemma 7 implies that we can replace the set of transitions

δ by the set

{(p, L, q) ∈ δ | τ(p) 6= τ(q)} ∪ {(q, 1, q) | q ∈ Q}

and preserve the recognized language. The second term of the above union ensures

that property (23) still holds. Such a modification might modify the mappings µA,0

and µA, but for every sequence s it does not modify the relation µA(s)∩τ−1(1,H)×

τ−1(1, 1), i.e., after this modification, A is still a partitioned and ≈-compatible fta.

Hence, w.l.o.g. we assume that

∀(p, L, q) ∈ δ : τ(p) 6= τ(q) ∨ (p = q ∧ L = {1}). (38)

Note that property (38) implies that A is unitary according to Definition 11.

We define the fta B = 〈LB,QB, τB, δB, I,T〉 in the following way: Let us denote

for every q ∈ Q by γ(q) the subgroup

γ(q) = π1(τ(q)) ∈ {1, A,B}

where π1 denotes the projection onto the first component of a type. Since A is

partitioned, if (q, t, r) ∈ δ (resp. (q, t−1, r) ∈ δ) then γ(q) = A (resp. γ(r) = B) and

γ(q) = B (resp. γ(r) = A). We set

QB = {(q, g) ∈ Q× (A ∪B) | g ∈ γ(q)}.

We shall identify (q, 1) with q and denote (q, g) by qg in the sequel. Note that the

set of initial (resp. terminal) states of B is the same as for A. The typing map τB is

inherited from A:

τB(qg) = τ(q)
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t−1

b ϕ−1(b)

Fig. 4. Some subgraphs of B

The set δB consists of all the following transitions, where q, r ∈ Q:

(qg, g′, q(gg′)) for g, g′ ∈ γ(q) (39)

(qg, g−1Lg′, rg′) for g ∈ γ(q), g′ ∈ γ(r), L ⊆ H, (q, L, r) ∈ δ (40)

(qa, t, rϕ(a)) for a ∈ A, (q, t, r) ∈ δ (41)

(qb, t−1, rϕ−1(b)) for b ∈ B, (q, t−1, r) ∈ δ (42)

For all (q1, L, r1), (q, t, r), (q, t
−1, r) ∈ δ, g ∈ γ(q1), g′ ∈ γ(r1), h ∈ L, a ∈ A, and

b ∈ B, the automaton B contains the three basic subgraphs exhibited in Figure 4.

We cut the proof that B has the required properties into five claims.

Claim 23. [L(A)]≈ ∩ Red(H, t) = [L(A) ∩ Red(H, t)]∼

By intersecting both sides of (37) with Red(H, t), we obtain

[L(A)]≈ ∩ Red(H, t) = [L(A) ∩ Red(H, t)]≈ ∩ Red(H, t).

But by Lemma 5, the right-hand side above equals [L(A)∩Red(H, t)]∼, which proves

Claim 23.

Claim 24. L(A) ⊆ L(B)

Let us notice that every (q, L, r) ∈ δ has a copy in δB under the form of

(q1, L, r1), since whatever γ(q) and γ(r) are, 1 ∈ γ(q) ∩ γ(r). Thus, up to the

identification of every state q ∈ Q with the state q1 ∈ QB, δ ⊆ δB. Since moreover

I = IB and T = TB, we obtain Claim 24.

Claim 25. The fta B is ∼-saturated and hence, L(B) = [L(B)]∼.

Let us assume that

q0a0
h
−→B q1a1

t
−→B q2a2

h′

−→B q3a3,

where q0, . . . , q3 ∈ Q, ai ∈ γ(qi), and h, h′ ∈ H. Thus, (q1, t, q2) ∈ δ and a2 = ϕ(a1).

Moreover, γ(q1) = A, since a t-transition is enabled in q1a1. The transition q0a0
h
−→B

q1a1 is either of type (39) or (40). In both cases, we can derive for every a ∈ A the

transition

q0a0
ha−1

−−−→B q1(a1a
−1). (43)

Analogously, we get

q2ϕ(a1a
−1)

ϕ(a)h′

−−−−→B q3a3.
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Finally, q1a1
t
−→B q2ϕ(a1) and (41) implies

q1(a1a
−1)

t
−→B q2ϕ(a1a

−1).

Altogether, it follows

q0a0
(ha−1)t(ϕ(a)h′)
−−−−−−−−−−→B q3a3. (45)

Similarly, if q0a0
ht−1h′

−−−−→B q3a3 and b ∈ B, then

q0a0
(hb−1)t−1(ϕ−1(b)h′)
−−−−−−−−−−−−−→B q3a3.

This proves Claim 25.

Claim 26. L(B) ⊆ [L(A)]∼

Let s ∈ H ∗ {t, t−1}∗, q, r ∈ Q, g ∈ γ(q), and h ∈ γ(r) such that

qg
s
−→B rh. (46)

By gluing squares from Figure 4 along their vertical edges, one can prove by in-

duction on the integer n of the decomposition (15) that, under the hypothesis (46),

there exists s′ ∼ gsh−1 such that

q
s′

−→A r. (47)

If q ∈ I and r ∈ T, then the type-conditions (30) imply γ(q) = γ(r) = 1, i.e.,

g = h = 1 and s ∈ L(B). Then (47) says that

∃s′ : s′ ∼ s ∧ s′ ∈ L(A),

which proves Claim 26.

Claim 27. L(B) ⊆ [L(B) ∩ Red(H, t)]≈

Claim 27 can be deduced as follows:

L(B) ⊆ [L(A)]∼ (by Claim 26)

⊆ [L(A)]≈ (since ∼ ⊆ ≈)

= [L(A) ∩ Red(H, t)]≈ (since A is ≈-compatible)

⊆ [L(B) ∩ Red(H, t)]≈ (by Claim 24)

Let us now use Claim 23–27 in order to show point Proposition 22: First, we have

[L(A)]≈ ∩ Red(H, t) = [L(A) ∩ Red(H, t)]∼ (by Claim 23)

⊆ [L(A)]∼

⊆ [L(B)]∼ (by Claim 24)

= L(B) (by Claim 25),

and thus

[L(A)]≈ ∩ Red(H, t) ⊆ L(B) ∩ Red(H, t).
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On the other hand, we have

L(B) ∩ Red(H, t) ⊆ [L(A)]∼ ∩ Red(H, t) (by Claim 26)

⊆ [L(A)]≈ ∩ Red(H, t) (since ∼ ⊆ ≈).

Hence, we obtain

[L(A)]≈ ∩ Red(H, t) = L(B) ∩ Red(H, t),

as was required. Moreover:

• B is partitioned, since A is partitioned.

• By Claim 27, B is ≈-compatible.

• By Claim 25, B is ∼-saturated.

• B is unitary: If g′ = 1 in (39), then we have qg = qgg′. If 1 ∈ g−1Lg′ and

(q, L, r) ∈ δ in (40), then property (38) guarantees that τ(q) 6= τ(r) or

(q = r and L = {1}). If τ(q) 6= τ(r) then τB(qg) 6= τB(rg′). If q = r and

L = {1}, then g = g′ and hence qg = rg′. Hence, no B-transition of type

(39) or (40) has the form (qg, L, rg′) with τB(qg) = τB(rg′), 1 ∈ L, and

qg 6= rg′.

Proposition 22 is thus established.

Recall the definition of a deterministic (Definition 12) and complete (Defini-

tion 13) fta.

Proposition 28. From a given partitioned, ≈-compatible, and ∼-saturated fta

B with labelling set F ⊆ P(H) one can effectively construct a partitioned, ∼-

saturated, deterministic, and complete fta C with labelling set Bool(F) such that

L(B) ∩ Red(H, t) = L(C).

Proof. The proof is essentially a variant of the standard power set construc-

tion for determinizing ordinary finite state automata over words. Let B =

〈LB,QB, τB, δB, IB,TB〉 be a partitioned, ≈-compatible, and ∼-saturated fta. We

first define a partitioned fta

D = 〈LD,QD, τD, δD, ID,TD〉

in the following way: Let

L′ = (LB ∩ P(H)) ∪ {{c} | c ∈ A ∪B} (49)

and

LD = {{t}, {t−1}} ∪
{ ⋂

L∈K

L ∩
⋂

L∈L′\K

H \ L
∣∣∣ K ⊆ L′

}
\ {∅}.

Thus, LD ∩ P(H) is the set of atoms of the boolean algebra generated by L′. Let

QD = {(P,Θ) | P ⊆ QB,Θ ∈ T6, P ⊆ τ−1
B (Θ)}.
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The type function is the projection onto the second component:

τD(P,Θ) = Θ.

The set of transitions δD consists of all triples ((P,Θ),K, (P ′,Θ′)) ∈ QD×LD×QD

such that

P ′ = {p′ ∈ QB | ∃p ∈ P ∃L : (p, L, p′) ∈ δB,K ⊆ L} ∩ τ−1
B (Θ′)

and {Θ} ×K × {Θ′} ⊆ Ê6,

where E6 is the edge relation of the graph G6 and Ê6 is defined by (24). Note that

P ′ = ∅ is allowed. Finally, let

ID = {(IB, (1,H))} and TD = {(P, (1, 1)) ∈ QD | P ∩ TB 6= ∅}.

The definition of δD implies that D is partitioned and complete. Moreover, the fta

D is deterministic: if we have two transitions ((P,Θ),Ki, (Pi,Θ
′)) ∈ δD (i ∈ {1, 2})

with K1 ∩K2 6= ∅ then we must have K1 = K2 and hence P1 = P2.

Remark 29. For every P ⊆ QB fulfilling ∅ ( P ⊆ τ−1(Θ), (P,Θ) is a state of D

and no pair (P,Θ′) with Θ 6= Θ′ is a state of D. But (∅,Θ) is a state of D for every

type Θ. This is in some sense the price to pay for the completeness of D.

Recall the definition of the mapping µB,0 from (25).

Claim 30. Let (P,Θ), (P ′,Θ′) ∈ QD and s ∈ H ∪ {t, t−1}. Then

((P,Θ), (P ′,Θ′)) ∈ µD,0(s) ⇔ P ′ = (P ⊙ µB,0(s)) ∩ τ−1
B (Θ′) ∧ (Θ, s,Θ′) ∈ Ê6.

Remark 31. If P ′ = (P⊙µB,0(s))∩τ−1
B (Θ′) 6= ∅, then the condition (Θ, s,Θ′) ∈ Ê6

follows automatically, since the fta B is partitioned. But since P ′ = ∅ is possible,

we have to add the condition (Θ, s,Θ′) ∈ Ê6 explicitly.

In order to prove Claim 30, we distinguish three cases.

Case 1: s = t. Note that ((A, T ), t, (B,H)) is the only t-labelled edge of G6. We get:

((P,Θ), (P ′,Θ′)) ∈ µD,0(t)

⇔ ((P,Θ), t, (P ′,Θ′)) ∈ δD

⇔ P ′ = P ⊙ µB,0(t) ∩ τ−1
B (Θ′) ∧ Θ = (A, T ) ∧ Θ′ = (B,H).

Case 2: s = t−1. Same kind of arguments as for s = t.

Case 3: s = h ∈ H. Let K(h) be the unique atom of LD∩P(H) such that h ∈ K(h).

For every transition (p, L, q) ∈ δB, one has

h ∈ L⇔ K(h) ⊆ L.
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It follows that

((P,Θ), (P ′,Θ′)) ∈ µD,0(h) ⇔ ((P,Θ),K(h), (P ′,Θ′)) ∈ δD

⇔ P ′ = (P ⊙ µB,0(h)) ∩ τ−1
B (Θ′) and

{Θ} ×K(h)× {Θ′} ⊆ Ê6

⇔ P ′ = (P ⊙ µB,0(h)) ∩ τ−1
B (Θ′) and

(Θ, h,Θ′) ∈ Ê6.

For the last equivalence note that {Θ}×K(h)×{Θ′} ⊆ Ê6 if and only if (Θ, h,Θ′) ∈

Ê6. For this, it is important that if h ∈ A ∪ B then K(h) = {h}; note that every

singleton {c} with c ∈ A ∪B belongs to L′ in (49).

Claim 32. Let (P,Θ), (P ′,Θ′) ∈ QD and s ∈ H ∗ {t, t−1}∗. Then

((P,Θ), (P ′,Θ′)) ∈ µD(s) ⇔ P ′ = (P ⊙ µB(s)) ∩ τ−1
B (Θ′) ∧ (Θ,Θ′) ∈ µG6

(s).

Let us prove this claim by induction over the integer n appearing in decompo-

sition (15) of the t-sequence s.

Base case: n = 0. For s = h ∈ H the assertion of Claim 32 is equivalent with that

of Claim 30, since µA(h) = µA,0(h) for every fta A.

Induction step: Let s be of the form (15) with n ≥ 1. We suppose that αn = 1 and

let

s1 = h0t
α1h1 · · · t

αihi · · · t
αn−1hn−1 and s = s1thn

(where s1 = h0 if n = 1). Let us first assume that

((P,Θ), (P ′,Θ′)) ∈ µD(s). (50)

The definition of δD implies (Θ,Θ′) ∈ µG6
(s). Moreover, the structure of the graph

G6 implies that there exist P1 ⊆ τ−1
B (A, T ) and P2 ⊆ τ−1

B (B,H) with

((P,Θ), (P1, (A, T ))) ∈ µD(s1), (51)

((P1, (A, T )), (P2, (B,H))) ∈ µD,0(t), and (52)

((P2, (B,H)), (P ′,Θ′)) ∈ µD,0(hn). (53)

As Claim 32 is fulfilled by s1 (by the induction hypothesis) and also by sequences

in H ∪ {t, t−1} (by Claim 30), equations (51)–(53) imply:

(P ⊙ µB(s1)) ∩ τ−1
B (A, T ) = P1 (54)

(P1 ⊙ µB,0(t)) ∩ τ−1
B (B,H) = P2 (55)

(P2 ⊙ µB,0(hn)) ∩ τ−1
B (Θ′) = P ′ (56)

Omitting the type intersections in (54) and (55), we obtain

(P ⊙ µB(s1thn)) ∩ τ−1
B (Θ) ⊇ P ′. (57)

25



May 30, 2007 15:16 WSPC/INSTRUCTION FILE 1

Conversely, by the structure of G6, every path in the partitioned fta B from a state

p ∈ P to a state q′ ∈ τ−1
B (Θ′), reading s1thn, must decompose into

p
s1−→B p1

t
−→B p2

hn−−→B q′

with τB(p1) = (A, T ) and τB(p2) = (B,H). Hence, (54)–(56) imply

(P ⊙ µB(s1thn)) ∩ τ−1
B (Θ′) ⊆ P ′. (58)

From (57) and (58) we obtain P⊙µB(s1thn)∩τ−1
B (Θ′) = P ′. This proves implication

⇒ from Claim 32.

Now, suppose conversely that P ⊙ µB(s1thn) ∩ τ−1
B (Θ′) = P ′ and (Θ,Θ′) ∈

µG6
(s). By the same kind of arguments as above, there must exist P1 ⊆ τ−1

B (A, T )

and P2 ⊆ τ−1
B (B,H) fulfilling equations (54)–(56). Moreover, from (Θ,Θ′) ∈ µG6

(s)

we get (Θ, (A, T )) ∈ µG6
(s1) and ((B,H),Θ′) ∈ µG6

(hn). By the induction hypoth-

esis and Claim 30 this leads to (51)–(53), and hence to (50).

The induction step in the case where αn = −1 can be treated analogously. This

proves Claim 32.

From Claim 32 and the fact that the fta B and G6 are ∼-saturated, it follows

immediately that also D is ∼-saturated. Moreover,

L(D) = L(B).

Let us finally take for C the product automaton (see Definition 14) C = D × R6,

whereR6 is the partitioned fta from Figure 3. The partitioned fta C has the following

properties:

• L(C) = L(D) ∩ Red(H, t) = L(B) ∩ Red(H, t) by Lemma 15.

• C is deterministic and complete by Lemma 18 and the fact that R6 and D

are both deterministic and complete.

• C is ∼-saturated by Lemma 17 and the fact that R6 and D are ∼-saturated.

Hence, C fulfils Proposition 28.

Recall that π : (X ∪ {t, t−1})∗ → G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 denotes the

canonical morphism from (8), where X is a generating set for H with A ∪B ⊆ X.

Proposition 33. Let K ⊆ G. The following are equivalent:

(1) K is a rational subset of G.

(2) There exists some finite automaton A over the free monoid (X∪{t, t−1})∗ such

that K = π(L(A)).

(3) π−1
G (K)∩Red(H, t) = L(B)∩Red(H, t) for some partitioned, ≈-compatible, and

∼-saturated fta B with labelling set Rat(H).

Moreover,

(a) in point (3), B can always be chosen unitary (see Definition 11), and
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(b) in point (3), if the membership problem for languages in Rat(H) is decidable,

then B can be computed effectively from A in point (2).

Proof. The equivalence of (1) and (2) is trivial.

(2)⇒ (3): We cut the proof of this implication into three claims. Let us start with

a finite automaton

A = 〈X ,Q, δ, I,T〉

over the free monoid (X ∪ {t, t−1})∗ such that

K = π(L(A)).

Let us recall that ST is the semi-Thue system consisting of all the rules in (16) and

(17), where u ∈ X∗ and ϕ([u]≡) ∈ B and ϕ−1([u]≡) ∈ A denote the corresponding

letters in X (we choose such a letter for every element of the finite set A ∪B).

For a set E, a binary relation ;⊆ E ×E, and a subset R ⊆ E, let R; = {e ∈

E | ∃r ∈ R : r ; e}.

Claim 34. There exists a finite automaton A1 over the free monoid (X∪{t, t−1})∗,

such that

L(A1) = L(A)→∗
ST .

Moreover, if the membership problem is decidable for rational subsets of H, then

A1 can be constructed effectively from A.

For the proof of Claim 34, notice that ST is monadic, i.e., every right-hand side

of a rule has length one or zero. It is known that for every monadic semi-Thue

system S over an alphabet Y and every rational subset R ⊆ Y ∗, R→∗
S ∈ Rat(Y ∗),

see [BJW82,Sén94]. Taking R = L(A) and S = ST in this result, we obtain the first

statement of Claim 34. In order to check the effectiveness statement, let us consider

the following algorithm:

1 δ1 := δ;

2 while there are p, q, q′, r ∈ Q, u ∈ X∗, a ∈ A, b ∈ B such that

case 1: p
t−1

−−→δ1
q

u
−→δ1

q′
t
−→δ1

r, [u]≡ = a, and not p
ϕ(a)
−−−→δ1

r

or

case 2: p
t
−→δ1

q
u
−→δ1

q′
t−1

−−→δ1
r, [u]≡ = b, and not p

ϕ−1(b)
−−−−→δ1

r

do

3 in case 1: δ1 := δ1 ∪ {(p, ϕ(a), r)}

4 in case 2: δ1 := δ1 ∪ {(p, ϕ−1(b), r)}

5 od

This algorithm constructs from the finite automaton A a finite automaton

A1 = 〈X ∪A ∪B,Q, δ1, I,T〉 (59)
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satisfying the first statement of Claim 34. In order to make line 2 above effective, it is

enough that we can decide for every a ∈ A (resp. b ∈ B) and every q, q′ ∈ Q, whether

a ∈ πt(L(A[X, q, q′])) (resp. b ∈ πt(L(A[X, q, q′]))), where πt : (X ∪ {t, t−1})∗ →

H ∗ {t, t−1}∗ is the canonical morphism from (10) and the automaton A[X, q, q′]

is defined by (5). But this is an instance of the membership problem for rational

subsets of H. This proves the effectiveness statement in Claim 34.

Claim 35. There exists some ≈-compatible fta A2 over H ∗ {t, t−1}∗ with labelling

set Rat(H) such that

L(A2) = πt(L(A1)).

Moreover, A2 can be constructed effectively from A1.

Recall the finite automaton A1 from (59). We set

A2 = 〈L,Q, δ2, I,T〉

where

δ2 = {(q, tα, r) | α ∈ {1,−1}, (q, tα, r) ∈ δ1} ∪

{(q, πt(L(A1[X, q, r])), r) | q, r ∈ Q}

(the label set L is given implicitly by δ2). In some sense the transitions of δ2 are

collecting into the rational labels πt(L(A1[X, q, r])) ∈ Rat(H) all possible finite

paths with labels in X∗, while the transitions labelled by t or t−1 are just copied.

Clearly, L(A2) = πt(L(A1)) and A2 can be constructed effectively from A1. So it

remains to show that A2 is ≈-compatible.

Recall that πt(Irr(ST)) = Red(H, t). Since, L(A1) = L(A)→∗
ST , the language

L(A1) is closed under the terminating rewrite relation →ST ⊆ ≡. It follows

L(A1) ⊆ [L(A1) ∩ Irr(ST)]≡.

By applying the morphism πt to this inclusion, we obtain

L(A2) = πt(L(A1))

⊆ πt([L(A1) ∩ Irr(ST)]≡)

= [πt(L(A1) ∩ Irr(ST))]≈

⊆ [πt(L(A1)) ∩ πt(Irr(ST))]≈

= [L(A2) ∩ Red(H, t)]≈,

which proves that A2 is ≈-compatible.

Claim 36. There exists some partitioned and ≈-compatible fta A3 over H∗{t, t−1}∗

with labelling set Rat(H) such that

L(A3) = L(A2).

Moreover, A3 can be constructed effectively from A2.
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Just set A3 = A2×G6. By Lemma 16, we have L(A3) = L(A2). Hence, since A2

is ≈-compatible, also A3 is ≈-compatible.

By Proposition 22 there exists a partitioned, ≈-compatible, ∼-saturated, and

unitary fta B with labelling set Rat(H) such that

L(B) ∩ Red(H, t) = [L(A3)]≈ ∩ Red(H, t).

Let us summarize the connections between the rational set K ⊆ G and the successive

automata A,A1,A2,A3, and B:

K = π(L(A)) ⊆ G (60)

L(A1) = L(A)→∗
ST ⊆ (X ∪ {t, t−1})∗ (61)

L(A2) = πt(L(A1)) ⊆ H ∗ {t, t−1}∗ (62)

L(A3) = L(A2) ⊆ H ∗ {t, t−1}∗ (63)

L(B) ∩ Red(H, t) = [L(A3)]≈ ∩ Red(H, t) ⊆ H ∗ {t, t−1}∗ (64)

Since π = πt ◦ πG (9), equation (60) implies

π−1
G (K) = π−1

G (πG(πt(L(A)))) = [πt(L(A))]≈ .

By (61), [L(A)]≡ = [L(A1)]≡, hence [πt(L(A))]≈ = [πt(L(A1))]≈ and thus

π−1
G (K) = [πt(L(A1))]≈ .

Using (62) and (63) we get

π−1
G (K) = [L(A2)]≈ = [L(A3)]≈.

Finally, by (64) we have

π−1
G (K) ∩ Red(H, t) = L(B) ∩ Red(H, t).

We have obtained point (3) of Proposition 33.

(3) ⇒ (1): Let B be some partitioned, ≈-compatible, and ∼-saturated fta with

labelling set Rat(H) such that

π−1
G (K) ∩ Red(H, t) = L(B) ∩ Red(H, t). (65)

Let LB ⊆ Rat(H) ∪ {{t}, {t−1}} be the set of labels of the transitions of the fta B.

We can substitute in B every L-labelled edge with L ∈ Rat(H) by a finite automaton

over the generating set X of H. In this way, we see that

L(B) ∈ Rat(H ∗ {t, t−1}∗). (66)

As every t-sequence is equivalent (modulo ≈) with at least one reduced sequence,

we have

K = πG(π−1
G (K) ∩ Red(H, t)). (67)

With (65) we get

K = πG(L(B) ∩ Red(H, t)). (68)
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Since B is ≈-compatible, we have

πG(L(B)) ⊆ πG([L(B) ∩ Red(H, t)]≈) = πG(L(B) ∩ Red(H, t)).

Since also πG(L(B) ∩ Red(H, t)) ⊆ πG(L(B)), (68) implies

K = πG(L(B)). (69)

As any homomorphic image of a rational subset is rational, K is a rational subset

of G.

4.5. Transfer results for rational sets

In this section we prove the following theorem, which allows to transfer important

properties from Rat(H) to Rat(G).

Theorem 37. Let G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉, where H is a countably gen-

erated monoid with finite subgroups A and B, and ϕ : A → B is an isomorphism.

Then we have:

(1) If Rat(H) is closed under intersection, then so is Rat(G).

(2) If Rat(H) is closed under complement, then so is Rat(G).

(3) If the membership problem for rational subsets of H is decidable, then so is it

for G.

(4) If the emptiness problem for boolean combinations of rational subsets of H is

decidable, then so is it for G.

Proof. For statement (1), let K1,K2 ∈ Rat(G) and K = K1 ∩ K2. By Proposi-

tion 33 there are partitioned, ≈-compatible, and ∼-saturated fta A1 and A2 with

labelling set Rat(H) such that

π−1
G (Ki) ∩ Red(H, t) = L(Ai) ∩ Red(H, t)

for i ∈ {1, 2}. Hence,

π−1
G (K) ∩ Red(H, t) = π−1

G (K1) ∩ π−1
G (K2) ∩ Red(H, t)

= L(A1) ∩ L(A2) ∩ Red(H, t).

Let us consider the partitioned fta

A = A1 ×A2.

By Lemma 15, L(A) = L(A1) ∩ L(A2), and by Lemma 17, A is ≈-compatible and

∼-saturated. Moreover, since Rat(H) is closed under intersection, the labelling set

of A is still Rat(H). Hence K fulfils point (3) of Proposition 33. By point (1) of

Proposition 33, K is a rational subset of G.

For statement (2), let K ∈ Rat(G). By point (3) of Proposition 33 we have

π−1
G (K) ∩ Red(H, t) = L(B) ∩ Red(H, t)
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for a partitioned, ≈-compatible, and ∼-saturated fta B with labelling set Rat(H).

By applying Proposition 28 to B, we obtain

π−1
G (K) ∩ Red(H, t) = L(C)

for some partitioned, ∼-saturated, deterministic, and complete fta C. The labelling

set of this fta is Bool(Rat(H)), which equals Rat(H), since Rat(H) is supposed to

be closed under complement.

Now take the complement automaton C of C, see Definition 19. By Lemma 20

it is a partitioned and ∼-saturated fta with

L(C) = Red(H, t) \ L(C) ⊆ Red(H, t).

In particular, C is also ≈-compatible. We obtain

π−1
G (G \K) ∩ Red(H, t) = (H ∗ {t, t−1}∗ \ π−1

G (K)) ∩ Red(H, t)

= Red(H, t) \ (π−1
G (K) ∩ Red(H, t))

= Red(H, t) \ L(C)

= L(C)

= L(C) ∩ Red(H, t).

Hence, Proposition 33 implies that G \ K is a rational subset of G. This proves

statement (2).

For statement (3) suppose that the membership problem for rational subsets

of H is decidable. Let K = π(L(A)) for a given finite automaton A over the free

monoid (X ∪ {t, t−1})∗. By point (3) of Proposition 33 we have

π−1
G (K) ∩ Red(H, t) = L(B) ∩ Red(H, t)

for a partitioned, ≈-compatible, and ∼-saturated fta B with labelling set Rat(H).

Moreover, since the membership problem for languages in Rat(H) is decidable, B

can be constructed effectively from A.

Now, to a given word u ∈ (X ∪ {t, t−1})∗ we first apply (effectively) as long

as possible the rules of the semi-Thue system ST in order to obtain a word v ∈

(X ∪ {t, t−1})∗ of the form

v = v0t
α1v1 · · · t

αivi · · · t
αpvp

where p ≥ 0, αi ∈ {1,−1}, vi ∈ X∗, and πt(v) ∈ Red(H, t). Note that ST contains

infinitely many rules, but nevertheless we can compute effectively such a word v:

since the word problem is decidable for H, we can decide whether [w]≡H
∈ A (resp.

[w]≡H
∈ B for a given word w ∈ X∗; this allows us to apply rules from ST in an

effective way.

Since the membership problem is decidable for the labelling sets of B, we can

compute all the binary relations µB(πt(vi)), µB(t), and µB(t−1). This allows us to

compute the binary relation µB(πt(v)). Since u ≡ v, we have π(u) ∈ K if and only

if π(v) ∈ K if and only if πt(v) ∈ π−1
G (K) if and only if πt(v) ∈ L(B) if and only if

µB(πt(v)) ∩ IB × TB 6= ∅.
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Let us finally prove statement (4). Assume that the emptiness problem for

boolean combinations of rational subsets of H is decidable. Let K1, . . . ,Kp be

rational subsets of G defined as Ki = π(L(Ai)) for some given finite automaton

Ai over the free monoid (X ∪ {t, t−1})∗. Following the construction described for

statement (2) of Theorem 37, we can construct effectively for every i ∈ {1, . . . , p} a

partitioned, ∼-saturated, deterministic, and complete fta Ci, whose labelling set is

Bool(Rat(H)), and such that

L(Ci) = π−1
G (Ki) ∩ Red(H, t).

The boolean operations ∩ and complement over ∼-saturated subsets of Red(H, t)

can be translated into the product and complement operation, respectively, over

partitioned, ∼-saturated, deterministic, and complete fta reading only reduced se-

quences (for products, we have to use Lemma 17 and 18, for complements we use

Lemma 20). Hence, from a given boolean combination K of the sets Ki, one can

compute effectively a corresponding fta C, whose labelling set is Bool(Rat(H)), and

such that

L(C) = π−1
G (K) ∩ Red(H, t).

Emptiness of the set K reduces to emptiness of L(C), which itself reduces to the

emptiness problem for the label sets of C. Hence, under the hypothesis that empti-

ness is decidable for languages in Bool(Rat(H)), we can test whether L(C) = ∅ or

not.

Remark 38. For a given monoid M, closure of Rat(M) under complement implies

closure of Rat(M) under intersection, but the converse does not hold in general:

we give examples of such monoids M where Rat(M) is closed under intersection

but not under complement in Appendix B. This shows that points (1) and (2) of

Theorem 37 cannot be deduced in a straightforward manner one from the other.

The same is also true for (3) and (4): For the group F × Z (where F is the free

group of rank 2), the membership problem for rational subsets is decidable [KSS06],

whereas the inclusion problem for rational subsets (which is a special instance of

the emptiness problem for boolean combinations of rational subsets) is undecidable

[AH89].

4.6. Transfer results for finitely generated subgroups

We suppose in this section that H = X∗/ ≡ (and hence G) is a group. We assume

moreover that the generating set X is endowed with an involution x 7→ x−1 such

that xx−1 ≡ x−1x ≡ ε. The following subset of P(H) will serve for labelling fta in

the sequel:

S = {Kh | K is a finitely generated subgroup of H,h ∈ H}

Note that every singleton subset {h} belongs to S.
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4.6.1. Normalization of automata

Let us prove first a normalization lemma for finitely generated subgroups of G,

which parallels Proposition 33:

Proposition 39. Let K be a subgroup of G. The following are equivalent:

(1) K is finitely generated.

(2) K is rational.

(3) There exists some finite automaton A over the free monoid (X∪{t, t−1})∗ such

that K = π(L(A)).

(4) π−1
G (K)∩Red(H, t) = L(B)∩Red(H, t) for some partitioned, ≈-compatible, and

∼-saturated fta B with labelling set S.

Moreover, in (4), if the generalized word problem of H is decidable, then B can be

constructed effectively from A in (3).

Proof. We follow the arguments from the proof of Proposition 33.

(1)⇔ (2): This is just Theorem 1.

(2)⇔ (3): This has been shown in Proposition 33.

(3)⇒ (4): We must here slightly adapt the corresponding proof given for Proposi-

tion 33. Let us start with a finite automaton A = 〈X ,Q, δ, I,T〉 over the free monoid

(X ∪ {t, t−1})∗ such that

K = π(L(A)).

Claim 40. There exists a finite automaton A1 over the free monoid (X∪{t, t−1})∗

such that

L(A) ⊆ L(A1) = L(A1)→
∗
ST ⊆ [L(A)]≡. (70)

Moreover, if the generalized word problem of H is decidable, then A1 can be con-

structed effectively from A.

We assume that A is trim, i.e., every state of A is accessible from an initial state

and co-accessible from a final state. We start with

δ1 = δ ∪ {(r, c−1, q) | c ∈ X ∪ {t, t−1}, (q, c, r) ∈ δ}.

Since π(L(A)) is a group, we have

L(A) ⊆ L(〈X ,Q, δ1, I,T〉) ⊆ [L(A)]≡.

For all states q, q′ ∈ Q we define ℓ(δ1, q, q
′) as a shortest word over X which labels

a δ1-path from q to q′. We saturate δ1 under the following inference rules, where
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u ∈ X∗:

p
t−1

−−→δ1
q

u
−→δ1

q
ℓ(δ1,q,q′)
−−−−−−→δ1

q′
t
−→δ1

r ∧ uℓ(δ1, q, q
′) ≡H a ∈ A

p
ϕ(a)
−−−→δ1

r
(71)

p
t
−→δ1

q
u
−→δ1

q
ℓ(δ1,q,q′)
−−−−−−→δ1

q′
t−1

−−→δ1
r ∧ uℓ(δ1, q, q

′) ≡H b ∈ B

p
ϕ−1(b)
−−−−→δ1

r
(72)

Let δ1 be the resulting transition relation and let

A1 = 〈X ∪A ∪B,Q, δ1, I,T〉.

It satisfies (70). For this notice that if q
v
−→δ1

q′ for a word v ∈ X∗ with v ≡H

a ∈ A then vℓ(δ1, q, q
′)−1ℓ(δ1, p, q) ≡H a and q

vℓ(δ1,q,q′)−1

−−−−−−−−→δ1
q, i.e., the word

vℓ(δ1, q, q
′)−1 is a candidate for u in the above rule (71).

It remains to show the effectiveness statement in Claim 40. Let us consider for

every value of δ1 and every q ∈ Q the set

P1(δ1, q) = {u ∈ X∗ | q
u
→δ1

q}.

By Theorem 1, πt(P1(δ1, q)) is a finitely generated subgroup of H, and by the proof

given in Section 2.2, a finite set of generators for it can be explicitly computed. If

the generalized word problem of H is decidable, then the validity of the hypothesis

of the inference rules (71) and (72) can be algorithmically tested so that δ1 can be

algorithmically computed. This proves Claim 40.

Claim 41. There exists a ≈-compatible fta A2 over H ∗ {t, t−1}∗ with labelling set

S such that

L(A2) = πt(L(A1)). (73)

Moreover, A2 can be constructed effectively from A1.

Analogously to the proof of Claim 35, we do a collecting process:

δ2 ={(q, tα, r) | α ∈ {1,−1}, (q, tα, r) ∈ δ1} ∪

{(q, πt(P1(δ1, q)ℓ(δ1, q, r)), r) | q, r ∈ Q}. (74)

This step can be shown to be effective by the arguments already used for the proof

of Claim 40. Clearly (73) holds. Moreover, (70) implies that L(A1) ⊆ [L(A1) ∩

Irr(ST)]≡. Now L(A2) ⊆ [L(A2) ∩Red(H, t)]≈ can be shown in the same way as in

the proof of Claim 35. Hence, A2 is ≈-compatible.

Claim 42. There exists a partitioned and ≈-compatible fta A3 over H ∗ {t, t−1}∗

with labelling set S and such that

L(A3) = L(A2).

Moreover, A3 can be constructed effectively from A2.

34



May 30, 2007 15:16 WSPC/INSTRUCTION FILE 1

As for Claim 36 set A3 = A2 × G6.

Let us now apply Proposition 22 to the set F = S and the fta A3, and let

B be the resulting partitioned, ≈-compatible, and ∼-saturated fta. Note that the

labelling set of B is still S: If Kh labels a transition of A3, where K is a finitely

generated subgroup of H and h ∈ H, then a transition of B may be labelled with

c(Kh)c′, where c, c′ ∈ A ∪B. But we have c(Kh)c′ = (cKc−1)(chc′) ∈ S.

We obtain the following relationships between the automata A, A1, A2, A3, and

B:

K = π(L(A)) ⊆ G (75)

L(A) ⊆ L(A1) ⊆ [L(A)]≡ ⊆ (X ∪ {t, t−1})∗ (76)

L(A2) = πt(L(A1)) ⊆ H ∗ {t, t−1}∗ (77)

L(A3) = L(A2) ⊆ H ∗ {t, t−1}∗ (78)

L(B) ∩ Red(H, t) = [L(A3)]≈ ∩ Red(H, t) ⊆ H ∗ {t, t−1}∗ (79)

From (76) we obtain [L(A)]≡ = [L(A1)]≡. Now, we can deduce π−1
G (K)∩Red(H, t) =

L(B) ∩ Red(H, t) in the same way as in the corresponding part of the proof of

Proposition 33.

(4)⇒ (2): This follows from Proposition 33 since, S ⊆ Rat(H).

Using Proposition 39, we can next prove a transfer theorem for finitely generated

subgroups:

Theorem 43. Let G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉, where H is a countably gener-

ated group with finite subgroups A and B, and ϕ : A→ B is an isomorphism. Then

we have:

(1) If H has a decidable generalized word problem, then so has G.

(2) If H has the Howson property, then so has G.

(3) If H has the LERF property, then so has G.

Proof. For property (1), let u1, . . . , un, u ∈ (X ∪{t, t−1})∗. Let K ⊆ G be the sub-

group generated by {π(u1), . . . , π(un)}. We give an algorithm for deciding whether

π(u) ∈ K or not:

Step 1: We construct from u1, . . . , un a finite automaton A over the free monoid

(X ∪ {t, t−1})∗ such that

K = π(L(A)).

Step 2: Using Proposition 39 we can compute from A effectively a partitioned,

≈-compatible, and ∼-saturated fta B with labelling set S such that

π−1
G (K) ∩ Red(H, t) = L(B) ∩ Red(H, t).
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Step 3: Starting from the word u ∈ (X ∪ {t, t−1})∗ and applying (effectively) the

rules of ST as long as possible, one computes a word v ∈ (X ∪{t, t−1})∗ of the form

v = v0t
α1v1 · · · t

αivi · · · t
αpvp

where p ≥ 0, αi ∈ {1,−1}, vi ∈ X∗, and πt(v) ∈ Red(H, t).

Step 4: From B one can compute all the binary relations µB(πt(vi)), µB(t), and

µB(t−1). This allows to compute the binary relation µB(πt(v)). Since u ≡ v, we

have π(u) ∈ K if and only if π(v) ∈ K if and only if πt(v) ∈ π−1
G (K) if and only if

πt(v) ∈ L(B) if and only if µB(πt(v)) ∩ IB × TB 6= ∅.

Let us now prove (2): Suppose that H has the Howson property. Let K1 and K2

be two finitely generated subgroups of G. By Proposition 39, there exist partitioned,

≈-compatible, and ∼-saturated fta B1 and B2 with labelling set S such that

π−1
G (Ki) ∩ Red(H, t) = L(Bi) ∩ Red(H, t)

for i ∈ {1, 2}. Let

B = B1 × B2.

By the same arguments as for point (1) of Theorem 37, B is partitioned, ≈-

compatible, and ∼-saturated. Let us check that its transition labels belong to S:

Every label L of B either belongs to {{t}, {t−1}} or has the form

L = F1h1 ∩ F2h2 6= ∅

for finitely generated subgroups F1, F2 ≤ H and h1, h2 ∈ H. Since F1h1∩F2h2 6= ∅,

there exist f1 ∈ F1 and f2 ∈ F2 such that f1h1 = f2h2 in H. We thus have

F1h1 ∩ F2h2 = ((F1f
−1
1 f2) ∩ F2)h2

= (F1f2 ∩ F2)h2

= (F1 ∩ F2)f2h2.

By the Howson property for H, F1∩F2 is a finitely generated subgroup of H. Hence,

(F1 ∩ F2)f2h2 belongs to S. Thus

π−1
G (K1 ∩K2) ∩ Red(H, t) = L(B) ∩ Red(H, t)

for a partitioned, ≈-compatible, and ∼-saturated fta B with labelling set S. By

Proposition 39 this implies that K1 ∩K2 is finitely generated.

Finally, we prove point (3). In order to treat the LERF property (see Defini-

tion 3) we have to introduce a technical notion about finite t-automata, which is

stronger than ≈-compatibility:

Definition 44. Let B = 〈L,Q, τ, δ, I,T〉 be a partitioned fta. It is said to be

downwards-closed (briefly d-closed) if for all q1, q2, q3, q4, q5, q6 ∈ Q, h2, h6 ∈ H,

a ∈ A, and b ∈ B such that τ(q1) 6= τ(q2) and τ(q5) 6= τ(q6):

q1
h2−→B q2

t−1

−−→B q3
a
−→B q4

t
−→B q5

h6−→B q6 ⇒ q1
h2ϕ(a)h6

−−−−−−→B q6 (80)

q1
h2−→B q2

t
−→B q3

b
−→B q4

t−1

−−→B q5
h6−→B q6 ⇒ q1

h2ϕ−1(b)h6

−−−−−−−→B q6 (81)
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Lemma 45. A partitioned and d-closed fta is ≈-compatible.

Proof. Assume that the partitioned fta B = 〈L,Q, τ, δ, I,T〉 is d-closed and let

s ∈ L(B). We have to show that s ∈ [L(B)∩Red(H, t)]≈. For this, assume that s is

not reduced, i.e., s = s1t
−1ats2. Since s ∈ L(B), there exists a path in B, labelled

with s, leading from a state of type (1,H) to a state of type (1, 1). Since B is

partitioned, the sequences s1 and s2 cannot be empty: note that no t-labelled (resp.

t−1-labelled) transitions exits (resp. enters) a state of type (1,H) (resp. (1, 1)) in a

partitioned fta. Hence we have s = s′1h2t
−1ath6s

′
2 for some h2, h6 ∈ H. Moreover,

there exist states q1, q2, q3, q4, q5, q6 ∈ Q such that (80) holds. Since B is partitioned

and the path labelled with s leads from a state of type (1,H) to a state of type

(1, 1), we have τ(q1) 6= τ(q2) and τ(q5) 6= τ(q6) (see the last statement in Lemma 7).

Hence, since B is d-closed, we have q1
h2ϕ(a)h6

−−−−−−→B q6, i.e., s′1(h2ϕ(a)h6)s
′
2 ∈ L(B). By

continuing in this way, we finally arrive at a reduced sequence s′ ∈ L(B)∩Red(H, t)

such that s ≈ s′.

Let us now continue with the proof for point (3) in Theorem 43. Assume that

H has the LERF property. We will use the alternative definition from Remark 4.

Let g ∈ G, let K ≤ G be some finitely generated subgroup of G, and let us suppose

that

g /∈ K. (82)

By Proposition 39, there exists a partitioned, ≈-compatible, and ∼-saturated fta

B = 〈LB,QB, τB, δB, IB,TB〉

with labelling set S such that

π−1
G (K) ∩ Red(H, t) = L(B) ∩ Red(H, t). (83)

Claim 46. The fta B can be chosen to be d-closed.

Let us look at the ftaA2 produced in the proof of Claim 41 by equation (74). This

automaton is not partitioned but has both properties (80) and (81). The partitioned

automaton A3 = A2×G6 still satisfies (80) and (81), since for all q1, . . . , q6 fulfilling

the hypothesis of (80) and (81), respectively, the edge (τA2
(q1),H, τA2

(q6)) belongs

to E6. Let us look finally at the fta B obtained from A3 by the construction in the

proof of Proposition 22. Suppose that the hypothesis of implication (80) is fulfilled,

i.e.,

q1g1
h2−→B q2g2

t−1

−−→B q3g3
a
−→B q4g4

t
−→B q5g5

h6−→B q6g6 (84)

where qi ∈ QA3
, gi ∈ γ(qi), τB(q1g1) 6= τB(q2g2), τB(q5g5) 6= τB(q6g6), and hence

τA3
(q1) 6= τA3

(q2), τA3
(q5) 6= τA3

(q6). Assembling five of the diagrams described in

Figure 4, we obtain from (84) in the fta A3 the path

q1
g1h2g−1

2−−−−−→A3
q2

t−1

−−→A3
q3

g3ag−1

4−−−−→A3
q4

t
−→A3

q5
g5h6g−1

6−−−−−→A3
q6,
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q1g1 q2g2 q3g3 q4g4 q5g5 q6g6

q1 q2 q3 q4 q5 q6

q1g1 q6g6
h2ϕ(a)h6

g1 g6(g1h2g
−1
2 )ϕ(g3ag−1

4 )(g5h6g
−1
6 )

g1h2g
−1
2 t−1 g3ag−1

4 t g5h6g
−1
6

g1 g2 g3 g4 g5 g6

h2 t−1 a t h6

Fig. 5. B is d-closed

where

ϕ−1(g2) = g3 and ϕ(g4) = g5. (86)

Since A3 is d-closed, we get

q1
(g1h2g−1

2
)ϕ(g3ag−1

4
)(g5h6g−1

6
)

−−−−−−−−−−−−−−−−−−−−→A3
q6,

i.e., with (86),

q1
(g1h2)ϕ(a)(h6g−1

6
)

−−−−−−−−−−−−→A3
q6.

Using the left diagram in Figure 4, we obtain

q1g1
h2ϕ(a)h6

−−−−−−→B q6g6.

Thus, implication (80) holds, see also Figure 5. A similar verification can be done

for implication (81). Claim 46 is thus established.

Let

LB ∩ P(H) = {F0r0, . . . , Fℓrℓ}

be the set of H-labels of B, where Fi ≤ H is finitely generated and ri ∈ H. Let

s = h0t
α1h1 · · · t

αnhn ∈ Red(H, t)

be a reduced sequence such that

πG(s) = g 6∈ K. (87)

By (83), (87), and the fact that s is reduced, we have

s /∈ L(B). (88)
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For every subgroup N ′ ≤ H let us consider the following properties:

N ′ ∩A = 1 = N ′ ∩B (89)

∀i ∈ {0, . . . , ℓ} ∀c ∈ A ∪B : c ∈ N ′Firi ⇔ c ∈ Firi (90)

∀i ∈ {0, . . . , ℓ}, j ∈ {0, . . . , n} : hj ∈ N ′Firi ⇔ hj ∈ Firi (91)

∀j ∈ {0, . . . , n} : hj ∈ N ′A⇔ hj ∈ A ∧ hj ∈ N ′B ⇔ hj ∈ B (92)

Notice that the directions⇐ in (90)–(92) is trivially satisfied for every subgroup N ′.

As H meets the LERF property, for each value of i ∈ {0, . . . , ℓ}, j ∈ {0, . . . , n}, and

each property P among the above properties (89)–(92), there exists some normal

subgroup of finite index N(i, j, P ) � H fulfilling the given property. For instance,

for (90) one can argue as follows: if c 6∈ Firi, then cr−1
i 6∈ Fi. Since Fi is finitely

generated, the LERF property for H implies the existence of a normal subgroup

N ′ ≤ H of finite index in H such that cr−1
i 6∈ NFi, i.e., c 6∈ NFiri.

Let us define

N =
⋂

i,j,P

N(i, j, P ).

This subgroup N is normal and has finite index in H. Moreover, since every property

among (89)–(92) is hereditary in the sense that if N1 ≤ N2 ≤ H and N2 meets the

property, then N1 meets the same property as well, N fulfils simultaneously all the

properties (89)–(92). Let us set

G′ = 〈H, t; x = 1 (x ∈ N), t−1at = ϕ(a) (a ∈ A)〉.

Let π′ : H → H ′ = H/N be the canonical projection. Due to (89), this morphism

π′ fulfils condition (19) from Section 3.1. Thus, the group G′ is also the HNN-

extension of H ′ = H/N with stable letter t, associated subgroups A,B, and the

partial isomorphism ϕ:

G′ = 〈H/N, t; t−1at = ϕ(a)(a ∈ A)〉.

Let us use the notation from Section 3.1. Let π′
∗(B) be the ∼′-saturated fta from

Lemma 21, which satisfies

L(π′
∗(B)) = π′

∗(L(B)).

Let us define:

s′ = π′
∗(s) = π′(h0)t

α1π′(h1) · · · t
αnπ′(hn). (93)

Since s is a reduced sequence in H ∗ {t, t−1}∗, condition (92) implies

s′ ∈ Red(H ′, t). (94)

By (88) and (91) we have

s′ /∈ L(π′
∗(B)). (95)
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By (83) and the fact that B is ≈-compatible, we get

πG(L(B)) = πG([L(B)]≈)

= πG([L(B) ∩ Red(H, t)]≈)

= πG(L(B) ∩ Red(H, t))

= πG(π−1
G (K) ∩ Red(H, t))

= K,

and thus,

π−1
G′ (π′(K)) = π−1

G′ (π′(πG(L(B)))).

The commutative diagram in Figure 1 yields

π−1
G′ (π′(K)) = π−1

G′ (πG′(π′
∗(L(B)))) = [π′

∗(L(B))]≈′ = [L(π′
∗(B))]≈′ .

By Claim 46 and (90), π′
∗(B) is d-closed and hence ≈′-compatible by Lemma 45.

Hence,

π−1
G′ (π′(K)) ∩ Red(H ′, t) = [L(π′

∗(B))]≈′ ∩ Red(H ′, t)

= [L(π′
∗(B)) ∩ Red(H ′, t)]≈′ ∩ Red(H ′, t)

= [L(π′
∗(B)) ∩ Red(H ′, t)]∼′

= L(π′
∗(B)) ∩ Red(H ′, t),

where the last equality holds since π′
∗(B) is ∼′-saturated by Lemma 21. Together

with (94) and (95) we get

s′ /∈ π−1
G′ (π′(K)).

This shows that πG′(s′) /∈ π′(K), i.e., by (93), πG′(π′
∗(s)) /∈ π′(K). The commuta-

tive diagram in Figure 1 implies π′(πG(s)) /∈ π′(K), i.e., by (87),

π′(g) /∈ π′(K). (97)

The group G′ is the fundamental group of a graph of groups (with just one vertex

and one edge) with finite vertex groups (namely H/N), hence it is a virtually free

group, i.e., it has a free subgroup of finite index, see e.g. [DD90, Corollary IV.1.9,

p.104]. By the result of [Hal49] every free group is LERF and by [Sco78, Lemma 1.1,

p. 556] every group with a finite index subgroup which is LERF is itself LERF.

Hence G′ is LERF. In particular, (97) implies the existence of a finite group G′′

and a homomorphism π′′ : G′ → G′′ such that

π′′(π′(g)) /∈ π′′(π′(K)). (98)

By Remark 4, this proves that G is LERF.
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5. Amalgamated free products

In the rest of this paper, we will prove for amalgamated free products results similar

to those for HNN-extensions from Section 4.

Let us consider two monoids H1 and H2, two finite subgroups A1 ≤ H1, A2 ≤ H2,

and an isomorphism ϕ : A1 → A2. The corresponding amalgamated free product

G = 〈H1 ∗H2; a = ϕ(a)(a ∈ A1)〉 (99)

is defined by G = (H1 ∗ H2)/ ≈, where ≈ is the congruence on the free product

H1 ∗H2 generated by the equations a = ϕ(a) for a ∈ A1. An (H1,H2)-sequence is

an element s ∈ H1 ∗H2; it has a unique decomposition of the form

s = h0k1h1 · · · kihi · · · knhn, (100)

where n ≥ 0, h1, . . . , hn−1 ∈ H2 \ 1, k1, . . . , kn ∈ H1 \ 1, and h0, hn ∈ H2. A reduced

(H1,H2)-sequence is an element s ∈ H1 ∗H2 of the form

s = h0k1h1 · · · kihi · · · knhn, (101)

where n ≥ 0, h1, . . . , hn−1 ∈ H2 \ A2, k1, . . . , kn ∈ H1 \ A1 and h0, hn ∈ H2. We

denote by Red(H1,H2) the set of all reduced (H1,H2)-sequences.

Assume now that H1 = X∗
1/ ≡H1

and H2 = X∗
2/ ≡H2

for generating sets X1

and X2 such that X1 ∩X2 = ∅. Then G = (X1 ∪X2)
∗/≡ where ≡ is the smallest

congruence over the free monoid (X1 ∪ X2)
∗ such that (≡H1

∪ ≡H2
) ⊆ ≡ and

a ≡ ϕ(a) for all a ∈ A1. Let

π : (X1 ∪X2)
∗ → G

denote the canonical morphism defined by π(w) = [w]≡ for w ∈ (X1 ∪X2)
∗. This

morphism naturally factorizes as

π = πa ◦ πG

where

πa : (X1 ∪X2)
∗ → H1 ∗H2 and

πG : H1 ∗H2 → G.

The kernel of πG coincides with the congruence ≈ over H1 ∗H2 defined above.

We define the binary relation
1
∼ over H1 ∗H2 as follows: For all s, s′ ∈ H1 ∗H2

let s
1
∼ s′ if and only if there are (H1,H2)-sequences s1 and s2 and a, b ∈ A1 such

that either

∃h ∈ H1 : s = s1hs2 ∧ s′ = s1ϕ(a)(a−1hb)ϕ(b−1)s2 or

∃h ∈ H2 : s = s1hs2 ∧ s′ = s1a(ϕ(a−1)hϕ(b))b−1s2.

Let us denote by ∼ ⊆ ≈ the congruence over H1 ∗H2 generated by
1
∼; it coincides

with the reflexive and transitive closure of
1
∼. Equivalently, if

s = h0k1h1k2 · · ·hn−1knhn and

s′ = h′
0k

′
1h

′
1k

′
2 · · ·h

′
m−1k

′
mh′

m
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(with n,m ≥ 0, and k1, . . . , kn, k′
1, . . . , k

′
m ∈ H1, h0, . . . , hn, h′

0, . . . , h
′
m ∈ H2) are

reduced sequences, then s ∼ s′ if and only if n = m and there exist a1, . . . , a2n ∈ A1

such that:

• hiϕ(a2i+1) = ϕ(a2i)h
′
i in H2 for 0 ≤ i ≤ n (here we set a0 = a2n+1 = 1)

• kia2i = a2i−1k
′
i in H1 for 1 ≤ i ≤ n

In other words, there exists a Van Kampen diagram of the following kind, where

n = m = 4. Here, we omit the ϕ(ai)-labelled edge, which runs parallel to the

ai-labelled vertical edge (1 ≤ i ≤ 2n).c Light-shaded (resp. dark-shaded) areas

represent relation in H2 (resp. relations in H1).

h0

k1
h1 k2 h2 k3 h3 k4

h4

h′
0

k′
1 h′

1 k′
2 h′

2 k′
3

h′
3

k′
4

h′
4

a1 a2 a3 a4 a5 a6 a7 a8

The set Red(H1,H2) is again saturated by the congruence ∼, i.e., s ∼ s′ implies

s ∈ Red(H1,H2) ⇔ s′ ∈ Red(H1,H2). Here it is important that A1 and A2 are

groups.

For the case that H1 and H2 (and hence G) are groups, it is well-known that G

can be embedded into the HNN-extension

Ĝ = 〈H1 ∗H2, t; t
−1at = ϕ(a)(a ∈ A1)〉

by the map Φ with

Φ : k 7→ t−1kt for k ∈ H1 and h 7→ h for h ∈ H2, (102)

see e.g. [LS77, Theorem 2.6, p. 187]. This result generalizes to our situation,

where H1 and H2 are monoids but A1 and A2 are groups: Assume that s1, s2 ∈

Red(H1,H2) such that Φ(s) ≈ Φ(s′). Then Φ(s),Φ(s′) ∈ Red(H, t), and Lemma 5

implies Φ(s) ∼ Φ(s′). The defining relations of ∼ imply s ∼ s′.

With our definitions of the relations ≈ and ∼ on the free product H1 ∗H2 and

the new definition of a reduced sequence, Lemma 5 again holds:

Lemma 47. Let s, s′ ∈ Red(H1,H2). Then s ≈ s′ if and only if s ∼ s′.

Proof. Assume that s ≈ s′ for s, s′ ∈ Red(H1,H2). The defining relations for ≈

imply Φ(s) ≈ Φ(s′). Then, the above arguments yield s ∼ s′.

cAlternatively, one may assume that that A1 = A2 = A, H1 ∩ H2 = A, where A is a subgroup

of H1 and H2, and that ϕ is the identity map. Then one obtains exactly the above Van Kampen
diagram.
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6. Finite automata for amalgamated free products

We fix throughout this section two monoids H1,H2, two finite subgroups A1 ≤

H1, A2 ≤ H2, an isomorphism ϕ : A1 → A2 and the corresponding amalgamated

free product

G = 〈H1 ∗H2; a = ϕ(a)(a ∈ A1)〉.

6.1. Finite (H1, H2)-automata

The classical embedding (102) leads naturally to the following adaptations of the

definitions from Section 4 to the case of an amalgamated free product.

Let Fi ⊆ P(Hi) be a set of subsets of Hi (i ∈ {1, 2}) such that every singleton

{a} with a ∈ Ai belongs to Fi. A finite (H1,H2)-automaton over H1 ∗ H2, with

labelling sets (F1,F2) is a 5-tuple

A = 〈L,Q, δ, I,T〉,

where L is finite and

L ⊆ F1 ∪ F2,

Q is a finite set of states, I ⊆ Q is the set of initial states, T ⊆ Q is the set of

terminal states, and δ (the set of transitions) is a subset of Q × L × Q such that

for every state q ∈ Q there exists L ∈ L with (q, L, q) ∈ δ and 1 ∈ L. For the last

point, 1 denotes both the neutral element of H1 and H2, The representation map

µA : H1 ∗H2 → BR(Q) is defined as follows. First define for every h ∈ H1 ∪H2:

µA,0(h) = {(q, r) ∈ Q×Q | ∃L ∈ L : (q, L, r) ∈ δ ∧ h ∈ L}. (103)

Now, for every s ∈ H1 ∗H2 of the form (100), let

µA(s) = µA,0(h0) ◦ µA,0(k1) ◦ µA,0(h1) ◦ · · · ◦ µA,0(kn) ◦ µA,0(hn). (104)

The set L(A) ⊆ H1 ∗H2 recognized by A is defined as for HNN-extensions.

Let us introduce a finite set T4 of 4 types, which will induce a partition of the

set of states of a finite (H1,H2)-automaton:

T4 = {(A1,H1), (A2,H2), (1,H2), (1, 1)}. (105)

We define a graph G4 = (T4, E4) by:

E4 ={((C,D), C, (C,D)) | (C,D) ∈ T4}

∪ {((Ai,Hi),Hi, (A3−i,H3−i)) | i ∈ {1, 2}}

∪ {((A2,H2),H2, (1, 1)), ((1,H2),H2, (A1,H1)), ((1,H2),H2, (1, 1))}.

The graph G4 is represented in Figure 2. An analogous graph R4 = (T4, E
′
4) is

defined by

E ′4 =E4 \ {((A1,H1),H1, (A2,H2)), ((A2,H2),H2, (A1,H1))}

∪ {((A1,H1),H1 \A1, (A2,H2)), ((A2,H2),H2 \A2, (A1,H1))},
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(1,H2) (A1,H1) (A2,H2) (1, 1)
H2

H1

H2

H2

H2

1 1

A1 A2

Fig. 6. The graph G4 = (T4, E4)

(1,H2) (A1,H1) (A2,H2) (1, 1)
H2

H1 \A1

H2 \A2

H2

H2

1 1

A1 A2

Fig. 7. The graph R4 = (T4, E ′

4
)

see Figure 7. The set Ê4 is defined analogously to Ê6. The reader might be surprised

by the asymmetry in the definition of G4 and R4: it corresponds to our choice for

the definition of an (H1,H2)-sequence in (100), where we require h0, hn ∈ H2. This

choice was made arbitrarily; we could have also required h0, hn ∈ H1.

A partitioned finite (H1,H2)-automaton with labelling sets (F1,F2) is a 6-tuple

A = 〈L,Q, τ, δ, I,T〉,

where L, Q, δ, I, and T are as above and τ : Q→ T4 assigns a type with every state

such that:

∀(q, L, r) ∈ δ : {q} × L× {r} ⊆ Ê4

τ(I) = {(1,H2)} ∧ τ(T) = {(1, 1)}

Let us consider the equivalences ∼ and ≈ over H1 ∗H2 defined in Section 5. The

notions of ∼-saturated and ≈-compatible finite (H1,H2)-automata are defined as in

Definition 9, but with the equivalences ≈ and ∼ being those defined over H1 ∗H2.

The notion of a deterministic and partitioned finite (H1,H2)-automaton A

with labelling sets (F1,F2) is still defined by the properties (33) and (34). For

every q ∈ Q, and Θ ∈ T4 we again define the set L1(q,Θ) ⊆ H1 ∪H2 by (35). Then,

a partitioned finite (H1,H2)-automaton A is complete if

∀(Θ, C,Θ′) ∈ E ′4 ∀q ∈ τ−1(Θ) : C ⊆ L1(q,Θ′).

6.2. Normalization of automata

The following three propositions can be now proved in exactly the same way as the

corresponding statements for HNN-extensions (Propositions 22, 28 and 33).

44



May 30, 2007 15:16 WSPC/INSTRUCTION FILE 1

Proposition 48. From a given partitioned and ≈-compatible finite (H1,H2)-

automaton A with labelling sets (F1,F2) one can effectively construct a parti-

tioned, ≈-compatible, ∼-saturated, and unitary (H1,H2)-automaton B with labelling

sets ({aFa′ | F ∈ F1, a, a′ ∈ A1}, {aFa′ | F ∈ F2, a, a′ ∈ A2}) and such that

[L(A)]≈ ∩ Red(H1,H2) = L(B) ∩ Red(H1,H2).

Proposition 49. From a given partitioned, ≈-compatible, and ∼-saturated finite

(H1,H2)-automaton B with labelling sets (F1,F2) one can effectively construct a

partitioned, ∼-saturated, deterministic, and complete finite (H1,H2)-automaton C

with labelling sets (Bool(F1),Bool(F2)) and such that [L(A)]≈ ∩ Red(H1,H2) =

L(C).

Proposition 50. Let K ⊆ G. The following are equivalent:

(1) K is a rational subset of G.

(2) K = π(R) for some rational subset R ⊆ (X1 ∪X2)
∗.

(3) π−1
G (K) ∩ Red(H1,H2) = L(B) ∩ Red(H1,H2) for some partitioned, ≈-

compatible, and ∼-saturated finite (H1,H2)-automaton B with labelling sets

(Rat(H1),Rat(H2)).

Moreover, in point (3), if the membership problem for languages in Rat(H1) and

Rat(H2), respectively, is decidable, then B can be computed effectively from a finite

automaton for R in point (2).

6.3. Transfer results for rational sets

Using Propositions 48, 49 and 50, the following transfer results for amalgamated

free products can be shown in exactly the same way as for HNN-extensions.

Theorem 51. Let G = 〈H1 ∗ H2; a = ϕ(a)(a ∈ A1)〉, where H1 and H2 are

countably-generated monoids with subgroups A1 ≤ H1 and A2 ⊆ H2 and ϕ : A1 →

A2 is an isomorphism. Then we have:

(1) If Rat(H1) and Rat(H2) are closed under intersection, then also Rat(G) is

closed under intersection.

(2) If Rat(H1) and Rat(H2) are closed under complement, then also Rat(G) is

closed under complement.

(3) If the membership problem is decidable for languages in Rat(H1) and Rat(H2),

then the same is true for languages in Rat(G).

(4) If the emptiness problem is decidable for languages in the boolean closure of

Rat(H1) and Rat(H2), then the same is true for languages in the boolean closure

of Rat(G).

Statement (3) is covered by [KSS06, Theorem 5.1] (for free products it was

shown in [Ned00]) for the case that H1 and H2 (and hence G) are groups, whereas

(1), (2), and (4) are new to the knowledge of the authors.
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6.4. Transfer results for finitely generated subgroups

Let us assume in this section that H1 and H2 (and hence G in (99)) are groups. The

following subsets S1 ⊆ P(H1) and S2 ⊆ P(H2) serve for labelling finite (H1,H2)-

automata:

S1 = {Kh | K is a finitely generated subgroup of H1, h ∈ H1}

S2 = {Kh | K is a finitely generated subgroup of H2, h ∈ H2}

Proposition 52. Let K be a subgroup of G. The following are equivalent:

(1) K is finitely generated.

(2) K is rational.

(3) There exists some finite automaton A over the free monoid (X1 ∪ X2)
∗ such

that K = π(L(A)).

(4) π−1
G (K) ∩ Red(H1,H2) = L(B) ∩ Red(H1,H2) for some partitioned, ≈-

compatible, and ∼-saturated finite (H1,H2)-automaton B with labelling sets

(S1,S2).

Moreover, in (4), if the generalized word problem for H1 and H2 is decidable, then

B can be constructed effectively from A in (3).

Theorem 53. Let G = 〈H1 ∗ H2; a = ϕ(a)(a ∈ A1)〉, where H1 and H2 are

countably-generated groups with subgroups A1 ≤ H1 and A2 ⊆ H2 and ϕ : A1 → A2

is an isomorphism. Then we have:

(1) If H1 and H2 have a decidable generalized word problem, then also G has a

decidable generalized word problem.

(2) If H1 and H2 have the Howson property, then also G has the Howson property.

(3) If H1 and H2 have the LERF property, then also G has the LERF property.

Statement (1) is covered by [KWM05, Corollary 5.15], statement (2) was shown

in [Bez98,KS70], and statement (3) was shown in [AG73].

Remark 54. There is an alternative way to deduce Theorem 53: using the embed-

ding (102) together with the Theorem 43 on HNN-extensions it suffices to prove that

(i) decidability of the generalized word problem, (ii) the Howson property, and (iii)

the LERF property are preserved under (i) passing to finitely generated subgroups

and (ii) free products. Preservation under passing to finitely generated subgroups

is obvious. Preservation under free products can be proved using automata theo-

retic constructions, which are similar but much simpler than our constructions for

amalgamated free products.

For Theorem 51 about rational subsets, the same line of arguments can be

applied to the membership problem for rational subsets and the emptiness problem

for boolean combinations of rational subsets (decidability of these problems is clearly

preserved under passing to finitely generated submonoids). On the other hand, it

not clear whether these arguments also apply to the closure under intersection and
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complement, respectively, because it is not clear whether these closure properties

are preserved under passing to finitely generated submonoids.
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Appendix A. Normal forms

We check here that the classical notion of normal form for HNN-extensions of groups

adapts to the case of monoids, provided that A and B are subgroups of the base

monoid. This will result in a proof of Lemma 5.

Let us fix a monoid H, isomorphic subgroups A and B of H, and an isomorphism

ϕ : A → B, as considered in Section 3 and let G be the corresponding HNN-

extension defined by (7).

For every subgroup C of H, the left-congruence ≡C is defined by

h ≡C h′ ⇔ ∃c ∈ C : h = h′c.

Since C is a group, ≡C is indeed an equivalence relation. The equivalence classes
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of ≡C are the sets hC for h ∈ H. Let us choose some systems of representatives

RA (resp. RB) for the equivalence ≡A (resp. ≡B). We suppose that 1 ∈ RA ∩ RB.

Hence, A ∩RA = {1} = B ∩RB. We define now the set of normal forms.

Definition 55. A normal form is an element of H ∗ {t, t−1}∗ of the form

s = h0t
α1h1 · · · t

αihi · · · t
αnhn, (A.1)

where n ≥ 0, such that, for every i ∈ {1, . . . , n}

(i) hn is an arbitrary element of H,

(ii) if αi = 1 then hi−1 ∈ RA,

(iii) if αi = −1 then hi−1 ∈ RB, and

(iv) if αi = −αi+1 then hi 6= 1.

One can notice that, due to conditions (ii)–(iv), every normal form is a reduced

sequence. We denote by N the set of all normal forms. We define a right-action ⊙

of the monoid H ∗ {t, t−1}∗ over N as follows. Let s be a normal form of the form

(A.1). For every h ∈ H we set

s⊙ h = h0t
α1h1 · · · t

αihi · · · t
αn(hnh).

The right-action of t on s is defined through 3 cases:

Case (t0). n = 0 and h0 = r0a with r0 ∈ RA and a ∈ A:

s⊙ t = (r0a)⊙ t = r0tϕ(a)

Case (t1). n > 0, αn = 1, hn = rna with rn ∈ RA, a ∈ A:

s⊙ t = h0t
α1h1 · · · t

αihi · · · t
αnrntϕ(a)

Case (t2). n > 0, αn = −1, hn = rna with rn ∈ RA \ {1}, a ∈ A:

s⊙ t = h0t
α1h1 · · · t

αihi · · · t
αnrntϕ(a)

Case (t3). n > 0, αn = −1, hn ∈ A:

s⊙ t = h0t
α1h1 · · · t

αihi · · · t
αn−1(hn−1ϕ(hn))

The right-action of t−1 on the normal form s is defined similarly through 3 cases:

Case (t−10). n = 0

Case (t−11). n > 0, αn = −1, hn = rnb with rn ∈ RB , b ∈ B

Case (t−12). n > 0, αn = 1, hn = rnb with rn ∈ RB \ {1}, b ∈ B

Case (t−13). n > 0, αn = 1, hn ∈ B

One can easily check that for every s ∈ N :

s⊙ (tt−1) = s⊙ (t−1t) = s (A.3)
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Let us compute the sequence s⊙ tbt−1, when s fulfils case (t1) or (t2):

s⊙ tbt−1 = (h0t
α1h1 · · · t

αihi · · · t
αnrntϕ(a)) ⊙ (bt−1)

= (h0t
α1h1 · · · t

αihi · · · t
αnrnt(ϕ(a)b)) ⊙ t−1

= h0t
α1h1 · · · t

αihi · · · t
αn(rnϕ−1(ϕ(a)b))

= h0t
α1h1 · · · t

αihi · · · t
αn(rnaϕ−1(b))

= h0t
α1h1 · · · t

αihi · · · t
αn(hnϕ−1(b))

= (h0t
α1h1 · · · t

αihi · · · t
αnhn)⊙ ϕ−1(b).

When the sequence s fulfils case (t3) we obtain:

s⊙ tbt−1 = (h0t
α1h1 · · · t

αihi · · · t
αn−1(hn−1ϕ(hn))) ⊙ (bt−1)

= (h0t
α1h1 · · · t

αihi · · · t
αn−1(hn−1ϕ(hn)b)) ⊙ t−1

= h0t
α1h1 · · · t

αihi · · · t
αn−1hn−1t

−1(hnϕ−1(b))

= (h0t
α1h1 · · · t

αihi · · · t
αnhn)⊙ ϕ−1(b)

Finally in case (t0) we have

s⊙ tbt−1 = (r0a)⊙ tbt−1 = (r0t(ϕ(a)b))⊙ t−1 = r0aϕ−1(b)

= s⊙ ϕ−1(b).

We have thus established that for every s ∈ N :

s⊙ (tbt−1) = s⊙ ϕ−1(b) (A.4)

The set of relations {(tt−1, 1), (t−1t, 1)} ∪ {(tbt−1, ϕ−1(b)) | b ∈ B} generates the

congruence ≈ over H ∗ {t, t−1}∗. Equations (A.3) and (A.4) thus show that the

action ⊙ induces a right-action of the monoid G over N that we still denote by ⊙.

Lemma 56. For every s ∈ N , 1⊙ πG(s) = s.

This lemma can be proved by induction over the integer n in the description

(A.1) of a normal form s.

Theorem 57. The following holds:

(1) For every reduced t-sequence s ∈ Red(H, t), there exists s′ ∈ N with s ∼ s′.

(2) The set N is a system of representatives for the congruence ≈ over H∗{t, t−1}∗.

Proof. Let us first prove (1). Let s be some reduced sequence given by (15). Let

us show by induction over n that s is ∼-equivalent to some normal form.

If n = 0 in (15) then s is itself a normal form. Now assume that n = m + 1. By

the induction hypothesis, there exist h′
0, . . . , h

′
m ∈ H such that

h0t
α1h1 · · · t

αihi · · · t
αmhm ∼ h′

0t
α1h′

1 · · · t
αih′

i · · · t
αmh′

m ∈ N .
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First, suppose that αn = 1. Let us decompse h′
m = rma with rm ∈ RA and a ∈ A,

and set

s′ = h′
0t

α1h′
1 · · · t

αih′
i · · · t

αmrmtαn(ϕ(a) · hn).

We have s ∼ s′ ∈ N (note that tαn = t ∼ atϕ(a)−1).

If αn = −1, then we decompose h′
m = rmb with rm ∈ RB and b ∈ B, and we set

s′ = h′
0t

α1h′
1 · · · t

αih′
i · · · t

αmrmtαn(ϕ−1(b) · hn).

Again, we have s ∼ s′ ∈ N .

For point (2) in the theorem let us first show that every sequence s is ≈-

equivalent to some normal form. As we already saw in Section 3, for every t-sequence

s there exists s′ ∈ Red(H, t) such that s ≈ s′. By point (1) there exists s′′ ∈ N with

s′′ ∼ s′′. Since ∼ ⊆ ≈, we have s ≈ s′′ ∈ N .

It remains to show that two different normal forms are not ≈-equivalent. Let

s, s′ ∈ N and s 6= s′. By Lemma 56,

1⊙ πG(s) = s, 1⊙ πG(s′) = s′.

Hence, πG(s) 6= πG(s′), i.e., s 6≈ s′.

We are ready now to give the announced proof of Lemma 5. Suppose that s1

and s2 are reduced t-sequences such that s1 ≈ s1. By point (1) of Theorem 57, there

exist s′1, s
′
2 ∈ N such that si ∼ s′i (for i ∈ {1, 2}). Since s′1 ≈ s′2, by point (2) of

Theorem 57 we have s′1 = s′2. Finally, s1 ∼ s′1 = s′2 ∼ s2, which proves that s1 ∼ s2.

Appendix B. Examples of monoids

We give here some examples of monoids M such that Rat(M) is closed under inter-

section but not closed under complement.

Example 58 (Die05). Let M = X∗ be the free monoid over some infinite alphabet

X. Since every rational expression uses only a finite number of symbols, every

rational set of M is included in some finitely generated submonoid of M. Hence, for

every R ∈ Rat(M), X∗ \R /∈ Rat(M).

On the other hand, if R and R′ are rational sets of M, they are rational subsets

of some free submonoid Y ∗ generated by a finite subalphabet Y ⊆ X. By Kleene’s

theorem about rational sets of a finitely generated free monoid, R ∩R′ ∈ Rat(Y ∗),

and hence, R ∩R′ ∈ Rat(M).

Example 59. Using the same arguments as in Example 58 one can show that also

for the free group G = F (X), generated by an infinite set X, Rat(G) is closed

under intersection but Rat(G) is not closed under complement. One has to use the

fact that for a finitely generated free group, the set of rational subsets is a boolean

algebra [Ben69].
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Let us construct now examples of finitely generated monoids.

Example 60. Let X = {a, b, c, d, e}. Let L ⊆ {b, c}∗ be some context-free language

with non context-free complement. Such examples are abundant, for example one

could take

L = {bpcbqcbr | p, q, r ∈ N, p 6= q ∨ q 6= r}.

We then define a semi-Thue system S and a monoid M by:

S = aLd× {e}, M = X∗/↔∗
S

Lemma 61. The set Rat(M) is closed under intersection.

Proof. Let us denote by π : X∗ →M the canonical projection. Let R,R′ ∈ Rat(M).

There exist K,K ′ ∈ Rat(X∗) such that

R = π(K) and R′ = π(K ′).

Since the system S has no overlapping left-hand sides nor two rules with the same

left-hand side but different right-hand sides, the relation →∗
S is confluent (see our

recalls in Section 2). It follows that

R ∩R′ = π(K→∗
S ∩K ′→∗

S). (B.1)

Since the semi-Thue system S is monadic, both sets of descendants K→∗
S and K ′→∗

S

are rational subsets of X∗ [BJW82,Sén94]. Equality (B.1) thus shows that R ∩ R′

is a rational subset of M.

Lemma 62. For every R ∈ Rat(M), the language π−1(R) is context-free.

Proof. Let us assume that R = π(K) for some K ∈ Rat(X∗). By the confluence

property of →S,

π−1(R) = {u ∈ X∗ | ∃v ∈ K→∗
S: u→∗

S v}.

We already observed that K→∗
S is rational. Since the set aLd is context-free, for

every rational set Q, Q←∗
S is context-free. Applying this property to Q = K→∗

S we

get that π−1(R) is context-free.

Lemma 63. The set Rat(M) is not closed under complement.

Proof. Let R = {π(e)}. Clearly, R is a rational subset of M. Let R′ = M \R. One

can check that

π−1(R′) ∩ a{b, c}∗d = a({b, c}∗ \ L)d.

Since {b, c}∗ \ L is not context-free, π−1(R′) is not context-free (by the closure of

context-free languages by intersection with rational sets). By Lemma 62 we can

conclude that R′ is not rational.
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We don’t know, whether there exists a finitely generated (or even finitely pre-

sented) group G such that Rat(G) is closed under intersection but not closed under

complement.
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