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INTERSECTION OF SUBGROUPS IN FREE GROUPS AND HOMOTOPY

GROUPS

HANS-JOACHIM BAUES AND ROMAN MIKHAILOV

Abstract. We show that the intersection of three subgroups in a free group is related to the
computation of the third homotopy group π3. This generalizes a result of Gutierrez-Ratcliffe
who relate the intersection of two subgroups with the computation of π2. Let K be a two-
dimensional CW-complex with subcomplexes K1,K2,K3 such that K = K1 ∪ K2 ∪ K3 and
K1 ∩ K2 ∩ K3 is the 1-skeleton K1 of K. We construct a natural homomorphism of π1(K)-
modules

π3(K) →
R1 ∩R2 ∩R3

[R1, R2 ∩R3][R2, R3 ∩R1][R3, R1 ∩R2]
,

where Ri = ker{π1(K
1) → π1(Ki)}, i = 1, 2, 3 and the action of π1(K) = F/R1R2R3 on the

right hand abelian group is defined via conjugation in F . In certain cases, the defined map is
an isomorphism. Finally, we discuss certain applications of the above map to group homology.

1. Introduction

Simplicial homotopy theory makes it possible to translate certain homotopy questions to
the group-theoretical language. As a rule, the group-theoretical problems appearing in this
direction have a difficult nature. Still combinatorial group theory is a crucial tool in homotopy
theory (see, for example, [3], [5]). On the other hand, certain group-theoretical results may
be obtained by use of homotopy methods, like methods of simplicial homotopy theory and the
theory of derived functors (see, for example, [8]).

It is the purpose of this paper to combine the results of Gutierrez-Ratcliffe and Wu which
present certain links between homotopical and group-theoretical structures. Let us recall them
first.

1. (Exact sequence due to Guttierez-Ratcliffe, [10]) Let K be a connected 2-dimensional CW-
complex, and K1 and K2 subcomplexes such that K = K1 ∪K2 and K1 ∩K2 is the 1-skeleton
K1 of K, then there is an exact sequence of π1(K)-modules

0 → i1π2(K1)⊕ i2π2(K2)
α
→ π2(K) →

R ∩ S

[R, S]
→ 0, (1)

where α is induced by inclusion, R is the kernel of π1(K
1) → π1(K1), S is the kernel of

π1(K
1) → π1(K1) and the action of π1(K) ≃ π1(K

1)/RS on R∩S
[R,S]

is induced by conjugation.

The paper [10] contains another exact sequence of the same nature. Let G = 〈X | N 〉 be a
group presentation with relation module N/γ2(N), where N is the normal closure of the set N
in the free group F (X). Let Kr be a standard 2-complex for a presentation 〈X | r〉, r ∈ N , let
sr be the root of r in the free group F (X). There is an exact sequence of G-modules:

0 → ⊕r∈N i∗π2(Kr)
α
→ π2(K) → ⊕r∈NZ[G]/(sr − 1)Z[G]

γ
→ N/γ2(N) → 0, (2)
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where α is induced by inclusion and γ maps 1 + (sr − 1)Z[G] onto rγ2(N) for each r ∈ N .
For a group-theoretical application of the above exact sequences consider a two-relator pre-
sentation P = 〈X | r1, r2〉 of a group F (X)/〈r1, r2〉F (X). As a consequence of the exact se-

quences (1) and (2), we have that the quotient 〈r〉F (X)∩〈r2〉F (X)

[〈r1〉F (X), 〈r2〉F (X)]
is a subgroup of the quotient

Z[G]/(sr1−1)Z[G]⊕Z[G]/(sr2−1)Z[G], i.e. it is a free Abelian. Hence, we proved the following
generalization of the theorem due to Hartley-Kuzmin [12]: let F be a free group, r1 and r2 words
in F , Ri = 〈ri〉F , i = 1, 2, then the group R1∩R2

[R1, R2]
is a free Abelian group.

2. (The presentation of homotopy groups of the 2-sphere due to Wu) It is one of the deep
problems of algebraic topology to compute homotopy groups πn(S

2). Note that the 2-sphere
presents the most ’unstable’ case from the point of view of homotopy theory. The developed
methods of Adams-type spectral sequences usually do not work in this case. In low degrees one
has (see [15]):

n 2 3 4 5 6 7 8 9
πn(S

2) Z Z Z2 Z2 Z4 ⊕ Z3 Z2 Z2 Z3

The structure of πn(S
2) is known up to some stage (n ≈ 30), mostly due to Toda and his

students. The general structure of πn(S
2) is unclear and mysterious.

Recall the description of homotopy groups of the 2-sphere due to Wu [16]. Let F [S1] be
Milnor’s F [K]-construction applied to the simplicial circle S1. This is the free simplicial group
with F [S1]n a free group of rank n ≥ 1 with generators x0, . . . , xn−1. Changing the basis of
F [S1]n in the following way: yi = xix

−1
i+1, yn−1 = xn−1, we get another basis {y0, . . . , yn−1} in

which the simplicial maps can be written easier. A combinatorial group-theoretical argument
then gives the following description of the n-th homotopy group of the loop space ΩΣS1, which
is isomorphic to the homotopy group of πn+1(S

2) (see [16] for explicit computations):

πn+1(S
2) ∼=

〈y−1〉F ∩ 〈y0〉F ∩ · · · ∩ 〈yn−1〉F

[[y−1, y0, . . . , yn−1]]
, n ≥ 1 (3)

where F is a free group with generators y0, . . . , yn−1, y−1 = (y0 . . . yn−1)
−1, the group [[y−1, y0, . . . , yn−1]]

is the normal closure in F of the set of left-ordered commutators

[zε11 , . . . , zεtt ] (4)

with the properties that εi = ±1, zi ∈ {y−1, . . . , yn−1} and all elements in {y−1, . . . , yn−1} ap-
pear at least once in the sequence of elements zi in (4).

The main idea of our approach can be formulated as the following conjectural observation: the
nature of the presentation (3) comes from the fact that the 2-sphere is homotopically equivalent
to the standard 2-complex, constructed from the presentation 〈y0, . . . , yn−1 | y0, . . . , yn−1, y

−1
n−1 . . . y

−1
0 〉.

Given a free group F and normal subgroups (n ≥ 2)

R1, . . . , Rn ✂ F,

denote the quotient group

In(F,R1, . . . , Rn) :=
R1 ∩ · · · ∩ Rn

∏

I∪J={1,...,n}, I∩J=∅[
⋂

i∈I Ri,
⋂

j∈J Rj ]
.

Here
⋂

denotes the intersection of subgroups in the free group F and
∏

is the product of
commutator subgroups as indicated. In fact, the abelian group In has the natural structure of
an F/R1 . . . Rn-module, with the group action defined via conjugation in F .
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The computation of the abelian group In is highly non-trivial. In fact, in the special case
F = 〈x1, . . . , xn−1〉, Ri = 〈xi〉F , i = 1, . . . , n − 1, Rn = 〈x1 . . . xn−1〉F a standard commutator
calculus argument, given essentially in Corollary 3.5 of [16] shows that

[[y−1, y0, . . . , yn−1]] =
∏

I∪J={1,...,n+1}, I∩J=∅

[
⋂

i∈I

Ri,
⋂

j∈J

Rj ],

and hence we have the following isomorphism

In(F,R1, . . . , Rn) = πn(S
2).

On the other hand, for n = 2, one has a general description of the F/R1R2-module I2(F,R1, R2) =
R1∩R2

[R1, R2]
in terms of homotopy groups of certain spaces given by the sequence (1) due to Gutierrez-

Ratcliffe. For the generalization of the Gutierrez-Ratcliffe’s approach to the higher dimensional
homotopy groups consider a connected 2-dimensional CW-complex K with subcomplexes

K1, . . . , Kn ⊂ K,

for which K1 ∪ · · · ∪Kn = K and K1 ∩ · · · ∩Kn is the 1-skeleton K1 of K, with F = π1(K
1)

and

Ri = ker{π1(K
1) → π1(Ki)}, i = 1, . . . , n.

We conjecture that each element α ∈ πn(S
2) determines a natural function (n ≥ 2)

α∗ : π2(K)/(i1π2(K1) + · · ·+ inπ2(Kn)) → In(F,R1, . . . , Rn).

In general, α∗ is not a homomorphism of abelian groups.

Proposition. Let n = 2. If α is a generator of π2(S
2) = Z, then α∗ exists and is given by the

map π2(K) → I2(F,R1, R2) of Gutierrez-Ratcliffe [10].

Moreover, as a main result of this paper we prove the following

Theorem. Let n = 3. If α ∈ π3(S
2) is a generator, then there is a well-defined function

α∗ which is a quadratic map inducing a natural homomorphism of π1(K)-modules

α# : π3(K) → I3(F,R1, R2, R3).

For the example of Wu, one has K = S2 and in this case α# is an isomorphism.

In the construction of the above homomorphism of π1(K)-modules we essentially use the fact
that π3(K) = Γπ2(K), where Γ is Whitehead’s universal quadratic functor.

One can interpret certain elements of π∗(S
2) as the elements of certain free groups in Milnor’s

F [S1]-construction. For example, the element in F (y0, y1, y2) corresponding to the generator of
π4(S

2) in (3) is

[[y0, y1], [y0, y1y2]].

The element in F (y0, y1, y2, y3), corresponding to the generator of π5(S
2) is

[[[y0, y1], [y0, y1y2]], [[y0, y1], [y0, y1y2y3]]].

This follows from the result of Wu [16]. In Section 3 we shall formulate a conjecture, which,
when applied to these elements, leads to non-trivial commutator problems in free groups that
we are not ready to solve. This difficulty is the reason why we consider in this paper only the
case of three subcomplexes.
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Finally, we use the main construction of the paper for an arbitrary free group F and its
normal subgroups R1, R2, R3, to define the following natural map of abelian groups:

H4(G) →
R1 ∩R2 ∩ R3

[R1, R2 ∩ R3][R2, R3 ∩R1][R3, R1 ∩ R2][F,R1 ∩ R2 ∩ R3]
.

This map is related to the Brown-Ellis construction (see [4]), however, the methods used in the
current paper differ from those used in [4]. The relation with Brown-Ellis construction is given
in [11].

2. The category Kn

For n ≥ 2, denote by Kn the category with objects K̄ = (K,K1, . . . , Kn). Here K is a two-
dimensional CW-complex, Ki is a subcomplex of K, i = 1, . . . , n, such that K = K1∪ · · ·∪Kn,
and K1 = K1 ∩ · · · ∩Kn. A morphism in HomKn

(K̄, L̄) for K̄, L̄ ∈ Kn is a map

f : K1 → L1

between 1-skeletons of K and L, such that f can be extended to a map f̄ : K → L, with the
property f̄(Ki) ⊆ Li, i = 1, . . . , n.

Denote by Rn (n ≥ 2) the category with objects (F,R1, . . . , Rn), where F is a free group
and Ri is a normal subgroup in F . A morphism in Rn between two objects (F,R1, . . . , Rn)
and (F ′, R′

1, . . . , R
′
n) is a group homomorphism g : F → F ′ such that g(Ri) ⊆ R′

i, i = 1, . . . , n.
This category was also considered in [6].

There is a natural functor between these two categories,

Fn : Kn → Rn,

defined by setting

Fn : (K,K1, . . . , Kn) 7→ (π1(K
1), R1, . . . , Rn),

where Ri = ker{π1(K
1) → π1(Ki)}.

For n ≥ 2, define the functor

In : Rn → Ab,

where Ab is the category of abelian groups, by setting

In : R̄ = (F,R1, . . . , Rn) 7→ In(R̄) :=
R1 ∩ · · · ∩Rn

∏

I∪J={1,...,n}, I∩J=∅[
⋂

i∈I Ri,
⋂

j∈J Rj ]
.

Clearly, for any R̄ ∈ Rn, the abelian group In(R̄) has a natural structure of F/R1 . . . Rn-module,
where the group action viewed via conjugation in F .

3. The surjection q and the conjecture on α∗

3.1. Consider the two-dimensional sphere S2 as the standard two-complex constructed from
the following presentation of the trivial group:

〈x1, . . . , xn−1 | x1, . . . , xn−1, x−1
n−1 · · ·x

−1
1 〉. (5)

This presentation defines an element S̄n from Kn:

S̄n = (S2, L1, . . . , Ln), (6)
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with Li = ∨n−1
i=1 S

1 ∪ ei, where ei is the 2-cell corresponding to the relation word xi, i =
1, . . . , n− 1, en is the 2-cell corresponding to the relation word x−1

n−1 · · ·x
−1
1 .

In this section we show the following result.

Proposition 1. For an object S̄n in Kn associated to Wu’s example in Rn there is a surjection

q : HomKn
(S̄n, K̄) ։ π2(K)/(i1(K1) + . . . in(Kn)),

which is natural in K̄ ∈ Kn.

For α ∈ πn(S
2) = InFn(S̄n) we thus obtain the following diagram

HomKn
(S̄n, K̄)

α∗

��

// //q π2(K)/(i1π2(K1) + · · ·+ inπ2(Kn))

α∗

vvm
m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

In(Fn(K̄))

where α∗(f) = f∗(α).

Conjecture 1. For each α ∈ πn(S
2) there exists a function α∗ for which the diagram commutes.

Hence α∗ is well defined and natural provided q(f) = q(g) implies α∗(f) = α∗(g).

3.2. Recall that for a given two-dimensional complex K, the free crossed module

∂ : π2(K,K1) → π1(K
1)

can be defined as follows. The group π2(K,K1) is generated by the set

{ewα | α is a 2-cell in K, w ∈ π1(K
1)}

with the set of relations
{evαe

w
β e

−v
α e−u

β , u = vrαv
−1w}, (7)

where rα ∈ π1(K
1) is the attaching element representing eα (see, for example, [9]). The

homomorphism ∂ is defined by setting ∂ : ewα 7→ rwα . Hence every element from ker(∂) = π2(K)
can be represented by an element e±w1

α1
. . . e±wm

αm
, such that r±w1

α1
. . . r±wm

αm
is trivial in π1(K

1).
Let f ∈ HomKn

(S̄n, K̄). It means that there exists a homomorphism between two free groups
f : Fn−1 := F (x1, . . . , xn) → π1(K

1) such that

f(xi) ∈ ker{π1(K
1) → πi(Ki)}, i = 1, . . . , n− 1 (8)

and f can be extended to a homomorphism between two crossed modules:

π2(S
2,∨n−1

i=1 S
1)

∂1−−−→ Fn−1

f ′





y

f





y

π2(K,K1)
∂2−−−→ π1(K

1)

(9)

For a given group homomorphism f : Fn−1 → π1(K
1) with the property (8), the necessary and

sufficient condition for the existence of the extension (9) is the condition

f(x1 · · ·xn) ⊆ Rn := ker{π1(K
1) → π1(K)}.

For K̄ = (K,K1, . . . , Kn) ∈ Kn, we now define the canonical (forgetful) map

q : HomKn
(S̄n, K̄) → π2(K)/(i1π2(K1) + . . . inπ2(Kn)),
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which carries a morphism S̄2 → K̄ to the underlying map S2 → K. Here the natural maps
ij : π2(Kj) → K are induced by inclusions Kj → K. Using the language of crossed modules, we
can describe the map q as follows. Denote by {s1, . . . , sn} the set of 2-cells in S2 viewed as the
standard two-complex for the group presentation (5). The map f ′ defines elements f ′(sα) ∈
π2(K,K1). Observe that ∂1(s1 . . . sn) = 1 and the element s1 . . . sn presents the generator
of π2(S

2). Since the diagram (9) is commutative, ∂2(f
′(s1) . . . f

′(sn)) = 1 and the element
f ′(s1) . . . f

′(sn) represents certain element from ker(∂2) = π2(K), which is exactly q(f). Let us
show that this map does not depend on an extension (9). Suppose we have another extension
of the homomorphism f :

π2(S
2,∨n−1

i=1 S
1)

∂1−−−→ Fn−1

f ′′





y

f





y

π2(K,K1)
∂2−−−→ π1(K

1)

(10)

with f ′′(sj) 6= f ′(sj) at least for one j (1 ≤ j ≤ n). It follows that ∂2(f
′(sj)f

′′(sj)
−1) = 1,

hence

f ′(sj)f
′′(sj)

−1 ∈ im{ij : π2(Kj) → π2(K)}.

Therefore, the images of elements f ′(s1 . . . sn) and f ′′(s1 . . . sn) are equal in the quotient π2(K)/(i1π2(K1)+
. . . inπ2(Kn)) and the map q is well-defined.

Lemma 1. The map q is surjective.

Proof. Consider the diagram (10). Now let c = e±w1
α1

. . . e±wm
αm

be an arbitrary element from
ker(∂2). Let us enumerate all cells of K in the following order: e1,α, . . . , en,α with ei,α ∈ Ki, i =
1, . . . , m. Clearly, the set of relations (7) in π2(K,K1) gives a possibility to present the element
c in the form

c =
∏

∗

e
±w1,∗

1,∗ · · ·
∏

∗

e±wn,∗

n,∗

with some wi,∗ ∈ π1(K
1). We define the map f : Fn−1 → π1(K

1) by setting f(xi) =
∏

∗ r
±wn,∗

i,∗ .

We can extend it to f ′ : π2(S
2,∨n−1

i=1 S
1) → π2(K,K1) by f ′(si) =

∏

∗ r
±wn,∗

i,∗ . This is correct,
since

∂1(f
′(sn)) = ∂2(f

′(s1) . . . f
′(sn−1))

−1 = f(∂1(s1 . . . sn−1)
−1).

The homotopy class corresponding to the element c ∈ π2(K,K1) coincides with q(f) and the
surjectivity of q is proved. �

4. Proof of the conjecture for n = 2 and n = 3

4.1. There are different ways of description of elements from π2 for a standard complex of
a given group presentation, for example, pictures, kernels of Jacobian maps, defined via Fox
calculus etc. We describe the map q in the conjecture by use of identity sequences which
represent elements in π2(K), see [14]. The material about identity sequences we recall here is
well-known. Nevertheless, we give it in detail since it will be the basic technical devise in our
proofs.

Let F be a free group with basis X and R a certain set of words in F . Consider the group
presentation

P = 〈X | R〉 (11)
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ci, i = 1, . . . , m are words in F , which are conjugates of elements from R, i.e. ci = t±wi

i , ti ∈
R, wi ∈ F . The sequence

c = (c1, . . . , cm) (12)

is called an identity sequence if the product c1 . . . cm is the identity in F . For a given identity
sequence (12), define its inverse:

c−1 = (c−1
m , . . . , c−1

1 ).

For a given element w ∈ F , the conjugate cw is the sequence:

cw = (cw1 , . . . , c
w
m),

which clearly is again an identity sequence. Define the following operation in the class of
identity sequences, called Peiffer operations:
(i) replace each wi by any word equal to it in F ;
(ii) delete two consecutive terms in the sequence if one is equal identically to the inverse of the
other;
(iii) add two consecutive terms in the sequence if one is equal identically to the inverse of the
other;
(iv) replace two consecutive terms ci, ci+1 by terms ci+1, c

−1
i+1cici+1;

(v) replace two consecutive terms ci, ci+1 by terms cici+1c
−1
i , ci.

Two identity sequences are called equivalent if one can be obtained from the other by a
finite number of Peiffer operations. This defines an equivalence relation in the class of identity
sequences. The set of equivalence classes of identity sequences for a given group presentation
(11) denote by EP . The set EP can be viewed as a group, with a binary operation defined
as a class of justaposition of two sequences: for identity sequences c1, c2 and their equivalence
classes 〈c1〉, 〈c2〉 ∈ EP , 〈c1〉 + 〈c2〉 = 〈c1c2〉. The inverse element of the class 〈c〉 is 〈c−1〉 and
the identity in EP is the empty sequence. It is easy to see that EP is Abelian. For two identity
sequences c = (c1, . . . , cm) and d = (d1, . . . , dk), we have

〈cd〉 = 〈(c1, . . . , cm, d1, . . . , dk)〉 = 〈(d1, . . . , dk, c
d1...dm
1 , . . . , cd1...dmm )〉

by the relation (iv). Since d1 . . . dm = 1 in F , we have

〈cd〉 = 〈(d1, . . . , dk, c1, . . . , cm)〉 = 〈dc〉.

Furthermore, EP is a F -module, where the action is given by

〈c〉 ◦ f = 〈cf〉, f ∈ F.

It is easy to show that

〈c〉 ◦ r = 〈c〉, r ∈ R,

i.e. the subgroup R acts trivially at EP . To see this, let r = r±v1
1 . . . r±vk

k , ri ∈ R, vi ∈ F . For
any identity sequence c = (c1, . . . , cm), by (ii), (iii), (iv),

〈(c1, . . . , cm)〉 = 〈(c1, . . . , cm, r
±v1
1 , . . . , r±vk

k , r∓vk
k , . . . , r∓v1

1 )〉 =

〈(r±v1
1 , . . . , r±vk

k , cr1, . . . , c
r
m, r

∓vk
k , . . . , r∓v1

1 )〉 = 〈(cr1, . . . , c
r
m)〉.

Thus EP can be viewed as a G-module. It is not hard to show that for a given presentation P,
the second homotopy module π2(KP) is isomorphic to the identity sequence module EP (see,
for example, [14]).
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4.2. For a given K̄ choose the elements ei,α ∈ π2(K,K1), i = 1, . . . , n, α ∈ A which represent
the corresponding two-dimensional cells in Ki, i = 1, . . . , n with the natural property

∂(ei,α) ∈ Ri,

where Ri = ker{π1(K
1) → π1(Ki)}, i = 1, . . . n, and the normal closure of the set {∂(ei,α) | α ∈

A} in π1(K
1) is equal to Ri. Clearly, K is homotopically equivalent to a wedge

K ≃
∨

j∈J

S2 ∨KP ,

where KP is the standard two-complex constructed from the group presentation

〈X | ∂(ei,α), i = 1, . . . , n, α ∈ A〉,

with X being a basis of π1(K
1). We have the following natural isomorphism of π1(K)-modules:

π2(K)/(i1π2(K1) + · · ·+ inπ2(Kn)) ≃ π2(KP)/(i1π2(KP1) + · · ·+ inπ2(KPn
)),

where Pi is the following presentation of the group π1(Ki):

〈X | ∂(ei,α), α ∈ A〉

for i = 1, . . . , n.
Let f, g ∈ HomKn

(S̄n, K̄). We can present

f(xi) = r
(i)
1

±w1,i

. . . r
(i)
ki

±wki,i, i = 1, . . . , n− 1,

f(x1 · · ·xn) = r
(n)
1

±w1,n

. . . r
(n)
kn

±wkn,n

for some r
(i)
j ∈ {∂(ei,α), α ∈ A} and wj,i ∈ π1(K

1). Analogically for g ∈ HomKn
(S̄n, K̄):

g(xi) = r
′(i)
1

±w′

1,i
. . . r

′(i)
k′i

±w′

k′
i
,i , i = 1, . . . , n− 1,

g(x1 · · ·xn) = r
′(n)
1

±w′

1,n
. . . r

′(n′)
k′n

±w′

k′n,n

The following Lemma follows directly from the definition of the map q and the above descrip-
tion of the second homotopy module for the standard complex in terms of identity sequences.

Lemma 2. Using the above notation, q(f) = q(g) if and only if the identity sequence

(r
(1)
1

±w1,1

, . . . , r
(n)
kn

±wkn,n

, r
′(n′)
k′n

∓w′

k′n,n, . . . , . . . , r
′(1)
1

∓w′

1,1
)

is equivalent to an identity sequence of the form

(s
(1)
1 , . . . , s

(1)
l1
, . . . , s

(n)
1 , . . . , s

(n)
ln

)

with s
(i)
j ∈ {∂(ei,α)±w, w ∈ π1(K

1)} such that s
(i)
1 . . . s

(i)
li

is trivial in π1(K
1) for every i =

1, . . . , n.

Let (K,K1, K2) ∈ K2. The π1(K)-module π2(K)/(i1π2(K1) + i2π2(K2)) can be identified to
the module of the identity sequences of the type

(c1, . . . , cm), cj ∈ {∂(ci,α)
w, w ∈ π1(K

1), α ∈ A, i = 1, 2} (13)

modulo the sequences of the form (c1, . . . , cm1 , cm1+1, . . . , cm) with

c1, . . . , cm1 ∈ {∂(c1,α)
w, w ∈ π1(K

1)}, cm1+1, . . . , cm ∈ {∂(c2,α)
w, w ∈ π1(K

1)}

and
c1 . . . cm1 = cm1+1 . . . cm = 1

in π1(K
1).
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Every identity sequence (13) with the help of Peiffer operations of the type (iv) can be re-
duced to the sequence of the form (c1, . . . , cm1 , cm1+1, . . . , cm) with c1, . . . , cm1 ∈ {∂(c1,α)w, w ∈
π1(K

1)}, cm1+1, . . . , cm ∈ {∂(c2,α)w, w ∈ π1(K
1)}.

4.3. For the most elementary case n = 2 we view the 2-sphere S2 as a standard complex
constructed from the group presentation

〈x | x, x−1〉.

Clearly then

I2(S̄
2) =

〈x〉 ∩ 〈x−1〉

[〈x〉, 〈x〉]
≃ Z

with x a generator of this infinite cyclic group. For the generator x ∈ π2(S
2), the map

Λx : π2(K)/(i1π2(K1) + i2π2(K2)) →
R1 ∩R2

[R1, R2]

is given in the above notation by

Λx : (c1, . . . , cm1 , cm1+1, . . . , cm) 7→ c1 · · · cm1 .[R1, R2].

First observe that Λx is the homomorphism of π1(K) = π1(K
1)/R1R2-modules. Secondly, Λx

clearly is an epimorphism. The fact that Λx is a monomorphism is not difficult (see Theorem
1.3 [14] for the complete proof). Hence we have the following exact sequence of π1(K)-modules
due to Gutierrez and Ratcliffe [10]:

0 → i1π2(K1) + i2π2(K2)
α
→ π2(K) →

R1 ∩ R2

[R1, R2]
→ 0. (14)

Theorem 1. Conjecture 1 is true for n = 3.

Proof. In this case we view S2 as the standard complex constructed for the group presentation

〈x1, x2 | x1, x2, x
−1
2 x−1

1 〉

with
I3(F3(S̄

2)) = I3(F (x1, x2), 〈x1〉
F (x1,x2), 〈x2〉

F (x1,x2), 〈x−1
2 x−1

1 〉F (x1,x2)) ≃ Z

with a generator given by the commutator [x1, x2].

4.4. Let K̄ = (K,K1, K2, K3) ∈ K3. Denote F = π1(K
1). Denote the sets of words in F :

Ri = {∂(ei,α, α ∈ A}, i = 1, 2, 3. By RF
i we mean the set {rw, r ∈ Ri, w ∈ F}. The

π1(K)-module π2(K)/(i1π2(K1) + i2π2(K2) + i3π2(K3)) can be identified with the module of
the identity sequences

c = (c1, . . . , cm), cj ∈ RF
1 ∪RF

2 ∪ RF
3 (15)

modulo the sequences of the type

(c1, . . . , cm1 , cm1+1, . . . , cm2 , cm2+1, . . . , cm) (16)

with c1, . . . , cm1 ∈ RF
1 , cm1+1, . . . , cm ∈ RF

2 , cm2+1, . . . , cm ∈ RF
3 and

c1 . . . cm1 = cm1+1 . . . cm2 = cm2+1 . . . cm = 1, (17)

in F .
Divide the sequence (15) into the three ordered subsequences

(cr1 , . . . , crl), (cs1, . . . , csk), (ct1 , . . . , ctn), (18)

where cri ∈ RF
1 , i = 1, . . . , l, csi ∈ RF

2 , i = 1, . . . , k, cti ∈ RF
3 , i = 1, . . . , h and

r1 < r2 < · · · < rl, s1 < s2 < · · · < sk, t1 < t2 < · · · < th,
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{r1, . . . , rl} ∪ {s1, . . . , sk} ∪ {t1, . . . , th} = {1, . . . , m}.

Denote

c̄i = cri, i = 1, . . . , l,

c̄l+i = c

Q

rj>si
crj

si , i = 1, . . . , k,

c̄l+k+i = c
(
Q

rz>ti
crz )

Q

sj>t1
c

Q

rz>sj
crz

sj

t1
, i = 1, . . . , h.

Clearly,
c̄1, . . . , c̄l ∈ R1, c̄l+1, . . . , c̄l+k ∈ R2, c̄l+k+1, . . . , c̄l+k+h ∈ R3

and the sequence
(c̄1, . . . , c̄l+k+h) (19)

is made of the sequence (15), applying the Peiffer operations of type (iv). At the first step we
replace all terms cri to the left side of the sequence. At the second step we replace all terms csi
between elements cri-s and cti-s and get the sequence (19). Denote

rc := c̄1 . . . c̄l ∈ R1,

sc := c̄l+1 . . . c̄l+k ∈ R2,

tc := c̄l+k+1 . . . c̄l+k+h ∈ R3.

In these notations, for the generator x := [x1, x2] of I3(F3(S̄
2)) construct the map

Λx : π2(K)/(i1π2(K1)+ i2π2(K2)+ i3π2(K3)) →
R1 ∩ R2 ∩R3

[R1, R2 ∩R3][R2, R3 ∩ R1][R3, R1 ∩ R2]
, (20)

where F = π1(K
1), Ri = ker{F → π1(Ki)}, i = 1, 2, 3, by setting

Λx : (c1, . . . , cm) 7→ [rc, sc].[R1, R2 ∩R3][R2, R3 ∩R1][R3, R1 ∩ R2].

Since rcsctc = 1 in F , we have [rc, sc] ∈ R1 ∩R2 ∩ R3.
Let us show that the above map Λx is well-defined. Let c′ be an identity sequence equivalent

to the sequence c. Defining elements rc′, sc′, tc′ as above, we have to show that

[rc, sc] ≡ [rc′, sc′] mod [R1, R2 ∩ R3][R2, R3 ∩R1][R3, R1 ∩ R2]. (21)

Since we above defined map Λx is trivial for any sequence of the type (16) with conditions (17),
the equivalence (21) is necessary and sufficient for the correctness of the map Λx.

First observe that if the sequences c and c′ differ by the Peiffer operations of the type (ii)
or (iii), the equivalence 21 holds. The only non-trivial Peiffer operations needed to check are
operations (iv) and (v). Since (v) is converse to (iv), it is enough to prove the equivalence (21)
for the case c′ is obtained from c by the single Peiffer operation of the type (iv):

c′i = ci+1, c′i+1 = c−1
i+1cici+1, c′j = cj , j 6= i, i+ 1

for some 1 ≤ i < m.
The cases i, i + 1 ∈ {r1, . . . , rl}, i, i + 1 ∈ {s1, . . . , sk}, i, i + 1 ∈ {t1, . . . , th} are trivial. In

these cases rc = rc′, sc = sc′, hence the needed equivalence (21) follows. If i + 1 ∈ {r1, . . . , rl},
there is also nothing to prove, since the definition of rc, sc involves the process of repeating of
such operations. If i ∈ {t1, . . . , th} or i+ 1 ∈ {t1, . . . , th} then we clearly have [rc, sc] ≡ [rc′, sc′]
mod [R1, R2 ∩ R3][R2, R3 ∩ R1].

The only non-trivial case to consider is i ∈ {r1, . . . , rl}, i + 1 ∈ {s1, . . . , sk}. Clearly then,
[rc′, sc′] = [rc′′, sc′′], where the sequence c′′ is obtained by applying again the operation (iv) to
the sequence c′ :

c′′i = c−1
i+1cici+1, c′′i+1 = c−1

i+1c
−1
i ci+1cici+1.
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Let ci = crj , ci+1 = cse . Repeating the operation (iv), we can deform the sequences c and c′′ to
the form

r2 = r1 + 1, . . . , rj−1 = rj−2 + 1, rj+2 = rj+1 + 1, . . . , rl = rl−1 + 1

without changing [rc, sc] and [rc′′, sc′′]. Now we can form the triple of words in F :

R′
1 = R1 ∪ {cr1 . . . crj−1

, cj+1 . . . cl}, R′
2 = R2, R′

3 = R3.

Clearly, this triple preserves the triple of normal subgroups R1, R2, R3 and we can consider the
new identity sequences for the triple of words R′

1 ∪ R′
2 ∪ R′

3 formed by gluing the elements
cr1, . . . , crj−1

, and crj+1
, . . . , crl:

c′′′ = (∗, . . . , ∗, cr1 . . . crj−1
, ∗, . . . , ∗, crj+1

. . . crl, ∗, . . . , ∗).

It is easy to see that
[rc, sc] = [rc′′′, sc′′′]

in F . Hence, we can always assume that l = 3, cr2 = ci and reduce arbitrary case to this one
using the described procedure. In these notations, we have sequences

c = (∗, . . . , ∗, cr1, ∗, . . . , ∗, cr2, cse, ∗, . . . , ∗, cr3, ∗, . . . , ∗),

c′′ = (∗, . . . , ∗, cr1, ∗, . . . , ∗, c
cse
r2

, c
cr2cse
se , ∗, . . . , ∗, cr3, ∗, . . . , ∗).

We have the following:

[rc, sc] = [cr1cr2cr3, S1],

[rc′′′ , sc′′′] = [cr1c
cse
r2

cr3 , S2],

where

S1 = (
∏

sj<r1

c
cr1cr2cr3
sj )(

∏

r1<sj<se

c
cr2cr3
sj ) · c

cr3
se · (

∏

se<sj<r3

c
cr3
sj )(

∏

r3<sj

csj),

S2 = (
∏

sj<r1

c
cr1c

cse
r2

cr3
sj )(

∏

r1<sj<se

c
c
cse
r2

cr3
sj ) · c

cr2csecr3
se · (

∏

se<sj<r3

c
cr3
sj )(

∏

r3<sj

csj).

We then have

[cr1c
cse
r2

cr3 , S2] = c−1
r3
c−1
r2
[c−1

r2
, cse]c

−1
r1
S−1
2 cr1c

cse
r2

cr3S2 =

c−1
r3
c−1
r2
[c−1

r2
, cse]c

−1
r1
S−1
2 c−1

r3
c−cse
r2

ccser2
cr3cr1c

cse
r2

cr3S2 ≡

c−1
r3
c−1
r2
c−1
r1
S−1
2 c−1

r3
c−cse
r2

[c−1
r2
, cse]c

cse
r2

cr3cr1c
cse
r2

cr3S2 mod [R3, R1 ∩ R2],

since S−1
2 c−1

r3
c
−cse
r2 ∈ R3, [c−1

r2
, cse] ∈ R1 ∩ R2. Therefore,

[cr1c
cse
r2

cr3, S2] ≡ c−1
r3
c−1
r2
c−1
r1
S−1
2 c−1

r3
c−cse
r2

cr2cr3cr1c
cse
r2

cr3S2 mod [R3, R1 ∩ R2].

However,
cr1c

cse
r2

cr3S2 = cr1cr2cr3S1 ∈ R3,

therefore, S2 = c−1
r3
c
−cse
r2 cr2cr3S1 and we have

[cr1c
cse
r2

cr3, S2] ≡ [cr1cr2cr3, S1] mod [R3, R1 ∩R2].

Hence, we always have the needed equivalence (21) and we proved that the map Λx is well-
defined. �

For the generator x ∈ π3(S
2) denote by Λ the composite map of the natural projection

π2(K) → π2(K)/i1π2(K1) + i2π2(K2) + i3π2(K3) and the map Λx:

Λ : π2(K) →
R1 ∩R2 ∩ R3

[R1, R2 ∩ R3][R2, R3 ∩R1][R3, R1 ∩ R2]
.
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Proposition 2. Let b ∈ i12π2(K1 ∪K2) + i13π2(K1 ∪K3) + i23π2(K2 ∪K3) ⊆ π2(K) where the
maps i12, i13, i23 are induced by the inclusions

i12 : K1 ∪K2 → K, i13 : K1 ∪K3 → K, i23 : K2 ∪K3 → K.

We then have Λ(a+ b) = Λ(a) for every a ∈ π2(K).

Proof. Let a be an element from π2(K) presented by identity sequence (18) and the element b be
an element from i12(K1∪K2) ⊆ π2(K) presented by the identity sequence (d1, . . . , dl′, e1, . . . , ek′)
with di ∈ RF

1 , ei ∈ RF
2 . The element a+ b can be presented by the following identity sequence

c(a+ b) = (cr1 , . . . , crl, d1, . . . , dl′, c
d1...dl′
s1

, . . . , cd1...dl′sk
, e1, . . . , ek′, f1, . . . , fh′),

with f1, . . . , fh′ ∈ RF
3 . Denote a1 = cr1 . . . crl, a2 = d1 . . . dl′, b1 = cs1 . . . csk , b2 = e1 . . . ek′ . We

then have

[a1a2, b
a2
1 b2] = a−1

2 a−1
1 b−1

2 a−1
2 b−1

1 a2a1b1a2b2 ≡

a−1
1 b−1

2 a−1
2 b−1

1 a1b1a2b2 ≡ a−1
1 b−1

1 a1b1 mod [R3, R1 ∩ R2],

since a2 ∈ R1 ∩ R2, a
−1
1 b−1

2 a−1
2 b−1

1 ∈ R3, a2b2 = 1. Hence Λ(a+ b) = Λ(a).
In the case b ∈ i13π2(K1 ∪K3) + i23π2(K2 ∪K3), we have obviously, that the elements which

represent Λ(a+b) and Λ(a) are equal modulo [R1, R2∩R3][R2, R3∩R1] hence Λ(a+b) = Λ(a). �

The following example shows that the map Λ is not always surjective.

Example. Let F be a free group with generators x1, x2. Consider the following sets of words:

R1 = {x1}, R2 = {[x1, x2]}, R3 = {[x1, x2, x1]}.

Denoting R1, R2, R3 the normal closures of the sets R1,R2,R3 respectively, we have

[R1, R2 ∩R3], [R2, R3 ∩ R1], [R3, R1 ∩ R2] ⊆ γ4(F ),

where γ4(F ) the 4-th lower central series term of F . However,

[x1, x2, x1] ∈ (R1 ∩ R2 ∩R3) \ γ4(F ),

since [x1, x2, x1] is a basic commutator of length three in F . Suppose we have

Λ(x) = [x1, x2, x3].[R1, R2 ∩ R3][R2, R3 ∩ R1][R3, R1 ∩R2]

for some element x of the second homotopy module of the standard complex constructed for
the group presentation

〈x1, x2 | x1, [x1, x2], [x1, x2, x1]〉.

We then have

[x1, x2, x1] ≡ [r, s] mod γ4(F ) (22)

for some r ∈ R1, s ∈ R2, such that

rs ∈ R3. (23)

However, the condition (23) implies that r ∈ γ2(F ), since s ∈ γ2(F ). Therefore [r, s] ∈ γ4(F )
and the equivalence (22) is not possible. Hence, the map Λ is not surjective.

Theorem 2. The map Λ is a homogenous quadratic map, i.e.

Λ(a, b) = Λ(a+ b)− Λ(a)− Λ(b)

is bilinear and Λ(x) = Λ(−x) for any a, b, x ∈ π2(K).
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Proof. For x, y ∈ π2(K〈X | R1∪R2∪R3〉), consider the cross-effect

Λ(a, b) = Λ(a+ b)− Λ(a)− Λ(b) ∈
R1 ∩ R2 ∩R3

[R1, R2 ∩ R3][R2, R3 ∩ R1][R3, R1 ∩R2]
.

Represent elements a, b by identity sequences:

c(a) = (c1, . . . , cm), c(b) = (c′1, . . . , c
′
m′).

Consider the corresponding divisions of the sequences c(a) and c(b):

{cr1, . . . , crl} ∪ {cs1, . . . , csk} ∪ {ct1 , . . . , ctn} = {c1, . . . , cm},

{c′r̄1, . . . , c
′
r̄l′
} ∪ {c′s̄1, . . . , c

′
s̄k′
} ∪ {c′t̄1 , . . . , c

′
t̄n′
} = {c′1, . . . , c

′
m}

with cri , c
′
r̄i
∈ RF

1 , csi, c
′
s̄i
∈ RF

2 , cti , c
′
t̄i
∈ RF

3 . Consider then the induced division of the sequence
c(a+ b) = (c1, . . . , cm, c

′
1, . . . , c

′
m′), which represents the element a+ b ∈ π2(K〈X | R1∪R2∪R3〉) :

{cr1, . . . , crl, c
′
r̄1
, . . . , c′r̄l′} ∪ {cs1, . . . , csk , c

′
s̄1
, . . . c′s̄k′} ∪ {ct1 , . . . , ctn , c

′
t̄1
, . . . , c′t̄n′

}.

For the description of the functor Λ(a, b), using the Peiffer operation (iv) to the sequences c(a)
and c(b), we can reduce the general case to the case of l = 1, k = 1, l′ = 1, k′ = 1 with r1 < s1,
r̄1 < s̄1. Denote x1 = cr1 , y1 = cs1, x2 = c′r̄1, y2 = c′s̄1 .

We then have

Λ(a) = [x1, y1], Λ(b) = [x2, y2],

Λ(a+ b) = [x1x2, y
x2
1 y2].

We have

Λ(a+ b) = [x1, y2]
x2[x2, y2][x1, y

x2
1 ]x2y2[x2, y

x2
1 ]y2

≡ [x1, y2]
x2 [x2, y2][x1, y

x2
1 ][x2, y1] mod [R3, R1 ∩ R2]

≡ [x1, y2]
x2 [x2, y2]x

−1
1 x−1

2 y−1
1 x2x1y1 mod [R3, R1 ∩R2]

≡ [x1, y2]
x2 [x2, y2][x2, y1]

x1 [x1, y1] mod [R3, R1 ∩R2].

Since x1y1, x2y2 ∈ R3,

Λ(a, b) = Λ(a+ b)− Λ(a)− Λ(b) ≡ [x1, y2]
x2[x2, y1]

x1 mod [R3, R1 ∩R2]

≡ [x1, y2]
y−1
2 [x2, y1]

y−1
1 mod [R3, R1 ∩R2]

≡ [y−1
2 , x1][y

−1
1 , x2] mod [R3, R1 ∩R2].

Now let us show the linearity of the functor Λ(∗, ∗), i.e. that

Λ(a+ b, d) = Λ(a, c) + Λ(b, d), (24)

Λ(a, b+ d) = Λ(a, b) + Λ(a, d) (25)

for arbitrary elements a, b, d ∈ π2(K〈X | R1∪R2∪R3〉). Let c(a), c(b) and c(d) be the identity
sequences represented the elements a, b and d respectively. Again, without loss of generality we
can assume that these elements are represented by identity sequences with single element from
each class Ri. Denote the correspondent pairs by x1, y1 ⊂ c(a) (the set-theoretical inclusion
means that x1, y1 are elements of the sequence c(a)), x2, y2 ⊂ c(b), x3, y3 ⊂ c(d). In this
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notation, modulo [R1, R2 ∩ R3][R2, R3 ∩R1][R3, R1 ∩ R2], we have

Λ(a+ b, d) ≡ [y−1
3 , x1x2][y

−1
2 y−x2

1 , x3]

≡ [y−1
3 , x2][y

−1
3 , x1]

x2[y−1
2 , x3]

y
−x2
1 [y−x2

1 , x3]

≡ [y−1
3 , x2]x

−1
2 y3x

−1
1 y3x1y1x2y2x

−1
3 y−1

2 x−1
2 y−1

1 x2x3

≡ [y−1
3 , x2]x

−1
2 y3x

−1
1 y3x1y1(x2y2x

−1
3 y−1

2 x−1
2 x3)x

−1
3 y−1

1 x2x3

≡ [y−1
3 , x2]x

−1
2 (x2y2x

−1
3 y−1

2 x−1
2 x3)y3x

−1
1 y3x1y1x

−1
3 y−1

1 x2x3

≡ [y−1
3 , x2][y

−1
2 , x3]x

−1
3 x−1

2 x3y3x
−1
1 y3x1y1x

−1
3 y−1

1 x2x3

≡ [y−1
3 , x2][y

−1
2 , x3]x

−1
3 x−1

2 x3[y
−1
3 , x1][y

−1
1 , x3]x

−1
3 x2x3

≡ [y−1
3 , x2][y

−1
2 , x3][y

−1
3 , x1][y

−1
1 , x3]

≡ Λ(a, d) + Λ(b, d),

since [y−1
3 , x1][y

−1
1 , x3] ∈ R2∩R3 and (24) follows. The equality (25) can be proved analogically.

Now let us prove that Λ(−x) = Λ(x). Clearly, we can assume that our identity sequence
representing the element x ∈ π2(K) has the form

(r1, s1, t1)

with r1 ∈ R1, s1 ∈ R2, t1 ∈ R3. The inverse sequence, which represents the element −x has
the form

(t−1
1 , s−1

1 , r−1
1 ).

We have

Λ(−x) = [r−1
1 , s

−r−1
1

1 ] = [s−1
1 , r1] = [r1, s1]

s−1
1 ≡ [r1, s1] ≡ Λ(x) mod [R2, R3 ∩ R1].

�

Theorem 3. The function Λ induces the homomorphism of F/R1R2R3-modules

Λ̄ : π3(K) →
R1 ∩R2 ∩ R3

[R1, R2 ∩ R3][R2, R3 ∩R1][R3, R1 ∩ R2]
.

Proof. Let x ∈ π2(K〈X | R1∪R2∪R3〉). Present x by the sequence

c(x) = (c1, . . . , cm).

For a given element f ∈ π1(K), present this element as a coset f = w.R1R2R3 for some element
w ∈ F . The element f ◦ x ∈ π2(K〈X | R1∪R2∪R3〉) can be presented by sequence

c(x)w = (cw1 , . . . , c
w
m).

It follows directly from the definition of Λ(x), that

Λ(f ◦ x) ≡ Λ(x)w mod [R1, R2 ∩ R3][R2, R3 ∩R1][R3, R1 ∩ R2].

Since π3(K) = Γπ2(K), we have the needed homomorphism of F/R1R2R3-modules due to
Theorem 2. �

Example. For two-dimensional sphere S2, clearly, Λ defines the isomorphism (3):

Λ̄ : π3(S
2) → I3(F3(S̄3))

with S̄3 ∈ K3 defined in (6).

Example. Consider a group presentation

P = 〈x1, . . . , xk | r1, . . . , rl〉
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of a group G. Let P ′ be another presentation of G with k+ 2l generators and 3l relators given
by

P ′ = 〈x1, . . . , xk, y1, . . . , yl, z1, . . . , zl | y1, . . . , yl, z1y
−1
1 , . . . , zly

−1
l , z−1

1 r1, . . . , z
−1
l rl〉

The standard complex KP ′ is the union K1∪K2∪K3, where K1, K2, K3 are standard complexes
of the following presentations

〈x1, . . . , xk, y1, . . . , yl, z1, . . . , zl | y1, . . . , yl〉,

〈x1, . . . , xk, y1, . . . , yl, z1, . . . , zl | z1y
−1
1 , . . . , zly

−1
l 〉,

〈x1, . . . , xk, y1, . . . , yl, z1, . . . , zl | z
−1
1 r1, . . . , z

−1
l rl〉

respectively. Denoting K̄ = (KP ′, K1, K2, K3) ∈ K3, we have the following isomorphism of
G-modules:

π3(KP) ≃ π3(KP ′) ≃ I3(F3(K̄)).

This isomorphism follows directly from the description of Kan’s loop construction GKP and
the fact that for a simplicial group G∗ with G2 generated by degeneracy elements, one has
π2(G∗) ≃ I3(G2, ker(d0), ker(d1), ker(d2)) (see, for example, [13]).

5. Application to group homology

5.1. For a given element (F ;R1, . . . , Rn) ∈ Rn it follows from [4] and [6] that under certain
conditions on (F ;R1, . . . , Rn), the group homologies, or more generally, the derived functors of
the lower central quotients, can be obtained with the help of the groups In(F ;R1, . . . , Rn)F ,
i.e. the F -coinvariant part of In(F ;R1, . . . , Rn).

For every (F ;R1, R2) ∈ R2, it is well-known that there exists a canonical map

H3(G) → I2(F ;R1, R2) =
R1 ∩ R2

[R1, R2][F,R1 ∩R2]
(26)

which is a part of a long exact sequence of homology groups, see [2] and [7]. This map
can be easily obtained from the Gutierrez-Ratcliffe map (1). For that we consider arbitrary
(K,K1, K2) ∈ K2 with F = π1(K

1), Ri = ker{π1(K
1) → π1(Ki)}, i = 1, 2. The chain complex

0 → π2(K) → C2(K̃) → C1(K̃) → Z[F/R1R2] → Z → 0 (27)

of the universal cover K̃ of K can be viewed as a complex of free F/R1R2-modules. Applying
the group homology functor H∗(F/R1R2,−) to (27), we obtain the natural maps

∂n : Hn(F/R1R2) → Hn−3(F/R1R2, π2(K)), n ≥ 3,

which are isomorphisms for n ≥ 4. The map (26) is the composition of ∂3 and the F -coinvariant
map from (1).

5.2. Recall the definitions of certain quadratic functors in the category of abelian groups. Let
A be an abelian group. Define the symmetric tensor square

SP 2(A) = A⊗ A/{a⊗ b− b⊗ a, a, b ∈ A},

and the augmentation power functor

P2(A) = ∆(A)/∆3(A), ∆(A) = ker{Z[A] → Z}.
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It is well-known (see, for example, [1]) that for a free abelian group A, there are the following
short exact sequences of abelian groups:

0 → SP 2(A) → P2(A) → A → 0 (28)

0 → SP 2(A) → Γ(A) → A⊗ Z2 → 0. (29)

Now let A be a G-module. The G-action can be naturally extended to the abelian groups
SP 2(A), P2(A),Γ(A), A⊗Z2, thus allowing to consider the sequences (28) and (29) as sequences
of G-modules. Applying homology functor H∗(G,−) to (28) and (29) we obtain long exact
sequences

· · · → H1(G,P2(G)) → H1(G,A) → H0(G, SP 2(A)) → H0(G,P2(A)) → . . .

· · · → H1(G,Γ(A)) → H1(G,A⊗ Z2) → H0(G, SP 2(A)) → H0(G,Γ(A)) → . . .

5.3. It is natural to ask about applications of the map Λ̄ constructed in Theorem 3. To this
end, we consider (K;K1, K2, K3) ∈ K3 with

π1(K
1) = F, Ri = ker{π1(K

1) → π1(Ki)}, i = 1, 2, 3.

Let us denote G = F/R1R2R3 and let us define the map

Ψ4 : H4(G) → I3(F ;R1, R2, R3)F =
R1 ∩R2 ∩ R3

[R1, R2 ∩R3][R2, R3 ∩R1][R3, R1 ∩ R2][F,R1 ∩ R2 ∩ R3]

as a composite map in the following diagram with exact rows and columns:

H4(G) H1(G, π2(K)⊗ Z2)

��

H1(G,P2(π2(K))) // H1(G, π2(K)) // H0(G, SP 2(π2(K)))

��

H0(G, π3(K))

H0(F,Λ̄)
��

H0(G,Γπ2(K))

��
��

I3(F ;R1, R2, R3)F H0(G, π2(K)⊗ Z2)

Remark. Proposition 2 implies that the natural composition map

H4(F/R1R2)⊕H4(F/R2R3)⊕H4(F/R1R3) → H4(G)
Ψ4→ I3(F ;R1, R2, R3)F

is the zero map.
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