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READING OFF KUROSH DECOMPOSITIONS

L.MARKUS-EPSTEIN

Abstract. Geometric methods proposed by Stallings [17] for treating

finitely generated subgroups of free groups were successfully used to

solve a wide collection of decision problems for free groups and their

subgroups [1, 6, 10, 11, 15, 16, 20].

In the present paper we employ the generalized Stallings’ folding

method developed in [12] to introduce a procedure, which given a sub-

group H of a free product of finite groups reads off its Kurosh decom-

position from the subgroup graph of H .

1. Introduction

The celebrated theorem of Kurosh describes subgroups of free products.

Theorem 1.1 (Kurosh Subgroup Theorem [9]). Let G be a free product of

groups Gi, where i runs over an index set I. Let H be a subgroup of G.

Then H = F ∗ (∗gjHjg
−1
j ) is a free product of a free group F together with

groups that are conjugates of subgroups Hj of the free factors Gi of G.

In this issue one can ask the following algorithmic question. Given a

subgroup H (for instance, by a finite set of generators) of a free product

G = ∗Gi, find its Kurosh decomposition H = F ∗ (∗gjHjg
−1
j ) efficiently.

Below we solve this algorithmic problem (we call it the Kurosh decom-

position problem) for finitely generated subgroups of free products of finite

groups, employing graph theoretical methods developed by the author in

[12]. More precisely, we introduce an algorithm which reads off the decom-

position of a subgroup from its subgroup graph.

This approach goes back to the remarkable paper of Stallings [17], where

finitely generated subgroups of free groups were canonically represented by

finite labelled graphs. Later on this method was successfully applied to

solve various algorithmic problems in free groups [1, 6, 10, 11, 15, 16, 20],

providing mostly polynomial algorithms.

In [12] Stallings method, or so called Stallings’ folding algorithm, was gen-

eralized to the class of amalgams of finite groups. We refer to this generalized

algorithm as the generalized Stallings’ folding algorithm. In the current pa-

per our methods are restricted to the case of free products of finite groups.

The description of the generalized Stallings’ algorithm (restricted to the case

of free products of finite groups) is included in the Appendix.

1Supported in part at the Technion by a fellowship of the Israel Council for Higher

Education

1

http://arxiv.org/abs/0706.0101v2


2 L.MARKUS-EPSTEIN

Note that the graph constructed by Stallings’ folding algorithm for S ≤

FG(X) is the Geodesic core of the coset Cayley graph of FG(X) relative to

S, that is the the union of all closed geodesic paths starting at the basepoint

S·1. The resulting graph (Γ(H), v0) constructed by the generalized Stallings’

folding algorithm forH ≤ G is a sort of a core graph as well (see [12] for more

details). More precisely, it is the Normal core of the coset Cayley graph of G

relative to H: the union of all closed normal paths starting at the basepoint

H · 1. Another example of core construction can be found in [3], where

Collins and Turner use a topological approach to study automorphisms of

free products.

The paper is organized as follows. We start (Section 3) by fixing the

notation and by brief recalling of some known results which are essential for

the current paper. Readers familiar with free products, normal (reduced)

words and labelled graphs can skip it. The next section (Section 4) presents

a summary of the results from [12] concerning subgroup graphs which are

essential for the solution of Kurosh decomposition problem.

Section 5 presents the basic step of our “reading” procedure described

along with the proof of Theorem 6.4 (Section 6). The complexity analysis

of this algorithm shows that it is quadratic in the size of the input. The

algorithm application is demonstrated in Example 3 (Section 6).
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3. Preliminaries

Free Products. Throughout this paper, we assume that G = G1 ∗G2 is a

free product of finite groups G1 and G2 where

G1 = gp〈X1|R1〉, G2 = gp〈X2|R2〉 such that X±
1 ∩X±

2 = ∅.(∗)

Thus

G = gp〈X1,X2|R1, R2〉.(∗∗)

We denote X = X1 ∪X2 and put H to be a finitely generated subgroup of

G.

Elements of G = gp〈X|R〉 are equivalence classes of words. However it is

customary to blur the distinction between a word u and the equivalence class

containing u. We will distinguish between them by using different equality

signs: “≡” for the equality of two words and “=G” to denote the equality

of two elements of G, that is the equality of two equivalence classes.
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Normal Forms. Let G = G1 ∗A G2.

A word g1g2 · · · gn ∈ G (n ≥ 0) is in normal form (or, more customary, it

is a normal word) if the following holds

(1) gi 6=G 1 lies in either G1 or G2,

(2) gi and gi+1 are in different factors of G,

We call the sequence (g1, g2, . . . , gn) a normal decomposition of the element

g ∈ G, where g =G g1g2 · · · gn.

By the Normal Form Theorem for Free Products (Theorem IV.1.2 in [9]),

the number n is uniquely determined for a given element g of G and it is

called the syllable length of g.

Labelled graphs. Below we follow the notation of [4, 17].

A graph Γ consists of two sets E(Γ) and V (Γ), and two functions E(Γ) →

E(Γ) and E(Γ) → V (Γ): for each e ∈ E there is an element e ∈ E(Γ) and

an element ι(e) ∈ V (Γ), such that e = e and e 6= e.

The elements of E(Γ) are called edges, and an e ∈ E(Γ) is a direct edge

of Γ, e is the reverse (inverse) edge of e.

The elements of V (Γ) are called vertices, ι(e) is the initial vertex of e,

and τ(e) = ι(e) is the terminal vertex of e. We call them the endpoints of

the edge e.

A path of length n is a sequence of n edges p = e1 · · · en such that vi =

τ(ei) = ι(ei+1) (1 ≤ i < n). We call p a path from v0 = ι(e1) to vn = τ(en).

The inverse of the path p is p = en · · · e1. A path of length 0 is the empty

path.

We say that the graph Γ is connected if V (Γ) 6= ∅ and any two vertices

are joined by a path. The path p is closed if ι(p) = τ(p), and it is freely

reduced if ei+1 6= ei (1 ≤ i < n). Γ is a tree if it is a connected graph and

every closed freely reduced path in Γ is empty.

A subgraph of Γ is a graph C such that V (C) ⊆ V (Γ) and E(C) ⊆ E(Γ).

In this case, by abuse of language, we write C ⊆ Γ. Similarly, whenever we

write Γ1∪Γ2 or Γ1∩Γ2, we always mean that the set operations are, in fact,

applied to the vertex sets and the edge sets of the corresponding graphs.

A labelling of Γ by the set X± is a function

lab : E(Γ) → X±

such that for each e ∈ E(Γ), lab(e) ≡ (lab(e))−1.

The last equality enables one, when representing the labelled graph Γ as a

directed diagram, to represent only X-labelled edges, because X−1-labelled

edges can be deduced immediately from them.

A graph with a labelling function is called a labelled (with X±) graph.

The only graphs considered in the present paper are labelled graphs.

A labelled graph is called well-labelled if

ι(e1) = ι(e2), lab(e1) ≡ lab(e2) ⇒ e1 = e2,

for each pair of edges e1, e2 ∈ E(Γ). See Figure 1.
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Figure 1. The graph Γ1 is labelled with {a, b, c}±, but it is not

well-labelled. The graphs Γ2 and Γ3 are well-labelled with {a, b, c}±.

If a finite graph Γ is not well-labelled then a process of iterative identifica-

tions of each pair {e1, e2} of distinct edges with the same initial vertex and

the same label to a single edge yields a well-labelled graph. Such identifica-

tions are called foldings, and the whole process is known as the process of

Stallings’ foldings [1, 6, 10, 11]. Thus the graph Γ2 on Figure 1 is obtained

from the graph Γ1 by folding the edges e1 and e2 to a single edge labelled

by a.

Notice that the graph Γ3 is obtained from the graph Γ2 by removing the

edge labelled by a whose initial vertex has degree 1. Such an edge is called

a hair, and the above procedure is used to be called “cutting hairs”.

The label of a path p = e1e2 · · · en in Γ, where ei ∈ E(Γ), is the word

lab(p) ≡ lab(e1) · · · lab(en) ∈ (X±)∗.

Notice that the label of the empty path is the empty word. As usual, we

identify the word lab(p) with the corresponding element in G = gp〈X|R〉.

We say that p is a normal path (or p is a path in normal form) if lab(p) is

a normal word.

If Γ is a well-labelled graph then a path p in Γ is freely reduced if and only

if lab(p) is a freely reduced word. Otherwise p can be converted into a freely

reduced path p′ by iteratively removing of the subpaths ee (backtrackings)

([10, 6]). Thus

ι(p′) = ι(p), τ(p′) = τ(p) and lab(p) =FG(X) lab(p
′),

where FG(X) is a free group with a free basisX. We say that p′ is obtained

from p by free reductions.

If v1, v2 ∈ V (Γ) and p is a path in Γ such that

ι(p) = v1, τ(p) = v2 and lab(p) ≡ u,

then, following the automata theoretic notation, we simply write v1 · u = v2
to summarize this situation, and say that the word u is readable at v1 in Γ.

A pair (Γ, v0) consisting of the graph Γ and the basepoint v0 (a distin-

guished vertex of the graph Γ) is called a pointed graph.

Following the notation of Gitik ([4]) we denote the set of all closed paths

in Γ starting at v0 by Loop(Γ, v0) , and the image of lab(Loop(Γ, v0)) in
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G = gp〈X|R〉 by Lab(Γ, v0) . More precisely,

Loop(Γ, v0) = {p | p is a path in Γ with ι(p) = τ(p) = v0},

Lab(Γ, v0) = {g ∈ G | ∃p ∈ Loop(Γ, v0) : lab(p) =G g}.

It is easy to see that Lab(Γ, v0) is a subgroup of G ([4]). Moreover,

Lab(Γ, v) = gLab(Γ, u)g−1, where g =G lab(p), and p is a path in Γ from v

to u ([6]). If V (Γ) = {v0} and E(Γ) = ∅ then we assume that H = {1}.

We say that H = Lab(Γ, v0) is the subgroup of G determined by the graph

(Γ, v0). Thus any pointed graph labelled by X±, where X is a generating

set of a group G, determines a subgroup of G. This argues the use of the

name subgroup graphs for such graphs.

Morphisms of Labelled Graphs. Let Γ and ∆ be graphs labelled with

X±. The map π : Γ → ∆ is called a morphism of labelled graphs, if π takes

vertices to vertices, edges to edges, preserves labels of direct edges and has

the property that

ι(π(e)) = π(ι(e)) and τ(π(e)) = π(τ(e)), ∀e ∈ E(Γ).

An injective morphism of labelled graphs is called an embedding. If π is an

embedding then we say that the graph Γ embeds in the graph ∆.

A morphism of pointed labelled graphs π : (Γ1, v1) → (Γ2, v2) is a mor-

phism of underlying labelled graphs π : Γ1 → Γ2 which preserves the base-

point π(v1) = v2. If Γ2 is well-labelled then there exists at most one such

morphism ([6]).

Remark 3.1 ([6]). If two pointed well-labelled (with X±) graphs (Γ1, v1)

and (Γ2, v2) are isomorphic, then there exists a unique isomorphism π :

(Γ1, v1) → (Γ2, v2). Therefore (Γ1, v1) and (Γ2, v2) can be identified via π.

In this case we sometimes write (Γ1, v1) = (Γ2, v2). ⋄

The notation Γ1 = Γ2 means that there exists an isomorphism between

these two graphs. More precisely, one can find vi ∈ V (Γi) (i ∈ {1, 2}) such

that (Γ1, v1) = (Γ2, v2) in the sense of Remark 3.1.

4. Subgroup Graphs

The current section is devoted to the discussion on subgroup graphs con-

structed by the generalized Stallings’ folding algorithm. The main results of

[12] concerning these graphs, which are essential for the present paper, are

summarized in terms of free products in Theorem 4.1 below. The notion of

reduced precover is explained right after the theorem along the rest of this

section.

Theorem 4.1. Let H = 〈h1, · · · , hk〉 be a finitely generated subgroup of a

free product of finite groups G = G1 ∗G2.

Then there is an algorithm (the generalized Stallings’ folding algorithm)

which constructs a finite labelled graph (Γ(H), v0) with the following proper-

ties:
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(1) Lab(Γ(H), v0) = H.

(2) Up to isomorphism, (Γ(H), v0) is a unique reduced precover of G

determining H.

(3) Let m be the sum of the lengths of words h1, . . . hn. Then the al-

gorithm computes (Γ(H), v0) in time O(m2). Moreover, |V (Γ(H))|

and |E(Γ(H))| are proportional to m.

Throughout the present paper the notation (Γ(H), v0) is always used

for the finite labelled graph constructed by the generalized Stallings’ folding

algorithm for a finitely generated subgroup H of a free product of finite

groups G = G1 ∗G2.

Precovers. Roughly speaking, precovers are subgroup graphs, correspond-

ing to subgroups of amalgamated products, with a very particular structure.

This notion was defined by Gitik in [4] and actively employed by the author

in [12, 13, 14]. Below we define precovers in term of free products and recall

some of their properties which are essential to the present paper.

Let Γ be a graph well-labelled with X±, where X = X1 ∪ X2 is the

generating set of G = G1 ∗ G2 given by (∗) and (∗∗). We view Γ as a two

colored graph: one color for each one of the generating sets X1 and X2 of

the factors G1 and G2, respectively.

The vertex v ∈ V (Γ) is called Xi-monochromatic if all the edges of Γ

incident with v are labelled with X±
i , for some i ∈ {1, 2}. We denote

the set of Xi-monochromatic vertices of Γ by VMi(Γ) and put VM(Γ) =

VM1(Γ) ∪ VM2(Γ).

We say that a vertex v ∈ V (Γ) is bichromatic if there exist edges e1 and

e2 in Γ with

ι(e1) = ι(e2) = v and lab(ei) ∈ X±
i , i ∈ {1, 2}.

The set of bichromatic vertices of Γ is denoted by V B(Γ).

A subgraph of Γ is called monochromatic if it is labelled only with X±
1

or only with X±
2 . An Xi-monochromatic component of Γ (i ∈ {1, 2}) is a

maximal connected subgraph of Γ labelled with X±
i , which contains at least

one edge. Thus monochromatic components of Γ are graphs determining

subgroups of the factors, G1 or G2.

We say that a graph Γ is G-based if any path p ⊆ Γ with lab(p) =G 1 is

closed. Thus if Γ is G-based then, obviously, it is well-labelled with X±.

Definition 4.2 (Definition of Precover). A G-based graph Γ is a precover

of G = G1 ∗G2 if each Xi-monochromatic component of Γ is a cover of Gi

(i ∈ {1, 2}).

Following the terminology of Gitik ([4]), we use the term “covers of G”

for relative (coset) Cayley graphs of G and denote by Cayley(G,S) the
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coset Cayley graph of G relative to the subgroup S of G.1 If S = {1}, then

Cayley(G,S) is the Cayley graph of G and the notation Cayley(G) is used.

Note that the use of the term “covers” is adjusted by the well known

fact that a geometric realization of a coset Cayley graph of G relative to

some S ≤ G is a 1-skeleton of a topological cover corresponding to S of the

standard 2-complex representing the group G (see [18], pp.162-163).

Remark 4.3. Recall that G = G1 ∗G2 = gp〈X|R〉 is given by (∗) and (∗∗).

Let Γ be a graph well-labelled with X± such that each Xi-monochromatic

component of Γ is a cover of Gi (i ∈ {1, 2}). Hence Γ is G-based, because

each cover of Gi is a Gi-based graph.

This allows one to simplify the definition of precovers in the case of free

products by saying that a graph Γ is a precover of G = G1 ∗ G2 if each

Xi-monochromatic component of Γ is a cover of Gi (i ∈ {1, 2}).

⋄

Convention 4.4. By the above definition, a precover doesn’t have to be a

connected graph. However along this paper we restrict our attention only to

connected precovers. Thus any time this term is used, we always mean that

the corresponding graph is connected unless it is stated otherwise.

We follow the convention that a graph Γ with V (Γ) = {v} and E(Γ) = ∅

determining the trivial subgroup (that is Lab(Γ, v) = {1}) is a (an empty)

precover of G. ⋄

Example 4.5. Let G = Z4 ∗ Z6 = gp〈x, y|x4, y6〉.

The graph Γ1 on Figure 2 is an example of a precover of G with one

monochromatic component. Γ2, Γ4 are examples of precovers of G with two

monochromatic components.

The graph Γ3 is not a precover of G because its {x}-monochromatic com-

ponents are not covers of Z4. ⋄

A graph Γ is x-saturated at v ∈ V (Γ), if there exists e ∈ E(Γ) with

ι(e) = v and lab(e) = x (x ∈ X). Γ is X±-saturated if it is x-saturated for

each x ∈ X± at each v ∈ V (Γ).

Lemma 4.6 (Lemma 1.5 in [4]). Let G = gp〈X|R〉 be a group and let (Γ, v0)

be a graph well-labelled with X±. Denote Lab(Γ, v0) = S. Then

• Γ is G-based if and only if it can be embedded in (Cayley(G,S), S · 1),

• Γ is G-based and X±-saturated if and only if it is isomorphic to

(Cayley(G,S), S · 1). 2

Corollary 4.7. If Γ is a precover of G with Lab(Γ, v0) = H ≤ G then Γ is

a subgraph of Cayley(G,H).

1Whenever the notation Cayley(G,S) is used, it always means that S is a subgroup of

the group G and the presentation of G is fixed and clear from the context.
2We write S · 1 instead of the usual S1 = S to distinguish this vertex of Cayley(G,S)

as the basepoint of the graph.
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Thus a precover of G can be viewed as a part of the corresponding cover

of G, which explains the use of the term “precovers”.

Definition 4.8 (Definition of Reduced Precover). A reduced precover of G

is a precover (Γ, v0) of G with no redundant monochromatic components.

A Xi-monochromatic component C of the precover (Γ, v0) is redundant if

the following holds

• Lab(C, v) = {1} (equivalently, by Lemma 4.6, C = Cayley(Gi)),

• |V B(C)| ≤ 1,

• v0 6∈ VM(C).

Example 4.9. Let G = Z4 ∗ Z6 = gp〈x, y|x4, y6〉.

Any choice of a basepoint in the graph Γ1 on Figure 2 yields a non reduced

precover, while any basepoint of Γ4 gives a reduced precover.

In the graph Γ2 any choice of the basepoint v except that of w (that is

v = w) makes (Γ2, v) to be a reduced precover of G. ⋄

Remark 4.10 ([12]). Let φ : Γ → ∆ be a morphism of labelled graphs. If

Γ is a precover of G, then φ(Γ) is a precover of G as well. ⋄

5. The Basic Step

Let G = G1 ∗G2 be a free product of finite groups given by (∗) and (∗∗).

Let (Γ, v0) is a finite pointed G-based graph with Lab(Γ, v0) = H ≤ G.

Let C be a Xi-monochromatic component of Γ which is a cover of Gi

(i ∈ {1, 2}). Let v ∈ V (C) be the basepoint of C. Let T (C) be a spanning

tree of C with the root vertex v.

Let Pv be an approach path in Γ from the basepoint v0 to a vertex v ∈

V (C) (we assume that Pv is freely reduced). We put gv ≡ lab(Pv).

Let Pv = Pv1 · · ·Pvm be a decomposition of Pv into maximal monochro-

matic paths. Without loss of generality, we can assume that Pvm∩C = {v}.
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Otherwise, we choose the basepoint of C to be v′ = τ(Pv(m−1)) = ι(Pvm)

and take the approach path Pv′ to be Pv′ = Pv1 · · ·Pv(m−1).

Following the above assumption, whenever v0 ∈ V (C) we chose v = v0.

Thus the path Pv is empty and gv =G 1.

PSfrag replacements

Γ(H)

Γ′

v

v0

C

Pv

Figure 3. The collection of bright paths correspond to the spanning

tree T (C).

Let Γ′ be the graph obtained from Γ by removing all the edges of C which

are not in E(T (C)). More precisely,

E(Γ′) = E(Γ) \ E(T (C)), V (Γ′) = V (Γ).

Evidently, the graph Γ′ is connected. Roughly speaking, it is a subgraph

of Γ with v0 ∈ V (Γ′). Hence (Γ′, v0) is a finite pointed G-based graph.

Moreover,

(1) Γ′ ∩ C = T (C)

Thus

(2) Loop(C, v) ∩ Loop(Γ′, v) = ∅.

To exploit the connection between Lab(Γ, v0), Lab(C, v) and Lab(Γ′, v0)

we need the following classical result.

Lemma 5.1 (Lemma IV.1.7 [9]). Let A, B be subgroups of a group G such

that A∪B generates G, A∩B = {1}, and if g1, . . . , gn is a reduced sequence

with n > 0 (that is each gi is in one of A or B and successive gi, gi+1 are

not in the same factor), then g1g2 . . . gn 6=G 1. Then G ≃ A ∗B.

Now we are ready to give the desired connection. The following lemma is

stated in terms of the above notation.
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Lemma 5.2. The following holds.

(i) H = 〈gvLab(C, v)g
−1
v , Lab(Γ′, v0)〉.

(ii) 〈gvLab(C, v)g
−1
v , Lab(Γ′, v0)〉 = gvLab(C, vr)g

−1
v ∗ Lab(Γ′, v0).

(iii) H = gvLab(C, v)g
−1
v ∗ Lab(Γ′, v0).

Proof. (i)

Since Lab(PvLoop(C, v)Pv) =G gvLab(C, v)g
−1
v and

PvLoop(C, v)Pv ⊆ Loop(Γ, v0),

we have gvLab(C, v)g
−1
v ≤ H.

On the other hand, (Γ′, v0) embeds in (Γ, v0). Hence Lab(Γ
′, v0) ≤ Lab(Γ, v0) =

H. Therefore

(3) 〈gvLab(C, v)g
−1
v , Lab(Γ′, v0)〉 ⊆ H.

Conversely, let h ∈ H. Thus there exists a path q in Γ such that ι(q) =

τ(q) = v0 and lab(q) =G h.

If q is a path in Γ′ or in PvLoop(C, v)Pv . Then we are done.

Otherwise, there is a decomposition q = q1t1q2t2 · · · tk−1qk, where qi are

paths in Γ′ and ti are paths in C such that ti ∩ Γ′ = {ι(ti), τ(ti)}.

The path ti can be obtained by the path free reductions from the path

Pvpι(ti)Pvpι(ti)tiPvpτ(ti)Pvpτ(ti),

where pι(ti) and pτ(ti) are the approach paths in the spanning tree T (C) from

the root vertex v to the vertices ι(ti) and τ(ti), respectively. Note that if

ι(ti) = v or τ(ti) = v then the path pι(ti) or the path pτ(ti), respectively, is

empty.

Thus the path qitiqi+1 can be obtained by the path free reductions from

the path

(qiPvpι(ti))(Pvpι(ti)tiPvpτ(ti))(Pvpτ(ti)qi+1).

The path pι(ti)tipτ(ti) is in C and it is closed at v. Hence the path Pvpι(ti)tiPvpτ(ti)
is a path closed at v0 in Γ with lab(Pvpι(ti)tiPvpτ(ti)) ∈ gvLab(C, v)g

−1
v .

By the construction, the approach paths Pv, pι(ti) are in Γ′. Thus the

paths

q1Pvpι(t1), Pvpτ(tk−1)qk and Pvpτ(ti−1)qiPvpι(ti) (∀ 2 ≤ i ≤ k − 1)

are closed at v0 in Γ′. Hence the labels of these paths are in Lab(Γ′, v0).

Therefore

h ≡ lab(q) ∈ 〈gvLab(C, v)g
−1
v , Lab(Γ′, v0)〉.

Thus

(4) H ⊆ 〈gvLab(C, v)g
−1
v , Lab(Γ′, v0)〉.

The combination of (3) and (4) gives the desired conclusion that

H = 〈gvLab(C, v)g
−1
v , Lab(Γ′, v0)〉.
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(ii) We assume that Lab(C, v) 6= {1}, otherwise the statement is trivial.

To get the desired equality we have to show that the conditions of Lemma 5.1

are satisfied.

Since Lab(PvLoop(C, v)Pv) =G gvLab(C, v)g
−1
v and, by (2),

PvLoop(C, v)Pv ∩ Loop(Γ′, v0) = ∅,

we have gvLab(C, v)g
−1
v ∩ Lab(Γ′, v0) = {1}.

To prove the satisfaction of the second condition of Lemma 5.1 we let

1 6= zl ∈ gvLab(C, v)g
−1
v and 1 6= wl ∈ Lab(Γ′, v0) (1 < l < k)

and show that

z1w1 · · · zkwk 6=G 1.

Hence there exist closed paths tl ∈ PvLoop(C, v)Pv and sl ∈ Loop(Γ′, v0)

(1 ≤ l ≤ k) such that

lab(tl) =G zl and lab(sl) =G wl.

Thus lab(tl) =G gvz
′
lg

−1
v and there exists a nonempty path t′l ∈ Loop(C, v)

such that 1 6= z′l ≡ lab(t′l) (1 ≤ l ≤ k). Hence lab(t′l) ∈ Gi is a normal word

in G of the syllable length 1.

On the other hand, Lab(Γ′, v0) = gvLab(Γ
′, v)g−1

v . Hence, for all 1 ≤ l ≤

k, there exists a nonempty path s′l ∈ Loop(Γ′, v) such that

lab(sl) =G gvlab(s
′
l)g

−1
v (lab(s′l) 6= 1).

Since the graph Γ′ is G-based, we can assume (without loss of generality)

that the path s′l is normal, that is there is a decomposition of s′l into maximal

monochromatic paths s′l = s′l1s
′
l2 · · · s

′
lml

such that lab(s′lf ) ≡ wlf 6=G 1, for

all 1 ≤ f ≤ ml. Thus lab(s′l) is a normal word in G given by the normal

decomposition

lab(s′l) ≡ wl1 · · ·wlml
.

We stress that

z1w1 · · · zkwk =G lab(t1)lab(s1) · · · lab(tk)lab(sk)

=G gvlab(t
′
1)g

−1
v gvlab(s

′
1)g

−1
v · · · gvlab(t

′
k)g

−1
v gvlab(s

′
k)g

−1
v

=G gvlab(t
′
1)lab(s

′
1) · · · lab(t

′
k)lab(s

′
k)g

−1
v

Note that if ml = 1 then, by the construction of Γ′, wlml
∈ Gγ (1 ≤ i 6= γ ≤

2).

If w11, wl1, w(l−1)ml−1
∈ Gγ , for all 2 ≤ l ≤ k (1 ≤ i 6= γ ≤ 2), then

lab(t′1)lab(s
′
1) · · · lab(t

′
k)lab(s

′
k)

is a normal word in G of syllable length k +
∑k

l=1ml > 1, because t′l ∈ Gi.

Hence lab(t′1)lab(s
′
1) · · · lab(t

′
k)lab(s

′
k) 6=G 1, by the Normal Form Theorem

for Free Products [9] (see Section 3).

Otherwise, w11 ∈ Gi or there exists 2 ≤ l ≤ k such that wl1 ∈ Gi or

w(l−1)ml−1
∈ Gi.
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Recall that the graph Γ′ is well-labelled with X±. Since, by our assump-

tion, C is a Xi-monochromatic component of Γ which is a cover of Gi, each

v ∈ V (C) is X±
i -saturated. Thus, each path in Γ which starts at such vertex

v with label in Gi is a path in C. Therefore either s′11 or s′l1 or s′(l−1)ml−1

is

in Γ′ ∩ C = T (C).

Let q ⊆ T (C) and r ∈ Loop(C, v) such that either τ(q) = v or ι(q) = v.

Thus the paths qr and rq, respectively, are unclosed, because q is unclosed.

Since the graph Γ′ is G-based, we have either lab(qr) 6=G 1 or lab(rq) 6=G 1.

Moreover, if q1, q2 ⊆ T (C) such that τ(q1) = ι(q2) = v then the path

q1rq2 is closed if and only if q2 = q̄1. Thus q1rq2 = q1rq̄1. If lab(r) 6=G 1

then lab(q1rq̄1) ≡ lab(q1)lab(r)lab(q1)
−1 6=G 1.

Therefore lab(t′1)lab(s
′
1) · · · lab(t

′
k)lab(s

′
k) can be viewed as a normal word

inG of length at least (
∑k

l=1ml)−(k−1) > 1. Hence lab(t′1)lab(s
′
1) · · · lab(t

′
k)lab(s

′
k) 6=G

1, by the Normal Form Theorem for Free Products [9]. Thus

z1w1 · · · zkwk =G gvr lab(t
′
1)lab(s

′
1) · · · lab(t

′
k)lab(s

′
k)g

−1
vr 6=G 1.

Therefore the conditions of Lemma 5.1 are satisfied. Hence

〈gvrLab(C, vr)g
−1
vr , Lab(Γ′, v0)〉 = gvrLab(C, vr)g

−1
vr ∗ Lab(Γ′, v0).

(iii) The combination of (i) and (ii) yields

H = gvLab(C, v)g
−1
v ∗ Lab(Γ′, v0).

⋄

6. Reading off Kurosh Decompositions

Let H be a finitely generated subgroup of a free product of finite groups

G = G1∗G2 given by (∗) and (∗∗). Consider Γ(H) to be the subgroup graph

of H constructed by the generalized Stallings algorithm (see Appendix for

the algorithm description).

In the current section we introduce (along with the proof of Theorem 6.4)

an algorithm which reads off a Kurosh decomposition ofH from its subgroup

graph Γ(H). This algorithm relays largely on the basic step construction

introduced in the previous section.

Another essential step of the algorithm is provided by understanding

whether the given labelled graph determines a free subgroup. In [13] (The-

orem 6.4) such a connection was obtained for subgroup graphs which are

reduced precovers. Below we restate this result in terms of free products of

finite groups.

Theorem 6.1. (Theorem 6.4 in [13]) H is free if and only if each Xi-

monochromatic component of Γ(H) is isomorphic to Cayley(Gi), for all

i ∈ {1, 2}.

In the case of free products of finite groups such a connection can be

found even if the given graph is not a precover of G.
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Lemma 6.2. Let (Γ, v0) be a finite pointed G-based graph well-labelled with

X± such that Lab(Γ, v0) = H ≤ G.

If all monochromatic components of Γ are trees then H if free.

To prove this lemma the following technical result from [12] is necessary.

Lemma 6.3. Let (Γ, v0) be a finite pointed graph well-labelled with X± .

Let e be an edge of Γ with lab(e) ∈ X±
i (i ∈ {1, 2}).

Let (∆, u0) be the graph obtained from Γ by gluing a copy of Cayley(Gi)

along the edge e, where u0 is the image of v0 in ∆.

Then Lab(Γ, v0) = Lab(∆, u0).

Proof of Lemma 6.2. By Lemma 4.6, any finite well-labelledXi-monochromatic

tree embeds into Cayley(Gi) (i ∈ {1, 2}). Thus the graph (Γ, v0) embeds

into the graph (Γ′, v′0) obtained by gluing copies of Cayley(Gi) to each Xi-

monochromatic tree of Γ (v′0 is the inherited base point). Moreover, the

resulting graph (Γ′, v′0) is a precover of G.

By Lemma 6.3, Lab(Γ′, v′0) = Lab(Γ, v0) = H. If Γ′ is not a reduced pre-

cover of G then it can be turned to one by removing redundant components.

As is well known from [12], this procedure is finite and does not change the

determined subgroup. Therefore, without loss of generality, we assume that

(Γ′, v′0) is a reduced precover of G.

Hence, by Theorem 4.1 (2), (Γ′, v′0) = (Γ(H), u0). Thus, by Theorem 6.1,

H is a free group. ⋄

Let Γ be a finite G-based graph well-labelled with X±. We set MCC(Γ)

to be the list of all Monochromatic Components of Γ which are Covers of

either G1 or G2. Since the graph Γ is finite, the set MCC(Γ) is finite as

well.

Theorem 6.4. Let h1, . . . , hn ∈ G. Then there exists an algorithm which

computes a Kurosh decomposition of the subgroup H = 〈h1, . . . , hn〉 ≤ G.

Proof. First we construct the subgroup graph (Γ(H), v0) using the general-

ized Stallings algorithm (see the Appendix).

Then we iteratively apply the basic step construction described in Sec-

tion 5 to the monochromatic components of Γ(H). Since k = |MCC(Γ(H))| <

∞ this process is finite. We start from a monochromatic component C0 of

Γ(H) such that v0 ∈ V (C0). We take v0 as the basepoint of C0 and let

the approach path be empty. This yields the graph Γ′
1 with MCC(Γ′

1) =

MCC(Γ(H)) \ {C0}.

Let Γ′
i be the graph obtained after (i − 1) consequence applications of

the basic step to the graphs Γ(H),Γ′
1, . . .Γ

′
i−1 and the monochromatic com-

ponents (C0, v0), (C1, v1), . . . , (Ci−1, vi−1), respectively. Thus MCC(Γ′
i) =

MCC(Γ(H)) \ {C0, (C1, v1), . . . , (Ci−1, vi−1)}.

Our next application of the basic step is to the graph Γ′
i and a monochro-

matic component Ci ∈ MCC(Γ′
i) such that V B(Ci−1) ∩ V B(Ci) 6= ∅. We
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pick a vertex vi ∈ V B(Ci−1)∩V B(Ci) to be the base point of Ci and choose

the appropriate approach path Pvi .

After k = |MCC(Γ(H))| steps this process gives a finite graph (∆, v0)

whose monochromatic components are trees, that is MCC(∆) = ∅ and

Lab(∆, v0) is a free group, by Lemma 6.2.

Lemma 5.2 yields the following Kurosh decomposition of H.

H =
(

∗0≤i≤(k−1) lab(Pvi)Lab(Ci, vi)lab(Pvi)
−1

)

∗ Lab(∆, v0),

where F = Lab(∆, v0) is a free group.

Since the factors G1 and G2 are finite as well as all the monochromatic

components Ci (0 ≤ i ≤ k − 1), which are their covers, it is possible to

compute Lab(Ci, vi) applying, for instance, the well-known Reidemeister-

Schreier procedure (p.102 in [9]).

In order to find a free basis S of F = Lab(∆, v0), we proceed according

to the well-known algorithm for subgroups of free groups [6, 10, 17] which

computes a free basis defined by a labelled graph. Thus

S = {lab(pι(e)epτ(e)) | e ∈ E(∆)+ \ T (∆)},

where T (∆) is a spanning tree of ∆, and pv is the unique freely reduced

path in T with ι(pv) = v0 and τ(pv) = v.

Thus labFG(X)(∆, v0) = FG(S), while Lab(∆, v0) = FG(S)/FG(S) ∩N ,

where N is the normal closure of R in FG(X).

However FG(S) ∩ N = {1}. Indeed, let 1 6= w ∈ FG(S) ∩ N . Without

loss of generality we can assume that w is a freely reduced word.

Thus there exists a reduced path p in (∆, v0) closed at v0 with ι(p) =

τ(p) = v0 and lab(p) ≡ w. Let p = p1 · · · pm be a decomposition of p

into maximal monochromatic paths. By the construction of (∆, v0), all its

monochromatic components are trees, therefore all the paths pi (1 ≤ i ≤ m)

are unclosed and hence lab(pi) 6=G 1. Thus lab(p) ≡ lab(p1) · · · lab(pm) is

a normal word in G. Therefore, by the Normal Form Theorem for Free

Products, w ≡ lab(p) 6=G 1, that is w 6∈ N . Thus Lab(∆, v0) = FG(S).

Hence

H =
(

∗1≤j≤m gjHjg
−1
j

)

∗ FG(S),

where Hj = Lab(Ci, vi) 6= {1} and gj ≡ lab(Pvi).

⋄

Remark 6.5. As an immediate consequence of the above computation

the group presentation of H is obtained even if [G : H] = ∞ and the

Reidemeister-Schreier process doesn’t work.

Indeed, since the subgroups Hj have finite index in the free factors of G,

their group presentation Hj = gp〈Yj | Rj〉 as a subgroup of a free factor can

be computed using Reidemeister-Schreier process. Thus

H = gp〈S, gjYjg
−1
j | gjRjg

−1
j 〉.

⋄
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Complexity Issues. It should be stressed that in contrast with papers that

establish the exploration of the algorithms complexity as their primary goal

(see, for instance, [7, 8, 19]), we do it rapidly (sketchy) viewing in its analysis

a way to emphasize the effectiveness of our graph theoretical approach.

The main purpose of the complexity analysis below is to estimate our

graph theoretical methods applied to read off a Kurosh decomposition of a

subgroup from its subgroup graph.

To this end we assume that the free product of finite groups G = G1∗G2 is

given via (∗) and (∗∗), respectively, and that this presentation is not a part

of the input. We assume as well that the Cayley graphs and all the relative

Cayley graphs of the free factors G1 and G2 are given for “free” (see the

Appendix for the discussion on given data and input). These assumptions

allow us to be concentrated only on the estimation of the algorithm presented

along with the proof of Theorem 6.4.

Indeed, if the group presentations of the free factors G1 and G2 are a part

of the input (the uniform version of the algorithm) then we have to build

the groups G1 and G2 (that is to construct their Cayley graphs and relative

Cayley graphs).

Since the groups G1 and G2 are finite, the Todd-Coxeter algorithm and

the Knuth Bendix algorithm are suitable [9] for these purposes. Then the

complexity of the construction depends on the group presentation of G1

and G2 we have: it could be even exponential in the size of the presentation

[2]. Therefore the above algorithm with these additional constructions could

take time exponential in the size of the input.

Complexity Analysis. By Theorem 4.1 (3), the construction of Γ(H)

takes O(m2), where m is the sum of lengths of the input subgroup gen-

erators h1, . . . , hn.

The detecting of monochromatic components in the constructed graph

takes O(|E(Γ(H))|) , that is O(m). Since all the essential information about

G1 and G2 is given and it is not a part of the input, verifications concerning

a particular monochromatic component of Γ(H), takes O(1).

Since the construction of a spanning tree in a monochromatic component

C of Γ(H) takes O(|E(C)|) , this procedure applied to all monochromatic

components of Γ(H) takes O(|E(Γ(H))|) . Therefore to construct the graph

∆ from Γ(H) takes O(|E(Γ(H))|) , that is O(m).

The construction of the free basis of F = Lab(∆, v0) in the described way

takes O(|E(∆)|2), by [1]. Since |E(∆)| < |E(Γ(H))|, the above construction

takes O(|E(Γ(H))|2) , that is O(m2).

Therefore the complexity of the algorithm given along with the proof of

Corollary 6.4 equals O(m2).

If the subgroup H is given by the graph (Γ(H), v0) and not by a finite

set of subgroup generators, then the complexity is O(|E(Γ(H))|2). Thus in

both cases the algorithm is quadratic in the size of the input.
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Figure 4. A computation of a Kurosh Decomposition of H from

Γ(H). The bold edges correspond to spanning trees of the appropriate

monochromatic components.

Example 6.6. Let G = Z2 ∗ Z3 = gp〈a, b | a2, b3〉 ≃ PSL2(Z).

Let H = 〈aba−1b−1, (ba)3〉 ≤ G. We use the subgroup graph Γ(H) con-

structed by the generalized Stallings’ algorithm (see Example A.3 and Fig-

ure 5 for the precise construction) to read off a Kurosh decomposition of

H. The reading procedure described along with the proof of Theorem 6.4 is

illustrated step by step on Figure 4.

The computation of a group presentation ofH, according to Corollary 6.5,

is presented below.

H = Lab(Γ′
1, v0) ∗ Lab(C0, v0)

= Lab(Γ′
2, v0) ∗ Lab(C1, v1)

= Lab(Γ′
3, v0) ∗ Lab(C2, v2)

= Lab(Γ′
4, v0) ∗ Lab(C3, v3) ∗ (ab

2)〈a〉(ab2)−1

= Lab(∆, v0) ∗ Lab(C4, v4) ∗ (ab
2)〈a〉(ab2)−1

= Lab(∆, v0) ∗ Lab(C4, v4) ∗ (ab
2)〈a〉(ab2)−1

= FG(aba−1b−1) ∗ (ab2)〈a〉(ab2)−1.

Let e1 = aba−1b−1, e2 = (ab2)a(ab2)−1. Thus H = gp〈e1, e2 | e1, e
2
2〉.

⋄

Appendix A.

Let G = G1 ∗ G2. Obviously, G = G1 ∗{1} G2. The assumption that the

amalgamated subgroup is trivial simplifies the algorithm from [12], making

the fourth and the sixth steps to be irrelevant. Thus the restricted algorithm

takes the following form.
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Convention A.1. We follow the notation of Grunschlag [5], distinguishing

between the “input” and the “given data”, the information that can be used

by the algorithm “for free”, that is it does not affect the complexity issues.

⋄

Algorithm

Given: Finite groups G1, G2 and the free product G = G1 ∗G2 given

via (∗) and (∗∗), respectively.

We assume that the Cayley graphs and all the relative Cayley

graphs of the free factors are given.

Input: A finite set {g1, · · · , gn} ⊆ G.

Output: A finite graph Γ(H) with a basepoint v0 which is a reduced

precover of G and the following holds

• Lab(Γ(H), v0) =G H;

• H = 〈g1, · · · , gn〉;

• a normal word w is in H if and only if there is a loop (at v0) in

Γ(H) labelled by the word w.

Notation: Γi is the graph obtained after the execution of the i-th step.

Step1: Construct a based set of n loops around a common distin-

guished vertex v0, each labelled by a generator of H;

Step2: Iteratively fold edges and cut hairs;

Step3:

For each Xi-monochromatic component C of Γ2 (i = 1, 2) Do

Begin

pick an edge e ∈ E(C);

glue a copy of Cayley(Gi) on e via identifying 1Gi
with ι(e)

and identifying the two copies of e in Cayley(Gi) and in Γ2;

If necessary Then iteratively fold edges;

End;

Step4:

Reduce Γ3 by iteratively removing all redundant Xi-monochromatic

components C which are

• (C, ϑ) is isomorphic to Cayley(Gi, 1);

• V B(C) = {ϑ};

• v0 6∈ VMi(C).

Let Γ be the resulting graph;

If V B(Γ) = ∅ and (Γ, v0) is isomorphic to Cayley(Gi, 1Gi
)

Then we set V (Γ(H)) = {v0} and E(Γ(H)) = ∅.

Else we set Γ(H) = Γ.
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Remark A.2. The first two steps of the above algorithm correspond pre-

cisely to the Stallings’ folding algorithm for finitely generated subgroups of

free groups [17, 10, 6]. ⋄

PSfrag replacements

Γ(H)
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Γ′
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Figure 5. The graph Γ′
3 is an intermediate graph of the Step 3

obtained after the gluing operations before the foldings are done.

Example A.3. Let G = Z2 ∗ Z3 = gp〈a, b | a2, b3〉 ≃ PSL2(Z).

Let H = 〈aba−1b−1, (ba)3〉 ≤ G. The construction of Γ(H) by the gener-

alized Stallings’ folding algorithm is presented on Figure 5. ⋄
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