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CRITICAL POINTS OF PAIRS OF VARIETIES OF ALGEBRAS

PIERRE GILLIBERT

ABSTRACT. For a class V of algebras, denote by Conc V the class of all (V, 0)-
semilattices isomorphic to the semilattice Conc A of all compact congruences
of A, for some A in V. For classes Vi and Vg of algebras, we denote by
crit(V1;V2) the smallest cardinality of a (V,0)-semilattice in Conc V1 which
is not in Conc V2 if it exists, co otherwise. We prove a general theorem,
with categorical flavor, that implies that for all finitely generated congruence-
distributive varieties V1 and Va, crit(V1;Vs) is either finite, or X, for some
natural number n, or co. We also find two finitely generated modular lattice
varieties V1 and V2 such that crit(V1;V2) = Xy, thus answering a question by
J. Tima and F. Wehrung.

1. INTRODUCTION

We denote by Con A (resp., Con. A) the lattice (resp., (V,0)-semilattice) of
all congruences (resp., compact congruences) of an algebra A. For a homomor-
phism f: A — B of algebras, we denote by Con f the map from Con A to Con B
defined by the rule

(Con f)(«a) = congruence of B generated by {(f(x), f(v)) | (z,y) € a},

for every a € Con A. We also denote by Con, f the restriction of Con f from Con. A
to Con. B. This defines a functor Con. from the category of algebras of a fixed
similarity type to the category of all (V,0)-semilattices, moreover Con, preserves
direct limits.

A lifting of a (V,0)-semilattice S is an algebra A such that Con. A = S. Given
a variety V of algebras, the compact congruence class of V, denoted by Con,V, is
the class of all (V,0)-semilattices isomorphic to Cone A for some A € V. As illus-
trated by E], even the compact congruence classes of small varieties are complicated
objects.

Let V be a variety of algebras, let D be a diagram of (V,0)-semilattices and
(V,0)-homomorphisms. A lifting of D in V is a diagram A of V such that the
composite Con¢ oA is naturally isomorphic to D.

To a poset I and a diagram S = (Si, gpg)igj in 1 Of (V,0)-semilattices, we shall
associate a (V,0)-semilattice C, which is a subdirect product of the S;s.

We shall establish a set of results that can be loosely summed up as follows:
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In the ‘good cases’, if C has a lifting in 'V, then S has a lifting in 'V,
and conversely.

The (V,0)-semilattice C is not defined from S alone, but from what we shall call a
norm-covering of I (Definition Q) By definition, a norm-covering of I is a pair
(U, |]), where U is a so-called supported poset (Definition [t.1) and |-|: U — T is
an isotone map. We shall write C' = Cond(g, U), and call C a condensate of S
(cf. Section f]). The assignment S — Cond(S,U) can be naturally extended to a
functor.

Among the above-mentioned ‘good’ cases is the case where I is a well-founded
tree (i.e., all principal lower subsets are well-founded chains). Hence we can as-
sociate liftings of (V,0)-semilattices with liftings of diagrams of (V,0)-semilattices
indexed by trees (Corollary @) By iterating this result finitely many times, we ob-
tain similar results for diagrams indexed by finite products of trees (Corollary @)
In particular (cf. Corollary [.g), that if all (V,0)-semilattices of a ‘good’ class of
(V,0)-semilattices 8 have a lifting in a variety V, then every diagram of 8, indexed
by finite products of well-founded trees, has a lifting in V. In particular, using the
result, proved by W. A. Lampe in [E], that every (V,0,1)-semilattice is isomorphic
to Con, G for some groupoid G, we prove in Corollary that every diagram of
(V,0,1)-semilattices and (V,0,1)-homomorphisms, indexed by a finite poset, has a
lifting in the variety of groupoids. This extends to all finite poset-indexed diagrams
the result, proved in [E] for one zero-separating arrow, of simultaneous representa-
tion.

Funayama and Nakayama proved in [ﬂ] that Con L is distributive for any lat-
tice L. However, our result above cannot be extended to (V,0, 1)-semilattices re-
placed by distributive (V, 0, 1)-semilattices and groupoids replaced by lattices. This
is due to the negative solution to the Congruence Lattice Problem, obtained by
F. Wehrung in [[L(]}, that gives a distributive (V,0, 1)-semilattice that is not isomor-
phic to Con, L for any lattice L.

A somehow strange, but unavoidable, feature of our proof is that the condensate
construction builds objects of larger cardinality. For example, in order to be able to
lift diagrams indexed by (at most) countable chains of (at most) countable (V,0)-
semilattices, we need to be able to lift (V,0)-semilattices of cardinality V.

Another interesting problem is the comparison of congruence classes of varieties
of algebras. Given two varieties Vi and Vs of algebras, the critical point of V;
and Va, denoted by crit(Vy;Vs), is the smallest cardinality of a (V,0)-semilattice
in Con(Vy) — Cone(V2) if it exists, or oo, otherwise (i.e., if Con.V; C Cong Va).
Denote by M, the lattice of length two with n atoms and by M%! the variety of
bounded lattices generated by M,,, for any positive integer n. M. Plos¢ica gives in [ﬂ]
a characterization of (V,0,1)-semilattices of cardinality R; in Con.M%!, and he
proves that the result is independent of n. Moreover, M. Plo§¢ica also proves in [E]
that if we denote by L the free lattice of Mg’}rl with Ry generators, then Con L has
no lifting in M%!. (M. Plos¢ica proves his results for varieties of bounded lattices,
but for those negative results the difference between bounded and unbounded is
inessential.) This implies that crit(M2%1; M%1) = R, for all integers m > n > 3.

One corollary of our main result is that if the critical point between two vari-
eties V1 and Vs of algebras with countable similarity types is greater than X,,, then
all diagrams of countable (V, 0)-semilattices indexed by products of n finite chains
which are liftable in V; are also liftable in Vs.
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In Corollary we prove that the critical point between a locally finite variety
and a finitely generated congruence-distributive variety is either finite, or W,, for
some natural number n, or co. Moreover in Section E we give two finitely generated
varieties of modular lattices with critical point X;, which solves negatively Prob-
lem 5 in [E] However, we still do not know whether there exists a pair of varieties
of lattices with critical point R,, with n > 3.

2. BASIC CONCEPTS

We denote by dom f the domain of any function f. We write (X)) the set of
all subsets of X and [X]<% the set of all finite subsets of X, for every set X. We
denote by s the cardinal successor of x and k" the n*® successor of , and we
denote cf k the cofinality of &, for every cardinal .

A poset is a partially ordered set. We denote by P~ (resp., P~) the set of all
non-minimal (resp., non-maximal) elements in a poset P. For i,j € P let i < j
hold, if 7 < j and there is no k € P with ¢ < k < j, in this case i is called a lower
cover of j. If j has exactly one lower cover, we denote it by j.. We put

RQIX={peQ|GFreX)p<a)}, QIX={peQ|(FreX)(p=a)}

for any X,@Q C P, and we will write | X (resp., 1X) instead of P | X (resp., P T X)
in case P is understood. We shall also write |p instead of |{p}, and so on, for
p € P. A poset I is lower finite, if I | i is finite for all # € I. A subset X of P
is a lower subset if P | X = X. An ideal of P is a nonempty, upward directed,
lower subset of P. We denote by Id P the set of all ideals of P, partially ordered
by inclusion. We will often identify a with P | a, where a € P, and identify P
with {P | a | a € P} CIdP. A tree is a poset T with a smallest element such
that T | ¢ is a chain for each t € T. We denote by M(L) the set of all completely
meet-irreducible elements in a lattice L.

For an algebra A and P C A2, denote by © 4(P) the smallest congruence of A
that contains P. We put O4(x,y) = O4({(z,y)}), for all z,y € A. Let X C A
we denote by Con.~(A) = {©4(P) | P € [X?]<“} the set of all congruences of A
finitely generated by parameters in X.

Let (A;)ier be a family of algebras of the same similarity type, let (6;);cr €
(Con A;)!; the congruence product of (0;);cr is the congruence defined by:

Hei: (x,y)e(HAl) |Viel, (z;,y;) €6;

icl el

We denote by 2/6 the equivalence class of  modulo 6, where 6 is an equivalence
relation on a set A and © € A. We shall often write X/0 = {z/0 | v € X}, for
any subset X of A. The canonical embedding from X/(0 N (X x X)) into A/6
sends /(0 N (X x X)) to x/6, for each x € X. We shall often identify X/6 and
X/(0N (X x X)).

For a category C, we write Ob C the class of all objects of C and Mor € the class
of all morphisms in C.

For categories I and J, denote by J! the category whose objects are the functors
from I to J and whose arrows are the natural transformations. Let I,.J, and 8 be
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categories, let D: J — 8! be a functor. We can define a functor:
D:IxJ—S$
(i,7) — D) () for all (i,7) € Ob(I x J)
(f.9) = D(g)w o D()(f) forall (fri—i, g:j—j') € Mor(IxJ),

where D(g) = (D(g)k)reob1. Conversely, given a functor D: I x J — §, we can
define a functor D: J — 8! by:

D(): I —8
i— D(i,7), for alli € Ob [T
[~ D(f,id;), for all f € Mor I

which is a functor, for all j € Ob J, and
D(g) = (D(idi, 9))icob1: D(j) — D(k)
which is a natural transformation, for all (g: j — k) € Mor J.

We shall identify every poset P with the category whose objects are the elements
of P, and that has exactly one arrow, then denoted by (i < j), from 4 to j, just in
case 1 < jin P.

Let 8 be a class of (V,0)-semilattices, let V be a class of algebras of the same
similarity type, let J be a category. A lifting in V of a functor D: J — 8 is a
functor A: J — V such there exists a natural isomorphism Con,oA — D. In this
case we say that A is a lifting of D in V.

Let J be a category. We put ¢ < j, if there exists an arrow f: ¢ — j of J, for all
i and j in Ob J. This relation is reflexive and transitive.

Let I and 8 be categories, let D: I — § be a functor. We denote by li_n>1® a
colimit of D if it exists. Strictly speaking, it is a cocone of 8§, however, we often
identify it with its underlying object in §. Similarly, if all colimits indexed by I
exist, we consider lim: 8! — 8 as a functor. Colimits indexed by upwards directed
posets are often called direct limits.

It is well-known that any variety of algebras, viewed as a category, has all small
colimits (small here means that the index category is small).

A variety of algebras is congruence-distributive if each of its members has a
distributive congruence lattice.

3. A LOWENHEIM-SKOLEM TYPE PROPERTY

Definition 3.1. Let U be a poset, let J be a small category, and & = (ky)uecr be
a family of cardinals. A class V of algebras of the same similarity type is (U, J, §)-
Lowenheim-Skolem, if for any functor A: J — V and for any family (a%)iee%b‘] of
congruences, with o, € Con A(j), such that -, ; card Cone(A(j)/ad,) < ki, for

. - i\j€EOb J
all u € U, there exists a family (B})]z;;

1) The algebra B} is a subalgebra of A(j) for all u € U and all j € Ob J.

2) The algebra BJ /aJ belongs to V for all uw € U and all j € Ob J.

3) The containment BJ C BJ holds for all u < v in U and all j € Ob J.

4) The containment A(f)(BJ) C BE holds for every u € U and every mor-
phism f: j — kin J.

(5) The morphism Con(g/) is an isomorphism, where ¢/ denotes the canonical

embedding BY /ol — A(j)/ad.

of algebras such that:

(
(
(
(
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(6) The inequality > ..oy, ; card BJ < Ky holds for all u € U.
The following result appears in [E, Theorem 10.4].

Lemma 3.2. ©p(z,y) < \/,_,, Op(zi,y:) iff there are a positive integer n, a list
Z of parameters from B, and terms ty, ..., t, such that

x =11(, 7, 2),

y = tn(f7 g? 5),

t](gva'g):t]+1(fagv'g> (fOT allj <TL)
Definition 3.3. Let k be a cardinal. An algebra is locally < k if every finitely
generated subalgebra is of cardinality < x. The definition of locally < k is similar.
An algebra is locally finite if it is locally < Ng.
A variety of algebras is locally < k (resp., locally < k) if all its members are

locally < & (resp., locally < k).

Remark 3.4. Let £ be a similarity type. Every Z-algebra is locally < card Z.
Let k be a cardinal, let £ C ¢’ be similarity types, let (E,¥¢’) be an algebra such
that (E,.Z) is locally < k, then (E,.%’) is locally < k + card(¢’ — .%).

Let x be a cardinal. If E is a locally < k algebra, then every subalgebra of F,
generated by at most k elements, has at most x elements.

The following lemma is proved using an argument similar to the one in the usual
proof of the Lowenheim-Skolem Theorem.

Lemma 3.5. Let £ be a similarity type. Let E be a £-algebra, let Q C E. Let

(L)ier be a family of sub-similarity types of L. Let k be an infinite cardinal. If

(E, %) is locally < K, then there exists a subalgebra (F,£) of (E,%£) such that:
(1) The containment Q C F is satisfied,

(2) The inequality card F' < k + card Q + card I holds,

(3) The morphism Con, q;: Cong(F,.%;) — Con.(E,.%;) is one-to-one, where

qi: (F,%) — (E,%) denotes the inclusion map, for all i € I.

Proof. Let Ag be the subalgebra of (F,.%) generated by . As E is locally < k,

we have card Ag < k + cardQ. Let n < w. Assume that we have constructed

subalgebras Ag C -+ C A, of (E,.%) of cardinality at most x + card Q + card I,

such that for all 0 <u < v <mn, foralli € I, for all m € N, for all z, y, z1, ..., ZTm,

Y1,---,Ym in A, we have the following equivalence

O,z (7,y) < \/ Oz, 2)(Tk, Yr) == Oa,,2)(7,y) < \/ O(a,,2) Tk, Yk)-
1<k<m 1<k<m
Letiel. Letz,y, z1,...,Zm, Y1,---,Ym in X,, such that the inequality
Op,z)(z,y) < \/ O (g, 2)(Tk, yr) is satisfied. (3.1)
1<k<m

Lemma @ implies that there are a positive integer r, a list 2z’ of parameters from F,
and terms tq, ..., t, such that

Y
ti(7,%,2) = tjy1(£,7,2) (for all j <r). (3.2)
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So we can construct X C E such that A, C X, card X < card A,, + card I + k and
foralli € I and all x, y, 1,...,Zm, Y1,---,Ym in X, that satisfy @), there are
a positive integer r, a list Z’ of parameters from X and terms ¢1, ..., t,. that satisfy
(B-9). Let A, 11 be the subalgebra of (F,.%) generated by X. As (E,.Z) is locally
< k, we have card A,, 11 < card X + k < card A,, + card [ + k < k+ card Q 4 card I.
Moreover, by construction, our induction hypothesis is satisfied.

So there exists a sequence (A, )n<. of subalgebras (E,.%) of cardinality at most
Kk + card @ 4 card I such that for all 0 < u < v, for all « € I, for all m € N, for all
Ty Yy T1ye oy Tons Y1y« - - Ym 0 Ay the following equivalence holds:

Ok, z)(x,y) \/ Oz, 2) (K, yr) <= O, 2)(T,Y) \/ O, ) (Tks Yk)-
1<k<m 1<k<m

Put F = |, An, we have Q@ C A9 C F and card F < )7 _ cardA, < K+

card @ + card I. It is easy to check that for all ¢ € I and for all m € N, for all z, y,

L1,y Tm, Y1,---,Ym 0 F the following equivalence holds:

O(e,2)(T,y) \/ O, 2)(Tk, yk) <= O(r.2,)(z,y) \/ O (.2 (Tk, k)

1<k<m 1<k<m

Thus the morphism Con, ¢;: Con.(F,.%;) — Con.(F,.%;) is one-to-one. O

The following lemma is a generalization of the Lowenheim-Skolem theorem to
diagrams of algebras.

Lemma 3.6. Let k be a cardinal. Let £ be a similarity type, let V be a variety of
Z-algebras locally < k, let J be a small category, let A: J — V be a functor, let o;
be a congruence of A(j), and let Q; be a subset of A(j) for all j € ObJ. Then
there exists a family (Bj)jcon.s of algebras such that:

(1) The algebra B; is a subalgebra of A(j) for all j € Ob J.

(2) The containment A(f)(B;) C By holds for every arrow f: j — k of J.

(3) The morphism Con(g;) is an isomorphism, where q; denotes the canonical

embedding Bj/a; — A(j)/aj, for all j € ObJ.
(4) The following inequality holds:

card B; < wtcardMor(J 1)+ | (card Cone(A(7) /) +card Q) for all j € Ob J,
1dj
where J | j denotes the full subcategory of J with {i € ObJ | i<j} as class
of objects.
(56) The containment Q; C B; holds for all j € Ob J.
Proof. Let (Q})jeob s be a family of sets such that:
(1) The set Q is a subset of A(j).
(2) The equality Conc(A(j)/a;) = Con @3/ (A(j)/a;) holds.
(3) The inequality card Q) < Ng + card Conc(A(j)/a;) + card @; holds.
(4) The containment Q; C Q' holds.

for all j € ObJ
Fix a family (z;)jcobs € ngJ‘A( /). Let I be a finite subset of Ob J, we denote

by I the full subcategory of J with class of objects I. Put T; = Ll;er A(7), where | |

denotes the disjoint union. Put .%; = Mor I LI Ujer({i} x £). We shall extend .£7
to a similarity type (i.e., assign an arity to each element of .#;) and endow T; with
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a structure of a Zj-algebra. For each m-ary operation symbol ¢ € £ and each
j € Ob J, we say that (j,¢) is a n-ary operation symbol, and we put:

EA(j)(al,ag, s ay)  ifay,ag, ... a4, € A®J),

Z; Otherwise,

(]af) (a1,a2,...,an) — {

for all a1, as,...,a, € T7. Every f € MorI will be a unary operation symbol, and
for f: i — 7 we put:

vy JA(f)(a) for all a € A7),
fM(a) = {xj for all a € Ty — A(i).

Put £ =U;e; ({7} x £) C Z1. We first show that (17,.Z7) is locally < k. Let X
be a finite subset of T;. Put X; = {z;} U(X NA(j)) for all j € I. Let Y; be
the subalgebra of (A(j),.Z) generated by X, for all j € I. As A(j) is locally < K
and X; is finite, we get cardY; < k, forall j € I. Put Y = [_|j€IYJ, then Y is a
subalgebra of (17,.%}) and Y D X. It follows that (77,.%7) is locally < k + card I.
Moreover we have £ — £} = Mor I, so (T, %7) is locally < k + card Mor 1.

Put £ = {j} x Z, for all j € ObJ. The similarity type .Z; is a sub-similarity
type of 02”1, for all I € [Ob J]<¥ — {0} and all j € I. Applying Lemma B.5, arguing
by induction on card I, we construct a family (77,27)rejob.jj<w—fo} of algebras
such that:

(1) the algebra (17, .%7) is a subalgebra of (17,.%7),
(2) the morphism Con, q] Con(T7,.Z;) — Cong(Tr, %) is one-to-one, where
L (T}, %) — (Tr, ;) denotes the inclusion map, for all j € I.
(3) the containment | ;. Q; € T7 holds,
(4) the containment T) C 77 holds,
(5) the inequality cardT; < k + Y, ; card Q] + card Mor I holds,
for all finite nonempty subsets K C I of Ob J.

Let I be a finite nonempty subset of Ob J, let j € I. Put BJ[ =A(j)NT]. We

consider:

q; (TI, 5) = (T1,.2)),
Pl (BL.2) — (AG), Z)),
st (B}, 2) — (T],.%)),
th: (A < &) — (T1,.2)),

the inclusion maps. The map Con, qjl is one-to-one. The following diagram is
commutative:
%

(1. 4) —— (11,%))

I I
sz th

(Bf, %) —— (A(j). %)

p;j

Let 0 be a congruence of (BJI ,-Z;), it is easy to check that HUidTIr is a congruence of

(T7,%;). Thus Con, s} is one-to-one. Hence Con, p! is one-to-one. The following
statements hold:
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(1) The morphism Cone pj: (B, £) — (A(j), £) is one-to-one, where we de-
note by p] (BI L) — (A(j),-Z) the inclusion map.
(2) The containment Q' - BI holds,
(3) The containment BK C BI holds,
(4) card Bf <k + ZZGI card Q’ + card Mor I,
(5) A(f (B{)QBJI for all f:4i— jin I,
for each finite nonempty subset K C I of ObJ and each j € K.

The subset B; = Ule[Ob(Jlj)]@_{@} B]l is a directed union of the algebras B]l,
for I € [Ob(J | 7)]<¥ — {0@}. Moreover, the following statements hold for each
j € ObJ:

e The map Concp;: Cone(Bj/a;) — Conc(A(j)/e;) is one-to-one, where
pj: Bj/aj — A(j)/c; denotes the canonical embedding.

e The containment Q’; C B; holds. So Conc(A(j)/a;) = Con B/ (A(5) /),
and so Cong g;: Cong(Bj/a;) — Conc(A(j)/;) is an isomorphism.

e The following inequalities hold:

card B; < Z <fi + Z card Q) + card MorT)
I€[Ob(J1j)]<«—{0} i€l
<ktdcardQi+ Y. (cardMor])
i I€[Ob(J1j)] <~ {0}
<K+ Z (card Qi + Conc(ﬂ(i)/ai)) + card Mor(J | 5)
1dj

o A(f)(B;) CBjforall f:i— jin J. d

Lemma 3.7. Le )\ be an infinite cardinal. Let £ be a similarity type, let V be a
locally < X wvariety of £ -algebras, let U be a poset, let J be a small category, and
let R = (Ky)ueu be a family of cardinals such that

(1) the inequality A + card Mor J < ky, holds for allu € U,
(2) for any family (H%)iee?]b‘] of cardinals such that kJ, < Kk, for allu € U and

all 7 € Ob J, the inequality ngu ZjeObJ K1 < Ky holds.
Then V is (U, J, §)-Lowenheim-Skolem.

Proof. Let A: J — V be a functor, let (ai)ffe?]b 7 be a family of congruences with
all aJ € ConA(j), such that > jeon g card Conc(A(j)/ad) < Ky for all u € U. We

can define a functor A’: J x U — V by
(J,u) — A(j) for all (j,u) € Ob(J x U),
(f:i—j, u<wv)— A(f) for all (f:i— 7, u <w) € Mor(J x U).

Moreover, af, is a congruence of A'(j,u) for all (j,u) € Ob(J x U). So, by
Lemma B.§, there exists a family (B)(;,u)con(sxr) of algebras such that:

(1) The algebra Bj is a subalgebra of A’(j,u) for all (j,u) € Ob(J x U).

(2) The containment A’(f,u < v)(BJ) C BF holds for every arrow (f:j —
k, u<wv)of JxU.

(3) The morphism Con(g/) is an isomorphism, where ¢/ denotes the canonical
embedding B! /ol — A’(j,u)/ad, for all (j,u) € Ob(J x U).
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(4) The following inequality holds, for all (j,u) € Ob(J x U):
card B}, <« + card Mor ((J x U) | (j,u))

+ Z (card ConC(A’(i,’U)/Oéf,))-

(4,0)<(j,u) in J X U
The statements (1)—(5) of Definition are satisfied. Moreover:
cardMor ((J x U) | (j,u)) < k4 card Mor J + card(U | u) < Ky,

for all (j,u) € Ob(J x U). As card Con.(A’(i,u)/al,) = card Con(A(i)/a%) < Ku,
the following inequalities hold:

Z (cardConc(.A (i,v)/al) ) Z Z (cardConc (Z)/Oéfj))

(i,0)<L(j,u) in J X U v<u i€Ob J
< Ky-

Thus card BJ < ky, for every u € U and for every j € ObJ. So, using again the
assumptions of the lemma, the following inequality holds:

> cardB) < Ky, forallueU. 0
j€Ob J

Lemma 3.8. Let 'V be a finitely generated congruence-distributive variety of alge-
bras. Let S be a finite (V,0)-semilattice. Then there exist, up to isomorphism, at
most finitely many A € V such that Con. A = S. Moreover, all such A are finite.

Proof. AsV is a finitely generated congruence-distributive variety of algebras, there
exist, by Jonsson’s Lemma, only finitely many, up to isomorphism, subdirectly
irreducible algebras in V, and they are all finite. Let A € V such that Con. A = S.
Recall that M(Con A) denote the set of all completely meet-irreducible elements of
Con A, hence A/0 is subdirectly irreducible for all 6 € M(Con A). As A embeds
into the product A < [Jycni(con a) A/6, and M(Con A) = M(Id S), the conclusion
follows. O

Lemma 3.9. Let 'V be a finitely generated congruence-distributive variety of alge-
bras, let U be a lower finite poset, let J be a finite poset, put k, = Ng for allu € U.
Then V is (U, J, §)-Lowenheim-Skolem.

Proof. Let A: J — V be a functor, let (ag)iee%bJ be a family of congruences, with
all af, € Con(A(j)), such that card Conc(A(j)/al) < N for all u € U and all j € J.

By Lemma B.§, A(j)/ad is finite for all w € U and all j € J. Let QY be a finite
subset of A(j) such that A(j)/ad = {q/ad, | ¢ € Q1} for all j € J and all u € U.
Let BJ be the subalgebra of A(j) generated by (J{A(7,7)(Q}) | v < u and i < j}
for all j € J and all w € U. As 'V is finitely generated, all objects of V are locally
finite, and so BJ is finite for all j € J and all u € U. Moreover the following

statements hold:

(1) The algebra B} is a subalgebra of A(j) for all uw € U and all j € Ob J.

(2) The algebra Bl /aJ = A(j)/ad, belongs to V for all u € U and all j € Ob J.

(3) The containment BJ C BJ holds for all u < v in U and all j € Ob J.

(4) The containment A(j, k)(BJ) C BE holds for every u € U and every j < k
in J.

(5) The canonical embedding ¢, : B /aJ,— AJ /aJ, is an isomorphism, so Con(g/)
is an isomorphism.



10 P. GILLIBERT

6) The inequality > . card BJ < Xg holds for all u € U. O
JjEODb J u

4. KERNELS, SUPPORTED POSETS, AND NORM-COVERINGS

Definition 4.1. A finite subset V of a poset U is a kernel, if for every u € U, there
exists a largest element v € V such that v < u. We denote this element by V - u.

We say that U is supported, if every finite subset of U is contained in a kernel
of U.

We denote by V - u the largest element of V N u, for every kernel V' of U and
every ideal u of U. As an immediate application of the finiteness of kernels, we
obtain the following.

Lemma 4.2. Any intersection of a nonempty collection of kernels of a poset U is

a kernel of U.

Example 4.3. Let x be a cardinal, we put 7, = x U {L} with order defined by
x < y if either x = y or x = L. Then T} is a supported poset, and the kernels of
T, are all the finite subsets containing 1.

Definition 4.4. A norm-covering of a poset I is a pair (U,|-|), where U is a
supported poset and |-|: U — I, u — |u| is an order-preserving map.

A sharp ideal of (U,]|-|) is an ideal w of U such that {|v| | v € u} has a largest
element, we denote this element by |u|. For example, for every u € U, the principal
ideal U | u is sharp; we shall often identify u and U | u. We denote by Ids(U, |-|)
the set of all sharp ideals of (U, |-|), partially ordered by inclusion.

A sharp ideal u of (U, |-|) is extreme, if there is no sharp ideal v with v > u and
|v| = |u|]. We denote by Ide(U, ||) the set of all extreme ideals of (U, |-|).

The norm-covering is tight if the map Ide(U, |-|) | w — I | |u|, v — |v] is a poset
isomorphism for all w € Id.(U, |-|).

Let & = (ki)ier be a family of cardinal numbers. We say that (U, |:|) is K-
compatible, if for every order-preserving map F: Id.(U,|-|) — PB(U) such that
card F(u) < Ky for all w € Ide(U,|-|)~, there exists an order-preserving map
o: I —1d.(U,||) such that:

(1) The equality |o(7)| =4 holds for all ¢ € I.
(2) The containment F(o(i)) No(j) C o(i) holds for all ¢ < j in I.
We will say ‘k-compatible’ instead of K-compatible in case k; = k for all 7 € I.

Observe that the condition (2) implies that V -o(i) = V-0 (j), for any ¢ < jin I
and any kernel V of U contained in F(o(i)).

Example 4.5. Let T, as defined in Example @ We consider {0,1} the two-
element chain. We put :

|| Tl‘é - {05 1}
0 ife=1,
v Ja| = )
1 otherwise.
Thus (T, |-|) is a norm-covering of {0,1}. Moreover :
1de(Ts, [) = {lu |uw e Tp} = {{LPU{{L,a} [« € s} = T

Let f: Ide(Ty, |-|) — B(k) such that card f(u) < k for all u € Id.(T, |-|)=. Hence
card f({L}) < k. Let @« € k — f({L}). Let 0(0) = {L} and o(1) = {L,a}, we
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have |o(0)] = 0 and |o(1)| = 1. Moreover f(c(0)) No(1) C o(0). Hence (T, |-|) is
a k-compatible norm-covering of {0,1}.

The following construction is a generalization of this example, but we give a
norm-covering of a tree instead of one of the two-element chain.

Proposition 4.6. Let T be a well-founded tree and let B = (Ki)ier and (K})ier-
be families of infinite cardinals such that for any t € T~ the following statements
hold:
(1) If t has a lower cover, then K} > Ky, .
(2) Ift has no lower cover, then for any family (k!)s<: of cardinals such that
Ky < kg for any s < t, the inequality Y _, k7 < K} holds.

Then there exists a tight R-compatible norm-covering (U, |-|) of T such that cardU =
Dter— Bt

Proof. We denote by L the least element of T, and we put ¢(t) = (T ] ¢t) — {L},
for any t € T. We put:

U:U{HRHCisaﬁnite chain ofT};

teC

We view the elements of U as (partial) functions and “to be greater” means “to
extend”.

We put |u| =\ domu, for any u € U. We should note that the chain C may be
empty (in the definition of U), and |@] = L.

We prove that U is supported. Let V' be a finite subset of U. Put:

Yo ={us|u eV and s € domu}, forallse T~
and put D = {s € T~ | Y, # 0}, hence D = {J, oy
W ={ueU|domu C D and (Vt € domu)(u; € Y;)}

The sets D, and Y, for all s € T, are finite, so W is finite. As us € Y; for all
u €V and s € domwu, V is contained in W.

Let w € U and S = {s € domu | us € Y}, then u [ S € W. The containment
domwv C S holds for all v € W | u, so u [ S is the largest element of W smaller
than u, and so W is a kernel of U containing V. Thus (U, |-|) is a norm-covering
of T.

The set {2z | P | P finite subset of ¢(t)} is an extreme ideal of (U, |-|), for allt € T
and all z € [],. (1) k.. We identify this ideal with 2. Moreover, all the extreme

dom u. Put:

ideals of (U, |-|) are of this form. Thus (U, |-|) is a tight norm-covering of T
Let F: 1de(U,||) — PB(U) be an order-preserving map such that card F'(u) <
K|y| for all u € 1d.(U, |-[)=. Put:

Fi(u)={v;|v € F(u) and ¢t € domw}, forallte T~ and all u € Id(T, |]).

Thus card Fy(u) < card F(u) < K|y, for all w € Id¢(U, |-|)~ and all t € T~

Let S be a lower subset of '~ and let = € [],. g #; such that a; ¢ Fy(z [ ¢(s))
forall s <tin S. Let t € T~ such that t ¢ S and ¢(t) — {t} C S. If ¢ has a lower
cover, then cardJ,_, Fi(z | ¢(s)) = card Fy(x [ ¢(t+)) < k¢, < w}. If ¢ has no lower
cover, then cardJ,_, Ft(z [ ¢(s)) <>, ,card Fy(x [ ¢(s)) < w}. In both cases, we
can extend x to S U {t} by picking z; ¢ Fi(z | ¢(s)) for all s < ¢in T.
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As T is well-founded, we can construct by induction 2 € [],c,- &; such that
xt & Fe(x | ¢(s)) for all s < ¢t in T. The map o: T — Ido(U, |-|), t — = | ¢(t) is
order-preserving, and |o(t)| = ¢t, for all t € T.

Let s<tinT. Let u € F(x [ ¢(s))N(x [ H(t)), and let C = domu. So C C ¢(t),
and u =z [ C. Let s < r < t, by construction =, ¢ F.(z | ¢(s)), sor ¢ C. Thus
C C ¢(s), and so u =« | C belongs to z [ ¢(s). O

Corollary 4.7. Let T be a well-founded tree and let k be an infinite cardinal such
that cardT < k and card(|t) < cfk for all t € T. Then there exists a tight k-
compatible norm-covering (U, |-|) of T such that cardU = k.

Proof. Put k; = K, = &, for any t € T. The assumptions of Proposition [.q are
clearly satisfied. O

5. CONDENSATES

Definition 5.1. Let I be a poset, let (U, |-|) be a norm-covering of I, and let

A = (A;, fij)i<j in 1 be a diagram of algebras of the same similarity type.

e A support Vofa € [[,cy Aju is akernel V of U such that a, = flv.u,ju|(av.u)
forall u e U.
e We put:

Condy (A, V) = {a € H Ay |V is a support of a} , Tfor any kernel V of U.
uelU

The condensate of A with respect to U is:
Cond(A4,U) = U {CondU(/T, V) |V is a kernel of U} .

e We denote by supp a the smallest support of a, and we call it the support
of a.

By Lemma @ the support of a exists, for all a € Cond(/f, U).

Lemma 5.2. With the notations of the previous definition, the following statements
hold.
(1) The set CondU(fI, V') is a subalgebra of [ ,ciy Ajul, for each kernel V of U.
(2) The containment CondU(/T, V) C CondU(/T,W) holds, for all kernels V
and W of U such that V C W.
(3) The set Cond(/f, U) is a subalgebra of [],coy Ajuj, and it is the directed
union of the algebras CondU(fI, V), with V kernel of U.
(4) The morphism my : Condy (A, V) — []
phism, for any kernel V' of U.
(5) The algebra Cond(zﬁf, U) is a directed union of finite products of the A;s.
(6) The morphism m,: Cond(f_l', U) — Ay, a— ay is onto, for all u € U.
(7) The map:

vev A, a = a IV is an isomor-

Ty Cond(ff, U) = Ay
at— f|supp(a)»u\,\u| (asupp(a)»u)

is a surjective morphism of algebras, for all u € 1ds(U,||). Furthermore
(@) = fiv.ul,ju/(@v.u), for any kernel V of U and any a € Condy (A, V).
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Proof. The statements (1), (2), and (3) are immediate. The morphism 7y in (4)
is clearly one-to-one. Let 2 € [[,cy Ajo)s PUt @y = flv.u),ju/(Tv.u), for all u € U.
Then V is a support of a, and a [ V = z. So 7y is an isomorphism. The statement
(5) follows from (4) and (3). The statement (6) follows from (4).
Now we verify (7). Let u € Ids(U,|-|). Let V be a kernel of U and let a €
Condy (A, V), then:
(@) = fisupp(a)-ul,lul (dsupp(a)u)

= fivul,lul (fisupp(a)-ul,|V-ul (@supp(a)-u))

= fivul,jul(@v.u)
This, together with (3), shows that 7, is a morphism of algebras. Let v € u such
that |v] = |u|, and let V be a kernel of U such that v € V. Then |V - u| = |ul,
and Ty fCOndU(A,V) = f\Vvu\,\u| OTy.u fCOndU(A,V) = TV.u rCOHdU(A, V) is
surjective. (I

We shall call the map m, above the canonical projection from Cond(/f, u) to

Proposition 5.3. Let V be a class of algebras closed under finite products and
under directed unions, let I be a poset, let (U,|:|) be a norm-covering of I, let
A= (Ai, fij)i<j in 1 and B = (Bi, gij)i<j in 1 be two objects of VI, and let h =
(hi)ier: A — B be an arrow of VI. Then there are morphisms of algebras:
Condy (h,V): Condy (A, V) — Condy (B,V)
(aw)uer = (Pju)(au))uer, for any kernel V. of U
and
Cond(h,U): Cond(A,U) — Cond(B,U)
(aw)uer = (Pjy|(au))uer

Moreover, Cond(—,U): VI — V is a functor.

6. LIFTINGS

In this section, let 8 be a class of (V, 0)-semilattices, closed under finite products
and directed unions, let I be a poset, let £ = (k;);cr be a family of cardinal numbers,
let (U,]-|) be a R-compatible norm-covering of I, and let V be a class of algebras of
the same similarity type.

Proposition 6.1. Let D = (D;, ¢ ;)i<;j in 1 be an object of 8T, let w € 1ds(U, |-]),
let w02 Cond(l_j, U) — Dyy be the canonical projection. Then the subset

0D = {a € Cond(D,U) | 75 (a) = 0},
is an ideal of Cond(l_j, U), and Id(ﬂ,ll?) [T@E): T@E — Id(D)y) is an isomorphism,
where we abbreviate (Id Cond(D, U)) T 02 by 160 .
Proof. The morphism p, = Id(ﬂg)) is surjective and pu(O{?) =0, SO Py [T@E’ is
surjective.

Fix v € w such that |v| = |u|. Let L,L’ € 165 such that p,(L) C pu(L'), we
must prove that L C L'. Let a € L. As w2 (a) € pu(L'), there exists a’ € L’ such
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that ﬂg(a) < ﬂg(a’). Let V be a common support of a and @’ such that v € V. So
lu| = [v| < |V -u| < |ul, and so |V - u| = |u|, and hence ¢|y .y | = id. Therefore,

ay.u = Ol jul(@vw) = T (0) <70 (0)) = G, jul (01 2) = 0 -
Put:
L= Ve Veuw o Mweu.
0 ItV-w=V-u
The set V is a support of b, and wg(b) = Qv jul (Bv.u) = 0.
Let weU. ItV -w#V -u, then ay, = by < aly Vb, V- -w=V-u,then
|lu| = |V -u| =V -w| <|w|. Thus:

Uy = O] ) (@ p) = Ol o] (D eaal, ] (@Y ) = ¢\u\,\w\(ﬂg(a/)),

and, similarly, a,, = (b‘u‘,‘w‘(wg(a)). As ﬁg(a) < ﬁg(a’), we obtain that a,, < al,.
So we have proved that a < bV a'. Asb € 0L € L’ and o’ € L', it follows that
a € L. Hence L C L, and p,, is an embedding. O

Lemma 6.2. Let (¢;)ie; = ¥: C — D be an arrow of 87, let w € 1dg(U, |]). Then:
Yy 075 = 7D 0 Cond(4,U),
and B B
1d(Cond (), U))(65) < 6, -
P’I“OOf. Let é = (Ci;'Yi,j)igj in I, let 5 = (Dia(si,j)igj in I let V be a kernel of U,
andlet a € CondU(C_”, V). By Proposition @, V is also a support of Cond(z/;, U)(a),
and
7 (Cond(¢5, U)(a)) = 8)y ) juy ((Cond (¢, U) (@) )v-)

= 0\l ju (Vv ) (V)

= Y| NVl ul (OV-u))

= Pju| (1, (a))

The containment is an obvious consequence of the equality. (]

Definition 6.3. Let D be an object of 8. An U-quasi-lifting of DinVisa pair
(r,T), where T € V and 7: Con,T — Cond(D,U) is a (V, 0)-homomorphism such
that Taw, — 102, 8+ 1d(7)(8) VAL is an isomorphism, for all u € Ide(U, |-|), where
ay = \V{B € Con.T|7(B) €0P}.

Observe that in the definition above we use the identification of ConT with the

ideal lattice of Con.T. We shall now extend Definition @ from objects of 8! to
diagrams of 87.

Definition 6.4. Let J be a category and let D: J — 8! be a functor. An U-
quasi-lifting of D in V is a pair (7,J), where J: J — V is a functor and 7 =
(77)jeobs: Congod — Cond(D(—),U) is a natural transformation, such that (77, J(5))
is a U-quasi-lifting of D(j) for all j € Ob J.

The two following lemmas are obvious.
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Lemma 6.5. Let D be an object of 8T, let T €V, and let T: Con.T — Cond(ﬁ, U)
be an isomorphism. Then (7,T) is a U-quasi-lifting of D.

Lemma 6.6. Let J be a category, let D: J — 8! be a functor, let J: J — V
be a functor, and let T = (77);eon.s: Concod — Cond(D(—),U) be a natural
isomorphism. Then (1,J) is an U-quasi-lifting of D.

The following lemma expresses a commutation property between the condensate
functor Cond and the Con. functor.

Lemma 6.7. Let A = (Ai, fij)i<j in 1 be an object of VI et D = Con. A =
(Cong A, Cone fij)i<j in 1, let Pu: Cond(g, U) — A}y be the canonical projection,
for all w € 1ds(U, ||). Put:
7: Con, Cond(A, U) — Cond(D,U)
B — ((Cone py)(B))verr
Then (T, Cond(/f, U)) is an U-quasi-lifting of D.
Proof. Denote by 7, : Cond(ﬁ, U) — D)y, the canonical projection, and put 6, =
6 for all u € 1dy(U, [[). Let 2,y € Cond(4,U) and put 8 = O¢ 4 1. (@:9)-
Then 7(8) = (©4,,,(Tu, Yu))uev- Let V be a common support of z and y. For
every u € U,
04, (Tu,Yu) = O 4, (fivul ju)(@V)s fivul ] (Yvu))
= Cone(fiv.ul,ju)(©Oay. (TVus Yvu))

So V is a support of 7(53). It follows that 7 takes, indeed, its values in Cond(ﬁ, U).
Furthermore, for z, y, V', and § as above,

Tu(7(8)) = Cone(flv.u),ju)(T(B)v-u)
= Cone(f|v.ul,lu)(OAy. (TV.as Yvu))
= 04, (Pu(®), Pu(y)),
S0 Ty 0 T = Cong py, for all u € Ids(U, |-|). B
Let u € 1ds(U, |-|) and put a,, = V{0 € ConC(Congi(A, U)) | 7(B) € 6,}. The
following equivalences hold, for every 8 € Con, Cond(A4, U):
B C ker p,, <= Con.(p)(8) =0
< muo7(8)=0
<= 7(0) € O
— [ C au,
thus v, = ker p,,. Let 7y : Taw, — 164, be the map defined by 7, (8) = (Id 7)(8) V.,

for all 8 € ConCond(A4,U) containing an,. As (Id7y)(0y) = 0, the followmg
diagram is commutative:

10w

A

TO[u T(pu) COH(A‘U‘)

As both (Idmy,) | 16, and (Conp,,) | Tay, are isomorphisms, So is T, O
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Lemma 6.8. Let J be a category, let A: J — VI be a functor, put D = Cong oA.

Let 79 : Cong(Cond(A(j),U)) — Cond(Cone(A(5)),U) be the maps defined in Lemma B.7,
for all j € J. Let 7 = (79)jeons. Then (1,Cond(A(—),U)) is a U-quasi-lifting

of D.

Proof. By Lemma p.7, (77, Cond(A(5),U)) is a U-quasi-lifting of D(3), for all j €

Ob J.
Let A(j) = (A # o )i<i’in I, for all 7 € ObJ. Let f: j — k be an arrow of J,

let A(f) = (a{)zel, 1et pk: Cond(A(k),U) —» Af“u‘ be the canonical projection, for
all w € U. Let z,y € Cond(A(j),U). Then:

Cond (Con A( ( (Oconaay),v) y)))
= Cond(ConcA(f) U)((@AJ (:cu,yu))ueU)

= (Conc(a‘fm)(@A‘jm (Zu, yu)))ueU

uelU

(€ (
= (O4s, (P (Cond(A(). U)(x)). pl (Cond(A(£). V)W)
(Coneph) (Oconacam,v ( Cond(A(f), U) (), Cond(A(), U)(»))) )
= 7 (Oconduam,v) ( Cond(A(f), U) (@), Cond(A(f), U)()) )
= 7 ( Cone (Cond(A(f), 1)) (Oconaaci).v (1))

uelU

So the following diagram is commutative:

Cond(Con. A(f),U)

Cond(Con. A(j),U) Cond(Con. A(k),U)

g E

Con, Cond(A(j),U) Cone Cond(A(/).1) Con, Cond(A(k),U)

This concludes the proof. O

Theorem 6.9. Let J be a small category, suppose that V is closed under ho-
momorphic images, and is (Ide(U, D=, J, (H‘u|)uelde(U1“|):)—deenheim—Skolem.
Let D: J — 8 be a functor, let (7,A) be a U-quasi-lifting of D in V. Let
D(j) = D7 = (Dl,¢l,) for all j € ObJ, let D(f) = &/ = (W] )ier,

i<i’ in I

for all f € Mor J. If Zj€Ochard D{ < ki, for all i € I, then there exists a lifting
in'V of the diagram D: I x J — 8, associated to D (cf. Section [).

Proof. Let 01, = 029 as defined in Proposition B.1, let af, = \/{8 € Con  A(j) |
(8) < 03}, let Th: T od, — 105, 8 — Id(17)(B) V 04, as in Definition [6.3, let
pl,: A(j) — A(j)/ad, the canonical projection, and let 7J,: Cond(D(j),U) —» D|Ju\’

the canonical projection as defined in Lemma [.4(7), for all u € Id.(U, |-|) and all
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j € ObJ. The map x4, = Con(p,) o (74) "1 o (Id(nJ,) | 164,)~! is an isomorphism.

XU

//\

(Dfy) = ——— 18, ~————1Ta, Con(A(j)/a,)

Con p?,

Moreover ZjGOchardConc(.A(j)/a{L) = ZﬁOchardeu' < Ky, for all u €

Id.(U, |-])=. So there exists a family (Bi)iee?:e‘(]U,l"): of algebras such that:

(1) The algebra Bj, is a subalgebra of A(j).

(2) The algebra BJ,/ad, belongs to V.

(3) The containment BJ, C BJ holds.

(4) The containment A(f)(B7) C BE holds.

(5) The morphism Con(g,) is an isomorphism, where ¢J,: B, /ad, — A(j)/cd,
denotes the canonical embedding.

(6) The inequality Y,cqy, s card Bl, < K|y holds.

for all w < v in Id.(U, |-|)= and for every morphism f: j — k in J. Moreover, we
can extend this family to Id(U, |-|), by Bi, = A(j), the statements (1)—(5) hold for
all u < wv in Id.(U, |-]), and for every morphism f: j — k in J.

Put:

F: Ide(Uv ||) - ‘B(U)
u U{supij(G)A(j)(:c,y)) |7 €0bJ and z,y € B}

2
3
4
5

so F(u) < kjy for all w € Ide(U,|-|)=. As (U, |-|) is K-compatible there exists an
order-preserving map o: I — Ide(U, |-|) such that:

(1) The equality |o(i)| = holds for all ¢ € T.
(2) The equality V - o(i) =V - ¢(i’) holds for any ¢ < ¢’ in I and any kernel V'
of U contained in F(o(7)).

Let i € I and j € Ob J. The map gg' = (Con(qg(i)))*l © Xo(s) is an isomorphism,
and the algebra B(i, j) = B, /o ;) € V belongs to V.

J
Xo (i)

14(D}) < 107 Con(A(j)/el, ;)

J
d(i))

TCon(qi(i) )
Con(B(i, 7))

Let i <i'in I, let j € ObJ, let z,y € B’ (i) let 8= 0.,(;(z,y). The following
equalities hold:

Con(pi(i))(ﬂ \ ai(i)) = eA(j)/a{,(i) (z/ai(i), y/ai(i))
= COH(Qi@))(@B(i,J‘) (z/ai(i) ) y/ai(i))). (6.1)
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similarly:

Con(pl ) (8) = Con(dl ) O (/b y/ad): (62)
Moreover, set V = supp(77(3)). Then V C F(o(i)), so V - o(i) =V - o(i') and so:
w2 i (™ (B)) = Ov.oin) o)) (T (B)v-o(iry) by Lemma [.(7)

= O|V.o(i),if (Tj (ﬁ)va(z‘)) as V-o(i') =V -o(i) and |o(i')| = 7'
= i © Bvo(i)i(T? (B)v.o(i)
= iir © Wi(i) (Tj (8)) by Lemma (7)
So:
1d(¢] ;1) o 1d(r, ;) o Td(r7)(8) = Td(x ) o 1d(77)(8) (6.3)

As od, = \/{B € Con. A(j) | 77(8) < 64}, we have Id(77)(ad,) < 67,. Thus:
mH(BVal)=T1d(r)(BVad) Vel =T1d(17)(B) Vv #2, forall uw € Ido(U, |-|). (6.4)
As 1d(n},)(04,) = 0, the following equation holds:

Id(7d) o2 (B V ad) = 1d(nd) o 1d(77)(B), for all u € Id.(U,|-|). (6.5)
So:
1d(¢] ;1) o 1d(m ) o 72 (BV o)) =1d(¢] ) o 1d(w] ) 0 1d(77)(B) by (BA)
= 1d( ;) o 1d(7)(5) by (B3)

and so, by (b.9), the following equality holds
1d(¢],) oTd(n) ) o7l (BV el ) =Td(xL ) o Td(7) ) (BV ;) (6.6)
thus:
zj’ o Id( fz/) © (55)71(@93(1',3‘)(%/04{,@)7y/ai(i)))
=& o Id((bgﬂ.,) o Id(ﬂi(i)) o Tg(i) o (Con(pi(i)) [Tai(i))71
° COH(Qi(i))(@B(i,j) (x/a,j,(i) ) y/a,j;(i)))
=& 01d(¢] ;) o 1d(x) ) 0 T2y (BV L)) by (B.1)
=&l oTd(nl ) o 1 (BV ol ) by (.)
= (Conqi(i,))*1 o Con(pi(i,)) o (Tg(i,))*l
o Id(wi(i/) i T@i(i,))fl o Id(wi(i/)) o Té(i/)(ﬂ Vv ai(i,))
= (Con q(i(i,))*1 o Con(pfj(i,))(ﬁ v a]a(i,))
= e‘B(ile)(x/ai'(i’)’ y/a,j;(i'))' by (@)
It follows that the following morphism is well-defined:
gl B(i.5) = B(',J)

T/t sy = T/ )
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and the following diagram is commutative:

J

. 5_,
1d(D},) —— Con(B(7', )
Id(d)z’i/)T TCon(gii,) (67)

(D7) — Con(B(i, j))

Let f: 7 — k be an arrow of J, let ¢ € I, and put u = o(i). As (T,A) is a
U-quasi-lifting of D, the following diagram is commutative:

14(DF) 22 14(Cond(D(k), U)) <271 Con(A(k))

Id(qpif)T Cond(@(f),U)T COn(.A(f))T (6.8)

Id(xd) 1d(779)
P I

1d(D?) Id(Cond(D(§),U)) «——=— Con(A(j))

Let 3 € Conc A(j) such that 77(3) € 6%. Thus «J,(77(3)) = 0, so:
0 =4/ (x, (7 (8))) = mh (7 ( Cone (A(N)(B)))
and so Con(A(f))(8) < ak. Thus:
Con(A(f)) (@) = Con(A(f))(\/{5 € Cone(A(7)) | 7/(5) € 04}) < ok

So the following morphism is well-defined:
fiz AGG) oy — Alk) /ol
x/ad, = A(f)(@)/ o,
and the following diagram is commutative:

k
9o (i)

k
Alk) 20 Ak)fak B(i, k)
A(f)T fT Tﬁr%(m (6.9)

J

. p(jr(i) . j 95 (3) ..
A(j) —— A(J)/O‘g(i) ——— B(,))
Combining the commutative diagrams (.9) and (f.10) together with the definitions

of §f and 55 , we obtain the commutativity of the following diagram:

1A(DY) — s Con(B(i, k)

1! ﬁ Tcmﬂ- 1B (0,)) (6.10)
(DY) — . Con(B(i, }))
Fori<#inTand f:j— kin J, put
Bt —i' f:j—k): B(i,5) — B, k)
wfad oy = A @) /b
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Let ¢ >4 in I and f': k — k' in J, then:

B(i' —i", ) o B(i — i, f)(xfa ;) =B

(i — " f)AS) @)/ agr))
(/A @) /b
(10 £)(@) /o

(i =", f o F)(@/al,).

Thus B: I x.J — Vis a functor. Moreover by (6.7) and (f.10) the following diagram

is commutative:

l

A
A
B

k
1d(Df) —— Con(B(i',k))
Id(¢fwi/)T TCOH(gf@,)
ex

Id(D¥) —*— Con(B(i,k))

Idwifﬁ T%n(ﬁ 1B(i.9)))
1d(D}) —*— Con(B(i,))
As fAD(z <if) = le o Q/Jf and B(i — 4, f) = gfi/ o fi, the following diagram is
commutative:
. K
D', k) —— Con(B(i', k)

Id(ﬁ(i—»i’,f))T Tcon(ﬂs(iw’,f))

~ J

(DG, j) —2— Con(B(, )

7. CRITICAL POINTS

Definition 7.1. Let V be a class of algebras of the same similarity type. The
congruence class of V is the class of all (V, 0)-semilattices S such there exists A € V
such that S isomorphic to Con. A. We denote this class by Con, V.

Definition 7.2. Let V; be a class of algebras of the same similarity type, let Vo
be a class of algebras of the same similarity type. The critical point of V1 under Vs
is:

crit(Vy; V2) = min{card D | D € Con.(V;) — Con.(V2)},

if Con, V1 € Con, Vs, otherwise we put crit(Vy;Vz) = cc.
The symmetric critical point of V1 and Vs is defined as

crit® (Vl; VQ) = min{crit(\?l; VQ), Crit(VQ; Vl)};
it is simply called critical point in [E]

The following corollary shows that, for a fixed category J and a tree T, if V;
and Vj lift the same diagrams of (V, 0)-semilattices, indexed by J, of not too large
objects, then V; and Vs lift the same diagrams of (V,0)-semilattices, indexed by
T x J, of not too large objects. The condition (1) above is automatically satisfied
if card % < k and card % < \.
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Corollary 7.3. Let 8 be the variety of all (V,0)-semilattices, let £ and L be
similarity types, let V1 be a variety of £1-algebras, let Vo be a variety of £s-
algebras, let A < k be infinite cardinals, let I be a well-founded tree, and let J be a
small category, such that:

(1) Vy is locally < k and Vy is locally < \.

(2) card Mor(J) < k.

(3) card I < k.

(4) card(li) < cfk foralliel.

(5) Every functor D: J — 8§ such that card D(j) < k for all j € ObJ, which
has a lifting in V1, has a lifting in V5.

Then every functor D: I x J — 8 such that card D(i,j) < k for all i € I and all
j € Ob J, which has a lifting in V1, has a lifting in Vs.

Proof. Let D: I x J — 8 be a functor such that cardD(i,j) < k for all i € I
and all j € ObJ, let A: I x J — V; be a lifting of D, denote by « ; the identity
congruence of A(i,j), for all ¢ € I and all j € ObJ. By using Lemma @ we can

assume that:
card A(i,j) < K+ Z Z Z card D(7', ') < K

i/<ij'€Ob.J f: j'—j

Moreover by Corollary @ there exists a tight k-compatible norm-covering (U, |-|)

of I such that cardU < k. As seen in Section E the functor A corresponds to
a functor A: J — VI and the functor D corresponds to a functor D:J — 8.

Lemma p.§ implies that there exists 7 = (77);ecob s such that (7, Cond(A(—),U))
is a U-quasi-lifting of @, and:

cardCond(A(j),U) < Y card [[ A(ul.j) < > w<s,

VelU]<w ueV VelU]<w

for all j € ObJ. So there exists a lifting of Conc Cond(.A( ),U)) in V3, and
so there exists a U-quasi-lifting B: J — V5 of D in V5. By Lemma @ Vo is
(Ide (U, |-))=, J, (K)uerd.(,-)= )-Lowenheim-Skolem, so, by Theorem @ D has a
lifting in Vs. (]

Using a simple induction argument, we obtain the following corollary.

Corollary 7.4. Let 8 be the variety of all (V,0)-semilattices, let £ and L be
similarity types, let V1 be a variety of £1-algebras, let Vo be a wvariety of Lo-
algebras, let k be an infinite cardinal, let I, I, ..., I, be well-founded trees, and
let J be a category, such that:

(1) Vy is locally < k™ and Vo is locally < k.

(2) cardI; + card Iy + - - - + card [,,_1 + card Mor J < k.

(3) card I, < k™.

(4) card i < k for each i € I,,.

(5) BEwvery diagram of (V,0)-semilattices D: J — 8, such that card D(j) < ™",

which has a lifting in V1 has a lifting in V.

Then every diagram of (V,0)-semilattices D: Iy x Iy X -+ X I, x J — §, such that
card D(i1,42,...,in,J) < K for all (i1,i2,...,0n,J) € [1 x I3 X -+ - x I;, x Ob J, which
has a lifting in V1 has a lifting in Vs.
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The following corollary is similar to Corollary E It shows that with finitely
generated congruence-distributive varieties of algebras we can go one step further.

Corollary 7.5. Let 8 be the variety of all (V,0)-semilattices, let £ and L be
similarity types, let V1 be a variety of £1-algebras, let Vo be a finitely generated
congruence-distributive variety of Z»-algebras, let I be a lower finite tree, and let J
be a finite poset, such that:

(1) Vy is locally < Ry.

(2) card I < N.

(3) Every functor D: J — 8 such that card D(j) < g for all j € J, which has

a lifting in V1 has a lifting in V3.

Then every functor D: I x J — 8, such that D(i,7) is finite for all (i,5) € I x J,
which has a lifting in V1 has a lifting in V,.

Proof. Let D: I x JJ — § be a functor such that D(i, j) is finite for all (i,5) € I x J.
Let A: I x J — V; be a lifting of D. Denote by «; ; the identity congruence of
A(i,7), for all (i,5) € I x J. By using Lemma @, we can assume that:

card A(i, ) <Ro+ Y ¥ cardD(,j') < Rg
i <ij'<j
Moreover, by Corollary @, there exists a tight Ng-compatible norm-covering
(U, |-]) of I such that cardU < Rg. The functor A corresponds to a functor A: .J —
VI and the functor D corresponds to a functor D:J — VL. Lemma @ implies
that there exists 7 = (TjeJ) such that (7, Cond(A(—),U)) is a U-quasi-lifting of D,
and:

card Cond(A(j),U) < Z card H A(ul, j) < Z Ng = N, for all j € J.

VelU]<w ueV Velul<e
Lemma B.9 shows that Vs is (Ide(U, |-|)=, J, Ro)-Léwenheim-Skolem. By Theo-
rem f.9d, D has a lifting in Vs. O

Combining Corollary B and Corollary E gives us the following corollary. This
result is similar to Corollary @, but it involves diagrams of finite (V,0)-semilat-
tices. This makes it possible to give a bound on the critical point, in case we can
find a finite diagram of finite (V, 0)-semilattices, indexed by some Boolean algebra,
with a lifting in the first variety but with no lifting in the second one.

Corollary 7.6. Let 8 be the variety of all (V,0)-semilattices, let £ and L be
similarity types, let V1 be a variety of £ -algebras locally < Vg, let Vo be a finitely
generated congruence-distributive variety of Zs-algebras, and let Iy, 1o, ..., I, be
finite trees, let I,+1 be a lower finite countable tree. If crit(V1;Vsa) > N, then
every functor D: Iy X Iy X -+ X I41 — 8 such that D(iy,ia, ..., int1) is finite for
all (i1,42, ... int1) € It X Iy X -+« X Iny1, which has a lifting in V1, has a lifting
m VQ.

The following corollary is a variant of Corollary @ that involves a class of (V, 0)-
semilattices and a variety of algebras.

Corollary 7.7. Let 8 be a class of (V,0)-semilattices (resp., (V,0,1)-semilattices)
closed under finite products and directed unions (resp., directed unions preserving
0 and 1), let &£ be a similarity type, let V be a variety of £ -algebras, let A < k be
infinite cardinals, let I be a well-founded tree, and let J be a category, such that:
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) A+ card Mor(J) < k.

) card I < k.

) card(|i) < cfk for alli e I.

) Every diagram of (V,0)-semilattices (resp., (V, 0, 1)-semilattices) D: J — §
such that card D(j) < k for all j € Ob J, has a lifting in V.

Then every functor D: I x J — 8 such that card D(i,j) < & for all i € I and all

j € ObJ, has a lifting in V.

(1
(2
(3
(4

Proof. By Corollary @ there exists a tight x-compatible norm-covering (U, |-|) of T
such that cardU < k. Let D: I x J — 8 be a diagram of (V,0)-semilattices (resp.,
(V,0,1)-semilattices) such that card D(i,j) < k for all i € I and all j € ObJ. This

functor corresponds to a functor D: J — §!. But:

card Cond(D(j),U) < Z cardHD(|u|,j)§ Z Kk < K,

VeUul<w ueV Velul<e

for all j € Ob.J. Moreover Cond(D(—),U) is a diagram of (V, 0)-semilattices (resp.,
(Vv,0,1)-semilattices) of 8. So Cond(@(f),U) has a lifting A: J — V, and, by
Lemma @, A:J — Vis a U-quasi-lifting of D. Moreover, by Lemma 3.7, V is
(Ide (U, |-)=, J, (K)uerd.(,-))= )-Lowenheim-Skolem. Hence, by Theorem 5.9, D has

a lifting in V. O
By an easy induction argument we obtain the following:

Corollary 7.8. Let 8 be a class of (V,0)-semilattices (resp., (V,0,1)-semilattices)
closed under finite products and directed unions (resp., directed unions preserving
0 and 1), let £ be a similarity type, let V be a variety of £ -algebras, let k be an
infinite cardinal, let Iy, 1o, ..., I, be well-founded trees, and let J be a category,
such that:

1) V is locally < k.
2) card Iy + card Iy + - - - + card I,,_1 + card Mor J < &.
) card I, < kT.

) card |i < k for each i € I,.

) Every diagram of (V,0)-semilattices (resp., (V,0,1)-semilattices) D: J —
8, such that card D(j) < k™", has a lifting in V.

Then every diagram of (V,0)-semilattices (resp., (V,0,1)-semilattices) D: I X I X
<o X In x J — 8, such that card D(i1,42,...,in,7) < Kk for all (i1,i2,...,in,]) €
I x Iy x --- x I, x ObJ, has a lifting in V.

(
(
(
(
(

Corollary 7.9. Let 8 be a class of (V,0)-semilattices (resp., (V,0,1)-semilattices)
closed under finite products and directed unions (resp., directed unions preserving
0, and 1), let £ be a similarity type, let V be a variety of £-algebras. If every
S € 8 has a lifting in V, then every diagram of (V,0)-semilattices (resp., (V,0,1)-
semilattices) of 8, indexed by a finite product of well-founded trees, has a lifting
in V.

Using the result of Lampe in [ﬂ], that is, every (V, 0, 1)-semilattice is the compact
congruence semilattice of a groupoid, we obtain a generalization of his result of
simultaneous representation in [E], to all diagrams of (V, 0, 1)-semilattices indexed
by a finite poset.
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Corollary 7.10. Let 8§ be the category of all (V,0,1)-semilattices with (V,0,1)-
homomorphisms, let I be a finite poset. Then every diagram D: I — § has a lifting
in the variety of all groupoids.

Proof. We denote by V the variety of all groupoids. Remember that V has all small
colimits (cf. Section E) For I = 2", for a positive integer n, the result follows from
Corollary @ Now let I be an arbitrary finite poset and let D: I — 8 be a diagram
of (V,0,1)-semilattices. Put Sx = lim(D | X) = lim, D(i), for each X € P(I).
Let sxy: Sx — Sy be the canonical morphism, for all X CY C I. Then

D' P(I) — 8
X — Sx, for all X € PB(I)
(XCY)— sxy, foral X CY CIT

is a functor. As PB(I) =2 27, there exists a lifting A’: B(I) — V of D’. Moreover, as
Slli = D(l) and Syy; 1) = 'D(’L < j) for all ¢ < j in I, the functor

A: T -V
i— A(I 1), forallie I
(<j)—ATLiCT]j), forall i < j el
is a lifting of D. O

In particular, consider the diagram denoted by D, in [E] This diagram is a
diagram of finite Boolean semilattices and (V, 0, 1)-embeddings; it is indexed by
the bounded poset with atoms a; and coatoms b;, for i < 3, and a; < b; for all
1,7 < 3. It is proved in [E] that this diagram does not have any congruence-lifting
in any variety of algebras satisfying a nontrivial congruence lattice identity. It was
not known at that time whether Dy was congruence-liftable by groupoids. So, by
Corollary , this is the case.

Define a quasi-partition of a set X as a family (Y )rex of subsets of X such that
X =Upex Yr and Y, NY; = 0 for all k # 1 in K (we do not require the Y;s to be
nonempty).

The following result is a compactness-type property for liftings of diagrams.

Theorem 7.11. Let 8 be the class of all distributive (V,0)-semilattices, let V be
a finitely generated congruence-distributive variety of algebras, let J be a small
category, such that there are at most finitely many arrows between any two objects,
let D: J — 8 be a functor such that D(j) is finite for all j € J. If every finite
subdiagram of D has a lifting in 'V, then D has a lifting in V.

Proof. Let (K;);jcs be a family of finite subsets of V such that if Con. A is isomor-
phic to D(j), for some A € V and j € Ob.J, then A is isomorphic to an element
of Kj .

For every finite subset I of Ob.J, we denote by I the full subcategory of J with
class of objects I. Let A;: I — V be a functor and let &7 = (€)icobr: Cong oA —
D | I be a natural isomorphism. We can assume that A;(i) € K; for all ¢ € I.

Put Qs = {P € [ObJ]<¥ | S C P}, and denote by § the filter on [Ob J]<¥
generated by {Qgs | S € [ObJ]<¥}. As Qs, N Qs, = Qs,us, for all 57,55 €
[Ob J]<“, the filter § is proper, so there exists an ultrafilter 4 such that § C .
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Let j € ObJ. The family ({P € Q;y | Ap(j) = A})ack; is a finite quasi-
partition of Q(;y, so there exists a unique A; € Kj such that R; = {P € Q;; |
Ap(j) = A;} belongs to 4.

Let f: i — j be an arrow of .J. The family ({P € RiNR; | Ap(f) = 8})s: A,—4;
is a finite quasi-partition of R; N R; € Y, so there exists a unique sf: A; — A; such
that Sy ={P € RiNR; | Ap(f) = s¢} belongs to 4L

Let ¢ € ObJ, let P € Siq,, so .AP(Z) = A, and id4, = idAp(i) = .Ap(idi) = Sid;-
Let f:4 — j and g: j — k be two arrows of J, let P € SN Sy N Sgef. So
.AP(’L) = Ai, .Ap(j) = Aj, and .Ap(k/’) = Ak Moreover:

sgosp=Ap(g)oAp(f) =Ap(fog) = sgos.

Thus we obtain a functor:

A:J -7V
1= A; for all i € ObJ
frsy for all f € Mor J

For each j € Ob J, the family ({P € R; | & = ?})¢: Cone A(j)—D(;) is a finite
quasi-partition of Rj, so there exists a unique ¢;: Conc A(j) — D(j) such that the
set T; = {P € R, | £ = ¢;} belongs to 4l

Let f: i — j be an arrow of J, let P € Sy N'T; NT;. So the following equalities
hold:

¢; © Cone A(f) = &p o Conc Ap(f) = D(f) o &p = D(f) o ¢,
and so (¢;)jeobs: ConcoA — D is a natural isomorphism. Thus D has a lifting
in V. 1

The following corollary gives us, in particular, a characterization of all pairs of
finitely generated congruence-distributive varieties with uncountable critical point.

Corollary 7.12. Let V1 be a locally finite variety, let Vo be a finitely generated
congruence-distributive variety. Then the following statements are equivalent:
(1) crit(Vy;Va) > No.
(2) Every diagram of finite (V,0)-semilattices indexed by a tree which has a
lifting in V1 has a lifting in Vs.
(3) Every diagram of finite (V,0)-semilattices indexed by a finite chain which
has a lifting in V1 has a lifting in V.

Proof. If (1) holds, then by Corollary E every diagram of finite (V,0)-semilattices
indexed by a finite tree which has a lifting in V; has a lifting in V5. Thus, by
Theorem .11}, the statement (2) holds.

Now assume that (3) holds. By Theorem [7.11], every diagram of finite (V,0)-
semilattices indexed by w which has a lifting in V; has a lifting in V5. Let D be a
countable distributive (V,0)-semilattice. Let A € V; such that Con. A = D. Using
Lemma B.6 we can assume that A is countable. So we can write A = Unco Ans
where each A, is a finite subalgebra of A, and A4,, C A, for all m < n in w.
Denote by fimn: Am — A, the inclusion map, for all m < n in w. Put A =
((An)new; (fmn)m<new)- So we get a diagram B = ((Bn)new; (gmn)m<new) in Vo
together with a natural isomorphism &: Con, oA — Con, oB. Hence, as the Con,
functor preserves direct limits,

Conc A = Cone(lim A) = lim(Cone 0A) = lim(Con, 0B) = Con,(lim B). O
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Corollary 7.13. Let Vy be a locally finite variety, let Vo be a finitely generated
congruence-distributive variety. Then the following statements are equivalent:
(1) crit(Vl;Vg) Z NW.
(2) Every diagram of finite (V,0)-semilattices indexed by {0,1}", for a natural
number n, which has a lifting in V1 has a lifting in Vs.
(3) Every diagram of finite (V,0)-semilattices indexed by a finite (V,0)-semi-
lattice which has a lifting in V1 has a lifting in V.
(4) Every diagram of finite (V,0)-semilattices indexed by a (V,0)-semilattice
which has a lifting in V1 has a lifting in Vs.
(5) Every diagram of (V,0)-semilattices indexed by a (V,0)-semilattice which
has a lifting in V1 has a lifting in V.
(6) crit(Vq;Va) = oo, that is, Con. "V, C Con. Vs.

Proof. By Corollary [f.6, the statement (1) = (2) holds. By Theorem [.11], the
statement (3) = (4) holds. The statements (5) = (6) and (6) = (1) are
obvious. Denote by 8 the class of all distributive (V,0)-semilattices. Now assume
that (2) holds. Let L be a finite (V,0)-semilattice, let D be a diagram of finite
(V, 0)-semilattices indexed by L, let A: L — V; be a lifting of D. Put:

D' P(L) — 8
X - D(\/ X)
xXcye=o\/x<\/Y)
This is a functor. Moreover, the functor A’: PB(L) — V; defined by
X —A(\/ X)
xcye—A\/x<\/Y)
is a lifting of D’. So, by (2), there exists a lifting B': P(L) — V3 of D’. Moreover:

BZL—)’VQ
x— B'(L]x) forallz € L
(z<y)—B(LlxCL|y) forallz <yeL

is a lifting of D. This completes the proof of (3).
Now assume (4). Let L be a (V,0)-semilattice, let D: L — § be a functor, let
A: L — Vy be a lifting of D. Fix a € A(0). Let:

G ={(Qz)zer | Q. is a finite subalgebra of A(z), for all 2 € L,

Az <y)(Qz) CQy, forallz <y e L,and a € Qo}
partially ordered by (Q.)zer, < (Q))zer if @, C Q) for all x € L. The subalgebra
(A0 < z)(a))a(z) of A(z) generated by A(0 < x)(a) is finitely generated, thus
finite (because V; is locally finite). Thus G is a (V,0)-semilattice with smallest

element ((A(0 < z)(a))a())
Let:

zeLl’

.A/Z GxL— Vl
(Q,2) = Qq
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Consider A’: I — V$ as defined in Section E Then:

lim A’ (x = |J AQ2) =A(z), forallzelL
QeG

hmA (x <y)= U.A (Q,x) <(Q,y)=A(x <y), forallz<yelL
QeG

As Con. A’ has a lifting in V1, it has also a lifting B': G x L in V,. Let
B:]gnofﬁl:L—)VQ.
As Con, preserves direct limits, the following natural isomorphisms hold:
D = Con. oA
=~ Con, o lim oA
—
2 lim o Con. oA’
—
2 Jim o Cong 0B’
—

=~ Con, o lim oB’

=~ Con, oB. O

Corollary 7.14. Let Vi be a locally finite variety, let Vo be a finitely generated
congruence-distributive variety. Then exactly one of the following statements holds:
(1) crit(Vq;Va) is finite.
(2) crit(Vq;Va) = N, for some natural number n.
(3) crit(Vy;Va) = oo, that is, Con. "V, C Con. Vs.

8. A PAIR OF VARIETIES WITH CRITICAL POINT N

Lemma 8.1. Let A be a finite algebra with Con A distributive, let o € Con A, and
put @ = {6 € M(ConA) | a« £ 8}. If all A/O, for 0 € Q, are simple, then the
canonical map Con A — Con(A/a) x [[pcq Con(A/0) is an isomorphism.

Proof. As Con(A/¢) =2 1€, for all £ € Con A, it suffices to prove that the map
ji ConA — (Ta) x [[peq(10), & — (€ V a,(§V 0)seq) is an isomorphism. If
a A A\Q # 0, then there exists § € M(Con A) such that a A AQ £ 6, thus o £ 6
(thus 8 € Q) and A Q £ 6, a contradiction; whence « A A Q = 0. By using the
distributivity of Con A, it follows that j is one-to-one.

We now prove that j is surjective. Let 0 € Ta, let v9 € 16 for all § € Q. Put
5:5/\/\966279' We have oV = and a VO = A x A for all § € Q, so:

Eva=BA Nvwva=BVa)a N(eva)=8r \(AxA) =3
0eqQ heqQ 0eqQ
With a similar argument we obtain £ V 8 = vy for all § € @, thus j is surjective.
Therefore, j is an isomorphism. (]

We say that a class V of algebras of the same similarity type is finitely semisimple,
if every finite subdirectly irreducible member of V is simple. An important example
of a finitely semisimple variety is the variety of all modular lattices.



28 P. GILLIBERT

Lemma 8.2. Let Vi and Vs be congruence-distributive varieties of algebras of the
same similarity type, with V1 finitely semisimple. We further assume that for every
finite non-simple algebra A € V1, if A embeds into a simple algebra of V1, then A
embeds into a simple algebra of V.

Let f: A — A’ be a morphism between finite algebras of V1. We denote by «
(resp., o) the smallest congruence of A (resp., A’) such that A/a € Vo (resp.,
A'/a! € V), with canonical projection mo: A— Aja (resp., wl,: A" — A'/d'). Let
B € Vy, let p: B— A/« be a surjective morphism, and let £: Con. A — Con. B
be an isomorphism such that (Conep) o £ = Cone . Then there are B’ € Vs, a
morphism g: B — B’, a surjective morphism p': B' — A'/d/, and an isomorphism
£ Con. A’ — Con, B’, such that the following diagram is commutative:

Con. A _ GoneS Cong A’
CV w/
Conc(4/a) ¢ =g Conc(A'/a)

k c %:
one g

Con. B—— Con. B’

If there is at least one simple algebra in Vs, then ConeoA has a lifting in Vo,
for every diagram A: w — V1 of finite algebras,
Moreover, if V1 is locally finite, then crit(Vq;Va) > Ny.

Proof. We denote by mg: A— A/ (resp., my: A’ — A’/6) the canonical projection
for each § € Con A (resp., § € ConA’). The algebra A/f~'(a’) is isomorphic
to a subalgebra of A’/a’ € Vo, thus A/f~1(a’) € Vi, so f~ (') D «a, and so
Conc(f)(a) C o, thus the morphism go: A/a — A'/d/, x/a — f(x)/a’ is well-
defined, and the following diagram is commutative:

f

A ——— A

Ala —22 Ao/
Put hy = go 0D
Put Q = {0 € M(Con A") | A’/ & V5}. For each 6 € Q, the algebra A/f~1(0) is
isomorphic to a subalgebra of A’/# which is a simple algebra of V;. If A/f~1(0) is
not simple, then A/f~1(0) € Vg, and A/f~1(0) is a subalgebra of a simple algebra
of V5. So one of the following statements holds:

(1) The algebra A/f~1(6) is a subalgebra of a simple algebra in V.
(2) The algebra A/f~1(6) is simple and is not in Vs.

If A/f~Y(0) & Va, let By = B/&(f71(0)), which is a simple algebra, and let
he: B — By be the canonical projection. If A/f~1(f) € Va, then there are a
simple algebra By € Vs and an embedding g9 = A/f~1(0) — By. Moreover, as
A/f71(0) € Vq, the containment f~1(6) 2 « holds. Denote by pp: A/a—A/f~1(0)
the canonical projection. Put hg = gg o pg o p.

Let ¢g: Cong(A’'/0) — Cone By be the only possible isomorphism, put &, =
¢g o Cone my, for all € Q. Let £, = Con, 7l,,.
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The algebra B’ = A’/a’ x [[ycq Bo belongs to Vs. Define

g: B— B
z = (ha(2), (he(2))ocq)-

Observe that as Con B' & Con(4’/a’) x [[pco Con(By) is finite, every congruence
of B’ is compact, so Con. B’ = Con B’, thus we can define a map

¢ Con. A’ — Con. B
z i o(x) x [] Gl
0eQ

By Lemma .1, the canonical map 1: Con. A’ — Con.(A’/a’) x [Ipeg Conc(A'/0)
is an isomorphism, the map idcon, (4 /ar) X HeeQ ¢¢ is also an isomorphism, so the
map & = (idcon, (A7 /a) X HeeQ ¢g) 01 is an isomorphism.

Denote by p': B’ — A’/a’ the canonical projection and by pj: B’ — By the
canonical projection, for all 8 € Q.

The equality (Concp’) o &' = ¢!, is obvious. Moreover p’ o g = g4 0 p, so the
following equalities hold:

(Cong p') o (Cone g) 0 & = (Cone go) 0 (Cone p) o & = (Cone go) 0 Cone my.  (8.1)
AS go 0 T = 7, 0 f we obtain
(Cone p') o (Cone g) 0 § = (Cone ) o Con f = (Concp') 0 &’ o Con, f.
Let 6 € Q, then the following equalities hold:
(Con, pj) 0 & o (Cone f) = & o (Cone f) = ¢y o (Cone ) o (Cong f).

Assume that A/f~1(0) € Va. Let 8 € Con, A, then the following equivalences
hold:

((Con pp) 0 ' o (Cone f))(B) = 0 <= Cong(my o f)(8) =0
= BCfH0)
—£(B) CE(719)
<= (Conc hg)(£(B)) =0
<= ((Con, pp) o (Cone g) 0 &)(B) = 0.

Therefore, as By is simple, we obtain

(Cone py) 0 & o (Con, f) = (Cone py) o (Cone g) o &,
for all § € Q such that A/f~1(0) & V. (8.2)

Assume that A/f~1(0) € V5. The following equalities hold:
(CODC p‘IQ) °© (CODC g) 0 = (COHC h@) §

= (Conc 99) (CODC Do) (CODC p)oé
= (Con, gp) o (Cong pp) o (Cone 7,)
= (Conc gg) o (CODC 7Tf 1(9))
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Let 8 € Con. A, the following equivalences hold:

(Concpy) o (Cone g) 0 £(8) =0
<= (Conc gg) o (Cone mp-1(9)) () =0
= (Cone ms-1(9))(B) =0 as gp is one-to-one
= pBC fH0)
<= Conc(my o f)(B) =0
<= (Concpp) 0 &' o (Con f)(3) = 0.
Therefore, as By is simple,
(Cone py) 0 & o (Cone f) = (Cone py) o (Cone g) o &,
for all § € Q such that A/f~1(0) € V. (8.3)
As Con, B’ — Conc(A/a’) x [[4q Cone Be, by B, (B.9), and (B-3) the following
diagram is commutative:

Con¢ A Cone 7, Con. A’

I
Con, B Coneg, Con. B’

Let S be a simple algebra in Vs, let A: w — Vi be a diagram of finite al-
gebras, let «, be the smallest congruence of A(n) such that A(n)/a, € Va, let
7y A(n) — A(n)/0 be the canonical projection, for all § € ConA(n). Let Q,, =
{60 € M(Conc A(n)) | A(n)/0 & Va}, for all n € w. Let ¢g: Conc(A(0)/0) — S
be the only possible isomorphism. Let &, = Concm), , let & = ¢g o Conemy, for
all € Qo. Put By = (A(0)/ag) x S, let po: By — A(0)/a be the canonical
projection. By Lemma B.1|, the morphism

&: Cong A(0) — Con. By
z = &ao(@) X ] Go()

0€Qo

is an isomorphism. Moreover (Congpg) o & = &u, = Cone ﬂ'go. Thus, applying

by induction the first part of the lemma, we construct a family (By,)necw of al-
gebras of Vi, a family (g,: B, — Bpt1)new of homomorphisms, and a family
(&n: Conc A(n) — Bp)new of isomorphisms such that the following diagram is
commutative:

Cone A(n<n+1
Cone A(n) one Alnsntl) Conc A(n +1) (8.4)
gnl lgn,+1
Con, B, Cong By 41
Conc gn
Then the functor
B:w—Vy
n— B,

(n<m)+— gm—10gm—20---0gy
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is a lifting of Cong oA in V.

Now assume that V; is locally finite. Let A € V; such that Con, A is countable.
Taking a sublattice, we can assume that A is countable (cf. Lemma @) and so it
is the direct limit of a diagram A: w — V; of finite algebras. So Con.oA has a
lifting in Vs, thus, as Con, preserves direct limits, Con. A has a lifting in V5. So
crit(\?l;\?g) > Np. O

Remark 8.3. Let f: K — L be a one-to-one morphism of finite modular lattices,
such that K and L have the same length; then Con, f is surjective.

Corollary 8.4. Let V1 be the variety generated by Ty, let Vo be the variety generated
by To, T3, and Ty, where Ty, T, T3, and Ty are the lattices in Figure m Then
crit(V1; Vo) = Ny, This result extends to the corresponding varieties of bounded
lattices (resp., lattices with zero).

Observe that the varieties V1 and Vs are self-dual.

FI1GUrRE 1. The lattices T1, T, T3, and Ty.

P

Proof. The lattice T} is generated by a1, a2, as, a4, a5, and ag which are all doubly
irreducible. So the maximal sublattices of T} are Th —{ay}, forall 1 < k < 6. As all




32 P. GILLIBERT
these lattices are isomorphic to either T5, T3, or T, the assumptions of Lemma E

are satisfied, thus crit(Vy;Va) > Ry.
Put DO = 24, D1 = D2 = 22, Dg = 2. Put:

¢12 D0—>D1
(a,8,7,6) — (aV 3,7 V)

¢2: Dy — Dy
(o, 3,7,0) = (a V6,8V 7)

: 22 — Dy
() —avp

Let D be the following commutative diagram:

/\
\/

Put Sl = T1 - {0,2,(13}, and SQ = T1 — {(15,(16}. Then Sl and SQ are sublattices
Ole; put SO = Sl ﬁSQ. Let 7:12 SO — Sl, 7:22 SO — SQ, jli Sl — T1, j2: SQ — T1
be the respective inclusion mappings. Then the following diagram is a lifting of D

/\
\/

Assume that D has a lifting in Vs:

/\
\/

Moreover let (£: Dy, — Con By)o<k<s be the corresponding isomorphism of dia-
grams. The (V,0)-homomorphisms ¢1, ¢2, and ¢ separate 0, thus f1, f2,91, and go
are one-to-one, and so we can assume that they are inclusion maps of sublattices.
The lattice B3 is simple, hence Bs is of length at most four. As Con. By = 24,
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FiGURE 2. The lattices Sy, S1, and Ss.

e

s

all lattices By, B1, B2, and Bs have length four. As T, T3, Ty, Ty — {a4} are, up to
isomorphism, all simple lattices of V5 of length four, we can assume, by taking a
larger lattice, that Bs € {T»,T5,T4}. Let i € {1,2}. If K is a sublattice of length
four of Bz such that B; C K C Bz and Con. K =2 22, by Remark the map
Conc s: Con. B; — Con. K is surjective, where s: B; — K denotes the inclusion
map. Hence Con, s is an isomorphism. So, taking larger lattices, we can also as-
sume that By and By are maximal for containment, among sublattices of Bs, with
respect to the property of having a congruence lattice isomorphic to 22 (x).

Let h: By — B1NBs, k1: BiNBy — By, and ko: BN By — Bs be the respective
inclusion maps. Let 81 = £ (1,0,0,0), 02 = £,(0,1,0,0), 035 = £(0,0,1,0), and
04 = £0(0,0,0,1). So the following equalities hold:

(Con f1)(61) = (Con f1)(&(1,0,0,0)) = &1(¢1(1,0,0,0) §1(1,0).

)=
Similarly, (COIlfl)(og) = (COIlfl)(94) = 51(0,1), SO (Confl)(t?l) g (COIlfl)(eg)
and (Con f1)(01) £ (Con f1)(04), but f1 = k1 oh, so (Conh)(f;) £ (Conh)(f3) and
(Conh)(01) £ (Conh)(fs). Moreover (Con f2)(61) = &1(1,0) and (Con f2)(02) =
£1(0,1), so (Conh)(61) £ (Conh)(6z). Similarly, (Conh)(6;) £ (Conh)(d;), for all
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i# jin {1,2,3,4}, and so Con(B; N B2) has a four-element antichain. As By N By
modular lattice of length four, Con(B; N By) = 2%.

The equalities (Con f1)(£0(0,0,1,1)) = &1(¢1((0,0,1,1))) = &1(0,1) hold, so we
get an embedding By /&0(0,0,1,1) — B1/£(0,1), but Con(Bg/&y(0,0,1,1)) =2 22,
so B1/£1(0,1) is a lattice of length at least two. Similarly, B;/&1(1,0) is a lattice
of length at least two. So all subdirectly irreducible quotients of B; have length
at least two. The same holds for By. Thus neither B; nor By have any quotient
isomorphic to 2 (k).

Assume that Bs = Ty. As T5 is generated by ay, as, as, ag, and ag, which are all
doubly irreducible, the maximal sublattices of T» are To —{ay}, for k € {1,2,3,4,6},
all these lattices have a congruence lattice isomorphic to 22. Thus the maximal sub-
lattices of Ty with respect to the property of having a congruence lattice isomorphic
to 2% are Ty — {ax}, for k € {1,2,3,4,6}. But T5 — {ax} has a quotient isomor-
phic to 2, for all k € {1,2,3,4}. So by (%) and (xx), By = By = T» — {ag}, thus
24 > Con(B; N By) = 22, So Bz # Ts. Using a dual argument we get Bz # T5.

Assume that By = T,. The maximal sublattices of T, with respect to the
property of having a congruence lattice isomorphic to 22 are Ty — {ax}, for all
k € {1,2,5,6}, the lattice Ty — {a4, 1}, and the lattice Ty — {aq,t2}. Moreover
Ty —{as}, Ty —{ag}, Ty — {aq, t1} and Ty — {ay4, t2} all have a quotient isomorphic
to 2, thus, by (%) and (*x) both B; and By belong to {Ty — {a1}, Ty — {az2}}. But
Con( 4 —{a1}) = Con(Ty — {az}) = Con(Ty — {ay,a2}) = 22 which leads to a
contradiction. Thus D has no lifting in V5. Thus it follows from Corollary E that
crit(Vy; Vo) < Ny.

All morphisms in this proof preserve 0 and 1, so

erit(V]5 Vo) = crit(VY; V9) erit(V)s Vo) = Ny,

where Vo’l (resp., V 1) denotes the variety of bounded lattices generated by T}
(resp., T, T5 and T4) and similarly for V¢, and so on. O

9. CONCLUSION

Many of the results in this paper can be formulated in purely categorical terms,
thus considerably expanding their range of application, at the expense of a notice-
ably heavier preparatory work. Furthermore, for a given poset I, the existence of
a norm-covering of I with properties enabling such categorical extensions gives rise
to interesting combinatorial problems. These developments will be presented in a
further paper.

The cardinals N, i, and Ny are critical points of some pairs of varieties of
lattices, but we do not know whether there exist two finitely generated varieties of
lattices with critical point Ns.
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