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Normal domains with monomial presentations

Isabel Goffa, Eric Jespers, Jan Okniński

Abstract

Let A be a finitely generated commutative algebra over a field K with
a presentation A = K〈X1, . . . , Xn | R〉, where R is a set of monomial
relations in the generators X1, . . . , Xn. So A = K[S], the semigroup
algebra of the monoid S = 〈X1, . . . , Xn | R〉. We characterize, purely in
terms of the defining relations, when A is an integrally closed domain,
provided R contains at most two relations. Also the class group of such
algebras A is calculated.

Mathematics Subject Classification 2000: primary 16S36, 13B22; secondary
14M25, 16H05, 13C20, 20M14
keywords: normal domain, class group, finitely presented algebra, semigroup
algebra, commutative semigroup, normal semigroup

1 Introduction

Normal Noetherian domains, also called integrally closed Noetherian domains,
are of fundamental importance in several areas of mathematics. In the literature
one can find several concrete constructions of such rings that are algebras over
a field K and that have a presentation in which the relations are of monomial
type. Such algebras are commutative semigroup algebras K[S] of a finitely
generated abelian and cancellative monoid S (that is, S is a submonoid of a
finitely generated abelian group G). Within the context of commutative ring
theory, these algebras received a lot of attention (see for example [2, 9]). We
recall some well known facts. First, a commutative semigroup algebra K[S] of
a monoid S is Noetherian if and only if S is finitely generated. In this case
K[S] also is finitely presented. Second, K[S] is a domain if and only if S is
a submonoid of a torsion free abelian group. Recall that an affine semigroup
S is a finitely generated submonoid of a free abelian group. If, moreover, the
unit groups U(S) is trivial, that is U(S) = {1}, then S is said to be positive.
Third (see [2, Proposition 6.1.4] or [17, Proposition 13.5]), if M is an affine
monoid then K[M ] is normal if and only if M is normal (i.e. if g ∈ MM−1, the
group of fractions of M , and gn ∈ M for some n ≥ 1 then g ∈ M). Moreover,
such monoids M are precisely the monoids of the form U × M ′, where U is
a finitely generated free abelian group and M ′ is a positive monoid so that
M ′ = (M ′)(M ′)−1 ∩ F+, with F+ the positive cone of a free abelian group
F . Note that if M is positive and of rank n, that is MM−1 is a group of
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torsion free rank n, then M is isomorphic to a submonoid of Nn, a free abelian
monoid of rank n. So, normality of K[S] is a homogeneous property, i.e., a
condition on the monoid S. This was one of the motivating reasons for these
investigations. Furthermore, it is well known that cl(K[S]), the class group of
K[S], is naturally isomorphic with cl(S), the class group of S (see for example
[1, Theorem 2.3.1]). As an application one obtains much easier calculations
for the class group of several classical examples of Noetherian normal domains.
So the study of normal positive monoids is relevant in the context of number
theory. Another reason for their importance is their connection to geometry,
especially in the context of toric varieties and convex polytopes (see for example
[1, 13, 17, 18] for an extensive bibliography of the subject, its computational
aspects and applications to other fields).

The study of the above problems is also crucial in a noncommutative setting.
Indeed, noncommutative maximal orders of the form K[S], with S a cancella-
tive nonabelian monoid, appear in the search of set-theoretical solutions of the
quantum Yang-Baxter equation. Gateva-Ivanova and Van den Bergh [8] and
Etingof, Schedler and Soloviev in [6] showed that such solutions are determined
by monoids M of I-type. In [10] this was extended to the larger class of monoids
of IG-type. Such monoids are contained in a finitely generated abelian-by-finite
group and their algebras share many properties with commutative polynomial
algebras. In particular, they are maximal orders in a division algebra and the
algebraic structure of M is determined by a normal positive submonoid and a
finite solvable group acting on it. More generally, as shown in [11], every prime
maximal order K[S] satisfying a polynomial identity is in some sense built on
the basis of a normal abelian submonoid of S and every abelian normal monoid
can be used to construct a family of noncommutative maximal orders. For more
details on noncommutative orders we refer the reader to [12].

In this paper we deal with Noetherian commutative semigroup algebrasK[S]
that are defined by at most two monomial relations. We obtain a characteri-
zation purely in terms of the defining relations, of when such an algebra is a
normal domain. It is easily seen that if K[S] is such an algebra then S has
codimension at most 2. Recall that S has codimension n − d if it is generated
by n elements and S ⊆ N

d. Recently Dueck, Hoşten and Sturmfels obtained
necessary conditions for such algebras to be normal. In order to state this we
recall that given a term order ≺ on the free abelian monoid F = 〈u1, . . . , un〉,
the initial ideal I≺ of S (corresponding to this order) is the ideal of F consisting
of all leading (highest) monomials in every relation that holds in S.

Proposition 1.1 ([5, Theorem 1]) Suppose S is a positive monoid of codi-
mension two. If S is normal then S has a square free initial ideal (that is, a
semiprime ideal in S).

If, moreover, S is a homogeneous monoid (that is, S is defined by relations
that are homogeneous with respect to the total degree) then the converse follows
from Proposition 13.15 in [17]. The latter says that if S is a homogeneous
submonoid of Zd such that for some order ≺ the corresponding initial ideal I≺
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is square free, then S is a normal monoid. Theorem 2 in [5] also says that if S
is a positive monoid of codimension n− d then there is an algorithm to decide
whether A is normal, whose running time is polynomial.

From the characterization proved in this paper it follows that the converse
of Proposition 1.1 holds for an arbitrary positive monoid S defined by at most
two relations (so without the homogeneous assumption). Exercise 13.17 in [17]
implies that this converse is false in general. It is worth mentioning that other
constraints for normality of abelian monoids have been studied in [14, 15, 16].

As an application, we determine the class group cl(S) in terms of the com-
binatorial data contained in the defining relations.

2 One-relator monoids

Our main aim is to describe when a positive monoid defined by at most two
relations is normal. A first important obstacle to overcome is to determine
when such monoids are cancellative, i.e., when they are contained in a group
and next to decide when this group can be assumed torsion free. Because of
the comments given in the introduction, and since we are mainly interested in
such monoids that are normal, we only need to deal with monoids S so that
U(S) = {1}. In this context we mention that in [3] an algorithm of Contejean
and Devie is used to determine whether a finitely generated monoid given by a
presentation is cancellative.

We will use the following notation. By FaMn we denote a free abelian
monoid of rank n. If FaMn = 〈u1, . . . , un〉 and w = ua1

1 · · ·uan
n ∈ FaMn, then

put supp(w) = {ui | ai 6= 0}, the support of w, and Hsupp(w) = {uj | aj > 1}.
We say that w is square free if Hsupp(w) = ∅. Now, suppose S has a presentation

S = 〈u1, . . . , un | w1 = v1, . . . , wm = vm〉,

where wi, vi are nonempty words in the free abelian monoid FaMn = 〈u1, . . . , un〉.
Clearly, U(S) = {1} and if S is cancellative, then we may assume it has a pre-
sentation with

supp(wi) ∩ supp(vi) = ∅,
for all i.

Recall from Lemma 6.1 in [14] that if K[S] is a normal domain and wi = vi
is independent of the other defining relations then at least one of wi or vi is
square free.

Proposition 2.1 Let S be an abelian monoid defined by the presentation

〈u1, . . . , un | u1 · · ·uk = u
ak+1

k+1 · · ·uan
n 〉

for some positive integers ak+1, . . . , an and some k < n. Let FaMk(n−k) = 〈xi,j |
1 ≤ i ≤ k, 1 ≤ j ≤ n−k〉, a free abelian monoid of rank k(n−k). For 1 ≤ j ≤ k
put

vj = x
ak+1

j,1 x
ak+2

j,2 · · ·xan

j,n−k,
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and for k + 1 ≤ j ≤ n put

vj = x1,j−kx2,j−k · · ·xk,j−k.

Then S ∼= V = 〈v1, . . . , vn〉 ⊆ FaMk(n−k) (in particular, S is cancellative) and
〈v1, . . . , vn〉 has v1 · · · vk = v

ak+1

k+1 · · · van
n as its only defining relation.

Proof. Let V = 〈v1, . . . , vn〉 ⊆ FaMk(n−k). Clearly, v1 · · · vk = v
ak+1

k+1 · · · van
n

and thus V = 〈v1, . . . , vn〉 is a natural homomorphic image of S.
Since all ai 6= 0, it is easy to see that every relation in V (with disjoint

supports with respect to the vi’s) must involve all generators vi. Moreover, since
v1, vk+1 are the only generators involving x1,1, it follows that in such a relation
v1, vk+1 are on opposite sides of the equality. And also vk+2, . . . , vn must be
on the side opposite to v1 (look at the appearance of x1,2, x1,3, . . . , x1,n−k in
order to see this). Similarly, by looking at the appearance of x21, x31, . . . , xk1,
we get that v2, . . . , vk must be on the side opposite to vk+1. It follows that every
relation in V , possibly after cancellation, must be of the form

vc11 · · · vckk = v
ck+1

k+1 · · · vcnn (1)

for some positive integers cj . Again, using the fact that xi,j ’s are independent
and comparing the exponent of xi,j on both sides of (1), we get that ak+jci =
ck+j for 1 ≤ i ≤ k and j = 1, 2, . . . , n− k. This implies that c1 = c2 = · · · = ck.
Hence relation (1) is of the form (v1 · · · vk)c1 = (v

ak+1

k+1 · · · van
n )c1 . So it is a

consequence of the relation defining S with every uj replaced by vj . It follows
that V ∼= S.

Note that one can verify that the monoid V , as described in the previous
proposition, is such that V = V V −1∩FaMk(n−k). So, by the comments given in
the introduction, V is normal. Alternatively, it easily follows from the defining
relation that S =

⋃

1≤i≤k Fi, with Fi = 〈uj | 1 ≤ j ≤ n, j 6= i〉 a free abelian

monoid with group of quotients SS−1. Since each Fi is normal we thus obtain
that S is normal as well ([1, Proposition 3.1.1]).

Hence, the Proposition 2.1 and its preceding comment yield at once a de-
scription one-relator positive monoids that are normal.

Proposition 2.2 Let S be the abelian monoid defined by the presentation

〈u1, . . . , un | w1 = w2〉,

with nonempty words w1 = ua1

1 · · ·uak

k , w2 = u
ak+1

k+1 · · ·uan
n , where k < n, and

each ai is a nonnegative integer. The following conditions are equivalent.

1. The semigroup S is a normal positive monoid, normal (or equivalently,
the semigroup algebra K[S] is a normal domain).

2. Hsupp(w1) = ∅ or Hsupp(w2) = ∅.
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In the remainder of this section we describe the class group cl(S) of a one-
relator normal positive monoid S. For convenience sake we recall some termi-
nology for an affine normal monoid M (see [4, 9]; at an algebra level we refer
to [7]). For a subset I of MM−1 we put (M : I) = {g ∈ MM−1 | gI ⊆ M}.
A fractional ideal I of M is a subset of MM−1 so that MI ⊆ I and mI ⊆ M
for some m ∈ M . A fractional ideal is said to be divisorial if I = I∗, where
I∗ = (M : (M : I)). The set of all divisorial fractional ideals is denoted by
D(M). It is a free abelian group for the divisorial product I ∗ J = (IJ)∗, for
I, J ∈ D(M), with basis the set of minimal prime ideals. Also, M =

⋂

MP ,
where the intersection runs over all minimal primes of M , and all localizations
MP are discrete valuation monoids (see for example [4, 9]). Furthermore, for
an ideal I of M one has, in the divisorial group D(M), that I = (

∏

P Pn(P ))∗

if and only if MP I = MPP
n(P ), with all nP ≥ 0. Moreover, nP > 0 if and only

if I ⊆ P .
By definition cl(M) = D(M)/P (M), where P (M) = {Mg | g ∈ MM−1}.
Let S be again as in Proposition 2.2. We will use the same notation for the

generators ui of the free monoid FaMn and for their images in S, if unambiguous.
So, every Suj

in D(S) is a (unique) product of the minimal primes of S. In the
following lemma we compute these decompositions provided all ai are positive
integers. Clearly, in this case, the minimal primes of S are the ideals Pyz

generated by the set {uy, uz}, where y ∈ {1, . . . , k}, z ∈ {k + 1, . . . , n}.
Lemma 2.3 Let S = 〈u1, . . . , un | u1 · · ·uk = u

ak+1

k+1 · · ·uan
n 〉 be a normal monoid,

with all ai ≥ 1, and let Pyz denote the minimal prime ideal of S that is generated
by the set {uy, uz}, where y ∈ {1, . . . , k}, z ∈ {k + 1, . . . , n}. Then

Suz = P1z ∗ · · · ∗ Pkz and Suy = P
ak+1

yk+1 ∗ · · · ∗ P an

yn ,

for z ∈ {k + 1, . . . , n} and y ∈ {1, . . . , k}.
Proof. First, let y ∈ {1, . . . , k}. Note that the only minimal primes containing

uy are Py,z, with z ∈ {k + 1, . . . , n}. Hence Suy =
(

∏

k≤z≤n P
e(z)
y,z

)∗

, with

e(z) ≥ 1. Furthermore, in the localization T = SPy,z
we have that ui, uj are

invertible for y 6= i ∈ {1, . . . , k} and z 6= j ∈ {k + 1, . . . , n}. Hence, from
the defining relation it follows that Tuy = Tuaz

z and thus also Tuy = TP az
y,z.

Consequently, e(z) = az and thus Suy = P
ak+1

yk+1 ∗ · · · ∗ P an
yn , as desired.

Second, assume z ∈ {k + 1, . . . , n}. Then, for any y ∈ {1, . . . , k}, it is
easily seen from the defining relation that Tuy ⊆ Tuz, with T = SPy,z

. Thus
Tuz = TPy,z. Therefore, as above, Suz = P1z ∗ · · · ∗ Pkz .

Theorem 2.4 Let S = 〈u1, . . . , un, . . . , um | u1 · · ·uk = u
ak+1

k+1 · · ·uan
n 〉 be a

positive normal monoid (with all ai ≥ 1 and n ≤ m). Then

cl(K[S]) ∼= cl(S) ∼= Z
k(n−k)−(n−1) × (Zd)

k−1,

where d = gcd(ak+1, . . . , an), k(n − k) is the number of minimal primes in S
not containing one of the independent generators un+1, . . . , um, and m − 1 is
the torsion free rank of SS−1.
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Proof. Clearly, S = S′ × FaMm−n, where FaMr = 〈an+1, . . . , am〉 is a free
abelian monoid, and S′ = 〈u1, . . . , un | u1 · · ·uk = u

ak+1

k+1 · · ·uan
n 〉. So, S is

normal if and only if S′ is normal. Because also cl(S′) = cl(S), we may assume
S = S′.

Clearly, the result is true for k = 1. So assume that k ≥ 2. As there are
k(n − k) minimal primes Pyz in S (with 1 ≤ y ≤ k, k + 1 ≤ z ≤ n), we get
that D(S) ∼= Z

k(n−k). On the other hand, P (S) = gr(Sui | i = 1, . . . , n). By

Lemma 2.3, Suj =
(

∏k

l=1 Plj

)∗

, Sui =
(
∏n

l=k+1 P
al

il

)∗
for i ∈ {1, . . . , k}, j ∈

{k + 1, . . . , n}. We consider

cl(S) = gr(Pyz | y ∈ {1, . . . , k}, z ∈ {k + 1, . . . , n})/gr(Sui | 1 ≤ i ≤ n).

as a finitely generated Z-module. So its presentation corresponds to an integer
matrix M of size k(n−k)×n. The rows of M are indexed by elements of the set
R = {(i, j) | i ∈ {1, . . . , k}, j ∈ {k + 1, . . . , n}}. We agree on the lexicographic
ordering of the set of rows of M . The columns are indexed by C = {1, 2, . . . , n},
where the i-th column corresponds to the generator Sui, written as a vector in
terms of the minimal primes of S.

We consider the block decomposition of M determined by the following
partitions of the sets C and R of columns and rows: C = D1 ∪ D2, where
D1 = {1, . . . , k} and D2 = {k + 1, . . . , n} and R = R1 ∪ · · · ∪ Rk, where Ri =
{(i, j) | j = k + 1, . . . , n}. Then M has the following form:

























































ak+1 0 0 · · · 0 1 0 · · · 0
ak+2 0 0 · · · 0 0 1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
an 0 0 · · · 0 0 0 · · · 1
0 ak+1 0 · · · 0 1 0 · · · 0
0 ak+2 0 · · · 0 0 1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 an 0 · · · 0 0 · · · · · · 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · ak+1 1 0 · · · 0
0 · · · 0 · · · ak+2 0 1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · an 0 0 · · · 1

























































We subtract the subsequent rows of the last row blockRk from the corresponding
rows of all other row blocks. Then from column k we subtract

∑n

i=k+1 aiCi,
where Ci denotes the i-the column. The obtained matrix M ′ has the (Rk, C)-
block of the form M ′

Rk,C
= (0, I), where I is the (n−k)×(n−k) identity matrix

and M ′
RiD2

is a zero matrix for every i 6= k. Let T = R \ Rk. The last column
of the submatrix M ′

T,D1
has the form (−ak+1, . . . ,−an, . . . ,−ak+1, . . . ,−an)

t,
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hence adding all other columns of M ′
T,D1

to it, we get a matrix N such that
N = MT,D1

. Clearly, the normal form of N involves k − 1 entries equal to
d = gcd(ak+1, . . . , an) and no other nonzero entries. The result follows.

3 Two-relator monoids

In this section we obtain a characterization of normal positive monoids that are
defined by two relations. The class group of such monoids S, and therefore of
the corresponding algebras K[S], is also determined.

Theorem 3.1 Let S = 〈u1, . . . , un〉 be a finitely presented abelian monoid with
independent defining relations w1 = w2 and w3 = w4 and, |supp(wi)| ≥ 1 for
all i. The following conditions are equivalent.

1. The semigroup S is a normal positive monoid (or equivalently, the semi-
group algebra K[S] is a normal domain).

2. S is a positive monoid with an initial ideal I≺ of S that is square free.

3. The following conditions hold:

(a) supp(w1) ∩ supp(w2) = ∅, supp(w3) ∩ supp(w4) = ∅,
(b) Hsupp(w1) = ∅ or Hsupp(w2) = ∅,
(c) Hsupp(w3) = ∅ or Hsupp(w4) = ∅,
(d) if there exist i ∈ {1, 2}, j ∈ {3, 4} such that supp(wi) ∩ supp(wj) 6=

∅, then one of the following properties holds (we may assume for
simplicity that i = 1 and j = 3):

• supp(wk) ∩ supp(wl) = ∅ for all pairs {k, l} 6= {1, 3} with k 6= l,
and Hsupp(w2) = ∅ or Hsupp(w4) = ∅,

• there exists a pair k 6= l such that {2, 4} 6= {k, l} 6= {1, 3} and
supp(wk) ∩ supp(wl) 6= ∅ (for simplicity assume k = 2, l = 3),
supp(w4) ∩ supp(wi) = ∅ for i = 1, 2, 3 and Hsupp(w4) = ∅.

Proof. Note that S = S1 × S2, where S2 is the free abelian monoid generated
by

{u1, . . . , un} \ (
4
⋃

i=1

supp(wi))

and

S1 = 〈
4
⋃

i=1

supp(wi)〉.

Since S2 is a normal positive monoid, it follows that S is a normal posi-
tive monoid if and only if S1 is such a monoid, i.e. we may assume that
{u1, . . . , un} =

⋃4
i=1 supp(wi).
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It follows from Proposition 1.1 that (1) implies (2). We now prove (2)
implies (3). So assume that I = I≺ is a square free ideal for some term order
≺ and S is a positive monoid. In order to prove (3.a) suppose for example that
supp(w1) ∩ supp(w2) 6= ∅. Then write w1 = uw′

1, w2 = uw′
2 for a nontrivial

word u and some w′
1, w

′
2 such that supp(w′

1) ∩ supp(w2)
′ = ∅. Hence, in S,

we have w′
1 = w′

2, and thus each of w′
1, w

′
2 is divisible by some of the wj ’s.

So, by symmetry, we may assume that w′
1 = w3z and w′

2 = w4y. Let m be
the maximal positive integer such that w′

1 = wm
3 z′ and w′

2 = w′
4y

′ for some
z′, y′. Then z′ = y′ holds in S and it follows that z′ = y′ as words (otherwise
y′, z′ would be again divisible by w3, w4, respectively, contradicting the choice
of m). It follows that the relation w1 = w2 is a consequence of w3 = w4, a
contradiction. So (3.a) follows.

In order to prove conditions (3.b),(3.c) and (3.d) we introduce the following
notation. For a word w in u1, . . . , un we define

√
w = x1 · · ·xp where supp(w) =

{x1, . . . , xp}.
Note that if supp(w1) ∩ supp(w3) 6= ∅ then we must have that supp(w2) ∩

supp(w4) = ∅. Indeed, for otherwise, the ideal K[S](w1 − w2, w3 − w4) ⊆
K[S](ui, uj), for some i 6= j. Since both ideals are height two primes, they must
be equal, a contradiction (note that S is, by assumption, a positive monoid and
thusK[S] is a domain). If supp(w2)∩supp(w3) 6= ∅ then, by the same reasoning,
supp(w1) ∩ supp(w4) = ∅. Hence we have shown that either all supp(wi) are
disjoint or supp(wi) ∩ supp(wj) 6= ∅ for exactly one pair i, j or this holds for
exactly two pairs and these pairs are of the form i, j and i,m for some i, j,m.
So, by symmetry, it is enough to deal with the three cases considered below.

If all supp(wi) are disjoint then let for example w2 ≺ w1 and w4 ≺ w3. It
easily follows from the assumption that w1, w3 must be square free and hence
(3.b),(3.c) and (3.d) hold.

Next, assume that supp(w1) ∩ supp(w3) 6= ∅ and supp(wi) ∩ supp(wj) = ∅
for every pair (i, j) 6= (1, 3).

To prove (3.d) we need to show that Hsupp(wi) = ∅ for i = 2 or i = 4.
So, suppose otherwise, that is, w2, w4 are not square free. Then w1, w3 ∈ I
and w2 ≺ w1, w4 ≺ w3 (because for example if w1 ≺ w2 then w2 ∈ I, so
w2 6= √

w2 ∈ I, whence
√
w2 is in a nontrivial relation in S, but it cannot be

divisible by any of the words wi, i = 1, 2, 3, 4, a contradiction). Let wk = ww′
k

for k = 1, 3, where supp(w′
1)∩ supp(w′

3) = ∅. Then w3w
′
1 = w1w

′
3 as words and,

in S, we have w3w
′
1 = w4w

′
1 and w1w

′
3 = w2w

′
3. So one of the words w4w

′
1, w2w

′
3

is in I. Therefore
√
w4w

′
1 ∈ I or

√
w2w

′
3 ∈ I. Say, for example, that the former

holds. Then
√
w4w

′
1 is in a nontrivial relation in S. But it is easy to see that√

w4w
′
1 cannot have wi as a subword for every i = 1, 2, 3, 4. This contradiction

establishes assertion (3.d).
To prove (3.b) and (3.c) in this case, suppose for example that Hsupp(w2) =

∅ and Hsupp(w3) 6= ∅ 6= Hsupp(w4). An argument as before shows that w4 ≺
w3 ∈ I and w4 6∈ I. Hence w3 6= √

w3 ∈ I. Then
√
w3 = w1x for a word

x. The only relation in which w1x can occur must be of the form w1x = w2x,
whence we have w2 ≺ w1. Write w3 = v1v3 where supp(v1) = supp(w1) and
supp(v3) ∩ supp(w1) = ∅. Let k ≥ 1 be minimal such that w3 divides wk

1v3.
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Then wk
1v3 = w3y for a subword y of w1 such that y 6= w1. So, in S, we get

wk
2v3 = wk

1v3 = w3y = w4y. Since the word w4y is not divisible by w1, w2, w3

and w4 6= √
w4, it follows that

√
w4y 6∈ I, whence wk

2v3 ∈ I. Then w2v3 ∈ I.
But the only relation containing this word is w2v3 = w1v3. Since w2v3 ≺ w1v3,
we get a contradiction. We have shown that (3.b),(3.c) are satisfied.

Finally, consider the case where there are at exactly two overlaps between
the supports of wi, i = 1, 2, 3, 4. We may assume that supp(w1) ∩ supp(w3) 6= ∅
and supp(w2) ∩ supp(w3) 6= ∅. So supp(w4) ∩ supp(wj) = ∅ for every j 6= 4.

Suppose that Hsupp(w4) 6= ∅. Let w1 = ab, w2 = cd, w3 = a′c′e, where
supp(a) = supp(a′), supp(c) = supp(c′) and the remaining factors have pairwise
disjoint supports. Let a0, a

′
0 be words of minimal length such that aa0 = a′a′0.

Clearly, a′0 is not divisible by a and supp(a′0) ∩ supp(a0) = ∅.
Now abc′e = cdc′e in S and a′c′eb = w4b in S. So cdc′ea0 = w4ba

′
0 in S and

hence one of these words is in I. If w4ba
′
0 is in I then

√

w4ba′0 ∈ I, which is not

possible because
√

w4ba′0 cannot be rewritten in S (as
√
w4 is a proper subword

of w4 with support independent of w1, w2, w3 and ba′0 is not divisible by any of
w1, w2, w3). Hence cdc′ea0 ∈ I. Then cdea0 ∈ I because I is square free. But
the only way to rewrite cdea0 in S is cdea0 = abea0. Hence abea0 ≺ cdea0, so
also w1 = ab ≺ cd = w2. However, repeating the above argument with the roles
of w1 and w2 switched, we also get w2 ≺ w1, a contradiction. We have proved
that w4 is square free, so (3.d) holds, and (3.c) also holds.

It remains to prove condition (3.b). Suppose that w1, w2 are not square free.
By symmetry, we may assume that w2 ∈ I. Then

√
w1 ∈ I and in particular

the word
√
w1 it must be divisible by w3. But supp(w2) ∩ supp(w3) 6= ∅ by the

assumption, so supp(w2) ∩ supp(w1) 6= ∅, a contradiction. This completes the
proof of the fact that (3) is a consequence of (2).

Now we prove (3) implies (1). So, suppose that the four properties (3.a)-
(3.d) hold. We claim that if S is embedded in a group then the group SS−1

is torsion free, and thus S is a positive affine semigroup. Note that in this
case, SS−1 actually is a free abelian group of rank n − 2. Indeed, because
of the assumptions there exists ui and ǫ ∈ {1, 2} so that ui ∈ supp(wǫ) and
Hsupp(wǫ) = ∅. Re-numbering the generators, if necessary, we may assume that
i = 1. Then the relation w1 = w2 implies that u1 = wv−1 for some w, v ∈ S
with supp(w) ∪ supp(v)∪ {u1} = supp(w1)∪ supp(w2), u1 6∈ supp(w)∪ supp(v)
and supp(w) ∩ supp(v) = ∅. It follows that

SS−1 = gr(u2, . . . , un | w3(wv
−1, u2, . . . , un) = w4(wv

−1, u2, . . . , un)).

If the second property of (3.d) holds then supp(w4) ∩ (
⋃3

i=1 supp(wi)) = ∅ and
Hsupp(w4) = ∅. So, in particular, u1 6∈ supp(w4) and for uk ∈ supp(w4) we
have that uk 6∈ supp(w) ∪ supp(v) ∪ sup(w3) and

uk = w3(wv
−1, u2, . . . , un)u

−1

with w4 = uuk and supp(w4) = supp(u) ∪ {uk}. Hence we obtain that SS−1 =
gr({u2, . . . , un}\{uk}) and this is a free abelian group of rank n−2, as claimed.
If, on the other hand, the first property of (3.d) holds then, without loss of
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generality, we may assume that supp(w1) ∩ supp(w3) 6= ∅, Hsupp(w2) = ∅ and
u1 ∈ supp(w2). So, u1 6∈ supp(w3). If Hsupp(w3) = ∅ then choose uk ∈
supp(w3) and write w3 = ukv

′ with uk 6∈ supp(v′) and supp(w3) = {uk} ∪
supp(v′). So uk = w4(v

′)−1. Note that u1 6∈ supp(w4) ∪ supp(v′). It follows
that SS−1 = gr({u2, . . . , un}\{uk}), a free abelian group of rank n−2. Finally,
if Hsupp(w3) 6= ∅ then Hsupp(w4) = ∅. In this case write w4 = ulv

′′ for
some v′′ with ul 6∈ supp(v′′) and supp(w4) = {uk} ∪ supp(v′′). It follows that
SS−1 = gr({u2, . . . , un} \ {ul}), again a free abelian group of rank n − 2, as
desired.

So now we show that S is cancellative and thus embedded in Fan−2. By
symmetry we can assume that Hsupp(w4) = ∅. Then write

w2 = yγ1

1 · · · yγq
q , w4 = x1 · · ·xp−1xp,

γi ≥ 1, where x1, . . . , xp, y1, . . . , yq ∈ {u1, . . . , un}, and supp(w4) does not in-
tersect nontrivially the support of any other word in the defining relations.

Let F be the free abelian monoid with basis supp(w1) ∪ {y1, . . . , yq} ∪
supp(w3)∪{x1, . . . , xp−1}. Then let T = F/ρ, where ρ is the congruence defined
by the relation w1 = w2. Since Hsupp(w1) = ∅ or Hsupp(w2) = ∅, we know
from Proposition 2.2 that T is a normal positive monoid. In particular, TT−1

is a torsion free group. Consider the semigroup morphism

f : T × 〈u〉 −→ TT−1

defined by f(t) = t, for t ∈ T and f(u) = w3z
−1 and z = x1 · · ·xp−1. Note

that f(w3) = f(zu). Hence the above morphism induces the following natural
morphisms

T × 〈u〉 π−→ (T × 〈u〉)/ν f−→ TT−1,

with ν the congruence defined by the relation w3 = zu. Put M = (T × 〈u〉)/ν
and note that

M ∼= S.

For simplicity we denote π(t) as t, for t ∈ T × 〈u〉. We note that π|T , the
restriction of π to T , is injective. Indeed, suppose s, t ∈ T are such that π(s) =
π(t). Then

s− t ∈ K[T × 〈u〉](zu− w3),

an ideal in K[T × 〈u〉]. So, s− t = α(zu− w3), for some α ∈ K[T × 〈u〉]. Now
K[T × 〈u〉] has a natural N-gradation, with respect to the degree in u. Clearly,
s − t and w3 have degree zero. Let αh be the highest degree term of α with
respect to this gradation. Then,

0 = αhzu.

Since T × 〈u〉 is contained in a torsion free group, we know that K[T × 〈u〉] is
a domain. So we get that αh = 0 and thus α = 0. Hence s = t and therefore
indeed π|T is injective. So we will identify the element π(t) with t, for t ∈ T .
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Next we note that u is a cancellable element in M . Indeed, let x, y ∈ M and
suppose u x = u y. This means that

ux− uy ∈ K[T × 〈u〉](uz − w3),

i.e.

ux− uy = α(uz − w3) (2)

for some α ∈ K[T × 〈u〉], where x, y ∈ T × 〈u〉 are inverse images of x, y. Again
consider the N-gradation on K[T × 〈u〉] via the degree in u. Let α0 be the zero
degree component of α. Then it follows that

0 = α0w3.

Hence α0 = 0, as K[T ] is a domain, and thus

α ∈ K[T × 〈u〉]u.

Using again that K[T × 〈u〉] is a domain, we get from (2) that

x− y ∈ K[T × 〈u〉](uz − w3).

Hence x = y ∈ M , as desired.
In the above we thus have shown that u is cancellable in M . Hence xp is

cancellable in S. The argument of the proof holds for all elements x1, . . . , xp.
So, all elements x1, . . . , xp are cancellable in S. By a similar argument, if
Hsupp(w2) = ∅, this also holds for all elements yi ∈ supp(w2) \ supp(w3).

On the other hand, if Hsupp(w2) 6= ∅ and thus Hsupp(w1) = ∅, then similarly
one shows that ui is cancellable in S, for every ui ∈ supp(w1)\supp(w3). Clearly,
S is contained in its localization SC , with respect to the multiplicatively closed
set of the cancellable elements. In view of the form of the defining relations of S,
this implies that SC is a group. So S is a cancellative monoid in SS−1 = Fan−2.

Finally, we show that S is normal, by proving it is a union of finitely many
finitely generated free abelian monoids. To so, note that conditions (3.a)-(3.d)
imply that Hsupp(wi) = ∅ and Hsupp(wj) = ∅ for some i ∈ {1, 2} and j ∈ {3, 4}.
Furthermore, supp(wi) ∩ supp(wl) = ∅ for all l with l 6= i, or supp(wj) ∩
supp(wl) = ∅ for all l with l 6= j. Without loss of generality we may assume the
former holds. Note that if wk = uq for some k and some q then the assertion
follows from Proposition 2.2. Hence, without loss of generality, we may assume
that | supp(wk)| > 1 for k = 1, 2, 3, 4.

Because Hsupp(wi) = ∅, it is easily seen, using the relation involving wi,
that s can be written as a product of elements of {u1, . . . , un} \ {u} for some
u ∈ supp(wi). If not all elements of supp(wj) occur in this product of s, then
s ∈ 〈{u1, . . . , un} \ {u, v}〉, with v ∈ supp(wj). Now because of the defining
relations one easily sees that 〈{u1, . . . , un} \ {u, v}〉 is a free abelian monoid, as
desired. If, on the other hand, all elements of supp(wj) occur in the expression
of s then, using the relation involving wj (several times if needed) and using the
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fact that supp(wi) ∩ supp(wl) = ∅ for all l 6= i, we can reduce to the previous
case. This ends the proof.

As a matter of example, it follows at once from Theorem 3.1 that the com-
mutative algebra K〈u1, u2, u3, u4, u5 | u1u2 = u2

3, u1u3 = u4u5〉 is a normal do-
main, while the commutative algebra K〈u1, u2, u3, u4 | u1u2 = u2

3, u1u3 = u2
4〉

is a domain that is not normal.
Finally, we describe the class group of positive monoid defined by two rela-

tions. We use the same notation as in the proof of Theorem 3.1. If (supp(w1)∪
supp(w2))∩(supp(w3)∪supp(w4)) = ∅ then S ∼= S1×S2, with S1 = 〈supp(w1)∪
supp(w2) | w1 = w2〉 and S2 = 〈supp(w3) ∪ supp(w4) | w3 = w4〉. Clearly, in
this case, cl(S) ∼= cl(S1)× cl(S2), and the result follows from Theorem 2.4. So,
assume S satisfies one of the properties in condition (3.d) in Theorem 3.1. Then,
we can write

S = 〈u1, . . . , un, . . . , um〉
with relations

u1 · · ·uk1
uk2+1 · · ·uk3

= u
ak1+1

k1+1 · · ·uak2

k2
u
ak3+1

k3+1 · · ·uak4

k4

ua1

1 · · ·uak1

k1
u
bk1+1

k1+1 · · ·ubk2
k2

u
ak4+1

k4+1 · · ·uak5

k5
= uk5+1 · · ·un,

with 0 < k1 ≤ k2 ≤ k3 ≤ k4 ≤ k5 < n ≤ m and all ai, bj ≥ 1 and (we agree
that if k1 = k2, k2 = k3, k3 = k4 or k4 = k5 then the factors u

ak1+1

k1+1 · · ·uak2

k2
,

u
bk1+1

k1+1 · · ·ubk2
k2

, uk2+1 · · ·uk3
, u

ak3+1

k3+1 · · ·uak4

k4
, or u

ak4+1

k4+1 · · ·uak5

k5
are the empty

words). So, the two cases discussed in condition (3.d) of Theorem 3.1 corre-
spond to k1 = k2 and k1 < k2, respectively.

As in the previous section, in order to compute the class group, we also
may assume that n = m. Moreover, we may assume that wi 6∈ {u1, . . . , un} for
i = 1, 2, 3, 4, as otherwise S can be presented by a single relation and then the
class group is given in Theorem 2.4. Under this restriction, in the next lemma,
we describe the principal ideals as divisorial products of minimal prime ideals.
Note that there are two possible types of minimal primes in S. First, there are

Q = (ui, uj),

where ui and uj each belong to the support of different sides of one of the
defining relations and do not belong to the supports of the words in the other
relation. To prove that Q is a prime ideal we may assume, by symmetry, that
ui, uj ∈ supp(w1) ∪ supp(w2). Clearly, S/Q is then generated by the natural
images of the elements uq, q 6= i, j, subject to the unique relation w3 = w4.
Since ui, uj 6∈ supp(w3) ∪ supp(w4), it is easily seen that (S/Q) \ {0} is a
multiplicatively closed set, as desired. Second, there are minimal primes of the
form

Q = (ui, uj, uk),

where ui belongs to the support of a word in each of the two relations, uj and
uk belong to the support of a word in a defining relation but on a different
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side than ui, and furthermore uj and uk are involved in different relations. In
particular, j 6= k. Clearly, existence (and the number) of minimal primes of the
latter type depends on the existence of strict inequalities ki < ki+1.

The formulas obtained in the following Lemma 3.2 should be interpreted in
such a way that principal ideals Suw and primes Py,z or Pt,v,x are deleted if
some index does not occur in the defining relations. So, for example Py,k3+1 is
not defined and hence ignored if k3 = k4.

Lemma 3.2 Let

S = 〈u1, . . . , un | u1 · · ·uk1
uk2+1 · · ·uk3

= u
ak1+1

k1+1 · · ·uak2

k2
u
ak3+1

k3+1 · · ·uak4

k4

ua1

1 · · ·uak1

k1
u
bk1+1

k1+1 · · ·ubk2
k2

u
ak4+1

k4+1 · · ·uak5

k5
= uk5+1 · · ·un〉,

with 0 < k1 ≤ k2 ≤ k3 ≤ k4 ≤ k5 < n and all ai, bj ≥ 1, be a normal monoid
that cannot be presented with a single relation. Put Py,z, the minimal prime
ideal of S generated by {uy, uz}, y ∈ {k2 + 1, . . . , k3}, z ∈ {k3 + 1, . . . , k4} or
y ∈ {k4+1, . . . , k5}, z ∈ {k5+1, . . . , n} and put Pt,v,x, the minimal prime ideal
of S that is generated by {ut, uv, ux}, t ∈ {1, . . . , k1}, v ∈ {k1 + 1, . . . , k2, k3 +
1, . . . , k4}, x ∈ {k5 + 1, . . . , n} or t ∈ {k2 + 1, . . . , k3}, v ∈ {k1 + 1, . . . , k2},
x ∈ {k5 + 1, . . . , n}. Then

1. Suw =
(

∏n

l=k5+1

(

∏k1

m=1 Pm,w,l

∏k3

m=k2+1 Pm,w,l

))∗

, for w ∈ {k1+1, . . . ,

k2},

2. Suw =
(

∏n
l=k5+1

(

∏k1

m=1 Pm,w,l

))∗

∗
(

∏k3

m=k2+1 Pm,w

)∗

, for w ∈ {k3 +
1, . . . , k4},

3. Suw =
(∏n

l=k5+1 Pw,l

)∗
, for w ∈ {k4 + 1, . . . , k5},

4. Suw =
(

∏n
l=k5+1

(

∏k2

m=k1+1 P
am

w,m,l

∏k4

m=k3+1 P
am

w,m,l

))∗

, for w ∈ {1, . . . ,
k1},

5. Suw =
(

∏n

l=k5+1

(

∏k2

m=k1+1 P
am

w,m,l

))∗

∗
(

∏k4

m=k3+1 P
am
w,m

)∗

, for w ∈
{k2 + 1, . . . , k3},

6. Suw =
(

∏k1

l=1

(

∏k2

m=k1+1 P
am

l,m,w

∏k4

m=k3+1 P
am

l,m,w

)al
)∗

∗
(

∏k2

m=k1+1

(

∏k1

l=1 Pl,m,w

∏k3

l=k2+1 Pl,m,w

)bm
)∗

∗
(

∏k5

l=k4+1 P
al

l,w

)∗

,

for w ∈ {k5 + 1, . . . , n},

Proof. For w ∈ {1, . . . , n}, one notices that in the expressions for Sw, in the
statement of the lemma, precisely all the minimal primes P occur that contain
uw. Using the defining relations one then easily verifies, as in the proof of
Lemma 2.3, that the proposed formulae hold in the localizations SP . Hence the
result follows.
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Our next aim is to describe the class group of S. Surprisingly, the proof is
obtained by a reduction to the case considered in Theorem 2.4. The definitions
of d1 and d2 in the following result should again be interpreted in the correct
way when some ki = ki+1. We agree to ignore all ai (respectively, bj) for which
ui (respectively uj) does not occur in the defining relations.

Theorem 3.3 Let

S = 〈u1, . . . , un, . . . , um | u1 · · ·uk1
uk2+1 · · ·uk3

= u
ak1+1

k1+1 · · ·uak2

k2
u
ak3+1

k3+1 · · ·uak4

k4

ua1

1 · · ·uak1

k1
u
bk1+1

k1+1 · · ·ubk2
k2

u
ak4+1

k4+1 · · ·uak5

k5
= uk5+1 · · ·un〉

(with 0 < k1 ≤ k2 ≤ k3 ≤ k4 ≤ k5 < n ≤ m and all ai, bj ≥ 1) be a normal
positive monoid that does not admit a presentation with a single defining rela-
tion. Let Q = {atav + bv | t ∈ {1, . . . , k1}, v ∈ {k1 + 1, . . . , k2}} ∪ {atav | t ∈
{1, . . . , k1}, v ∈ {k3 + 1, . . . , k4}} ∪ {ay | y ∈ {k4 + 1, . . . , k5}}. Then

cl(K[S]) ∼= cl(S) ∼= Z
f × (Zd1

)k1+k3−k2−1 × (Zd2
)n−k5−1,

where

f = (k3 − k2)(k4 − k3) + (k5 − k4)(n− k5) + k1(k4 − k3 + k2 − k1)(n− k5)

+ (k3 − k2)(k2 − k1)(n− k5)− (n− 2),

with
d1 = gcd(ak1+1, . . . , ak2

, ak3+1, . . . , ak4
)

and

d2 =

{

gcd(a1d1, . . . , ak1
d1, bk1+1, . . . , bk2

, ak4+1, . . . , ak5
) if k2 < k3

gcd(q | q ∈ Q) if k2 = k3
.

Proof. As mentioned earlier, withou loss of generality we may assume that
n = m. It is shown in the proof of Theorem 3.1 that SS−1 ∼= Fan−2, the
free abelian group of rank n − 2. Because U(S) = {1}, we get that P (S) and
SS−1 are isomorphic, and thus they have the same torsion free rank. Since the
torsion free rank of cl(S) is the difference of the torsion free rank of D(S) and
the torsion free rank of P (S), to establish the description of the torsion free
part of cl(S), we only need to show that there are (k3 − k2)(k4 − k3) + (k5 −
k4)(n− k5)+ k1(k4 − k3 + k2 − k1)(n− k5)+ (k3 − k2)(k2 − k1)(n− k5) minimal
primes in S. But this easily follows from the description of the minimal primes
given Lemma 3.2.

As in the proof of Theorem 2.4, we consider cl(S) as a finitely generated
Z-module, so that its presentation is determined by an integer matrix M of
size r × n, where r is the number of minimal primes in S, hence the basis of
D(S). Therefore, the rows are indexed by all triples (t, v, x) and all pairs (y, z),
as described in Lemma 3.2. We agree on the following ordering of the set of
rows of M : all triples (t, v, x) are ordered lexicographically, so are all the pairs
(y, z) and (t, v, x) < (y, z) for every t, v, x, y, z. The columns are indexed by
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1, 2, . . . , n, where the i-th column corresponds to the generator Sui, written as
a vector in terms of the minimal primes of S, as in Lemma 3.2.

We consider the block decomposition of M determined by the following
partitions of the sets C and R of columns and rows:

C = D1 ∪D2,

where D1 = {1, . . . , k5} and D2 = {k5+1, . . . , n}. Notice that |D2| ≥ 2 because
S does not admit a presentation with one defining relation. Let R0 = {(y, z) |
y ∈ {k2 + 1, . . . , k3}, z ∈ {k3 + 1, . . . , k4}}, Ry = {(y, z) | z ∈ {k5 + 1, . . . , n}}
for y ∈ {k4+1, . . . , k5}. For every triple (t, v, x) we also define Rt,v = {(t, v, x) |
x ∈ {k5 + 1, . . . , n}}. Then

R =
⋃

Rt,v ∪R0 ∪
k3
⋃

y=k2+1

Ry,

where the first union runs over all pairs (t, v) such that the set R of rows contains
a triple of the form (t, v, x).

Consider any of the block submatrices MRt,v,C or MRy,C , with Rt,v, Ry

as above. From Lemma 3.2 it follows that, ignoring the zero columns of this
submatrix, it has the form









a b d 0 · · · 0
a b 0 d · · · 0
· · · · · · · · · · · · · · · 0
a b 0 · · · 0 d









,

for some a, b such that either a = 1 or b = 1 and for some d. Here the columns
of the scalar matrix determined by d are indexed by D2. So, subtracting the
first row in each such block (MRt,v,C or MRy,C) from all the remaining rows
in this block and next subtracting the last n − (k5 + 1) columns of the entire
matrix from column k5 + 1, we get a matrix M ′ such that each block M ′

X,D1
,

for X = Ry or X = Rt,v, has only the first row nonzero and M ′
R,D2

= MR,D2
.

Moreover M ′
R0,C

= MR0,C . Therefore, the nonzero entries of the last column of
M ′ are the only nonzero entries in their respective rows. Denote by Y the set
of all such rows of M ′. Then these nonzero entries (in the last column of M ′),
and with our convention as explained before the theorem, are:

atav + bv for t ∈ {1, . . . , k1}, v ∈ {k1 + 1, . . . , k2} if k1 6= k2
atav for t ∈ {1, . . . , k1}, v ∈ {k3 + 1, . . . , k4} if k3 6= k4
bt for t ∈ {k1 + 1, . . . , k2} if k1 6= k2, k2 6= k3
ay for y ∈ {k4 + 1, . . . , k5} if k4 6= k5.

Notice that the greatest common divisor of the specified set of elements is equal
to d2, as defined in the statement of the theorem. Thus, row elimination within
the block M ′

Y,C allows us to produce a row of the form (0, . . . , 0, d2) and replace
all other rows of M ′

Y,C by zero rows. The same argument can be applied to the
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nonzero entries in the subsequent columns: n− 1, n− 2, . . . , k5 + 2. This leads
to a matrix M ′′ (of the same size as the original matrix M) with n−k5−1 rows
of the form (0, . . . , d2, 0, . . . , 0), with d2 in positions k5+2, . . . , n, with no other
nonzero entries in their respective columns. So, it remains to find the normal
form of the matrix N obtained by deleting in M ′′ the last n − k5 − 1 columns
and the rows that contain the nonzero entries in these columns. It is easy to
see that the last column of N is a Z-combination of the remaining columns.
Namely, we have Ck5+1 = a1C1 + · · · + ak1

Ck1
+ bk1+1Ck1+1 + · · · + bk2

Ck2
+

ak4+1Ck4+1+· · ·+ak5
Ck5

. Hence by column operations we can make this column
zero. Then, deleting this column, we get a matrix with k4 columns that is of

he form

(

N ′ 0
0 I

)

for a matrix N ′ and the identity (k5 − k4) × (k5 − k4)-

matrix I. It is easy to see that N ′ corresponds to the monoid T with the
presentation u1 · · ·uk1

uk2+1 · · ·uk3
= u

ak1+1

k1+1 · · ·uak2

k2
u
ak3+1

k3+1 · · ·uak4

k4
and with the

generating set u1, . . . , uk4
. Hence, by Theorem 2.4, cl(T ) = Z

e × Z
k3−k2+k1−1
d1

,
where e = (k1 + k3 − k2)(k2 − k1 + k4 − k3)− (k4 − 1). Therefore, the normal
form of M has k3 − k2 + k1 − 1 copies of d1 and n − k5 − 1 copies of d2 and a
certain number of entries equal to 1. By the comment at the beginning of the
proof, it must have f zero rows. Hence, the result follows.
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