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Abstract

It is known, that the existence of dead ends (of arbitrary depth)
in the Cayley graph of a group depends on the chosen set of genera-
tors. Nevertheless there exist many groups, which do not have dead
ends of arbitrary depth with respect to any set of generators. Par-
tial results in this direction were obtained by Šunić and by Warshall.
We improve these results by showing that abelian groups only have
finitely many dead ends and that groups with more than one end (in
the sense of Hopf and Freudenthal) have only dead ends of bounded
depth. Only few examples of groups with unbounded dead end depth
are known. We show that the Houghton group H2 with respect to a
standard generating set is a further example. In addition we introduce
a stronger notion of depth of a dead end, called strong depth. The
Houghton group H2 has unbounded strong depth with respect to the
same standard generating set.

1 Introduction

Let G be a group and X a finite set of generators. The (unoriented) Cayley
graph Γ = Γ(G,X) is the graph with vertex set G whose edges are pairs
(g1, g2) ∈ G×G with g−1

1 g2 ∈ X±1. Giving all edges the length 1 we obtain
a metric structure on Γ. We call this metric dX(·, ·).

Many results on groups rely on the structure of geodesics in the Cayley
graph. Because of the transitive action of G on the vertex set it suffices to
consider geodesics from 1 to each g. For some g there might be no geodesic,
that can be extended to a geodesic from 1 to a g′ further away. Such elements
g are called dead ends of G. More precisely: Let n = d(1, g), g is called a
dead end of G if the ball Bg(1) of radius 1 and center g is contained in the
ball B1(n) of radius n with center 1.
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Let k = max{l|Bg(l) ⊆ B1(n)}, then k is called the depth of the dead end
g. Dead ends and their depth were first considered by Bogopol’skǐi in [1],
who proved that the depth of dead ends in a given hyperbolic group with a
given set of generators is uniformly bounded. On the other hand [3] gives an
example of a group with infinitely many dead ends, all of depth 2, and [4]
gives an example of a group with arbitrary deep dead ends.

It is easy to see that the property of having dead ends is not an invariant
of a group. For example Z generated by {2, 3} has the dead ends 1 and −1.
In fact Šunić [9] proves that for each infinite group G exists a generating set
X , such that G has dead ends with respect to dX . Unfortunately even the
property of having only dead ends of bounded depth is not a group invariant,
as Riley and Warshall show in [8]1.

But there are some results which do not depend on the set of generators.
The result of Bogopol’skǐi concerning hyperbolic groups was already men-
tioned above. In [9] Šunić shows that Z has only finitely many dead ends
with respect to any generating set and Warshall [10] shows that for all weakly
geodesically automatic groups, and hence all abelian groups, there exists a
uniform bound on the depth of dead ends depending on the set of generators.

We will generalize the result of Šunić and a part of the result of Warshall
by showing in Section 2:

Theorem 1. Let G be an abelian group, generated by the finite set X. Then
there exist only finitely many dead ends in G with respect to X.

The notion of ends of a graph goes back to Hopf [7] and Freudenthal [6].
Ends of a graph are equivalence classes of rays in the graph, where two rays
are equivalent, if no finite set of vertices seperates them. In the case of Cayley
graphs we consider w.l.o.g. only rays starting in 1. The number of ends of
a Cayley graph is known to be a quasi-isometry invariant. In particular we
can speak of the number of ends of G. If G is finite then G has no ends.
Hopf’s result asserts that a finitely generated infinite group has one, two or
infinitely many ends, and that two-ended groups are virtually Z. Stallings
celebrated structure Theorem describes the structure of groups with more
than two ends in terms of amalgamated free products and HNN-extensions
over finite amalgamated (associated) subgroups.

In Section 2 we will also show the following theorem.

1In this article Riley and Warshall give two examples of groups, with unbounded dead
end depth with respect to one set of generators and bounded dead end depth with respect
to some other set of generators. The proof of the finitely presented example is based on
the uncorrected version of [5]. The authors have announced a corrected version.
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Theorem 2. Let G be a finitely generated group with more than one end.
Then there exists a uniform bound on the depth of dead ends depending only
on the set of generators.

There are not many examples of groups known, which have dead ends
of arbitrary lage depth with respect to one set of generators. In Section 3
we prolong this list by showing that the Houghton group H2, which will be
defined in Section 3 has arbitrary deep dead ends with respect to the standard
generating set. We will also define the Houghton groups Hn which we suspect
to have arbitrary deep dead ends with respect to some sets of generators.

In the last Section we introduce the strong depth of a dead end. We show
that H2 has unbounded strong dead end depth.
Acknowledgements: We would like to thank Robert Bieri for some usefull
remarks.

2 Dead ends in abelian groups and groups

with more than one end

Let G be a group and X a set of generators for G. Without loss of generality
let X be closed under inversion. Throughout this section we make frequent
use of the canonical homomorphism π which projects the free monoidX∗ over
X onto G by sending each x ∈ X to x ∈ G. We refer to the elements of the
free monoid as words over the alphabet X . We call a word w, representing
an element g (i.e. π(w) = g), a geodesic word, if the length of w (i.e. number
of letters) equals dX(1, g). Then w describes a geodesic path in Γ from 1 to
g.

The main tool in the proof of Theorem 2 is the following observation:
Assume that a word w represents a dead end of a group. Then the word
w′ ⊂ wX∗ can only be geodesic if w = w′.

First of all we need the following observation concerning points in N
n.

Definition 3. Let p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) be points in N
n.

We call p and q crossrelated (p ≶ q), if there exist i, j, such that pi < qi and
pj > qj .

Lemma 4. Any set C of pairwise crossrelated points in N
n has to be finite.

Proof. We prove this by induction on n. Let n = 2. Let (x1, y1) ∈ C. Then
C = C1

⊔
C2

⊔
{(x1, y1}, where C1 = {(xi, yi) ∈ C|xi < x1, yi > y1} and

C2 = {(xi, yi) ∈ C|xi > x1, yi < y1}. |C1| < x1, because (xi, yi), (xj , yj) ∈ C

implies xi 6= xj , |C2| < y1, hence |C| ≤ x1 + y1.
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Let n = k + 1. Let (d1, d2, . . . dn) ∈ C. Define Cj := {(c1, c2, . . . , cn) ∈
C|cj < dj}. Than C =

⋃n

j=1Cj. We only show that C1 is a finite set, the
rest follows analogously. For 0 ≤ l < c1 define

Dl := {(c2, c3, . . . , cn)|(l, c2, c3, . . . , cn) ∈ C1}.

C is a set of pairwise crossrelated points, hence C1 is a set of crossrelated
points, hence all the Dj are sets of pairwise crossrelated points in N

k. So C1

is a finite disjoint union of finite sets and therefore finite.

Proof of Theorem 1. Let G be an infinite abelian group generated by the set
X = {x1, x2, . . . , x2n}, where xi = x−1

n+i. Let w be a (geodesic) word repre-
senting an element g ∈ G. Then any permutation of the word w is again
a (geodesic) word representing the same element g. Hence it is sufficient to
count the number of occurrences of the single letters and we can forget about
the ordering of the letters. We obtain a surjective monoid homomorphism
φ = π ◦ ψ from N

2n onto G by defining the map (which is not a homomor-
phism) ψ : N2n → X∗,

ψ ((ii, i2, . . . , i2n)) := xi11 x
i2
2 . . . x

i2n
2n .

Let D = {g1, g2, g3, . . .} be the set of dead ends in G and wj ∈ φ−1(gj)
such that ψ(wj) is a geodesic word. According to the observation at te
beginning of this section, no π-preimage of a dead end can be a subword of
the π-preimage ao another dead end. Therefore the wj have to be pairwise
crossrelated and Lemma 4 implies, that D is a finite set.

Proof of Theorem 2. Let X be set of generators for the group G, and Γ =
Γ(G,X) be a Cayley graph. Let g ∈ G be a dead end. Because G has more
than one end, there exists a k ∈ N such that Γ \ B1(k) has more than one
component. By regularity of Γ, Γ \ Bg(k) has more than one component,
too. If d(1, g) < k the depth of the dead end is ≤ 2k. Otherwise 1 lies in
one component of Γ \Bg(k). We choose a ray starting in 1 whose end is in a
different component. This ray hits the ball Bg(k) at least once. Let v1 denote
the first intersection vertex of the ray and the ball and v2 the last intersection
vertex. Let h be the vertex on the chosen ray and in the component of the
end which has distance k + 1 to v2. Then d(g, h) ≤ 2k + 1 and

d(1, h) ≥

≤d(1,v1)
︷ ︸︸ ︷

(d(1, g)− k) +

=d(v2,h)
︷ ︸︸ ︷

k + 1 .

Hence the depth of dead ends is bounded above by 2k.
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3 Dead ends in Houghton groups

The Houghton groups Hn were introduced by C.H. Houghton in the late 70s
(see [2] for a more detailed discussion of Houghton groups). Although we
only discuss H2 we define the whole family of groups.

Definition 5. Let ∗n = {(k, l)|k ∈ N, l ∈ {1, . . . , n}} be the disjoint union
of n copies of N. The Houghton group Hn is the group of all permutations φ
of ∗n for which there exist constants s(1), . . . , s(n) ∈ Z such that

φ(k, l) = (k + s(l), l)

for all but finitely many (k, l).

Then
∑n

i=0 s(i) = 0 and H1 is just the symmetric group S∞, which is not
finitely generated. For n > 1 all Hn are finitely generated (in fact Brown
showed in [2] that Hn is of type FPn−1, but not of type FPn). The shift
si ∈ Hn acts on ∗n as follows (rays modulo n):

si(k, l) =







(k, l) i 6= l 6= i+ 1

(k − 1, l) l = i, k ≥ 1

(0, l + 1) l = i, k = 0

(k + 1, l) l = i+ 1

For n ≥ 3 the commutator [si, si+1] acts as the transposition of (0, i) and
(0, i+1). So the group generated by the shifts contains all finite permutations
and is thereby equal to Hn.

A special case is H2 which needs an additional generator, e.g. the trans-
position σ = (0, 1) ↔ (0, 2). In this case s1 = s−1

2 and we have in fact only
one shift which we call s. The group H2 is isomorpic to S∞ ⋊ Z and we can
think of an element of H2 as a permutation with finite support followed by a
shift.

According to this set of generators H2 has the presentation

H2 =
〈

s, σ

∣
∣
∣σ

2 = (σσs)3 = [σ, σst ] = 1, t ≥ 2
〉

. (1)

Here σs = sσs−1 denotes the conjugation of σ by s. The element σst is the
transposition of (t, 1) and (t− 1, 1).

In order to compute the length of a given group element with respect to
this generating set we will use the following geometric interpretation of H2.
Consider the biinfinite string of pearls numbered with nonzero integers, and
a cursor which indicates the current position between two pearls. A word
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in H2 is a sequence of movements of the cursor and commands to permute
a finite number of pearls. The identity word is represented by all pearls in
increasing order and the cursor between −1 and 1. This cursor position is
called origin. The element s = s1 mentioned above moves the cursor one
position to the right and the element σ interchanges the pearls left and right
to the cursor. One can easily check that the group elements of H2 and these
configurations are in 1-1 correspondence.

Let X = {s, σ}. As usual the distance dX(1, g) of a group element to the
identity is defined as the minimum of the length of the words representing
g and a word is a sequence of commands to move the cursor one step or to
interchange the pearls next to the cursor. The length of such a word equals
the number of commands.

We introduce the following notation for elements of H2. As mentioned
above each element is a permutation followed by shift. We write the permuta-
tion as a product of cycles and write the shift as index. For example s = (1)1,
σ = (−1, 1)0 or g = (−1, 2, 4,−3, 2)−3 (which means g(−1) = s−3(2) = −2,
g(2) = 1, g(4) = −6 and so on).

The elements with trivial shift form a subgroup isomorphic to S∞ which
is generated by Y = {σt = σst|t ∈ Z}. Let gk = ((−k, k)(−(k − 1), k −
1) . . . (−3, 3)(−2, 2)(−1, 1))0.

Theorem 6. The element gk is a dead end of depth at least k in H2 with
respect to the generating set X.

We now have to calculate dX(1, gk) and to find geodesic words repre-
senting gk. We first calculate the distance dYk

(1, gk) in the subgroup S2k

generated by Yk = {σt| − k < t < k}. Let M be the support of gk,
M = {−k . . . − 1, 1, . . . k}. For each g ∈ S2k define the effect e(g) :=
∑

i<j∈M(#{(i, j)|g(i) > g(j)}). Than e(g · σt) = e(g)± 1. Hence dYk
(1, g) ≥

e(g). The effect of gk equals e(gk) =
∑2k

i=1 i − 1 = k(2k − 1). If we find a
word wk of length k(2k − 1) representing gk than wk is geodesic.

The word vl := σ−(l−1)σ−(l−2) . . . σl−2 represents the group element (l −
1, l − 2, l − 3 . . . ,−l)0 and hence ul := σ

vl
l−1 represents (−l, l)0. The length

of ul = 1 + 4(l − 1). π(ul) and π(ul′) have disjoint support for l 6= l′ and
therefore the concatenation of ul for all 0 < l < k in any order represents gk.
Let wk = ukuk−1 . . . u1. Than the length of wk =

∑k

l=1 1+4(l−1) = k(2k−1).
This word wk has a property which will be important later on. For each group
element g ∈ S2k one can obtain a word representing g by deleting some letters
of wk. From a Coxeter point of view this might not be surprising (S2k is a
coxeter group) but can be easily seen without any of such arguments.
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Lemma 7. For any element g ∈ S2k one can obtain a word representing g
be deleting some letters in wk.

Proof. We do this by induction on k. For k = 1 there is nothing to show.
Let k = n + 1. We only need to show: It is possible to delete some of the
letters of u1 to obtain a word x such that π(x)(g−1(k + 1)) = k + 1 and
π(x)(g−1(−(k + 1))) = −(k + 1). This can be done by deleting some of the
first letters each of vl and v

−1
l .

We are now going to compute dX(1, gk). For each word w in Y (or in Yk)
let w′ be the word in X , which one obtains by replacing all σt by s

tσs−t and
let w̃ be the reduced form of w′. Than ũl = s−(l−1)(σs)2(l−1)(σs−1)2(l−1)σsl−1.

How many commands are needed to interchange the pearl −l and l and
bring the cursor back to the origin? W.l.o.g. let pearl −l be moved before
pearl l. The cursor has to come to the position −(l−1) steps left of the origin
for a first time which needs at least l − 1 occurrences of s−1. Afterwards at
some stage the cursor has to come to position l − 1 steps right to the origin
which needs at least 2(l−1) occurrences of s. (Otherwise one of the elements
would be a fixed point.) Finally the pearl l has to be moved to its destination
which needs again at least 2(l − 1) occurrences of s−1 and the cursor has to
go back to the origin (l − 1 times s). So we need at least 6(l − 1) s or s−1.
In addition we need at least (because of the effect) 4l − 3 occurrences of σ.
Hence ũl is a geodesic word.

The same argument shows that the only other geodesic word representing
(l,−l)0 can be obtained by interchanging s and s−1 in ũl.

Lemma 8. The word w̃k is a geodesic word representing gk and dX(1, gk) =
1 +

∑k

l=2(8l − 5).

Proof. The length of the word w̃ = 1 +
∑k

l=2(8l − 5) (#σ′s =
∑k

l=1(4l − 3),

#s′s =
∑k

l=2(4l − 2)). We prove the statement by induction. For k = 1
there is nothing to show. We only need to show the following claim: For any
geodesic word vk representing gk there exist a word v′k−1 representing gk−1

and the length(v′k−1) ≤ length(vk)− (8l − 5).
As mentioned above we can think of vk as a sequence of commands to

move the cursor or to swap the pearls next to the cursor. A geodesic word
will never move the cursor outside of the region between pearl −k and k. We
enumerate the cursor positions inside by c−(k−1), . . . , c(k−1). So the origin is
now called c0.

Let v′k−1 be the word, one obtains by deleting the following letters of vk:
In the first step, we delete all letters s, which move the cursor away from or
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onto the origin in vk. Afterwards we delete all letters σ which interchange
two pearls that were already interchanged before.

How many letters s are deleted in this procedure? For each pearl l > 1
is moved through the origin which implies that the following situations have
to occur: 1. The cursor is at position c1 and the pearl l is left next to the
cursor and the cursor is moved to the origin. 2. The cursor is at the origin,
the pearl l is left next to the cursor and the cursor is moved to position c−1.
Hence for all pearls l < 1 there are 2 letters s−1 deleted. Analogously for
each pearl l < −1 the letter s is deleted twice. In addition the cursor has
to leave the origin a first time and come back to it a last time. All in all we
have to delete at least 2(k − 1) + 2(k − 1) + 2 = 4− 2 letters s±1.

The word v′k−1 represents gk−1, because for l > 0 one can check that
π(v′k−1)(l) = π(v)(l + 1) + 1 and for l < 0 that π(v′k−1)(l) = π(v)(l − 1)− 1.
The number of σs in v′k−1 is (by definition) given by the effect of π(v′k−1).
Hence length(v′k−1) ≤ length(vk)− (8l − 5).

Proof of Theorem 6. We have to show that for all elements g ∈ Bgk(k) the
distance d(1, g) ≤ d(1gk). Let ω ∈ S∞ and t ∈ Z such that g = (ω)t. Now
g ∈ Bgk(k), hence ω ∈ S2k and |t| ≤ k. Lemma 7 implies that d(1, g) ≤
d(1, ((k,−k)(k − 1,−(k − 1) . . . (1,−1))t)). gk is an element of order 2, so
g−1
k = gk and hence w̃−1

k ia another word representing gk. This word ends
with k occurencies of s and, as a consequence of symmetry there exist a
geodesic word which represents gk and ends witk k occurencies of s−1. So in
fact d(1, ((k,−k)(k − 1,−(k − 1) . . . (1,−1))t)) ≤ d(1, gk)− |t|.

The situation in Hn for n > 2 is more complicated, but one still has a
good combinatorial description of elements and generators and an argument
similiar to the above argument for H2 might show that Hn (or at least H3)
has arbitrary deep dead ends.

4 Strong depth of a dead end

As mentioned above in [8] Riley and Warshall have shown that having dead
ends of arbitrary depth is not a group invariant. One of their examples is
the group with presentation

G = 〈a, t, u|a2, [t, u], a−uat; ∀i ∈ Z, [a, at
i

]

which has unbounded depth with respect to

X = {a, t, u, at, ta, ata, au, ua, aua}
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and depth bounded above by 2 with respect to some different set of genera-
tors. Their examples of dead ends of depth k have the following interesting
property: Let g be one of these dead ends and n = d(1, g). There exists a
geodesic from g to an element g′ with distance d(1, g′) = n + 1 which never
gets closer than n − 1 to the identity. In other words: g and g′ can be con-
nected in Γ(G,X) \ B1(n − 2). This yields to a new definition of depth of
a dead end. To distinguish between them we will call the new one strong
depth.

Definition 9. Let Γ be the Cayley graph of a group G with respect to a
generating set X and g ∈ G a dead end with d(1, g) = n. The strong depth
of g is defined as the minimal number k such that g can be connected to a
point of Γ \B1(n) inside Γ \B1(n− k). In other words: The strong depth of
g measures how many steps back to the identity a geodesic starting in g has
to take in order to leave the ball of radius n.

The strong depth of a dead end is obviously less or equal the depth of
it. The dead ends in [8] mentioned above are all of strong depth 2. This is
different from the situation in H2.

Corollary 10. The element gk ∈ H2 defined as in Theorem 6 is a dead end
of strong depth at least k.

Proof. In the proof of Theorem 6 we have shown, that the distance of the
form (ω)t, ω ∈ S2k, |t| ≤ k the distance d(1, (ω)t) ≤ d(1, gk). Hence a
geodesic from gk to a point outside the ball of radius d(1, gk) has to contain
an element h = (ω′)±k, ω ∈ S2k and we have seen in proof of Theorem 6 that
d(1, h) ≤ d(1, gk)− k.

To prove that the lamplighter group has unbounded strong depth only a
few changes in the proof of [4] are needed. We do not know about any dead
ends of large strong depth in the group of Riley and Warshall and therefore
conclude by posing the following question: Does a group exist, which has
unbounded strong depth of dead ends with respect to one set of generators
but strong depth bounded above with respect to a different set of generators?

References
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