BUSEMANN POINTS OF ARTIN GROUPS OF DIHEDRAL TYPE

CORMAC WALSH

Abstract

We study the horofunction boundary of an Artin group of dihedral type with its word metric coming from either the usual Artin generators or the dual generators. In both cases, we determine the horoboundary and say which points are Busemann points, that is the limits of geodesic rays. In the case of the dual generators, it turns out that all boundary points are Busemann points, but this is not true for the Artin generators. We also characterise the geodesics with respect to the dual generators, which allows us to calculate the associated geodesic growth series.

1. Introduction

Consider the following metric space boundary, defined first by Gromov [11]. One assigns to each point z in the metric space (X, d) the function $\psi_{z}: X \rightarrow \mathbb{R}$,

$$
\psi_{z}(x):=d(x, z)-d(b, z)
$$

where b is some basepoint. If X is proper and complete, then the map $\psi: X \rightarrow$ $C(X), z \mapsto \psi_{z}$ defines an embedding of X into $C(X)$, the space of continuous real-valued functions on X endowed with the topology of uniform convergence on compacts. The horofunction boundary is defined to be $X(\infty):=\operatorname{cl}\left\{\psi_{z} \mid z \in\right.$ $X\} \backslash\left\{\psi_{z} \mid z \in X\right\}$, and its elements are called horofunctions.

This boundary is not the same as the better known Gromov boundary of a δ hyperbolic space. For these spaces, it has been shown [7, 16, 15] that the horoboundary is finer than the Gromov boundary in the sense that there exists an equivariant continuous surjection from the former to the latter.

An interesting class of metric spaces are the Cayley graphs of finitely generated groups with their word metric. Here one may hope to have a combinatorial description of the horoboundary. Rieffel [13] has investigated the horoboundary in this setting. A length function on a discrete group naturally gives rise to a metric on the state space of the reduced group C^{*}-algebra [6] and, in the case of \mathbb{Z}^{d} with a word metric coming from a finite set of generators, Rieffel used the horoboundary to determine certain properties of this metric, in particular, whether it is compatible with the weak* topology on the state space.

This motivates the study of the horoboundary of other finitely generated groups. In this paper, we investigate the horofunction boundary of the Artin groups of dihedral type. Let $\operatorname{prod}(s, t ; n):=$ ststs \cdots, with n factors in the product. The

[^0]Artin groups of dihedral type have the following presentation:

$$
A_{k}=\langle a, b \mid \operatorname{prod}(a, b ; k)=\operatorname{prod}(b, a ; k)\rangle, \quad \text { with } k \geq 3
$$

Observe that A_{3} is the braid group on three strands. The generators traditionally considered are the Artin generators $S:=\left\{a, b, a^{-1}, b^{-1}\right\}$.

In what follows, we will have need of the Garside normal form for elements of A_{k}. The element $\Delta:=\operatorname{prod}(a, b ; k)=\operatorname{prod}(b, a ; k)$ is called the Garside element. Let

$$
M^{+}:=\{a, b, a b, b a, \ldots, \operatorname{prod}(a, b ; k-1), \operatorname{prod}(b, a ; k-1)\} .
$$

It can be shown [9] that $w \in A_{k}$ can be written

$$
w=w_{1} \cdots w_{n} \Delta^{r}
$$

for some $r \in \mathbb{Z}$ and $w_{1}, \ldots, w_{n} \in M^{+}$. This decomposition is unique if n is required to be minimal. We call it the right normal form of w. The factors w_{1}, \ldots, w_{n} are called the canonical factors of w.

One can also write w in left normal form: $w=\Delta^{r} w_{1}^{\prime} \cdots w_{n}^{\prime}$, with $r \in \mathbb{Z}$ and $w_{1}^{\prime}, \ldots, w_{n}^{\prime} \in M^{+}$.

To calculate the horoboundary, we will need a formula for the word length metric. An algorithm was given in [3] for finding a geodesic word representing any given element of A_{3}. In [14], there is a criterion for when a word is a geodesic in A_{3}. Both these results were generalised in [12] to arbitrary $k \geq 3$. It was shown that a freely reduced word u is a geodesic with respect to the Artin generators if and only if

$$
\begin{equation*}
\operatorname{Pos}(u)+\operatorname{Neg}(u) \leq k \tag{1}
\end{equation*}
$$

Here $\operatorname{Pos}(u)$ is the length of the longest possible element of $M^{+} \cup\{\Delta\}$ obtainable by multiplying together consecutive letters of u. The length of an element $\operatorname{prod}(a, b ; n)$ or $\operatorname{prod}(b, a ; n)$ of $M^{+} \cup\{\Delta\}$ is defined to be n. Likewise, $\operatorname{Neg}(u)$ is the length of the longest possible element of $M^{-} \cup\left\{\Delta^{-1}\right\}$ obtainable in the same way, where $M^{-}:=\left(M^{+}\right)^{-1}$.

We use the algorithm in 12 to find a simple formula for the word length metric.
Proposition. Let $x=\Delta^{r} z_{1} \cdots z_{m}$ be an element of A_{k} written in left normal form. Let $\left(p_{0}, \ldots, p_{k-1}\right) \in \mathbb{N}^{k}$ be such that $p_{0}:=r$ and, for each $i \in\{1, \ldots, k-1\}$, $p_{i}-p_{i-1}=m_{k-i}$, where m_{i} is the number of canonical factors of x of length i. Then the distance from the identity e to x in the Artin-generator word-length metric is

$$
d(e, x)=\sum_{i=0}^{k-1}\left|p_{i}\right| .
$$

Since d is invariant under left multiplication, that is, $d(y, x)=d\left(e, y^{-1} x\right)$, we can use this formula to calculate the distance between any pair of elements y and x of A_{k}. With this knowledge we can find the following description of the horofunction compactification.

Let Z be the set of possibly infinite words of positive generators having no product of consecutive letters equal to Δ. We can write each element z of Z as a concatenation of substrings in such a way that the products of the letters in every substring equals an element of M^{+}and the combined product of letters in each consecutive pair of substrings is not in M^{+}. Because z does not contain Δ, this
decomposition is unique. Let $m_{i}(z)$ denote the number of substrings of length i. Note that if z is an infinite word, then this number will be infinite for some i.

Let Ω^{\prime} denote the set of (p, z) in $(\mathbb{Z} \cup\{-\infty,+\infty\})^{k} \times Z$ satisfying the following:

- $p_{i}-p_{i-1} \geq m_{k-i}(z)$ for all $i \in\{1, \ldots, k-1\}$ such that p_{i} and p_{i-1} are not both $-\infty$ nor both $+\infty$;
- if z is finite, then $p_{i}-p_{i-1}=m_{k-i}(z)$ for all $i \in\{1, \ldots, k-1\}$ such that p_{i} and p_{i-1} are not both $-\infty$ nor both $+\infty$.
We take the product topology on Ω^{\prime}.
We now define Ω to be the quotient topological space of Ω^{\prime} where the elements of $(+\infty, \ldots,+\infty) \times Z$ are considered equivalent and so also are those in $(-\infty, \ldots,-\infty) \times Z$. We denote these two equivalence classes by $+\hat{\infty}$ and $-\hat{\infty}$, respectively.

We let \mathcal{M} denote the horofunction compactification of A_{k} with the Artin-generator word metric. The basepoint is taken to be the identity.

Theorem. The sets Ω and \mathcal{M} are homeomorphic.
Let Z_{0} be the set of elements of Z that are finite words. Let Ω_{0} denote the set of (p, z) in $\mathbb{Z}^{k} \times Z_{0}$ such that $p_{i}-p_{i-1}=m_{k-i}(z)$ for all $i \in\{1, \ldots, k-1\}$. We will show that the elements of Ω_{0} are exactly the elements of Ω corresponding to functions of the form $d(\cdot, z)-d(e, z)$ in \mathcal{M}.

Of particular interest are those horofunctions that are the limits of almostgeodesics; see [1] and [13] for two related definitions of this concept. Rieffel calls the limits of such paths Busemann points. In the present context, since the metric takes only integer values, the Busemann points are exactly the limits of geodesics (see [17]). Develin [8], investigated the horoboundary of finitely generated abelian groups with their word metrics and showed that all their horofunctions are Busemann. Webster and Winchester [17] gave a necessary and sufficient condition for all horofunctions of a finitely generated group to be Busemann.

We prove the following characterisation of the Busemann points of A_{k}.
Theorem. A function in \mathcal{M} is a Busemann point if and only if the corresponding element (p, z) of Ω is in $\Omega \backslash \Omega_{0}$ and satisfies the following: $p_{i}-p_{i-1}=m_{k-i}(z)$ for every $i \in\{1, \ldots, k-1\}$ such that p_{i} and p_{i-1} are not both $-\infty$ nor both $+\infty$.

The group A_{k} also has a dual presentation:

$$
A_{k}=\left\langle\sigma_{1}, \ldots, \sigma_{k} \mid \sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{3}=\cdots=\sigma_{k} \sigma_{1}\right\rangle, \quad \text { with } k \geq 3
$$

The set of dual generators is $\tilde{S}:=\left\{\sigma_{1}, \ldots, \sigma_{k}, \sigma_{1}^{-1}, \ldots, \sigma_{k}^{-1}\right\}$. These are related to the Artin generators in the following way: $\sigma_{1}=a, \sigma_{2}=b$, and

$$
\sigma_{j}= \begin{cases}\operatorname{prod}\left(b^{-1}, a^{-1} ; j-2\right) \operatorname{prod}(a, b ; j-1), & \text { if } j \text { is odd } \\ \operatorname{prod}\left(b^{-1}, a^{-1} ; j-2\right) \operatorname{prod}(b, a ; j-1), & \text { if } j \text { is even }\end{cases}
$$

for $j \in\{3, \ldots, k\}$. The existence of a dual presentation holds more generally for all Artin groups of finite type [4].

There are also Garside normal forms related to the dual presentation. Here the Garside element is $\delta:=\sigma_{1} \sigma_{2}=\cdots=\sigma_{k} \sigma_{1}$.

Again, we find a formula for the word length metric.

Proposition. Let $w=\delta^{r} w_{1} w_{2} \cdots w_{s}$ be written in left normal form. Then the distance between the identity and w with respect to the dual generators is given by $\tilde{d}(e, w)=|r|+|r+s|$.

Using this formula, we again determine the horoboundary. This time however, there are no non-Busemann points.

Theorem. In the horoboundary of A_{k} with the dual-generator word metric, all horofunctions are Busemann points.

In general, one would expect the properties of the horofunction boundary of a group with its word length metric to depend strongly on the generating set. It would be interesting to know for which groups and for which properties there is not this dependence. As already mentioned, all boundary points of abelian groups are Busemann no matter what the generating set [8]. On the other hand, the above results show that for Artin groups of dihedral type the existence of non-Busemann points depends on the generating set.

We use our formula to establish a criterion for a word to be a geodesic with respect to the dual generators. For every word y with letters in \tilde{S}, let $\widetilde{\operatorname{Pos}(y) \text { be the }}$ longest element of $\left\{\sigma_{1}, \ldots, \sigma_{k}, \delta\right\}$ obtainable by multiplying together consecutive letters of y. The generators $\sigma_{1}, \ldots, \sigma_{k}$ are considered to each have length 1 whereas δ is considered to have length 2. Similarly, $\widetilde{\operatorname{Neg}}(y)$ is defined to be the longest element of $\left\{\sigma_{1}^{-1}, \ldots, \sigma_{k}^{-1}, \delta^{-1}\right\}$ obtainable in the same way.
Proposition. Let y be a freely reduced word of dual generators. Then y is a geodesic if and only if $\widetilde{\operatorname{Pos}}(y)+\widetilde{\operatorname{Neg}}(y) \leq 2$.

The geodesic growth series of a finitely generated group G with respect to a generating set S is

$$
\mathcal{G}_{(G, S)}(x):=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where a_{n} is the number of words of length n that are geodesic with respect to S.
It is obvious from the characterisation of geodesics given above that the set of geodesic words with respect to the dual set of generators \tilde{S} is a regular language. It follows that the geodesic growth series is rational [9], that is, can be expressed as the quotient of two integer-coefficient polynomials in the ring of formal power series $\mathbb{Z}[[x]]$. We calculate this growth series explicitly.

Theorem. The geodesic growth series of A_{k} with the dual generators is

$$
\mathcal{G}(x)=\frac{1+(3-2 k) x+\left(2+k^{2}-3 k\right) x^{2}-2 k(k-1) x^{3}}{(1-k x)(1-2(k-1) x)(1-(k-1) x)} .
$$

The geodesic growth series has previously been determined for A_{k} with other generating sets. Charney and Meier [5] calculate it for the generating sets $\left\{\sigma_{1}^{ \pm}, \ldots, \sigma_{k}^{ \pm}, \delta^{ \pm}\right\}$ and $M^{+} \cup M^{-} \cup\left\{\Delta^{ \pm}\right\}$. Sabalka [14] calculates it for the 3-strand braid group A_{3} with the Artin generators, a result which was generalised by Mairesse and Mathéus [12] to $A_{k} ; k \geq 3$, again with the Artin generators.

2. Artin generators

Proposition 2.1. Let $x=\Delta^{r} z_{1} \cdots z_{m}$ be an element of A_{k} written in left normal form. Let $\left(p_{0}, \ldots, p_{k-1}\right) \in \mathbb{Z}^{k}$ be such that $p_{0}:=r$ and, for each $i \in\{1, \ldots, k-1\}$,
$p_{i}-p_{i-1}=m_{k-i}$, where m_{i} is the number of canonical factors of x of length i. Then the distance from the identity e to x in the Artin-generator word-length metric is

$$
d(e, x)=\sum_{i=0}^{k-1}\left|p_{i}\right| .
$$

Proof. In [12], there is an algorithm for finding a geodesic representative of an element x of A_{k} given its normal form. This algorithm consists, in the case when $r<$ 0 , of shifting each instance of Δ^{-1} across and combining it with one of the canonical factors of longest length. This procedure is continued until all the Δ^{-1} s have been moved across or there are no more canonical factors with which to multiply. The resulting word is shown to be a geodesic representative of x.

If $r \geq 0$, then the algorithm leaves the normal form unchanged, and so

$$
d(e, x)=\sum_{i=1}^{k-1} i m_{i}+k r=\sum_{i=0}^{k-1} p_{i}
$$

which proves the result in this case since here all the p_{i} are non-negative.
On the other hand, if $-r \geq \sum_{i=1}^{k-1} m_{i}$, then all the canonical factors are changed: each factor of length $i \in\{1, \ldots, k-1\}$ is replaced by a word of length $k-i$. Therefore

$$
\begin{aligned}
d(e, x) & =\sum_{i=1}^{k-1}(k-i) m_{i}+k\left(-r-\sum_{i=1}^{k-1} m_{i}\right) \\
& =-k r-\sum_{i=1}^{k-1} i m_{i} \\
& =-\sum_{i=0}^{k-1} p_{i}
\end{aligned}
$$

But in this case all the p_{i} are non-positive and we conclude that the result holds here also.

The final case to consider is when $0<-r<\sum_{i=1}^{k-1} m_{i}$. In this case, there is some $j \in \mathbb{N}$ such that all factors of length greater than j are changed, all factors of length less than j are unchanged, and possibly some factors of length j are changed. So we have

$$
\begin{aligned}
d(e, x) & =\sum_{i=1}^{j-1} i m_{i}+j\left(\sum_{i=j}^{k-1} m_{i}+r\right)+(k-j)\left(-r-\sum_{i=j+1}^{k-1} m_{i}\right)+\sum_{i=j+1}^{k-1}(k-i) m_{i} \\
& =p_{k-1}+\cdots+p_{k-j}-p_{k-j-1}-\cdots-p_{0}
\end{aligned}
$$

Because of the choice of j, we have $\sum_{i=j}^{k-1} m_{i} \geq-r \geq \sum_{i=j+1}^{k-1} m_{i}$, and so p_{i} is non-negative for $i \geq k-j$ and non-positive for $i<k-j$. Therefore the result holds in this case also.

Motivated by this we define the following map. Let z be an element of A_{k}. For each $i \in\{1, \ldots, k\}$, let m_{i} be the number of canonical factors of length i when z is written in left normal form. We define $\pi: A_{k} \rightarrow \mathbb{Z}^{k}$ by

$$
\pi(z):=\left(m_{k}, m_{k}+m_{k-1}, \ldots, m_{k}+\cdots+m_{1}\right)
$$

Let w and z be two elements of A_{k}. We define

$$
\phi(w, z):=\pi\left(w^{-1} z\right)-\pi(z)
$$

For $w \in A_{k}$, denote by $\tau(w)$ the conjugate of w by Δ, that is

$$
\tau(w):=\Delta^{-1} w \Delta=\Delta w \Delta^{-1}
$$

Lemma 2.2. Let $w \in A_{k}$ and let $z_{1} z_{2} \cdots$ be an infinite word of positive generators such that no product of consecutive letters equals Δ. Then $\phi\left(w, z_{1} \cdots z_{n}\right)$ converges as n tends to infinity.

Proof. To write $w^{-1} z_{1} \cdots z_{n}$ in left normal form, we first write w^{-1} in left normal form and then repeatedly take the factors Δ formed by the joining of w^{-1} and $z_{1} \cdots z_{n}$ out to the left. We obtain something of the form $\Delta^{r+s} \tau^{r}\left(w^{\prime}\right) z^{\prime}$, where r is the number of $\Delta \mathrm{s}$ moved, w^{\prime} is a left divisor of w^{-1} and z^{\prime} is a right divisor of $z_{1} \cdots z_{n}$. One or both of w^{\prime} and z^{\prime} may be the identity. Since w is of finite length, as n is increased z^{\prime} must eventually be different from the identity, and from then on z^{\prime} will grow in the same way as $z_{1} \cdots z_{n}$. When z^{\prime} has grown sufficiently that it contains one of the canonical factors of $z_{1} \cdots z_{n}$, subsequent increases in n will have exactly the same effect on $\pi\left(w^{-1} z_{1} \cdots z_{n}\right)$ as on $\pi\left(z_{1} \cdots z_{n}\right)$. Therefore $\phi\left(w, z_{1} \cdots z_{n}\right)$ is eventually constant.

Recall that Z is the set of possibly infinite words of positive generators having no product of consecutive letters equal to Δ. The previous lemma allows us to define $\phi(w, z)$ for $w \in A_{k}$ and $z=z_{1} z_{2} \cdots$ an infinite element of Z to be the limit of $\phi\left(w, z_{1} \cdots z_{n}\right)$ as n tends to infinity.

For each $(p, z) \in \Omega^{\prime}$, define

$$
\begin{equation*}
\psi_{p, z}: A_{k} \rightarrow \mathbb{Z}, \quad w \mapsto \sum_{i=0}^{k-1}\left|p_{i}+\phi_{i}(w, z)\right|-\sum_{i=0}^{k-1}\left|p_{i}\right| \tag{2}
\end{equation*}
$$

Note that this formula sometimes requires us to add or subtract infinities. The convention we shall use will be to separately keep track of the infinite and finite parts. Thus $(a \infty+b)+(c \infty+d)=(a+c) \infty+(b+d)$. Obviously, for a and b finite, $|a \infty+b|$ is equal to $a \infty+b$ if $a>0$, and is equal to $-a \infty-b$ if $a<0$. We see that $\psi_{p, z}$ is always finite because the infinities in the first term always cancel those in the second.

The following lemma will be needed to show that ψ is constant on the equivalence classes $-\hat{\infty}$ and $+\hat{\infty}$.

Lemma 2.3. For all w and z in A_{k},

$$
\sum_{i=0}^{k-1} \phi_{i}(w, z)=\sum_{i=0}^{k-1} \pi_{i}\left(w^{-1}\right)
$$

Proof. Let $y \in A_{k}$. Write $y=y_{1} \cdots y_{s} \Delta^{r}$ in right normal form and let m_{i} be the number of canonical factors of length i for each $i \in\{1, \ldots, k\}$, so that $m_{k}=r$. Consider the effect of left multiplying y by a positive generator g. Either g combines with y_{1} to form a longer factor, in which case m_{i} decreases by one and m_{i+1} increases by one, where i is the length of y_{1}, or a new factor is created, in which case m_{1}
increases by one. In either case, $\sum_{i=0}^{k-1}\left(\pi_{i}(g y)-\pi_{i}(y)\right)=1$. We conclude that

$$
\begin{equation*}
\sum_{i=0}^{k-1} \phi_{i}\left(g^{-1}, y\right)=1, \quad \text { for all } y \in A_{k} \text { and } g \in\{a, b\} \tag{3}
\end{equation*}
$$

Similar reasoning shows that

$$
\begin{equation*}
\sum_{i=0}^{k-1} \phi_{i}(\Delta, y)=-k, \quad \text { for all } y \in A_{k} \tag{4}
\end{equation*}
$$

Any $w \in A_{k}$ may be written as a product $w_{1} \cdots w_{l}$ of negative generators and copies of Δ. Observe that

$$
\phi(w, z)=\phi\left(w_{1}, z\right)+\phi\left(w_{2}, w_{1}^{-1} z\right)+\cdots+\phi\left(w_{l}, w_{l-1}^{-1} \cdots w_{1}^{-1} z\right)
$$

Applying (3) and (4), we see that $\sum_{i=0}^{k-1} \phi_{i}(w, z)$ is independent of z. Therefore

$$
\sum_{i=0}^{k-1} \phi_{i}(w, z)=\sum_{i=0}^{k-1} \phi_{i}(w, e)=\sum_{i=0}^{k-1} \pi_{i}\left(w^{-1}\right)
$$

So we see that if p is identically $-\infty$, then

$$
\psi_{p, z}(w)=-\sum_{i=0}^{k-1} \pi_{i}\left(w^{-1}\right)
$$

is independent of z. Likewise, if p is identically $+\infty$, then

$$
\psi_{p, z}(w)=\sum_{i=0}^{k-1} \pi_{i}\left(w^{-1}\right)
$$

We may therefore consider the map ψ to be defined on Ω.
Define $\mathcal{D}:=\left\{d(\cdot, x)-d(e, x) \mid x \in A_{k}\right\}$.
Lemma 2.4. Restricted to Ω_{0}, the map ψ is a bijection between Ω_{0} and \mathcal{D}.
Proof. Let $(p, z) \in \Omega_{0}$. Observe that $p_{i}=\pi_{i}(z)+p_{0}=\pi_{i}\left(z \Delta^{p_{0}}\right)$ for all $0 \leq i \leq k-1$. For each $w \in A_{k}$,

$$
\begin{aligned}
\psi_{p, z}(w) & =\sum_{i=0}^{k-1}\left|p_{i}+\pi_{i}\left(w^{-1} z\right)-\pi_{i}(z)\right|-\sum_{i=0}^{k-1}\left|p_{i}\right| \\
& =\sum_{i=0}^{k-1}\left|\pi_{i}\left(w^{-1} z \Delta^{p_{0}}\right)\right|-\sum_{i=0}^{k-1}\left|\pi_{i}\left(z \Delta^{p_{0}}\right)\right| \\
& =d\left(w, z \Delta^{p_{0}}\right)-d\left(e, z \Delta^{p_{0}}\right)
\end{aligned}
$$

The result now follows from the fact that every element of A_{k} can be written in a unique way as $z \Delta^{p_{0}}$ with $z \in Z_{0}$ and $p_{0} \in \mathbb{N}$ and that the $p_{i} ; 1 \leq i \leq k-1$ are determined by z and p_{0} for each (p, z) in Ω_{0}.

Lemma 2.5. The set Ω_{0} is dense in Ω.

Proof. Clearly, $-\hat{\infty}$ and $+\hat{\infty}$ are in the closure of Ω_{0} since they are the limits, respectively, of $(-n, \ldots,-n, e)$ and (n, \ldots, n, e), where e denotes the empty word.

Let $(p, z) \in \Omega \backslash\{-\hat{\infty},+\hat{\infty}\}$ and fix $n \in \mathbb{N}$. Let x_{n} be the product of the first n canonical factors of z. Define $b_{k}:=\max \left(\min \left(p_{0}, n\right),-n\right)$ and $b_{k-i}:=\min \left(p_{i}-\right.$ $\left.p_{i-1}, n\right)$ for each $i \in\{1, \ldots, k-1\}$. Let m_{i} denote the number of canonical factors of length i in x_{n}.

For each $i \in\{1, \ldots, k-1\}$, we have that m_{i} is no greater than the number of canonical factors of length i in z, which is no greater than $p_{k-i}-p_{k-i-1}$. We also have $m_{i} \leq n$. Therefore $m_{i} \leq b_{i}$ for all $i \in\{1, \ldots, k-1\}$. So we may multiply x_{n} on the right by canonical factors to obtain a word y_{n} of positive generators such that no product of consecutive letters equals Δ and such that, for each $i \in\{1, \ldots, k-1\}$, there are exactly b_{i} factors of length i.

So $\left(q_{n}, y_{n}\right):=\left(b_{k}, b_{k}+b_{k-1}, \ldots, b_{k}+\cdots+b_{1}, y_{n}\right)$ is in Ω_{0}.
As n tends to infinity, b_{k} converges to p_{0} and b_{i} converges to $p_{k-i}-p_{k-i-1}$ for $1 \leq i \leq k-1$. So $\sum_{i=0}^{j} b_{k-i}$ converges to p_{j} for $j \in\{0, \ldots, k-1\}$. We also have that y_{n} converges to z. We conclude that $\left(q_{n}, y_{n}\right)$ converges to (p, z), which must therefore be in the closure of Ω_{0}.

Lemma 2.6. The map $\psi: \Omega \rightarrow \mathbb{Z}^{A_{k}}$ is injective.
Proof. Let $(p, z) \in \Omega^{\prime}$ and define $f(c):=\psi_{p, z}\left(\Delta^{-c}\right)$ for all $c \in \mathbb{Z}$. Since $\phi_{i}\left(\Delta^{-c}, z\right)=$ c for all $0 \leq i \leq k-1$, we have

$$
f(c)=\sum_{i=0}^{k-1}\left|p_{i}+c\right|-\sum_{i=0}^{k-1}\left|p_{i}\right| .
$$

Observe that, for $x \in \mathbb{N}$,

$$
|x+c+1|-|x+c|= \begin{cases}1, & \text { if } x \geq-c \tag{5}\\ -1, & \text { otherwise }\end{cases}
$$

So

$$
\begin{aligned}
f(c+1)-f(c) & =\sharp\left\{i \mid p_{i} \geq-c\right\}-\sharp\left\{i \mid p_{i}<-c\right\} \\
& =2 \sharp\left\{i \mid p_{i} \geq-c\right\}-k .
\end{aligned}
$$

Here \sharp denotes the cardinal number of a set. Therefore, by calculating $\psi_{p, z}\left(\Delta^{-c-1}\right)-$ $\psi_{p, z}\left(\Delta^{-c}\right)$ for each $c \in \mathbb{N}$, we may determine the number of components of p that equal each element of $\mathbb{Z} \cup\{-\infty,+\infty\}$. Since the components of p are non-decreasing, we will then have determined p. Thus we have shown that if (p_{1}, z_{1}) and (p_{2}, z_{2}) are elements of Ω^{\prime} such that $p_{1} \neq p_{2}$, then $\psi_{p_{1}, z_{1}} \neq \psi_{p_{2}, z_{2}}$.

Now assume that $p_{1}=p_{2}=: p$ but that $\left(p, z_{1}\right)$ and $\left(p, z_{2}\right)$ are elements of distinct equivalence classes in Ω. So, p cannot be identically $+\infty$ or identically $-\infty$. We know from Lemma 2.4 that ψ is a bijection between Ω_{0} and \mathcal{D}, so we may assume that not all entries of p are finite and that z_{1} is an infinite word. Let x_{n} be the nth canonical factor of z_{1} and let w_{n} be the product $w_{n}:=x_{1} \cdots x_{n}$.

We deal first with the case where p_{0} is finite. For each canonical factor $y \in M^{+}$, denote by $l(y)$ the length of y, that is the total number of copies of a and b one has to multiply together to get y. Observe that $\phi\left(w_{n}, z\right)-\phi\left(w_{n-1}, z\right)=\phi\left(x_{n}, w_{n-1}^{-1} z\right)$ for any $z \in Z$. Since the effect of left multiplying $w_{n-1}^{-1} z_{1}$ by x_{n}^{-1} is to cancel exactly
one canonical factor of length $l\left(x_{n}\right)$, we get

$$
\phi_{i}\left(w_{n}, z_{1}\right)-\phi_{i}\left(w_{n-1}, z_{1}\right)= \begin{cases}0, & \text { if } i<k-l\left(x_{n}\right) \tag{6}\\ -1, & \text { otherwise }\end{cases}
$$

for all $i \in\{0, \ldots, k-1\}$ and $n \in \mathbb{N}$. From (5), we see that

$$
\begin{aligned}
\psi_{p, z_{1}}\left(w_{n}\right)-\psi_{p, z_{1}}\left(w_{n-1}\right)= & \sum_{i=0}^{k-1}\left|p_{i}+\phi_{i}\left(w_{n}, z_{1}\right)\right|-\sum_{i=0}^{k-1}\left|p_{i}+\phi_{i}\left(w_{n-1}, z_{1}\right)\right| \\
= & -\sharp\left\{i \geq k-l\left(x_{n}\right) \mid p_{i} \geq-\phi_{i}\left(w_{n}, z_{1}\right)\right\} \\
& +\sharp\left\{i \geq k-l\left(x_{n}\right) \mid p_{i}<-\phi_{i}\left(w_{n}, z_{1}\right)\right\} .
\end{aligned}
$$

Since we have assumed that p_{0} is finite and not all components of p are finite, we must have that $p_{k-1}=+\infty$. Therefore, the first set above is not empty, and so

$$
\begin{equation*}
\psi_{p, z_{1}}\left(w_{n}\right)-\psi_{p, z_{1}}\left(w_{n-1}\right) \leq l\left(x_{n}\right)-2, \quad \text { for all } n \in \mathbb{N} \tag{7}
\end{equation*}
$$

Now consider z_{2}. Since $z_{2} \neq z_{1}$, eventually some x_{n}^{-1} will not cancel completely with the first canonical factor of $w_{n-1}^{-1} z_{2}$ and subsequent left multiplications by $x_{n+1}^{-1}, x_{n+2}^{-1}, \ldots$ will have the effect of adding more factors. For each $n \in \mathbb{N}$, let y_{n} be such that $\Delta^{-1} y_{n}=x_{n}^{-1}$. Since y_{n} is a positive canonical factor of length $k-l\left(x_{n}\right)$, we get

$$
\phi_{i}\left(w_{n}, z_{2}\right)-\phi_{i}\left(w_{n-1}, z_{2}\right)= \begin{cases}-1, & \text { if } i<l\left(x_{n}\right) \tag{8}\\ 0, & \text { otherwise }\end{cases}
$$

for all $i \in\{0, \ldots, k-1\}$ and n large enough. So, for such n,

$$
\begin{aligned}
\psi_{p, z_{2}}\left(w_{n}\right)-\psi_{p, z_{2}}\left(w_{n-1}\right)= & \sum_{i=0}^{k-1}\left|p_{i}+\phi_{i}\left(w_{n}, z_{2}\right)\right|-\sum_{i=0}^{k-1}\left|p_{i}+\phi_{i}\left(w_{n-1}, z_{2}\right)\right| \\
= & -\sharp\left\{i<l\left(x_{n}\right) \mid p_{i} \geq-\phi_{i}\left(w_{n}, z_{2}\right)\right\} \\
& \quad+\sharp\left\{i<l\left(x_{n}\right) \mid p_{i}<-\phi_{i}\left(w_{n}, z_{2}\right)\right\} .
\end{aligned}
$$

Let $i \in\{0, \ldots, k-1\}$. If there are infinitely many $n \in \mathbb{N}$ such that $i<l\left(x_{n}\right)$, then, by (8), the sequence $\phi_{i}\left(w_{n}, z_{2}\right)$ is non-increasing and has limit $-\infty$. But our assumption on p implies that none of the p_{i} are equal to $-\infty$. Therefore, there are only a finite number of $n \in \mathbb{N}$ such that the first set above contains i. Since this is true for any i, the first set must eventually be empty.

So there are only finitely many n for which $\psi_{p, z_{2}}\left(w_{n}\right)-\psi_{p, z_{2}}\left(w_{n-1}\right)<l\left(x_{n}\right)$. Comparing this with (77), we see that $\psi_{p, z_{1}}$ and $\psi_{p, z_{2}}$ cannot be equal.

Now suppose that $p_{0}=-\infty$. Note that $\phi_{i}\left(w \Delta^{-c}, z\right)=c+\phi_{i}(w, z)$ for all $w \in A_{k}$ and $0 \leq i \leq k-1$. So, using (6) and (8), we get

$$
\phi_{i}\left(w_{n} \Delta^{-n}, z_{1}\right)-\phi_{i}\left(w_{n-1} \Delta^{-n+1}, z_{1}\right)= \begin{cases}1, & \text { if } i<k-l\left(x_{n}\right) \\ 0, & \text { otherwise }\end{cases}
$$

for all $n \in \mathbb{N}$, and

$$
\phi_{i}\left(w_{n} \Delta^{-n}, z_{2}\right)-\phi_{i}\left(w_{n-1} \Delta^{-n+1}, z_{2}\right)= \begin{cases}0, & \text { if } i<l\left(x_{n}\right) \\ 1, & \text { otherwise }\end{cases}
$$

for n large enough. Using similar logic to that of the preceding case, we can show that

$$
\psi_{p, z_{1}}\left(w_{n} \Delta^{-n}\right)-\psi_{p, z_{1}}\left(w_{n-1} \Delta^{-n+1}\right) \leq l\left(x_{n}\right)-2
$$

for all $n \in \mathbb{N}$, and that

$$
\psi_{p, z_{2}}\left(w_{n} \Delta^{-n}\right)-\psi_{p, z_{2}}\left(w_{n-1} \Delta^{-n+1}\right)=l\left(x_{n}\right)
$$

for n large enough. So in this case also, $\psi_{p, z_{1}}$ is different from $\psi_{p, z_{2}}$.
Lemma 2.7. The map $\psi: \Omega \rightarrow \mathbb{Z}^{A_{k}}$ is continuous.
Proof. Let $\left(\left(p^{(n)}, z^{(n)}\right)\right)_{n \in \mathbb{N}}$ be a sequence in Ω converging to some element (p, z) of the same set in the topology we have chosen on Ω. If (p, z) is in Ω_{0}, then it is isolated and $\left(p^{(n)}, z^{(n)}\right)$ must eventually be equal to it. So in this case, $\psi_{p^{(n)}, z^{(n)}}$ obviously converges to $\psi_{p, z}$.

Now suppose that $p=(\infty, \ldots, \infty)$. Observe that, for $w \in A_{k}$ fixed, $\phi\left(w, z^{(n)}\right)$ is bounded uniformly in n. So, since each component of $p^{(n)}$ converges to ∞, we have, for each $w \in A_{k}$, that

$$
\psi_{p^{(n)}, z^{(n)}}(w)=\sum_{i=0}^{k-1} \phi_{i}\left(w, z^{(n)}\right), \quad \text { for } n \text { large enough. }
$$

But, by Lemma 2.3, the right-hand-side is equal to $\sum_{i=0}^{k-1} \pi_{i}\left(w^{-1}\right)$, and this is exactly $\psi_{+\hat{\infty}}(w)$.

Similar reasoning shows that $\psi_{p^{(n)}, z^{(n)}}$ converges to $\psi_{-\infty}$ if $p^{(n)}$ converges to $(-\infty, \ldots,-\infty)$.

Suppose finally that (p, z) is in $\Omega \backslash \Omega_{0}$ and p is not identically either $+\infty$ or $-\infty$. Then $z^{(n)}$ converges to z and so, by Lemma 2.2, $\phi\left(w, z^{(n)}\right)$ converges to $\phi(w, z)$ for each $w \in A_{k}$. Since also $p^{(n)}$ converges to p, we get that $\psi_{p^{(n)}, z^{(n)}}$ converges to $\psi_{p, z}$ by inspecting the definition of ψ.

Theorem 2.8. The map ψ is a homeomorphism between Ω and \mathcal{M}.
Proof. The injectivity of ψ was proved in Lemma 2.6 and so ψ is a bijection from Ω to $\psi(\Omega)$. As a continuous bijection from a compact space to a Hausdorff one, ψ must be a homeomorphism from Ω to $\psi(\Omega)$. So $\psi(\Omega)$ is compact and therefore closed. Since $\Omega=\mathrm{cl} \Omega_{0}$ by Lemma 2.5 and ψ is continuous by Lemma 2.7, we have $\psi\left(\Omega_{0}\right) \subset \psi(\Omega) \subset \operatorname{cl} \psi\left(\Omega_{0}\right)$. Taking closures, we get $\psi(\Omega)=\operatorname{cl} \psi\left(\Omega_{0}\right)=\mathcal{M}$, by Lemma 2.4

The proof of our characterisation of Busemann points will require a result from [1: The Busemann points are precisely those horofunctions ξ for which $H(\xi, \xi)=0$, where the detour cost $H(\cdot, \cdot)$ is defined by

$$
H(\xi, \eta):=\liminf _{x \rightarrow \xi}(d(b, x)+\eta(x))
$$

for any pair of horofunctions ξ and η.
Theorem 2.9. A function in \mathcal{M} is a Busemann point if and only if the corresponding element (p, z) of Ω is in $\Omega \backslash \Omega_{0}$ and satisfies the following: $p_{i}-p_{i-1}=m_{k-i}(z)$ for every $i \in\{1, \ldots, k-1\}$ such that p_{i} and p_{i-1} are not both $-\infty$ nor both $+\infty$.

Proof. Assume $\xi \in \mathcal{M}$ is a Busemann point. So ξ is the limit of a sequence of group elements $x_{n}:=y_{0} \cdots y_{n}$, where y is an infinite geodesic word. Write $x_{n-1}=$ $\Delta^{r} z_{1} \cdots z_{s}$ in left normal form and let j be the length of the last canonical factor z_{s}. Consider the effect of right multiplying by y_{n}. There are four cases, corresponding to the four elements of S :
i. y_{n} is positive and $z_{s} y_{n} \in M^{+} \cup\{\Delta\}$. In this case the length of the last canonical factor increases by one and so $\pi_{k-j-1}\left(x_{n}\right)=\pi_{k-j-1}\left(x_{n-1}\right)+1$. All other components of $\pi\left(x_{n}\right)$ equal those of $\pi\left(x_{n-1}\right)$;
ii. y_{n} is positive and $z_{s} y_{n} \notin M^{+} \cup\{\Delta\}$. In this case another canonical factor y_{n} of length one is tacked onto the end and so $\pi_{k-1}\left(x_{n}\right)=\pi_{k-1}\left(x_{n-1}\right)+1$, all other components being the same;
iii. y_{n} is negative and $z_{s} y_{n} \in M^{+} \cup\{e\}$. In this case the length of the last canonical factor decreases by one and so $\pi_{k-j}\left(x_{n}\right)=\pi_{k-j}\left(x_{n-1}\right)-1$, all other components being the same;
iv. y_{n} is negative and $z_{s} y_{n} \notin M^{+} \cup\{e\}$. In this case we can see what happens more clearly by right multiplying x_{n} by $\Delta^{-1}\left(\Delta y_{n}\right)$ instead of y_{n}. Moving the Δ^{-1} all the way to the left, we see that the power of Δ becomes r 1 , each canonical factor $z_{i} ; 1 \leq i \leq s$ is replaced by $\tau\left(z_{i}\right)$, and another canonical factor Δy_{n} of length $k-1$ is tacked onto the end. So $\pi_{0}\left(x_{n}\right)=$ $\pi_{0}\left(x_{n-1}\right)-1$ and all other components stay the same.
In all cases, when going from $\pi\left(x_{n-1}\right)$ to $\pi\left(x_{n}\right)$, a single component is changed, either increased of decreased by one. Looking at the distance formula of Proposition 2.1, we see that, since y is a geodesic word, an increase is only possible when the relevant component of $\pi\left(x_{n-1}\right)$ is non-negative, and a decrease is only possible when it is non-positive.

If case (i) occurs infinitely often with $j=k-1$, then $\pi_{0}\left(x_{n}\right)$ converges to $+\infty$ as n tends to infinity, and so every component of $\pi\left(x_{n}\right)$ converges to $+\infty$. In this case, the condition in the statement of the theorem holds trivially. So we may assume that case (i) occurs only finitely many times with $j=k-1$. Likewise, we may assume that case (iii) occurs only finitely many times with $j=1$.

One sees that case (ii) creates a new canonical factor of length one, which can be lengthened by successive applications of case (i), whereas case (iv) creates a new canonical factor of length $k-1$, which can be shortened by successive applications of case (iii). For each $n \in \mathbb{N}$, denote by $z^{(n)}$ the word consisting of all the canonical factors of x_{n} taken in sequence. Because of the assumptions of the previous paragraph, eventually, once a canonical factor has been created it can not be removed. So if we take the sequence of times $\left(n_{t}\right)_{t \in \mathbb{N}}$ where either case (ii) or case (iv) occurs, then the difference between $z^{\left(n_{t}\right)}$ and $z^{\left(n_{t-1}\right)}$ is that a new canonical factor has been added and, possibly, that the original canonical factors have been operated on by τ.

Fix $i \in\{1, \ldots, k-1\}$ such that p_{i-1} and p_{i} are not both $+\infty$ nor both $-\infty$. We have that $\pi_{i}\left(x_{n_{t}}\right)-\pi_{i-1}\left(x_{n_{t}}\right)$ is equal to $m_{k-i}^{n_{t}}$, the number of canonical factors of length $k-i$ in $z^{\left(n_{t}\right)}$. But because $z^{\left(n_{t}\right)}$ grows monotonically as t increases, $m_{k-i}^{n_{t}}$ converges as t tends to infinity to $m_{k-i}(z)$, the number of canonical factors of length $k-i$ in z. Therefore,

$$
p_{i}-p_{i-1}=\lim _{t \rightarrow \infty}\left(\pi_{i}\left(x_{n_{t}}\right)-\pi_{i-1}\left(x_{n_{t}}\right)\right)=\lim _{t \rightarrow \infty} m_{k-i}^{n_{t}}=m_{k-i}(z)
$$

This establishes the implication in one direction.

Now assume that $\xi \in \mathcal{M}$ corresponds to $+\hat{\infty}$. For each $n \in \mathbb{N}$, let $x_{n}:=$ $\operatorname{prod}(a, b ; n)$ and let $\left(p^{(n)}, z^{(n)}\right)$ be the corresponding element of Ω_{0}. We see that $p_{0}^{(n)}=\lfloor n / k\rfloor$, which tends to infinity as n tends to infinity. It follows that $p^{(n)}$ converges to $(+\infty, \ldots,+\infty)$ and hence x_{n} converges to ξ by Theorem 2.8. Since x_{n} is a geodesic, ξ must be a Busemann point.

When $\xi \in \mathcal{M}$ corresponds to $-\hat{\infty}$, we take $x_{n}:=\operatorname{prod}\left(a^{-1}, b^{-1} ; n\right)$ and use a similar argument.

Now assume that ξ corresponds to an element $(p, z) \in \Omega \backslash\left(\Omega_{0} \cup\{-\hat{\infty},+\hat{\infty}\}\right)$ satisfying the condition in the statement of the theorem. Let w^{n} be the word consisting of the first n canonical factors of z. Let $j \in\{0, \ldots, k-1\}$ be the index of either the first non-negative component of p or the last non-positive component. We can choose a sequence of vectors q^{n} in \mathbb{Z}^{k} such that $q_{i}^{n}-q_{i-1}^{n}=m_{k-i}\left(w^{n}\right)$ for all $i \in\{1, \ldots, k-1\}$, and such that q_{j}^{n} converges to p_{j}. Since $\left(q^{n}, w^{n}\right) \in \Omega_{0}$ for all $n \in \mathbb{N}$, we may consider the element x^{n} of A_{k} corresponding to $\left(q^{n}, w^{n}\right)$. From our assumption on ξ, we have that $m_{k-i}\left(w^{n}\right)$ converges as n tends to infinity to $p_{i}-p_{i-1}$ for all $i \in\{1, \ldots, k-1\}$ such that p_{i} and p_{i-1} are not both $+\infty$ nor both $-\infty$.

Using this and the definition of q^{n}, we conclude that q^{n} converges to p as n tends to infinity. But we also have that w^{n} converges to z and so, by Theorem 2.8, x^{n} converges to ξ. Multiplying z on the left by $\left(x^{n}\right)^{-1}$ has the effect of canceling $m_{i}\left(w^{n}\right)$ factors of length i for each $i \in\{1, \ldots, k-1\}$ and adding a factor $\Delta^{-q_{0}^{n}}$. Therefore

$$
\phi_{i}\left(x^{n}, z\right)=-q_{0}^{n}-m_{k-1}\left(w^{n}\right)-\cdots-m_{k-i}\left(w^{n}\right)=-q_{i}^{n} .
$$

So

$$
\begin{aligned}
H(\xi, \xi) & \leq \liminf _{n \rightarrow \infty}\left(d\left(e, x^{n}\right)+\psi_{p, z}\left(x^{n}\right)\right) \\
& =\liminf _{n \rightarrow \infty} \sum_{i=0}^{k-1}\left(\left|q_{i}^{n}\right|+\left|p_{i}-q_{i}^{n}\right|-\left|p_{i}\right|\right) \\
& =0,
\end{aligned}
$$

since q^{n} converges to p. This proves that ξ is a Busemann point.

3. Dual generators

We establish a formula for the dual-generator word-metric using a technique originally developed by Fordham [10] to prove a length formula for Thompson's group F. The following theorem is a right-handed version of one in [2].

Theorem 3.1. Let G be a group with generating set S, and let $l: G \rightarrow \mathbb{N}$ be a function. Then l gives the distance with respect to S from the identity to any given element if and only if

L1. $l(e)=0$,
L2. $|l(w g)-l(w)| \leq 1$ for all $w \in G$ and $g \in S$,
L3. if $w \in G \backslash\{e\}$, then there exists $g \in S \cup S^{-1}$ such that $l(w g)<l(w)$.
Proposition 3.2. Let $w=\delta^{r} w_{1} w_{2} \cdots w_{s}$ be written in left normal form with respect to the dual generators. Then the distance between the identity and w with respect to these generators is given by $\tilde{d}(e, w)=|r|+|r+s|$.

Proof. Let $l(w):=|r|+|r+s|$. Clearly l satisfies (L1). Consider the effect of right multiplying w by a generator $g \in \tilde{S}$. Let $v:=w g$ and write this group element in left normal form $v=\delta^{r^{\prime}} v_{1} v_{2} \cdots v_{s^{\prime}}$. There are four cases to consider:
i. g is positive and $w_{s} g=\delta$. In this case $r^{\prime}=r+1$ and $s^{\prime}=s-1$.
ii. g is positive and $w_{s} g \neq \delta$. In this case $r^{\prime}=r$ and $s^{\prime}=s+1$.
iii. g is negative and $w_{s} g=e$. In this case $r^{\prime}=r$ and $s^{\prime}=s-1$.
iv. g is negative and $w_{s} g \neq e$. In this case $r^{\prime}=r-1$ and $s^{\prime}=s+1$.

In all cases, either $r^{\prime}=r$ and $r^{\prime}+s^{\prime}=r+s \pm 1$, or $r^{\prime}=r \pm 1$ and $r^{\prime}+s^{\prime}=r+s$. Therefore (L2) is satisfied.

Also, by choosing g appropriately, we can make whichever of the four cases we want happen. So we always have the freedom to increase or decrease either r or $r+s$ by one. It follows that (L3) holds.

We note that an algorithm for finding a geodesic representative of any given word in A_{3} with respect to the dual generators was presented in 18.

Observe that the distance formula above has a form similar to the formula established in Proposition 2.1 for the distance with respect to the Artin generators. This similarity will allow us to calculate the horofunction boundary and the Busemann points with respect to the dual generators using the same method as for the Artin generators.

As before we define some maps. For any $w \in A_{k}$, let $\tilde{m}_{1}(w)$ and $\tilde{m}_{2}(w)$ be such that w can be written in left normal form as $w=\delta^{\tilde{m}_{2}(w)} w_{1} \cdots w_{\tilde{m}_{1}(w)}$. Define $\tilde{\pi}: A_{k} \rightarrow \mathbb{Z}^{2}$ by

$$
\tilde{\pi}(w):=\left(\tilde{m}_{2}(w), \tilde{m}_{1}(w)+\tilde{m}_{2}(w)\right) .
$$

Finally, let

$$
\tilde{\phi}(w, z):=\tilde{\pi}\left(w^{-1} z\right)-\tilde{\pi}(z), \quad \text { for all } w \text { and } z \text { in } A_{k}
$$

The proof of the following lemma is similar to its counterpart, Lemma 2.2
Lemma 3.3. Let $w \in A_{k}$ and let $z_{1} z_{2} \cdots$ be an infinite word of positive dual generators such that no product of consecutive letters equals δ. Then $\tilde{\phi}\left(w, z_{1} \cdots z_{n}\right)$ converges as n tends to infinity.

Let \tilde{Z} be the set of possibly infinite words of positive dual generators having no product of consecutive letters equal to δ. The previous lemma allows us to define $\tilde{\phi}(w, z)$ for $w \in A_{k}$ and $z=z_{1} z_{2} \cdots$ an infinite element of \tilde{Z} to be the limit of $\tilde{\phi}\left(w, z_{1} \cdots z_{n}\right)$ as n tends to infinity.

Let $\tilde{\Omega}^{\prime}$ denote the set of (p, z) in $(\mathbb{Z} \cup\{-\infty,+\infty\})^{2} \times \tilde{Z}$ such that if p is not identically $-\infty$ nor identically $+\infty$, then $p_{1}-p_{0}=\tilde{m}_{1}(z)$. We take the product topology on $\tilde{\Omega}^{\prime}$. Let $\tilde{\Omega}$ be the quotient of $\tilde{\Omega}^{\prime}$ obtained by considering all points $((-\infty,-\infty), z)$ with $z \in \tilde{Z}$ to be equivalent, and all points $((+\infty,+\infty), z)$ with $z \in \tilde{Z}$ to be equivalent. The former equivalence class we denote simply by $-\tilde{\infty}$, the latter by $+\tilde{\infty}$.

For each $(p, z) \in \tilde{\Omega}^{\prime}$, define

$$
\begin{equation*}
\tilde{\psi}_{p, z}: A_{k} \rightarrow \mathbb{Z}, \quad w \mapsto\left|p_{0}+\tilde{\phi}_{0}(w, z)\right|+\left|p_{1}+\tilde{\phi}_{1}(w, z)\right|-\left|p_{0}\right|-\left|p_{1}\right| \tag{9}
\end{equation*}
$$

We use the same convention as before for adding and subtracting infinities. The following lemma shows that $\tilde{\psi}$ is constant on the equivalence classes $-\tilde{\infty}$ and $+\tilde{\infty}$. The proof of this lemma is the same as that of Lemma 2.3

Lemma 3.4. For all w and z in A_{k},

$$
\tilde{\phi}_{0}(w, z)+\tilde{\phi}_{1}(w, z)=\tilde{\pi}_{0}\left(w^{-1}\right)+\tilde{\pi}_{1}\left(w^{-1}\right)
$$

So we see that if $p=(-\infty,-\infty)$, then

$$
\tilde{\psi}_{p, z}(w)=-\tilde{\pi}_{0}\left(w^{-1}\right)-\tilde{\pi}_{1}\left(w^{-1}\right)
$$

is independent of z. Likewise, if $p=(+\infty,+\infty)$, then

$$
\tilde{\psi}_{p, z}(w)=\tilde{\pi}_{0}\left(w^{-1}\right)+\tilde{\pi}_{1}\left(w^{-1}\right)
$$

We may therefore consider the map $\tilde{\psi}$ to be defined on $\tilde{\Omega}$.
Let $\tilde{\mathcal{D}}:=\left\{\tilde{d}(\cdot, x)-\tilde{d}(e, x) \mid x \in A_{k}\right\}$ and let $\tilde{\mathscr{M}}$ be its closure, that is, the horofunction compactification of A_{k} with the dual-generator word metric.

Let \tilde{Z}_{0} be the set of finite words with letters in $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ having no product of consecutive letters equal to δ and define

$$
\tilde{\Omega}_{0}:=\left\{(p, z) \in \mathbb{Z}^{2} \times \tilde{Z}_{0} \mid p_{1}-p_{0}=\tilde{m}_{1}(z)\right\}
$$

Again, we wish to show that $\tilde{\Omega}$ is homeomorphic to $\tilde{\mathscr{M}}$ with $\tilde{\Omega}_{0}$ being mapped to $\tilde{\mathcal{D}}$. We use the same method we used for the Artin generators. The proofs of the following results are similar to those of the corresponding results in Section 2
Lemma 3.5. Restricted to $\tilde{\Omega}_{0}$, the map $\tilde{\psi}$ is a bijection between $\tilde{\Omega}_{0}$ and $\tilde{\mathcal{D}}$.
Lemma 3.6. The set $\tilde{\Omega}_{0}$ is dense in $\tilde{\Omega}$.
Lemma 3.7. The map $\tilde{\psi}: \tilde{\Omega} \rightarrow \mathbb{Z}^{A_{k}}$ is injective.
Lemma 3.8. The map $\tilde{\psi}: \tilde{\Omega} \rightarrow \mathbb{Z}^{A_{k}}$ is continuous.
Theorem 3.9. The map $\tilde{\psi}$ is a homeomorphism between $\tilde{\Omega}$ and $\tilde{\mathscr{M}}$.
The proof of the following theorem uses the same reasoning as that of Theorem 2.9

Theorem 3.10. In the horoboundary of A_{k} with the dual-generator word metric, all horofunctions are Busemann points.

We use our distance formula to characterise the geodesic words of A_{k} with the dual generators.
Proposition 3.11. Let $x \in A_{k}$ and let y be a freely reduced word of dual generators representing x. Then y is a geodesic if and only if $\widetilde{\operatorname{Pos}}(y)+\widetilde{\mathrm{N}} \operatorname{eg}(y) \leq 2$.
Proof. Let y be such that $\widetilde{\operatorname{Pos}}(y)+\widetilde{\mathrm{N}} \mathrm{eg}(y)>2$. Since neither $\widetilde{\operatorname{Pr}}_{\mathrm{os}}(y) \operatorname{nor} \widetilde{\mathrm{N}} \mathrm{eg}(y)$ are greater than 2 , one of them must equal 2 and the other must be positive. Suppose $\widetilde{\operatorname{Pos}}(y)=2$ and $\widetilde{\operatorname{Ne}} \mathrm{eg}(y)>0$. Then y contains a negative generator and two consecutive positive generators with product δ. Take the δ and shift it towards the negative generator by repeatedly using the relations $\sigma_{i} \delta=\delta \sigma_{i+2}$ and $\sigma_{i}^{-1} \delta=\delta \sigma_{i+2}^{-1}$. Then cancel the negative generator with the δ using $\sigma_{i}^{-1} \delta=\sigma_{i+1}$. The result is a word representing x that is shorter by one generator than y. Therefore y is not a geodesic. The proof in the case when $\widetilde{\operatorname{Pos}}(y)>0$ and $\widetilde{\operatorname{Neg}}(y)=2$ is similar.

Now assume that $\widetilde{\mathrm{N}} \mathrm{eg}(y)=0$. Consider what happens if we start at the identity and successively multiply by generators as prescribed by y. We obtain a sequence, which we denote by $\left(x_{n}\right)_{n \in \mathbb{N}}$. Initially $r=r+s=0$, where r and s are as in

Proposition 3.2. Since y is composed only of positive generators, only cases (i) and (ii) in the proof of Proposition 3.2 are relevant here. We note that in these two cases, either r or $r+s$ increases by one, and the other stays the same. Therefore $\tilde{d}\left(e, x_{n}\right)=n$. It follows that y is a geodesic.

The proof that y is a geodesic if $\widetilde{\mathrm{P}} \mathrm{Os}(y)=0$ is similar. The cases concerned this time are (iii) and (iv), and in both of these either r or $r+s$ decreases by one and the other stays the same.

The final case to consider is when $\widetilde{\operatorname{Pos}}(y)=\widetilde{\mathrm{N}} \mathrm{eg}(y)=1$. We claim that, as the generators comprising y are successively multiplied, the rightmost canonical factor in the left normal form of x_{n} is equal to y_{n} when y_{n} is positive and equal to δy_{n} when y_{n} is negative. To show this, we use induction on n. Suppose the claim is true for x_{n}, which we write in left normal form as $x_{n}=\delta^{r} w_{1} \cdots w_{s}$. If y_{n} is positive, our induction hypothesis gives that $w_{s}=y_{n}$, and so y_{n+1} can not equal either w_{s}^{-1} or $w_{s}^{-1} \delta$ since y is freely reduced and $\widetilde{\operatorname{Pos}}(y)<2$. Therefore, if y_{n} is positive, neither case (i) nor case (iii) of Proposition 3.2 can occur. Since there is no cancellation, the left normal form of x_{n+1} has then y_{n+1} or δy_{n+1} as rightmost canonical factor, depending on whether y_{n+1} is positive or negative. Similar reasoning shows the same is true when y_{n} is negative. Thus we have proved our claim.

The argument of the previous paragraph also established that cases (i) and (iii) of Proposition 3.2 never occur when x_{n} is multiplied on the right by y_{n+1}.

In case (ii) of that proposition, $r+s$ increases by one while r remains the same, and in case (iv), r decreases by one while $r+s$ remains the same. Therefore, $|r|+|r+s|$ always increases by one as each letter of y is added, and so $\tilde{d}\left(e, x_{n}\right)=n$. So in this case also, y is a geodesic.

This characterisation of geodesics allows us to calculate the geodesic growth series of A_{k}.

Theorem 3.12. The geodesic growth series of A_{k} with the dual generators is

$$
\mathcal{G}(x)=\frac{1+(3-2 k) x+\left(2+k^{2}-3 k\right) x^{2}-2 k(k-1) x^{3}}{(1-k x)(1-2(k-1) x)(1-(k-1) x)} .
$$

Proof. Let $N_{i j}^{n}$ be the number of freely reduced words y of length n satisfying $\widetilde{\operatorname{Pos}}(y) \leq i$ and $\widetilde{\mathrm{N} e g}(y) \leq j$, and let $\mathcal{G}_{i j}$ be the corresponding generating series. Proposition 3.11 and an inclusion-exclusion argument give that the number of geodesics of length n is

$$
N_{20}^{n}+N_{02}^{n}+N_{11}^{n}-N_{10}^{n}-N_{01}^{n} .
$$

Therefore

$$
\begin{equation*}
\mathcal{G}=\mathcal{G}_{20}+\mathcal{G}_{02}+\mathcal{G}_{11}-\mathcal{G}_{10}-\mathcal{G}_{01} \tag{10}
\end{equation*}
$$

Clearly, $N_{20}^{n}=N_{02}^{n}=k^{n}$ for all $n \in \mathbb{N}$, and so

$$
\mathcal{G}_{20}(x)=\mathcal{G}_{02}(x)=1+k x+k^{2} x^{2}+\cdots=\frac{1}{1-k x}
$$

Consider now the freely reduced words not containing δ or δ^{-1} as sub-words. For the first letter we may choose any of the $2 k$ generators. For subsequent letters, we can choose any letter apart from the inverse of the previous one and the letter
that would combine with the previous one to form δ or δ^{-1}. So we have a choice of $2 k-2$ generators. Therefore the growth series \mathcal{G}_{11} for this set of words is

$$
\begin{aligned}
\mathcal{G}_{11}(x) & =1+2 k x+2 k(2 k-2) x^{2}+2 k(2 k-2)^{2} x^{3}+\cdots \\
& =\frac{1+2 x}{1-2(k-1) x}
\end{aligned}
$$

Now consider the set of freely reduced words containing only positive generators and no sub-word equal to δ. This time there are k possibilities for the first letter and $k-1$ for subsequent letters. So the growth series is

$$
\begin{aligned}
\mathcal{G}_{10}(x) & =1+k x+k(k-1) x^{2}+k(k-1)^{2} x^{3}+\cdots \\
& =\frac{1+x}{1-(k-1) x}
\end{aligned}
$$

The growth series \mathcal{G}_{01} is identical.
The conclusion now follows from (10) after some rearranging.
The first few terms of $\mathcal{G}(x)$ are

$$
\mathcal{G}_{(x)}=1+2 k x+2\left(2 k^{2}-k\right) x^{2}+2\left(k^{3}+3 k(k-1)^{2}\right) x^{3}+\cdots .
$$

References

[1] Marianne Akian, Stéphane Gaubert, and Cormac Walsh. The max-plus Martin boundary. Preprint. arXiv:math.MG/0412408, 2004.
[2] James M. Belk and Kenneth S. Brown. Forest diagrams for elements of Thompson's group F. Internat. J. Algebra Comput., 15(5-6):815-850, 2005.
[3] Mitchell A. Berger. Minimum crossing numbers for 3-braids. J. Phys. A, 27(18):6205-6213, 1994.
[4] David Bessis. The dual braid monoid. Ann. Sci. École Norm. Sup. (4), 36(5):647-683, 2003.
[5] Ruth Charney and John Meier. The language of geodesics for Garside groups. Math. Z., 248(3):495-509, 2004.
[6] A. Connes. Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory Dynam. Systems, 9(2):207-220, 1989.
[7] Michel Coornaert and Athanase Papadopoulos. Horofunctions and symbolic dynamics on Gromov hyperbolic groups. Glasg. Math. J., 43(3):425-456, 2001.
[8] Mike Develin. Cayley compactifications of abelian groups. Ann. Comb., 6(3-4):295-312, 2002.
[9] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.
[10] S. Blake Fordham. Minimal length elements of Thompson's group F. Geom. Dedicata, 99:179220, 2003.
[11] M. Gromov. Hyperbolic manifolds, groups and actions. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., pages 183-213, Princeton, N.J., 1981. Princeton Univ. Press.
[12] Jean Mairesse and Frédéric Mathéus. Growth series for Artin groups of dihedral type. Preprint, 2005.
[13] Marc A. Rieffel. Group C^{*}-algebras as compact quantum metric spaces. Doc. Math., 7:605651 (electronic), 2002.
[14] Lucas Sabalka. Geodesics in the braid group on three strands. In Group theory, statistics, and cryptography, volume 360 of Contemp. Math., pages 133-150. Amer. Math. Soc., Providence, RI, 2004.
[15] Peter A. Storm. The barycenter method on singular spaces. Preprint. arXiv:math.GT/0301087, 2003.
[16] Corran Webster and Adam Winchester. Boundaries of hyperbolic metric spaces. Pacific J. Math., 221(1):147-158, 2005.
[17] Corran Webster and Adam Winchester. Busemann points of infinite graphs. Trans. Amer. Math. Soc., 358(9):4209-4224 (electronic), 2006.
[18] Peijun Xu. The genus of closed 3-braids. J. Knot Theory Ramifications, 1(3):303-326, 1992.
InRIA, Domaine de Voluceau, 78153 Le Chesnay Cédex, France
E-mail address: cormac.walsh@inria.fr

[^0]: Date: October 31, 2018.
 2000 Mathematics Subject Classification. Primary 20F36; 20 F65.
 Key words and phrases. Artin groups, braid groups, Garside groups, geodesics, growth series, horoball, max-plus algebra, metric boundary, Busemann function.

