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BUSEMANN POINTS OF ARTIN GROUPS OF DIHEDRAL

TYPE

CORMAC WALSH

Abstract. We study the horofunction boundary of an Artin group of dihedral
type with its word metric coming from either the usual Artin generators or the
dual generators. In both cases, we determine the horoboundary and say which
points are Busemann points, that is the limits of geodesic rays. In the case
of the dual generators, it turns out that all boundary points are Busemann
points, but this is not true for the Artin generators. We also characterise the
geodesics with respect to the dual generators, which allows us to calculate the
associated geodesic growth series.

1. Introduction

Consider the following metric space boundary, defined first by Gromov [11]. One
assigns to each point z in the metric space (X, d) the function ψz : X → R,

ψz(x) := d(x, z)− d(b, z),

where b is some basepoint. If X is proper and complete, then the map ψ : X →
C(X), z 7→ ψz defines an embedding of X into C(X), the space of continuous
real-valued functions on X endowed with the topology of uniform convergence on
compacts. The horofunction boundary is defined to be X(∞) := cl{ψz | z ∈
X}\{ψz | z ∈ X}, and its elements are called horofunctions.

This boundary is not the same as the better known Gromov boundary of a δ-
hyperbolic space. For these spaces, it has been shown [7, 16, 15] that the horobound-
ary is finer than the Gromov boundary in the sense that there exists an equivariant
continuous surjection from the former to the latter.

An interesting class of metric spaces are the Cayley graphs of finitely generated
groups with their word metric. Here one may hope to have a combinatorial descrip-
tion of the horoboundary. Rieffel [13] has investigated the horoboundary in this
setting. A length function on a discrete group naturally gives rise to a metric on
the state space of the reduced group C*-algebra [6] and, in the case of Zd with a
word metric coming from a finite set of generators, Rieffel used the horoboundary to
determine certain properties of this metric, in particular, whether it is compatible
with the weak* topology on the state space.

This motivates the study of the horoboundary of other finitely generated groups.
In this paper, we investigate the horofunction boundary of the Artin groups of
dihedral type. Let prod(s, t;n) := ststs · · · , with n factors in the product. The
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2 CORMAC WALSH

Artin groups of dihedral type have the following presentation:

Ak = 〈a, b | prod(a, b; k) = prod(b, a; k)〉, with k ≥ 3.

Observe that A3 is the braid group on three strands. The generators traditionally
considered are the Artin generators S := {a, b, a−1, b−1}.

In what follows, we will have need of the Garside normal form for elements of
Ak. The element ∆ := prod(a, b; k) = prod(b, a; k) is called the Garside element.
Let

M+ := {a, b, ab, ba, . . . , prod(a, b; k − 1), prod(b, a; k − 1)}.

It can be shown [9] that w ∈ Ak can be written

w = w1 · · ·wn∆
r

for some r ∈ Z and w1, . . . , wn ∈M+. This decomposition is unique if n is required
to be minimal. We call it the right normal form of w. The factors w1, . . . , wn are
called the canonical factors of w.

One can also write w in left normal form: w = ∆rw′
1 · · ·w

′
n, with r ∈ Z and

w′
1, . . . , w

′
n ∈M+.

To calculate the horoboundary, we will need a formula for the word length metric.
An algorithm was given in [3] for finding a geodesic word representing any given
element of A3. In [14], there is a criterion for when a word is a geodesic in A3.
Both these results were generalised in [12] to arbitrary k ≥ 3. It was shown that a
freely reduced word u is a geodesic with respect to the Artin generators if and only
if

Pos(u) + Neg(u) ≤ k. (1)

Here Pos(u) is the length of the longest possible element ofM+∪{∆} obtainable by
multiplying together consecutive letters of u. The length of an element prod(a, b;n)
or prod(b, a;n) of M+ ∪ {∆} is defined to be n. Likewise, Neg(u) is the length of
the longest possible element of M− ∪ {∆−1} obtainable in the same way, where
M− := (M+)−1.

We use the algorithm in [12] to find a simple formula for the word length metric.

Proposition. Let x = ∆rz1 · · · zm be an element of Ak written in left normal

form. Let (p0, . . . , pk−1) ∈ N
k be such that p0 := r and, for each i ∈ {1, . . . , k− 1},

pi − pi−1 = mk−i, where mi is the number of canonical factors of x of length i.
Then the distance from the identity e to x in the Artin-generator word-length metric

is

d(e, x) =

k−1∑

i=0

|pi|.

Since d is invariant under left multiplication, that is, d(y, x) = d(e, y−1x), we can
use this formula to calculate the distance between any pair of elements y and x of
Ak. With this knowledge we can find the following description of the horofunction
compactification.

Let Z be the set of possibly infinite words of positive generators having no
product of consecutive letters equal to ∆. We can write each element z of Z as a
concatenation of substrings in such a way that the products of the letters in every
substring equals an element of M+ and the combined product of letters in each
consecutive pair of substrings is not in M+. Because z does not contain ∆, this
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decomposition is unique. Let mi(z) denote the number of substrings of length i.
Note that if z is an infinite word, then this number will be infinite for some i.

Let Ω′ denote the set of (p, z) in (Z∪ {−∞,+∞})k ×Z satisfying the following:

• pi − pi−1 ≥ mk−i(z) for all i ∈ {1, . . . , k− 1} such that pi and pi−1 are not
both −∞ nor both +∞;

• if z is finite, then pi − pi−1 = mk−i(z) for all i ∈ {1, . . . , k − 1} such that
pi and pi−1 are not both −∞ nor both +∞.

We take the product topology on Ω′.
We now define Ω to be the quotient topological space of Ω′ where the ele-

ments of (+∞, . . . ,+∞) × Z are considered equivalent and so also are those in
(−∞, . . . ,−∞) × Z. We denote these two equivalence classes by +∞̂ and −∞̂,
respectively.

We letM denote the horofunction compactification ofAk with the Artin-generator
word metric. The basepoint is taken to be the identity.

Theorem. The sets Ω and M are homeomorphic.

Let Z0 be the set of elements of Z that are finite words. Let Ω0 denote the set
of (p, z) in Z

k × Z0 such that pi − pi−1 = mk−i(z) for all i ∈ {1, . . . , k − 1}. We
will show that the elements of Ω0 are exactly the elements of Ω corresponding to
functions of the form d(·, z)− d(e, z) in M.

Of particular interest are those horofunctions that are the limits of almost-
geodesics; see [1] and [13] for two related definitions of this concept. Rieffel calls
the limits of such paths Busemann points. In the present context, since the metric
takes only integer values, the Busemann points are exactly the limits of geodesics
(see [17]). Develin [8], investigated the horoboundary of finitely generated abelian
groups with their word metrics and showed that all their horofunctions are Buse-
mann. Webster and Winchester [17] gave a necessary and sufficient condition for
all horofunctions of a finitely generated group to be Busemann.

We prove the following characterisation of the Busemann points of Ak.

Theorem. A function in M is a Busemann point if and only if the corresponding

element (p, z) of Ω is in Ω\Ω0 and satisfies the following: pi − pi−1 = mk−i(z) for
every i ∈ {1, . . . , k − 1} such that pi and pi−1 are not both −∞ nor both +∞.

The group Ak also has a dual presentation:

Ak = 〈σ1, . . . , σk | σ1σ2 = σ2σ3 = · · · = σkσ1〉, with k ≥ 3.

The set of dual generators is S̃ := {σ1, . . . , σk, σ
−1
1 , . . . , σ−1

k }. These are related to
the Artin generators in the following way: σ1 = a, σ2 = b, and

σj =

{
prod(b−1, a−1; j − 2) prod(a, b; j − 1), if j is odd,

prod(b−1, a−1; j − 2) prod(b, a; j − 1), if j is even,

for j ∈ {3, . . . , k}. The existence of a dual presentation holds more generally for all
Artin groups of finite type [4].

There are also Garside normal forms related to the dual presentation. Here the
Garside element is δ := σ1σ2 = · · · = σkσ1.

Again, we find a formula for the word length metric.
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Proposition. Let w = δrw1w2 · · ·ws be written in left normal form. Then the

distance between the identity and w with respect to the dual generators is given by

d̃(e, w) = |r| + |r + s|.

Using this formula, we again determine the horoboundary. This time however,
there are no non-Busemann points.

Theorem. In the horoboundary of Ak with the dual-generator word metric, all

horofunctions are Busemann points.

In general, one would expect the properties of the horofunction boundary of a
group with its word length metric to depend strongly on the generating set. It
would be interesting to know for which groups and for which properties there is not
this dependence. As already mentioned, all boundary points of abelian groups are
Busemann no matter what the generating set [8]. On the other hand, the above
results show that for Artin groups of dihedral type the existence of non-Busemann
points depends on the generating set.

We use our formula to establish a criterion for a word to be a geodesic with

respect to the dual generators. For every word y with letters in S̃, let P̃os(y) be the
longest element of {σ1, . . . , σk, δ} obtainable by multiplying together consecutive
letters of y. The generators σ1, . . . , σk are considered to each have length 1 whereas

δ is considered to have length 2. Similarly, Ñeg(y) is defined to be the longest
element of {σ−1

1 , . . . , σ−1
k , δ−1} obtainable in the same way.

Proposition. Let y be a freely reduced word of dual generators. Then y is a

geodesic if and only if P̃os(y) + Ñeg(y) ≤ 2.

The geodesic growth series of a finitely generated group G with respect to a
generating set S is

G(G,S)(x) :=

∞∑

n=0

anx
n,

where an is the number of words of length n that are geodesic with respect to S.
It is obvious from the characterisation of geodesics given above that the set of

geodesic words with respect to the dual set of generators S̃ is a regular language.
It follows that the geodesic growth series is rational [9], that is, can be expressed
as the quotient of two integer-coefficient polynomials in the ring of formal power
series Z[[x]]. We calculate this growth series explicitly.

Theorem. The geodesic growth series of Ak with the dual generators is

G(x) =
1 + (3− 2k)x+ (2 + k2 − 3k)x2 − 2k(k − 1)x3

(1 − kx)(1− 2(k − 1)x)(1− (k − 1)x)
.

The geodesic growth series has previously been determined forAk with other gen-
erating sets. Charney andMeier [5] calculate it for the generating sets {σ±

1 , . . . , σ
±

k , δ
±}

and M+ ∪M− ∪ {∆±}. Sabalka [14] calculates it for the 3–strand braid group
A3 with the Artin generators, a result which was generalised by Mairesse and
Mathéus [12] to Ak; k ≥ 3, again with the Artin generators.

2. Artin generators

Proposition 2.1. Let x = ∆rz1 · · · zm be an element of Ak written in left normal

form. Let (p0, . . . , pk−1) ∈ Z
k be such that p0 := r and, for each i ∈ {1, . . . , k− 1},
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pi − pi−1 = mk−i, where mi is the number of canonical factors of x of length i.
Then the distance from the identity e to x in the Artin-generator word-length metric

is

d(e, x) =

k−1∑

i=0

|pi|.

Proof. In [12], there is an algorithm for finding a geodesic representative of an
element x ofAk given its normal form. This algorithm consists, in the case when r <
0, of shifting each instance of ∆−1 across and combining it with one of the canonical
factors of longest length. This procedure is continued until all the ∆−1s have been
moved across or there are no more canonical factors with which to multiply. The
resulting word is shown to be a geodesic representative of x.

If r ≥ 0, then the algorithm leaves the normal form unchanged, and so

d(e, x) =

k−1∑

i=1

imi + kr =

k−1∑

i=0

pi,

which proves the result in this case since here all the pi are non-negative.

On the other hand, if −r ≥
∑k−1

i=1 mi, then all the canonical factors are changed:
each factor of length i ∈ {1, . . . , k − 1} is replaced by a word of length k − i.
Therefore

d(e, x) =

k−1∑

i=1

(k − i)mi + k
(
− r −

k−1∑

i=1

mi

)

= −kr −

k−1∑

i=1

imi

= −

k−1∑

i=0

pi.

But in this case all the pi are non-positive and we conclude that the result holds
here also.

The final case to consider is when 0 < −r <
∑k−1

i=1 mi. In this case, there is some
j ∈ N such that all factors of length greater than j are changed, all factors of length
less than j are unchanged, and possibly some factors of length j are changed. So
we have

d(e, x) =

j−1∑

i=1

imi + j
( k−1∑

i=j

mi + r
)
+ (k − j)

(
− r −

k−1∑

i=j+1

mi

)
+

k−1∑

i=j+1

(k − i)mi

= pk−1 + · · ·+ pk−j − pk−j−1 − · · · − p0.

Because of the choice of j, we have
∑k−1

i=j mi ≥ −r ≥
∑k−1

i=j+1mi, and so pi is
non-negative for i ≥ k− j and non-positive for i < k− j. Therefore the result holds
in this case also. �

Motivated by this we define the following map. Let z be an element of Ak. For
each i ∈ {1, . . . , k}, let mi be the number of canonical factors of length i when z is
written in left normal form. We define π : Ak → Z

k by

π(z) := (mk,mk +mk−1, . . . ,mk + · · ·+m1).
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Let w and z be two elements of Ak. We define

φ(w, z) := π(w−1z)− π(z).

For w ∈ Ak, denote by τ(w) the conjugate of w by ∆, that is

τ(w) := ∆−1w∆ = ∆w∆−1.

Lemma 2.2. Let w ∈ Ak and let z1z2 · · · be an infinite word of positive generators

such that no product of consecutive letters equals ∆. Then φ(w, z1 · · · zn) converges
as n tends to infinity.

Proof. To write w−1z1 · · · zn in left normal form, we first write w−1 in left normal
form and then repeatedly take the factors ∆ formed by the joining of w−1 and
z1 · · · zn out to the left. We obtain something of the form ∆r+sτr(w′)z′, where r
is the number of ∆s moved, w′ is a left divisor of w−1 and z′ is a right divisor
of z1 · · · zn. One or both of w′ and z′ may be the identity. Since w is of finite
length, as n is increased z′ must eventually be different from the identity, and from
then on z′ will grow in the same way as z1 · · · zn. When z′ has grown sufficiently
that it contains one of the canonical factors of z1 · · · zn, subsequent increases in n
will have exactly the same effect on π(w−1z1 · · · zn) as on π(z1 · · · zn). Therefore
φ(w, z1 · · · zn) is eventually constant. �

Recall that Z is the set of possibly infinite words of positive generators having
no product of consecutive letters equal to ∆. The previous lemma allows us to
define φ(w, z) for w ∈ Ak and z = z1z2 · · · an infinite element of Z to be the limit
of φ(w, z1 · · · zn) as n tends to infinity.

For each (p, z) ∈ Ω′, define

ψp,z : Ak → Z, w 7→

k−1∑

i=0

|pi + φi(w, z)| −

k−1∑

i=0

|pi|. (2)

Note that this formula sometimes requires us to add or subtract infinities. The
convention we shall use will be to separately keep track of the infinite and finite
parts. Thus (a∞+ b)+(c∞+d) = (a+ c)∞+(b+d). Obviously, for a and b finite,
|a∞+ b| is equal to a∞+ b if a > 0, and is equal to −a∞− b if a < 0. We see that
ψp,z is always finite because the infinities in the first term always cancel those in
the second.

The following lemma will be needed to show that ψ is constant on the equivalence
classes −∞̂ and +∞̂.

Lemma 2.3. For all w and z in Ak,

k−1∑

i=0

φi(w, z) =

k−1∑

i=0

πi(w
−1).

Proof. Let y ∈ Ak. Write y = y1 · · · ys∆
r in right normal form and let mi be

the number of canonical factors of length i for each i ∈ {1, . . . , k}, so that mk = r.
Consider the effect of left multiplying y by a positive generator g. Either g combines
with y1 to form a longer factor, in which casemi decreases by one andmi+1 increases
by one, where i is the length of y1, or a new factor is created, in which case m1
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increases by one. In either case,
∑k−1

i=0 (πi(gy)− πi(y)) = 1. We conclude that

k−1∑

i=0

φi(g
−1, y) = 1, for all y ∈ Ak and g ∈ {a, b}. (3)

Similar reasoning shows that

k−1∑

i=0

φi(∆, y) = −k, for all y ∈ Ak. (4)

Any w ∈ Ak may be written as a product w1 · · ·wl of negative generators and
copies of ∆. Observe that

φ(w, z) = φ(w1, z) + φ(w2, w
−1
1 z) + · · ·+ φ(wl, w

−1
l−1 · · ·w

−1
1 z).

Applying (3) and (4), we see that
∑k−1

i=0 φi(w, z) is independent of z. Therefore

k−1∑

i=0

φi(w, z) =

k−1∑

i=0

φi(w, e) =

k−1∑

i=0

πi(w
−1).

�

So we see that if p is identically −∞, then

ψp,z(w) = −
k−1∑

i=0

πi(w
−1)

is independent of z. Likewise, if p is identically +∞, then

ψp,z(w) =

k−1∑

i=0

πi(w
−1).

We may therefore consider the map ψ to be defined on Ω.
Define D := {d(·, x) − d(e, x) | x ∈ Ak}.

Lemma 2.4. Restricted to Ω0, the map ψ is a bijection between Ω0 and D.

Proof. Let (p, z) ∈ Ω0. Observe that pi = πi(z)+p0 = πi(z∆
p0) for all 0 ≤ i ≤ k−1.

For each w ∈ Ak,

ψp,z(w) =

k−1∑

i=0

|pi + πi(w
−1z)− πi(z)| −

k−1∑

i=0

|pi|

=

k−1∑

i=0

|πi(w
−1z∆p0)| −

k−1∑

i=0

|πi(z∆
p0)|

= d(w, z∆p0)− d(e, z∆p0).

The result now follows from the fact that every element of Ak can be written in a
unique way as z∆p0 with z ∈ Z0 and p0 ∈ N and that the pi; 1 ≤ i ≤ k − 1 are
determined by z and p0 for each (p, z) in Ω0. �

Lemma 2.5. The set Ω0 is dense in Ω.



8 CORMAC WALSH

Proof. Clearly, −∞̂ and +∞̂ are in the closure of Ω0 since they are the limits,
respectively, of (−n, . . . ,−n, e) and (n, . . . , n, e), where e denotes the empty word.

Let (p, z) ∈ Ω\{−∞̂,+∞̂} and fix n ∈ N. Let xn be the product of the first
n canonical factors of z. Define bk := max(min(p0, n),−n) and bk−i := min(pi −
pi−1, n) for each i ∈ {1, . . . , k − 1}. Let mi denote the number of canonical factors
of length i in xn.

For each i ∈ {1, . . . , k − 1}, we have that mi is no greater than the number of
canonical factors of length i in z, which is no greater than pk−i − pk−i−1. We also
havemi ≤ n. Thereforemi ≤ bi for all i ∈ {1, . . . , k−1}. So we may multiply xn on
the right by canonical factors to obtain a word yn of positive generators such that
no product of consecutive letters equals ∆ and such that, for each i ∈ {1, . . . , k−1},
there are exactly bi factors of length i.

So (qn, yn) := (bk, bk + bk−1, . . . , bk + · · ·+ b1, yn) is in Ω0.
As n tends to infinity, bk converges to p0 and bi converges to pk−i − pk−i−1 for

1 ≤ i ≤ k − 1. So
∑j

i=0 bk−i converges to pj for j ∈ {0, . . . , k − 1}. We also have
that yn converges to z. We conclude that (qn, yn) converges to (p, z), which must
therefore be in the closure of Ω0. �

Lemma 2.6. The map ψ : Ω → Z
Ak is injective.

Proof. Let (p, z) ∈ Ω′ and define f(c) := ψp,z(∆
−c) for all c ∈ Z. Since φi(∆

−c, z) =
c for all 0 ≤ i ≤ k − 1, we have

f(c) =
k−1∑

i=0

|pi + c| −
k−1∑

i=0

|pi|.

Observe that, for x ∈ N,

|x+ c+ 1| − |x+ c| =

{
1, if x ≥ −c,

−1, otherwise.
(5)

So

f(c+ 1)− f(c) = ♯{i | pi ≥ −c} − ♯{i | pi < −c}

= 2♯{i | pi ≥ −c} − k.

Here ♯ denotes the cardinal number of a set. Therefore, by calculating ψp,z(∆
−c−1)−

ψp,z(∆
−c) for each c ∈ N, we may determine the number of components of p that

equal each element of Z∪{−∞,+∞}. Since the components of p are non-decreasing,
we will then have determined p. Thus we have shown that if (p1, z1) and (p2, z2)
are elements of Ω′ such that p1 6= p2, then ψp1,z1 6= ψp2,z2 .

Now assume that p1 = p2 =: p but that (p, z1) and (p, z2) are elements of distinct
equivalence classes in Ω. So, p cannot be identically +∞ or identically −∞. We
know from Lemma 2.4 that ψ is a bijection between Ω0 and D, so we may assume
that not all entries of p are finite and that z1 is an infinite word. Let xn be the nth
canonical factor of z1 and let wn be the product wn := x1 · · ·xn.

We deal first with the case where p0 is finite. For each canonical factor y ∈M+,
denote by l(y) the length of y, that is the total number of copies of a and b one has
to multiply together to get y. Observe that φ(wn, z)− φ(wn−1, z) = φ(xn, w

−1
n−1z)

for any z ∈ Z. Since the effect of left multiplying w−1
n−1z1 by x

−1
n is to cancel exactly
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one canonical factor of length l(xn), we get

φi(wn, z1)− φi(wn−1, z1) =

{
0, if i < k − l(xn),

−1, otherwise,
(6)

for all i ∈ {0, . . . , k − 1} and n ∈ N. From (5), we see that

ψp,z1(wn)− ψp,z1(wn−1) =

k−1∑

i=0

|pi + φi(wn, z1)| −

k−1∑

i=0

|pi + φi(wn−1, z1)|

= −♯{i ≥ k − l(xn) | pi ≥ −φi(wn, z1)}

+ ♯{i ≥ k − l(xn) | pi < −φi(wn, z1)}.

Since we have assumed that p0 is finite and not all components of p are finite, we
must have that pk−1 = +∞. Therefore, the first set above is not empty, and so

ψp,z1(wn)− ψp,z1(wn−1) ≤ l(xn)− 2, for all n ∈ N. (7)

Now consider z2. Since z2 6= z1, eventually some x−1
n will not cancel completely

with the first canonical factor of w−1
n−1z2 and subsequent left multiplications by

x−1
n+1, x

−1
n+2, . . . will have the effect of adding more factors. For each n ∈ N, let

yn be such that ∆−1yn = x−1
n . Since yn is a positive canonical factor of length

k − l(xn), we get

φi(wn, z2)− φi(wn−1, z2) =

{
−1, if i < l(xn),

0, otherwise,
(8)

for all i ∈ {0, . . . , k − 1} and n large enough. So, for such n,

ψp,z2(wn)− ψp,z2(wn−1) =
k−1∑

i=0

|pi + φi(wn, z2)| −
k−1∑

i=0

|pi + φi(wn−1, z2)|

= −♯{i < l(xn) | pi ≥ −φi(wn, z2)}

+ ♯{i < l(xn) | pi < −φi(wn, z2)}.

Let i ∈ {0, . . . , k − 1}. If there are infinitely many n ∈ N such that i < l(xn),
then, by (8), the sequence φi(wn, z2) is non-increasing and has limit −∞. But our
assumption on p implies that none of the pi are equal to −∞. Therefore, there are
only a finite number of n ∈ N such that the first set above contains i. Since this is
true for any i, the first set must eventually be empty.

So there are only finitely many n for which ψp,z2(wn) − ψp,z2(wn−1) < l(xn).
Comparing this with (7), we see that ψp,z1 and ψp,z2 cannot be equal.

Now suppose that p0 = −∞. Note that φi(w∆
−c, z) = c+φi(w, z) for all w ∈ Ak

and 0 ≤ i ≤ k − 1. So, using (6) and (8), we get

φi(wn∆
−n, z1)− φi(wn−1∆

−n+1, z1) =

{
1, if i < k − l(xn),

0, otherwise,

for all n ∈ N, and

φi(wn∆
−n, z2)− φi(wn−1∆

−n+1, z2) =

{
0, if i < l(xn),

1, otherwise,



10 CORMAC WALSH

for n large enough. Using similar logic to that of the preceding case, we can show
that

ψp,z1(wn∆
−n)− ψp,z1(wn−1∆

−n+1) ≤ l(xn)− 2

for all n ∈ N, and that

ψp,z2(wn∆
−n)− ψp,z2(wn−1∆

−n+1) = l(xn)

for n large enough. So in this case also, ψp,z1 is different from ψp,z2 . �

Lemma 2.7. The map ψ : Ω → Z
Ak is continuous.

Proof. Let ((p(n), z(n)))n∈N be a sequence in Ω converging to some element (p, z)
of the same set in the topology we have chosen on Ω. If (p, z) is in Ω0, then it is
isolated and (p(n), z(n)) must eventually be equal to it. So in this case, ψp(n),z(n)

obviously converges to ψp,z.

Now suppose that p = (∞, . . . ,∞). Observe that, for w ∈ Ak fixed, φ(w, z(n))
is bounded uniformly in n. So, since each component of p(n) converges to ∞, we
have, for each w ∈ Ak, that

ψp(n),z(n)(w) =

k−1∑

i=0

φi(w, z
(n)), for n large enough.

But, by Lemma 2.3, the right-hand-side is equal to
∑k−1

i=0 πi(w
−1), and this is

exactly ψ+∞̂(w).
Similar reasoning shows that ψp(n),z(n) converges to ψ−∞̂ if p(n) converges to

(−∞, . . . ,−∞).
Suppose finally that (p, z) is in Ω\Ω0 and p is not identically either +∞ or −∞.

Then z(n) converges to z and so, by Lemma 2.2, φ(w, z(n)) converges to φ(w, z) for
each w ∈ Ak. Since also p

(n) converges to p, we get that ψp(n),z(n) converges to ψp,z

by inspecting the definition of ψ. �

Theorem 2.8. The map ψ is a homeomorphism between Ω and M.

Proof. The injectivity of ψ was proved in Lemma 2.6 and so ψ is a bijection from
Ω to ψ(Ω). As a continuous bijection from a compact space to a Hausdorff one,
ψ must be a homeomorphism from Ω to ψ(Ω). So ψ(Ω) is compact and therefore
closed. Since Ω = clΩ0 by Lemma 2.5 and ψ is continuous by Lemma 2.7, we
have ψ(Ω0) ⊂ ψ(Ω) ⊂ clψ(Ω0). Taking closures, we get ψ(Ω) = clψ(Ω0) = M, by
Lemma 2.4. �

The proof of our characterisation of Busemann points will require a result from [1]:
The Busemann points are precisely those horofunctions ξ for which H(ξ, ξ) = 0,
where the detour cost H(·, ·) is defined by

H(ξ, η) := lim inf
x→ξ

(
d(b, x) + η(x)

)

for any pair of horofunctions ξ and η.

Theorem 2.9. A function in M is a Busemann point if and only if the correspond-

ing element (p, z) of Ω is in Ω\Ω0 and satisfies the following: pi − pi−1 = mk−i(z)
for every i ∈ {1, . . . , k − 1} such that pi and pi−1 are not both −∞ nor both +∞.
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Proof. Assume ξ ∈ M is a Busemann point. So ξ is the limit of a sequence of
group elements xn := y0 · · · yn, where y is an infinite geodesic word. Write xn−1 =
∆rz1 · · · zs in left normal form and let j be the length of the last canonical factor zs.
Consider the effect of right multiplying by yn. There are four cases, corresponding
to the four elements of S:

i. yn is positive and zsyn ∈ M+ ∪ {∆}. In this case the length of the last
canonical factor increases by one and so πk−j−1(xn) = πk−j−1(xn−1) + 1.
All other components of π(xn) equal those of π(xn−1);

ii. yn is positive and zsyn 6∈M+ ∪ {∆}. In this case another canonical factor
yn of length one is tacked onto the end and so πk−1(xn) = πk−1(xn−1) + 1,
all other components being the same;

iii. yn is negative and zsyn ∈ M+ ∪ {e}. In this case the length of the last
canonical factor decreases by one and so πk−j(xn) = πk−j(xn−1) − 1, all
other components being the same;

iv. yn is negative and zsyn 6∈M+ ∪ {e}. In this case we can see what happens
more clearly by right multiplying xn by ∆−1(∆yn) instead of yn. Moving
the ∆−1 all the way to the left, we see that the power of ∆ becomes r −
1, each canonical factor zi; 1 ≤ i ≤ s is replaced by τ(zi), and another
canonical factor ∆yn of length k − 1 is tacked onto the end. So π0(xn) =
π0(xn−1)− 1 and all other components stay the same.

In all cases, when going from π(xn−1) to π(xn), a single component is changed,
either increased of decreased by one. Looking at the distance formula of Proposi-
tion 2.1, we see that, since y is a geodesic word, an increase is only possible when
the relevant component of π(xn−1) is non-negative, and a decrease is only possible
when it is non-positive.

If case (i) occurs infinitely often with j = k−1, then π0(xn) converges to +∞ as
n tends to infinity, and so every component of π(xn) converges to +∞. In this case,
the condition in the statement of the theorem holds trivially. So we may assume
that case (i) occurs only finitely many times with j = k − 1. Likewise, we may
assume that case (iii) occurs only finitely many times with j = 1.

One sees that case (ii) creates a new canonical factor of length one, which can
be lengthened by successive applications of case (i), whereas case (iv) creates a new
canonical factor of length k− 1, which can be shortened by successive applications
of case (iii). For each n ∈ N, denote by z(n) the word consisting of all the canonical
factors of xn taken in sequence. Because of the assumptions of the previous para-
graph, eventually, once a canonical factor has been created it can not be removed.
So if we take the sequence of times (nt)t∈N where either case (ii) or case (iv) occurs,
then the difference between z(nt) and z(nt−1) is that a new canonical factor has been
added and, possibly, that the original canonical factors have been operated on by
τ .

Fix i ∈ {1, . . . , k− 1} such that pi−1 and pi are not both +∞ nor both −∞. We
have that πi(xnt

)− πi−1(xnt
) is equal to mnt

k−i, the number of canonical factors of

length k − i in z(nt). But because z(nt) grows monotonically as t increases, mnt

k−i

converges as t tends to infinity tomk−i(z), the number of canonical factors of length
k − i in z. Therefore,

pi − pi−1 = lim
t→∞

(πi(xnt
)− πi−1(xnt

)) = lim
t→∞

mnt

k−i = mk−i(z).

This establishes the implication in one direction.
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Now assume that ξ ∈ M corresponds to +∞̂. For each n ∈ N, let xn :=
prod(a, b;n) and let (p(n), z(n)) be the corresponding element of Ω0. We see that

p
(n)
0 = ⌊n/k⌋, which tends to infinity as n tends to infinity. It follows that p(n)

converges to (+∞, . . . ,+∞) and hence xn converges to ξ by Theorem 2.8. Since
xn is a geodesic, ξ must be a Busemann point.

When ξ ∈ M corresponds to −∞̂, we take xn := prod(a−1, b−1;n) and use a
similar argument.

Now assume that ξ corresponds to an element (p, z) ∈ Ω\(Ω0 ∪ {−∞̂,+∞̂})
satisfying the condition in the statement of the theorem. Let wn be the word
consisting of the first n canonical factors of z. Let j ∈ {0, . . . , k − 1} be the index
of either the first non-negative component of p or the last non-positive component.
We can choose a sequence of vectors qn in Z

k such that qni − qni−1 = mk−i(w
n) for

all i ∈ {1, . . . , k − 1}, and such that qnj converges to pj. Since (qn, wn) ∈ Ω0 for
all n ∈ N, we may consider the element xn of Ak corresponding to (qn, wn). From
our assumption on ξ, we have that mk−i(w

n) converges as n tends to infinity to
pi − pi−1 for all i ∈ {1, . . . , k− 1} such that pi and pi−1 are not both +∞ nor both
−∞.

Using this and the definition of qn, we conclude that qn converges to p as n
tends to infinity. But we also have that wn converges to z and so, by Theorem 2.8,
xn converges to ξ. Multiplying z on the left by (xn)−1 has the effect of canceling
mi(w

n) factors of length i for each i ∈ {1, . . . , k − 1} and adding a factor ∆−qn0 .
Therefore

φi(x
n, z) = −qn0 −mk−1(w

n)− · · · −mk−i(w
n) = −qni .

So

H(ξ, ξ) ≤ lim inf
n→∞

(d(e, xn) + ψp,z(x
n))

= lim inf
n→∞

k−1∑

i=0

(
|qni |+ |pi − qni | − |pi|

)

= 0,

since qn converges to p. This proves that ξ is a Busemann point. �

3. Dual generators

We establish a formula for the dual-generator word-metric using a technique
originally developed by Fordham [10] to prove a length formula for Thompson’s
group F . The following theorem is a right-handed version of one in [2].

Theorem 3.1. Let G be a group with generating set S, and let l : G → N be a

function. Then l gives the distance with respect to S from the identity to any given

element if and only if

L1. l(e) = 0,
L2. |l(wg)− l(w)| ≤ 1 for all w ∈ G and g ∈ S,
L3. if w ∈ G\{e}, then there exists g ∈ S ∪ S−1 such that l(wg) < l(w).

Proposition 3.2. Let w = δrw1w2 · · ·ws be written in left normal form with respect

to the dual generators. Then the distance between the identity and w with respect

to these generators is given by d̃(e, w) = |r|+ |r + s|.



BUSEMANN POINTS OF ARTIN GROUPS OF DIHEDRAL TYPE 13

Proof. Let l(w) := |r|+ |r+ s|. Clearly l satisfies (L1). Consider the effect of right

multiplying w by a generator g ∈ S̃. Let v := wg and write this group element in
left normal form v = δr

′

v1v2 · · · vs′ . There are four cases to consider:

i. g is positive and wsg = δ. In this case r′ = r + 1 and s′ = s− 1.
ii. g is positive and wsg 6= δ. In this case r′ = r and s′ = s+ 1.
iii. g is negative and wsg = e. In this case r′ = r and s′ = s− 1.
iv. g is negative and wsg 6= e. In this case r′ = r − 1 and s′ = s+ 1.

In all cases, either r′ = r and r′ + s′ = r + s± 1, or r′ = r ± 1 and r′ + s′ = r + s.
Therefore (L2) is satisfied.

Also, by choosing g appropriately, we can make whichever of the four cases we
want happen. So we always have the freedom to increase or decrease either r or
r + s by one. It follows that (L3) holds. �

We note that an algorithm for finding a geodesic representative of any given
word in A3 with respect to the dual generators was presented in [18].

Observe that the distance formula above has a form similar to the formula estab-
lished in Proposition 2.1 for the distance with respect to the Artin generators. This
similarity will allow us to calculate the horofunction boundary and the Busemann
points with respect to the dual generators using the same method as for the Artin
generators.

As before we define some maps. For any w ∈ Ak, let m̃1(w) and m̃2(w) be
such that w can be written in left normal form as w = δm̃2(w)w1 · · ·wm̃1(w). Define

π̃ : Ak → Z
2 by

π̃(w) := (m̃2(w), m̃1(w) + m̃2(w)).

Finally, let

φ̃(w, z) := π̃(w−1z)− π̃(z), for all w and z in Ak.

The proof of the following lemma is similar to its counterpart, Lemma 2.2.

Lemma 3.3. Let w ∈ Ak and let z1z2 · · · be an infinite word of positive dual

generators such that no product of consecutive letters equals δ. Then φ̃(w, z1 · · · zn)
converges as n tends to infinity.

Let Z̃ be the set of possibly infinite words of positive dual generators having no
product of consecutive letters equal to δ. The previous lemma allows us to define
φ̃(w, z) for w ∈ Ak and z = z1z2 · · · an infinite element of Z̃ to be the limit of

φ̃(w, z1 · · · zn) as n tends to infinity.

Let Ω̃′ denote the set of (p, z) in (Z ∪ {−∞,+∞})2 × Z̃ such that if p is not
identically −∞ nor identically +∞, then p1 − p0 = m̃1(z). We take the product

topology on Ω̃′. Let Ω̃ be the quotient of Ω̃′ obtained by considering all points
((−∞,−∞), z) with z ∈ Z̃ to be equivalent, and all points ((+∞,+∞), z) with

z ∈ Z̃ to be equivalent. The former equivalence class we denote simply by −∞̃, the
latter by +∞̃.

For each (p, z) ∈ Ω̃′, define

ψ̃p,z : Ak → Z, w 7→ |p0 + φ̃0(w, z)|+ |p1 + φ̃1(w, z)| − |p0| − |p1|. (9)

We use the same convention as before for adding and subtracting infinities. The
following lemma shows that ψ̃ is constant on the equivalence classes −∞̃ and +∞̃.
The proof of this lemma is the same as that of Lemma 2.3.
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Lemma 3.4. For all w and z in Ak,

φ̃0(w, z) + φ̃1(w, z) = π̃0(w
−1) + π̃1(w

−1).

So we see that if p = (−∞,−∞), then

ψ̃p,z(w) = −π̃0(w
−1)− π̃1(w

−1)

is independent of z. Likewise, if p = (+∞,+∞), then

ψ̃p,z(w) = π̃0(w
−1) + π̃1(w

−1).

We may therefore consider the map ψ̃ to be defined on Ω̃.
Let D̃ := {d̃(·, x) − d̃(e, x) | x ∈ Ak} and let M̃ be its closure, that is, the

horofunction compactification of Ak with the dual-generator word metric.
Let Z̃0 be the set of finite words with letters in {σ1, . . . , σk} having no product

of consecutive letters equal to δ and define

Ω̃0 := {(p, z) ∈ Z
2 × Z̃0 | p1 − p0 = m̃1(z)}.

Again, we wish to show that Ω̃ is homeomorphic to M̃ with Ω̃0 being mapped
to D̃. We use the same method we used for the Artin generators. The proofs of the
following results are similar to those of the corresponding results in Section 2.

Lemma 3.5. Restricted to Ω̃0, the map ψ̃ is a bijection between Ω̃0 and D̃.

Lemma 3.6. The set Ω̃0 is dense in Ω̃.

Lemma 3.7. The map ψ̃ : Ω̃ → Z
Ak is injective.

Lemma 3.8. The map ψ̃ : Ω̃ → Z
Ak is continuous.

Theorem 3.9. The map ψ̃ is a homeomorphism between Ω̃ and M̃ .

The proof of the following theorem uses the same reasoning as that of Theo-
rem 2.9.

Theorem 3.10. In the horoboundary of Ak with the dual-generator word metric,

all horofunctions are Busemann points.

We use our distance formula to characterise the geodesic words of Ak with the
dual generators.

Proposition 3.11. Let x ∈ Ak and let y be a freely reduced word of dual generators

representing x. Then y is a geodesic if and only if P̃os(y) + Ñeg(y) ≤ 2.

Proof. Let y be such that P̃os(y) + Ñeg(y) > 2. Since neither P̃os(y) nor Ñeg(y)
are greater than 2, one of them must equal 2 and the other must be positive.

Suppose P̃os(y) = 2 and Ñeg(y) > 0. Then y contains a negative generator and two
consecutive positive generators with product δ. Take the δ and shift it towards the
negative generator by repeatedly using the relations σiδ = δσi+2 and σ

−1
i δ = δσ−1

i+2.

Then cancel the negative generator with the δ using σ−1
i δ = σi+1. The result is a

word representing x that is shorter by one generator than y. Therefore y is not a

geodesic. The proof in the case when P̃os(y) > 0 and Ñeg(y) = 2 is similar.

Now assume that Ñeg(y) = 0. Consider what happens if we start at the identity
and successively multiply by generators as prescribed by y. We obtain a sequence,
which we denote by (xn)n∈N. Initially r = r + s = 0, where r and s are as in
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Proposition 3.2. Since y is composed only of positive generators, only cases (i)
and (ii) in the proof of Proposition 3.2 are relevant here. We note that in these two
cases, either r or r + s increases by one, and the other stays the same. Therefore
d̃(e, xn) = n. It follows that y is a geodesic.

The proof that y is a geodesic if P̃os(y) = 0 is similar. The cases concerned this
time are (iii) and (iv), and in both of these either r or r + s decreases by one and
the other stays the same.

The final case to consider is when P̃os(y) = Ñeg(y) = 1. We claim that, as the
generators comprising y are successively multiplied, the rightmost canonical factor
in the left normal form of xn is equal to yn when yn is positive and equal to δyn
when yn is negative. To show this, we use induction on n. Suppose the claim is true
for xn, which we write in left normal form as xn = δrw1 · · ·ws. If yn is positive, our
induction hypothesis gives that ws = yn, and so yn+1 can not equal either w−1

s or

w−1
s δ since y is freely reduced and P̃os(y) < 2. Therefore, if yn is positive, neither

case (i) nor case (iii) of Proposition 3.2 can occur. Since there is no cancellation,
the left normal form of xn+1 has then yn+1 or δyn+1 as rightmost canonical factor,
depending on whether yn+1 is positive or negative. Similar reasoning shows the
same is true when yn is negative. Thus we have proved our claim.

The argument of the previous paragraph also established that cases (i) and (iii)
of Proposition 3.2 never occur when xn is multiplied on the right by yn+1.

In case (ii) of that proposition, r+ s increases by one while r remains the same,
and in case (iv), r decreases by one while r + s remains the same. Therefore,

|r|+ |r+s| always increases by one as each letter of y is added, and so d̃(e, xn) = n.
So in this case also, y is a geodesic. �

This characterisation of geodesics allows us to calculate the geodesic growth
series of Ak.

Theorem 3.12. The geodesic growth series of Ak with the dual generators is

G(x) =
1 + (3− 2k)x+ (2 + k2 − 3k)x2 − 2k(k − 1)x3

(1 − kx)(1− 2(k − 1)x)(1− (k − 1)x)
.

Proof. Let Nn
ij be the number of freely reduced words y of length n satisfying

P̃os(y) ≤ i and Ñeg(y) ≤ j, and let Gij be the corresponding generating series.
Proposition 3.11 and an inclusion–exclusion argument give that the number of
geodesics of length n is

Nn
20 +Nn

02 +Nn
11 −Nn

10 −Nn
01.

Therefore

G = G20 + G02 + G11 − G10 − G01. (10)

Clearly, Nn
20 = Nn

02 = kn for all n ∈ N, and so

G20(x) = G02(x) = 1 + kx+ k2x2 + · · · =
1

1− kx
.

Consider now the freely reduced words not containing δ or δ−1 as sub-words.
For the first letter we may choose any of the 2k generators. For subsequent letters,
we can choose any letter apart from the inverse of the previous one and the letter
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that would combine with the previous one to form δ or δ−1. So we have a choice
of 2k − 2 generators. Therefore the growth series G11 for this set of words is

G11(x) = 1 + 2kx+ 2k(2k − 2)x2 + 2k(2k − 2)2x3 + · · ·

=
1 + 2x

1− 2(k − 1)x
.

Now consider the set of freely reduced words containing only positive generators
and no sub-word equal to δ. This time there are k possibilities for the first letter
and k − 1 for subsequent letters. So the growth series is

G10(x) = 1 + kx+ k(k − 1)x2 + k(k − 1)2x3 + · · ·

=
1 + x

1− (k − 1)x
.

The growth series G01 is identical.
The conclusion now follows from (10) after some rearranging. �

The first few terms of G(x) are

G(x) = 1 + 2kx+ 2(2k2 − k)x2 + 2(k3 + 3k(k − 1)2)x3 + · · · .
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E-mail address: cormac.walsh@inria.fr


	1. Introduction
	2. Artin generators
	3. Dual generators
	References

