
COMPUTING WORD LENGTH IN ALTERNATE PRESENTATIONS OF
THOMPSON’S GROUP F

MATTHEW HORAK, MELANIE STEIN, AND JENNIFER TABACK

Abstract. We introduce a new method for computing the word length of an element of Thomp-
son’s group F with respect to a “consecutive” generating set of the form Xn = {x0, x1, · · · , xn},
which is a subset of the standard infinite generating set for F . We use this method to show that
(F, Xn) is not almost convex, and has pockets of increasing, though bounded, depth dependent on
n.

1. Introduction

Many questions in geometric group theory investigate whether a particular group has a given
property. An ideal answer involves a determination of whether the group has the property with
respect to all, none or some generating sets. There are few definitive answers of this form when
the group in question is Thompson’s group F because there is a single finite generating set with
respect to which the word length of group elements can be computed. This allows results for F
such as

Theorem 1.1. With respect to the generating set {x0, x1}, Thompson’s group F

(1) is not almost convex. [CT1]
(2) has only pockets of depth two. [CT2]

Ideally we would like to determine whether the group has these, or other, properties with respect
to any or no generating set, or list exactly those generating set which yield these properties.

In this paper, we present a method for computing the word length of elements of F with respect
to consecutive generating sets of the form Xn = {x0, x1, · · · , xn}. This greatly expands the set of
generating sets in which we can compute the word length. We note that the three known methods
of computing word length for the generating set {x0, x1}, due to Fordham [F], Guba [G], and
Belk-Brown [BB], are all special cases of our procedure when n = 1.

We use this method to prove the following theorems which extend the results listed above in
Theorem 1.1.

Theorem 6.1. Thompson’s group F is not almost convex with respect to the generating set
Xn = {x0, x1, · · · , xn} .

Theorem 7.1. For any k ≥ 1, Thompson’s group F has pockets of depth at least k with respect
to the generating set Xn = {x0, x1, · · · , xn}, for n ≥ 2k + 2.

In addition, we are able to provide an upper bound on the depth of these pockets which is also
dependent on n.

Date: September 1, 2021.
The third author acknowledges partial support from National Science Foundation grant DMS-0437481.

1

ar
X

iv
:0

70
6.

32
18

v2
 [

m
at

h.
G

R
]

 2
6

A
ug

 2
00

8

This paper is organized as follows. The second section provides a short introduction to Thompson’s
group F . The third section outlines and proves our procedure for computing word length, although
the proofs of the two main lemmas are deferred to sections four and five. Section six is devoted to
the proof of Theorem 6.1, and in section seven we prove Theorem 7.1 as well as an upper bound
on pocket depth.

2. Background on Thompson’s group F

We present a brief introduction to Thompson’s group F and refer the reader to [CFP] for a more
detailed discussion. This group can be studied either as a finitely or infinitely presented group,
using the two standard presentations:

〈xk, k ≥ 0|x−1
i xjxi = xj+1 if i < j〉

or, as it is clear that x0 and x1 are sufficient to generate the entire group, since powers of x0

conjugate x1 to xi for i ≥ 2,

〈x0, x1|[x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉.

The relators in the infinite presentation are all a consequence of the basic set of two relators given
in the finite presentation.

With respect to the infinite presentation, each element g ∈ F can be written in normal form as

g = xr1i1 x
r2
i2
. . . xrkik x

−sl
jl

. . . x−s2j2
x−s1j1

with ri, si > 0, i1 < i2 . . . < ik and j1 < j2 . . . < jl. This normal form is unique if we further require
that when both xi and x−1

i occur, so does xi+1 or x−1
i+1, as discussed by Brown and Geoghegan

[BG]. We will use the term normal form to mean this unique normal form.

Elements of F can be viewed combinatorially as pairs of finite binary rooted trees, each with the
same number n of carets, called tree pair diagrams. We define a caret to be a vertex of the tree
together with two downward oriented edges, which we refer to as the left and right edges of the
caret. The right (respectively left) child of a caret c is defined to be a caret which is attached to
the right (resp. left) edge of c. If a caret c does not have a right (resp. left) child, we call the right
(resp. left) leaf of c exposed. Define the level of a caret inductively as follows. The root caret is
defined to be at level 1, and the child of a level k caret has level k + 1, for k ≥ 1. The left (resp.
right) side of a tree is defined to be the maximal path of left (resp. right) edges beginning at the
root caret.

We number the leaves of each tree from left to right from 0 through n, and number the carets in
infix order from 1 through n. The infix ordering is carried out by numbering the left child of a
caret c before numbering c, and the right child of c afterwards.

An element g ∈ F is represented by an equivalence class of tree pair diagrams, among which there
is a unique reduced tree pair diagram. We say that a pair of trees is unreduced if when the leaves
are numbered from 0 through n, there is a caret in both trees with two exposed leaves bearing
the same leaf numbers. We remove such pairs until no more exist, producing the unique reduced
tree pair diagram representing g. See Figure 1 for an example of reduced and unreduced tree pair
diagrams representing the same group element. The reduced tree pair diagrams for x0 and xn are
given in Figure 2. When we write g = (T, S), we are assuming that this is the unique reduced tree
pair diagram representing g ∈ G.

The equivalence of these two interpretations of Thompson’s group is given using the normal form
for elements with respect to the standard infinite presentation, and the concept of leaf exponent.
In a single tree T whose leaves are numbered from left to right beginning with 0, the leaf exponent

2

Figure 1. An example of an unreduced and then a reduced tree pair diagram
representing the same group element.

Figure 2. The reduced tree pair diagrams representing the generators x0 and xn of F .

Figure 3. An example of a tree with leaf exponents computed.

E(k) of leaf number k is defined to be the integral length of the longest path of left edges from leaf
k which does not reach the right side of the tree. Figure 3 gives an example of a tree whose leaf
exponents are computed.

Given a reduced tree pair diagram (T, S) representing g ∈ F , compute the leaf exponents E(k)
for all leaves k in T , numbered 0 through n. The negative part of the normal form for g is then
x
−E(n)
n x

−E(n−1)
n−1 · · ·x−E(1)

1 x
−E(0)
0 . We compute the exponents E(k) for the leaves of the tree S and

thus obtain the positive part of the normal form as xE(0)
0 x

E(1)
1 · · ·xE(m)

m . Many of these exponents
will be 0, and after deleting these, we can index the remaining terms to correspond to the normal
form given above, following [CFP]. As a result of this process, we often denote a tree pair diagram
as (T−, T+), since the first tree in the pair determines the terms in the normal form with negative
exponents, and the second tree determines those terms with positive exponents. We refer to T− as
the negative tree in the pair, and T+ as the positive tree.

3

Figure 4. To multiply g = x0x1x
2
4x
−1
5 x−1

3 x−2
2 x−1

0 by the generator x1 = (S−, S+),
we use an unreduced representative of x1, pictured above. Dashed carets indicate
the carets added in order to perform the multiplication.

Group multiplication is defined as follows when multiplying two elements represented by tree pair
diagrams. Let g = (T−, T+) and h = (S−, S+). To form the product gh, we take unreduced
representatives of both elements, (T ′−, T

′
+) and (S′−, S

′
+), respectively, in which S′+ = T ′−. The

product is then represented by the (possibly unreduced) pair of trees (S′−, T
′
+). An example of the

unreduced representatives necessary to perform group multiplication is given in Figure 4, where
the trees can be used to form the product gx1, for g = x0x1x

2
4x
−1
5 x−1

3 x−2
2 x−1

0 .

3. Computing word length with respect to a consecutive generating set

In this section, we describe a method for computing the word length of elements of F with respect
to a consecutive generating set of the form Xn = {x0, x1, · · · , xn}, which is a subset of the standard
infinite presentation for F . In the case n = 1, there are three known formulae for computing word
length, due to Fordham [F], Guba [G], and Belk and Brown [BB]. We end this section with a
comparison of these methods, and translate the terminology of each into that of the present paper.

Below we present our method for computing word length, along with a detailed example. The
proof that this method actually computes the word length of group elements follows the outline of
Fordham’s proof, and we apply a lemma from [F] as the main step in our proof. We then require
two technical lemmas to show that the conditions in Fordham’s lemma are fulfilled, and we defer
the proofs of these lemmas to Sections 4 and 5 below.

Let T be a finite rooted binary tree with n carets, in which we number the carets from 1 through n
in infix order. We use the infix numbers as names for the carets, and the statement p < q for two
carets p and q simply expresses the relationship between the infix numbers. A caret is said to be a
right (resp. left) caret if one of its edges lies on the right (resp. left) side of T . The root caret can
be considered either left or right. A caret which is neither left nor right is called an interior caret.

Our formula for the word length of elements g ∈ F with respect to the generating set Xn =
{x0, x1, · · · , xn} has two components. The first we call l∞(g), as it is the word length of g with
respect to the infinite generating set {xi|i ≥ 0} for F . This quantity is simply the number of carets
in the reduced tree pair diagram representing g which are not right carets. The difference between
l∞(g) and the word length ln(g) is measured by what we refer to as the penalty weight, denoted
pn(g). Twice this penalty weight is the second component of our word length formula.

The intuition for this formula comes from the effect that multiplication by a generator has on
a tree pair diagram (T−, T+). One can view multiplication by each generator as performing a
proscribed combinatorial rearrangement of the subtrees of T− or T+. The rearrangement of these

4

Figure 5. The combinatorial rearrangement of the subtrees of the tree pair dia-
grams representing elements g and g′ of F induced by multiplication by x0 and x2

respectively. The letters A through G represent possibly empty subtrees of the tree
pair diagram.

subtrees induced by multiplication by x0 and x2 is shown explicitly in Figure 5, and is analogous
for multiplication by xn with n = 1 or n > 2.

In creating a minimal length representative for g ∈ F , whose length is necessarily the word length
of g, there are some arrangements of carets in T− or T+ which may be harder to produce using
the combinatorial rearrangements available with the given generators. This incurs a “penalty”
contribution to the length of the word. Determining this penalty contribution pn(g) to the word
length lies at the heart of our method.

We begin by distinguishing a particular type of caret in a single tree. Caret types are central to the
length formulae of Fordham [F] and Belk-Bux [BB]. While they require, respectively, seven and
four caret types, we define a single one which is sufficient for our proofs below.

Definition 3.1. Caret p in a tree T has type N if caret p+ 1 is an interior caret which lies in the
right subtree of p.

We use this definition to describe certain carets in the tree pair diagram for g ∈ F which we call
penalty carets as they help determine the penalty contribution to the word length ln(g). Let g ∈ F
have a reduced tree pair diagram (T−, T+) in which the carets are numbered in infix order.

Definition 3.2. Caret p in a tree pair diagram (T−, T+) is a penalty caret if either

(1) p has type N in either T− or T+, or
(2) p is a right caret in both T− and T+ and caret p is not the final caret in the tree pair

diagram.

To compute the penalty contribution to the word length for a given g = (T−, T+) ∈ F we use the
following procedure, which will be made precise in Section 3.1. Using a notion of caret adjacency
defined below, we take the two trees T− and T+ and construct a single tree P, called a penalty tree,
whose vertices correspond to a subset of the carets of T− and T+, necessarily including the penalty
carets. This tree is assigned a weight according to the arrangement of its vertices. Minimizing this
weight over all possible penalty trees that can be constructed using the adjacencies between the
carets of T− and T+ yields the penalty contribution pn(g) to the word length ln(g). We will prove
the following theorem.

5

Figure 6. The spaces corresponding to the different carets are shaded. These
spaces are used to define the notion of caret adjacency.

Theorem 3.3. For every g ∈ F , the word length of g with respect to the generating set Xn =
{x0, x1, · · · , xn} is given by the formula

ln(g) = l∞(g) + 2pn(g)

where l∞(g) is the number of carets in the reduced tree pair diagram for g which are not right carets,
and pn(g) is the penalty weight.

3.1. Constructing a penalty tree. Constructing penalty trees for g ∈ F requires a concept of
directed caret adjacency, which is an extension of the infix order. To define the concept of adjacency
between carets in a tree T , we view each caret as a space rather than an inverted v. The point of
intersection of the left and right edges of the caret naturally splits the boundary of this space into
a left and right component. The space is bounded on the right (resp. left) by a generalized right
(resp. left) edge. The generalized right (resp. left) edge may consist of actual left (resp. right)
edges of other carets in the tree, in addition to the actual right (resp. left) edge of the caret itself.
For example, in Figure 6, the spaces which we consider as carets are shaded, and the generalized
left edge of caret 9 includes the right edges of carets 7 and 8.

Let p and q denote carets in a tree pair (T−, T+), that is, p corresponds to a pair of carets, one
in T− and one in T+, each with infix number p, and the same is true for q. Additionally, assume
p < q. We say that p is adjacent to q, written p ≺ q, if there is a caret edge, in either T− or T+,
which is both part of the generalized right edge of caret p and the generalized left edge of caret q.
We equivalently say that traversing the generalized left edge of caret q takes you to caret p in at
least one tree. It is always true that carets p and p + 1 satisfy p ≺ p + 1. Although the ordering
of carets given by infix number is not symmetric but is transitive, the notion of caret adjacency is
neither symmetric nor transitive.

We introduce a dummy caret denoted v0 which is adjacent to all left carets in both T− and T+.
One can think of v0 as being the space to the left of the left side of each tree. We now construct
a penalty tree P corresponding to the pair of trees (T−, T+), which has this dummy caret v0 as its
root, according to the following rules.

(1) The vertices of P are a subset of the carets in the tree pair diagram, which we refer to by
infix numbers: 0 = v0, 1, 2, · · · , k, always including v0.

(2) If a directed edge is drawn from vertex p to vertex q in P then we must have p ≺ q.
(3) There is a vertex for every penalty caret in (T−, T+).
(4) Each leaf of P corresponds to a penalty caret of (T−, T+). The only exception to this is

when P consists only of the root v0 and no edges.

The penalty tree P is oriented in the sense that there is a unique path from v0 to every vertex p ∈ P,
and if this path passes through vertices v0, p1, p2, . . . , pi = p then we must have v0 ≺ p1 ≺ · · · ≺

6

Figure 7. An example of two penalty trees associated to the same group element,
whose carets are numbered in infix order from 1 through 8.

pi = p. Two vertices p, q in the tree are comparable if there is either a path p = w1, w2, . . . , wi+1 = q
or q = w1, w2, . . . , wi+1 = p with wj ≺ wj+1, ∀j = 1, . . . , i+ 1, and in this case we say dP(p, q) = i.

When working with these penalty trees, we often abuse notation and refer to the edge between p
and q as p ≺ q, and conversely, will sometimes refer to an adjacency p ≺ q which exists in a tree
pair diagram as an edge, meaning it can give rise to an edge in a penalty tree. Also, we call an
edge p ≺ q both “an edge out of p” and “an edge into q.”

The penalty weight of a penalty tree is bounded above by the number of vertices on the tree, but
not all vertices on the tree contribute to the weight. More precisely, we define:

Definition 3.4. The n-penalty weight pn(P) of a penalty tree P associated to g = (T−, T+) ∈ F
is the number of vertices vi ∈ P such that dP(0, vi) ≥ 2 and there exists a leaf li in P with
dP(vi, li) ≥ n− 1. These vertices are called the weighted carets.

To compute the penalty contribution pn(g) to the word length ln(g) for g ∈ F , we must minimize
the penalty weight over all penalty trees associated to g.

Definition 3.5. For an element g ∈ F , define the penalty contribution pn(g) to the word length
ln(g) by

pn(g) = min{pn(P)|P is a penalty tree for g = (T−, T+)}

This definition brings us to the statement of Theorem 3.3, which presents the formula ln(g) =
l∞(g) + 2pn(g). We call any penalty tree for g which realizes pn(g) a minimal penalty tree.

Computing the penalty contribution pn(g) for any g = (T−, T+) ∈ F can be quite difficult, as there
may be a large number of possible penalty trees based on the caret adjacencies present in T− and
T+. In Sections 6 and 7 we present families of group elements where the penalty trees with minimal
penalty weight can be determined based on features of the original tree pair diagrams. One such
feature which greatly simplifies the computation of pn is recorded in the following observation.

Observation 3.6. Let g ∈ F be represented by the reduced tree pair diagram (T−, T+). If (T−, T+)
contains two penalty carets p ≺ q, where in both trees, p is a right caret which is not type N , then
on any penalty tree P for g, the unique path from v0 to q must contain the caret p.

Observation 3.7. Observation 3.6 can be generalized as follows. If caret p does not have type N
in either T− or T+, then the only caret v with p ≺ v is v = p+ 1.

The following lemma states that left carets in T− and T+ can never contribute to the penalty weight
of a penalty tree.

Lemma 3.8. Let w = (T−, T+) be an element of F , and p a caret which is a left caret in either T−
or T+. Then p is not a weighted caret in any minimal penalty tree for w.

7

Proof. Suppose that P is a minimal penalty tree for w in which p is a vertex that carries weight.
We construct a new minimal penalty tree P ′ for w in which p in not a weighted caret. In P, let
c be the vertex which is the parent of p. Since p is weighted in P, we know that c is not the root
caret of P.

To construct P ′, begin with P and remove the edge c ≺ p. Attach vertex p, and its subtrees via
the adjacency v0 ≺ p, which arises from the fact that p is a left caret in either T− or T+, and call
the resulting tree P ′. Thus we see that pn(P ′) < pn(P), since p is no longer a weighted caret in P ′.
This contradicts the fact that P was a minimal penalty tree for w, and the lemma follows. �

We now address the question of whether a minimal penalty tree consists entirely of carets corre-
sponding to left and penalty carets in the tree pair diagram for g ∈ F . We show directly that such
a penalty tree can always be constructed when n = 1, and note that this fact follows from a result
of Guba [G] discussed in Section 3.2 below. When n > 1, this need not be the case, as we illustrate
with an example below.

Lemma 3.9. In the case n = 1, a minimal penalty tree P can always be constructed for g =
(T−, T+) ∈ F all of whose vertices correspond to left carets or penalty carets in the tree pair diagram.

Proof. It follows from Lemma 3.8 that left carets in either tree can be assumed to be adjacent to
v0 in any minimal penalty tree. Let P be a penalty tree for w = (T−, T+) ∈ F in which all carets in
P which are left in either T− or T+ are adjacent to v0 in P, and suppose that P contains a vertex
vi corresponding to a caret vi in (T−, T+) which is neither a penalty caret nor a left caret. If vi is
a leaf in P, simply delete it. If not, Observation 3.7 implies that the only caret v with vi ≺ v is
the caret immediately following caret vi in the infix order. Call this caret vi+1 = vi + 1. Note that
vi+1 is not a left caret, since it is not connected by an edge in P to v0. Since vi is not a leaf of P,
it follows that the one and only edge out of vi on P is vi ≺ vi+1. Delete both the edge vi ≺ vi+1

and the vertex vi from P, and attach the vertex vi+1 and any subtree of P having it as a root, as
follows.

Since vi in an interior caret with an exposed right leaf in at least one of T− or T+, without loss
of generality we assume this in T−. It follows that the adjacencies determined by the actual (not
generalized) left edges of vi and vi+1 must connect them to a single caret c of type N . See Figure
8 for two possible configurations of these carets. We use the adjacency c ≺ vi+1 to reattach the
subtree of P whose root is vi+1 to the penalty tree. Thus we have created a new penalty tree which
does not contain the vertex vi. We can repeat this process until all non-penalty carets of (T−, T+)
are removed from P. Hence, p1(g) is simply the number of penalty carets in which neither caret in
the pair is a left caret. �

We conclude this section with two examples. The first contrasts the situations n = 1 and n > 1,
and the second illustrates the computation of the word length l2(g) for a particular group element
g ∈ F .

Example 3.10. We first present an example contrasting the cases n = 1 and n > 1. We proved
above that when n = 1, a minimal penalty tree for g ∈ F can always be constructed using only
penalty carets and left carets. Although one can always construct a penalty tree for g consisting
only of penalty and left carets, for n ≥ 2 this tree may not be minimal. It may be the case that a
penalty tree must include some non-penalty carets in order to realize pn(g). The following example
illustrates this.

Consider g = x1x2x5x6x
−2
3 x−1

2 and the generating set X3 = {x0, x1, x2, x3}. This element is
depicted in Figure 9, and we see that l∞(g) = 7. Since g can be written as a word x3x1x2x

−2
3 x−1

2 x3

8

Figure 8. Two possible configurations of the carets c, vi and vi+1 used to show
that a penalty tree can always be constructed using only vertices corresponding to
left and penalty carets in (T−, T+) when n = 1.

Figure 9. The element g = x1x2x5x6x
−2
3 x−1

2 , along with two penalty trees: a non-
minimal one which uses only penalty carets as vertices, and a minimal one which
requires the addition of a vertex not corresponding to a penalty caret, both with
respect to the generating set X3.

of length seven, we must have p3(g) = 0. We see that the carets with infix numbers 1, 2, 3, 5 and 6
are penalty carets in the tree pair diagram for g. It is possible to make a penalty tree for g using
only these carets, but that tree will have penalty weight equal to one. In order to make a penalty
tree with total weight zero, we must add caret 4 as a vertex. These two penalty trees are drawn in
Figure 9.

Example 3.11. We now present an example in which we compute the word length of

g = x0x
2
1x4x

2
5x8x

2
9x12x

2
13x
−1
14 x

−2
12 x

−1
10 x

−2
8 x−1

6 x−2
4 x−1

2 x−2
0

with respect to X2. The tree pair diagram for this element is given in Figure 10. We see that
l∞(g) = 24, and begin the construction of a minimal penalty tree P by identifying the penalty
carets to be those numbered 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14. We first note that any path of adjacencies
connecting penalty carets with infix numbers greater than 8 with v0 must include the vertex 8, as
mentioned in Observation 3.6. This ensures that carets 8 and 12 will correspond to weighted penalty
carets in any minimal penalty tree for g, and leads to the construction of the minimal penalty tree
P given in Figure 10. We see that p2(P) = p2(g) = 2, and compute l2(g) = 28.

3.2. Comparison with known methods when n = 1. In the case n = 1, Fordham [F], Guba
[G], and Belk and Brown [BB] have all provided formulas for l1(g). Our formula, restricted to the
case n = 1, is seen below to be a streamlined version of these methods.

9

Figure 10. The element g = x0x
2
1x4x

2
5x8x

2
9x12x

2
13x
−1
14 x

−2
12 x

−1
10 x

−2
8 x−1

6 x−2
4 x−1

2 x−2
0 ,

along with a minimal penalty tree for g. With respect to X2, we compute p2(g) = 2,
as only carets 8 and 12 are weighted, and thus l2(g) = 28.

Guba [G] considers F as a diagram group, and elements of F are then infinite diagrams. The cells
of a diagram correspond precisely to the carets in a tree pair diagram which are not right carets.
Furthermore, his special vertices are precisely our penalty pairs in which neither caret is a left caret.
Guba computes word length of an element to be the number of cells in the diagram plus twice the
number of special vertices, corresponding exactly to our formula above.

It follows from Guba’s length formula that we may always form a minimal penalty tree consisting
only of penalty and left carets when n = 1, providing an alternate proof of Lemma 3.9. The example
given above shows that this penalty tree may not be minimal when n > 1.

Now we compare our formula with the other two in the literature, due to Belk and Brown [BB]
and Fordham [F], which are based on tables of weights corresponding to the different caret types.
Encoded in each table is some of the information that we use when we tabulate l∞(g) for g ∈ F .

Belk and Brown [BB] use forest diagrams for elements of F which, roughly, enumerate the right
(resp. left) subtrees of the left (resp. right) carets in each tree, with a pointer to the root.
They define four caret types, and their formula for the word length of g ∈ F is l0(g) + l1(g), where,
translating from forest diagrams into binary trees, we see that l1(g) is simply the number of interior
carets in the tree pair diagram. Then l0(g) is a sum of weights determined by the caret types with
values 0, 1 or 2, which are presented in a table. The weights in the first row and column of their
table count the number of left carets in the tree pair diagram distinct from the root caret, a count
which we include as part of l∞(g). The remainder of the table has a weight of two corresponding
to each of our penalty carets in which neither caret is a left caret. Thus the two formulae are
equivalent.

Blake Fordham [F] defines seven types of carets in a tree and forms the pairs of caret types analogous
to Belk and Brown. He presents a six by six table of weights corresponding to the pairs of caret
types. Altering Fordham’s table in the following way:

(1) subtract one from the weight of each pair of caret types containing a single caret which is
not a right caret, and

(2) subtract two from the weight of each pair or caret types containing no right carets,

one obtains a table that has a weight of two for each pair of caret types which we call a penalty
pair, excluding those in which one caret type is left. Thus his entire table counts l∞(g) and the
penalty contribution pn(g) simultaneously.

10

3.3. Proof of Theorem 3.3. We rely on the following lemma of Fordham to prove Theorem 3.3.
This lemma gives conditions under which a function defined from a group G to the nonnegative
integers computes the word length of elements of the group.

Lemma 3.12 ([F], Lemma 3.1.1). Given a group G, a generating set X, and a function φ : G →
{0, 1, 2, · · · }, if φ has the properties

(1) φ(IdG) = 0;
(2) if φ(g) = 0 then g = IdG;
(3) if g ∈ G and α or α−1 is any element of X, then φ(g)− 1 ≤ φ(gα); and
(4) for any non-identity element g ∈ G, there is at least one α ∈ G with either α or α−1 in X

such that φ(gα) = φ(g)− 1,

then φ(g) = l(g) for all g ∈ G, where l(g) denotes the word length of g with respect to the generating
set X.

We now prove Theorem 3.3 by showing that the function φn(g) = l∞(g) + 2pn(g) for g ∈ F satisfies
the conditions of this lemma.

Proof. Define the function φn(g) = l∞(g) + 2pn(g) for g ∈ F . We must show that this function
satisfies all four conditions of Lemma 3.12. Since the identity is represented by a tree pair diagram
consisting of a single caret in each tree, it is easy to see that both l∞(Id) and pn(Id) equal zero,
and thus the first condition is easily satisfied.

If φn(g) = 0, in particular l∞(g) = 0, so g the tree pair diagram for g has no carets which are not
right carets. Thus g is the identity in F .

We now state two lemmas which are slight variations on the last two conditions, and defer their
proofs to the next two sections, as they are somewhat tedious.

Lemma 3.13. For every g ∈ F and α ∈ Xn , φn(gα) = φn(g)± 1.

Lemma 3.14. For every g ∈ F , there exists α ∈ Xn such that φn(gα) = φn(g)− 1.

Together with the fact that φn(g) = 0 if and only if g = id, Lemma 3.13 implies that φn(g) ≤ ln(g)
and Lemma 3.14 implies that ln(g) ≤ φn(g), and hence Theorem 3.3 follows. �

The proofs of Lemmas 3.13 and 3.14 depend heavily on the combinatorial rearrangement of subtrees
of a tree pair diagram caused by multiplication by a particular generator. This is illustrated
in Figure 5. This figure shows how the subtrees of the original diagram are rearranged under
multiplication by x0 and x2. It may be necessary to add carets to the tree pair diagram to perform
this multiplication. In general, multiplication by xn performs the analogous rearrangement at level
n along the right side of the first tree in the diagram.

Before proving Lemmas 3.13 and 3.14, we show that the change in l∞ is easily computed when
g ∈ F is multiplied by a generator α = x±1

i .

We first fix some notation. Let (T−, T+) be the reduced tree pair diagram for g ∈ F , and (S−, S+)
the reduced tree pair diagram for a generator α = x±1

i . The tree pair diagram for gα is formed
by taking (possibly) unreduced representatives (T ′−, T

′
+) of g and (S′−, S

′
+) of α in which S′+ = T ′−.

The (possibly unreduced) tree pair diagram for gα is then given by (S′−, T
′
+). Careful examination

reveals that this process results in three mutually exclusive situations, and in each case we can keep
track of the difference between l∞(g) and l∞(gα).

11

Observation 3.15. The multiplication described above results in exactly one of the following
situations:

(1) S+ is not a subtree of T−, so T ′+ 6= T+. This implies that (S′−, T
′
+) must be a reduced tree

pair diagram for gα, and that l∞(gα) = l∞(g) + 1.
(2) S+ is a subtree of T−, so T ′+ = T+, and (S′−, T+) is a reduced tree pair diagram for gα. In

this case, the change in l∞ depends on α:
(a) If α = x−1

i , then l∞(gα) = l∞(g) + 1.
(b) If α = xi, then l∞(gα) = l∞(g)− 1.

(3) S+ is a subtree of T−, so T ′+ = T+, and (S′−, T+) is not a reduced tree pair diagram for gα,
then l∞(gα) = l∞(g)− 1.

Since l∞(g) is an important part of φn(g), the above observation will play a major role in the proof
of Theorem 3.3.

4. Proof of Lemma 3.13

We now prove Lemma 3.13, which states that multiplication by any generator in Xn or its inverse
changes the value of φn(g) by either 1 or −1. Recall that g = (T−, T+).

Proof. First note that since l∞(gα) and l∞(g) always differ by 1, we may assume without loss of
generality that l∞(gα) = l∞(g) − 1. To see why, assume that Lemma 3.13 holds whenever we
have l∞(gα) = l∞(g) − 1, and consider a pair g and α with l∞(gα) = l∞(g) + 1. Set h = gα
and β = α−1. Then l∞(hβ) = l∞(h) − 1, so Lemma 3.13 holds for h ∈ F and the generator β.
Therefore, φn(g) = φn(hβ) = φn(h)± 1 = φn(gα)± 1, and thus φn(gα) = φn(g)± 1.

Let g ∈ F and α ∈ Xn. Without loss of generality, we now assume that l∞(gα) = l∞(g) − 1. It
will suffice to prove that pn(gα) = pn(g) or pn(g) + 1. We split the proof into two cases depending
on the exponent of α.

Case 1: α = x−1
i . In the tree pair diagram (S−, S+) for α, the tree S+ consists entirely of a string

of i+2 right carets. Notice that we must be in Case 3 of Observation 3.15, in which S+ is a subtree
of T−. Thus T− also has at least i+ 2 right carets. In T−, let v1 < v2 < · · · < vi < vi+1 < vi+2 be
the infix numbers of the first i+2 right carets, beginning with the root caret. As a separate subtree,
this set of right carets has i+ 3 leaves, each of which may have a subtree of T− attached to it. Let
Aj be the (possibly empty) subtree attached to the left leaf of caret vj , for 1 ≤ j ≤ i+ 2. Let Ai+3

be the (possibly empty) subtree attached to the right leaf of caret vi+2. Note that multiplication
by x−1

i affects caret vi+1, rotating it from the right side of the tree to the interior (or left in the
case i = 0. See Figure 11 for a diagram of (S−, S+) and (T−, T+).

Since we are in Case 3 of Observation 3.15, multiplication of (T−, T+) by x−1
i = (S−, S+) must

create an interior caret which is removed when the pair (S′−, T+) is reduced. Thus we must have
Ai+1 = Ai+2 = ∅, and that caret vi+1 is an exposed interior caret in T+. In addition, if Ai+3 is also
empty in T−, then vi+2 will also be removed when the product (S′−, T+) is reduced. Furthermore,
if for some 1 ≤ k ≤ i, the subtrees Ak, Ak+1, . . . , Ai of T− are all empty, then carets vk, vk+1, . . . , vi
will also all be removed when the product (S′−, T+) is reduced.

This removal of carets may cause certain other carets to alter their penalty status, that is, penalty
carets for g may not be penalty carets for gα. If vi+1 is the only caret which is removed by the
reduction, then caret vi may change from being a penalty caret for g to not being a penalty caret
for gα. If more carets are removed during the reduction, say vk, vk+1, . . . , vi+2 for 1 ≤ k ≤ i + 1,
then caret vk−1 will switch from being a penalty caret in g to a non-penalty caret in gα.

12

Figure 11. Multiplication of g = (T−, T+) by α = x−1
i = (S−, S+). We use dashed

carets in T+ to indicate that we do not know a priori the exact shape of this tree,
except for the fact that vi+1 is an interior caret of the given form.

Suppose P is any penalty tree for g. We claim that we can always create a new tree P ′ which is a
penalty tree for gα with pn(P ′) ≤ pn(P), which would imply that pn(gα) ≤ pn(g). There are two
reasons that might prevent P itself from being a penalty tree for gα:

• P may contain vertices corresponding to carets in the reduced tree pair diagram (T−, T+)
for g which no longer appear in the reduced tree pair diagram for gα, or
• there may be a leaf in P corresponding to a penalty caret in (T−, T+) which is no longer a

penalty caret in reduced tree pair diagram for gα.

Let us first consider the case that only the caret vi+1 is removed when (S′−, T+) is reduced, and we
describe how to alter P to create P ′.

(1) If vi+1 does not appear as a vertex in P, and either vi does not change penalty status as
we go from g to gα, or vi does change penalty status, but is not a leaf in P, let P ′ = P.

(2) Suppose that vi+1 does not appear as a vertex of P, vi does change penalty status, and
vi is a leaf on P. In this case we form P ′ by simply removing the leaf vi and the edge
connecting it to the tree, as well as any newly exposed leaves which do not correspond to
penalty carets.

(3) Suppose that vi+1 does appear as a vertex of P. We know that in g = (T−, T+), caret
vi+1 is not a penalty caret, since it is a right caret in T− and an interior caret with no
right subtree in T+. Thus it cannot be a leaf of P, which forces P to have vertices p and
q with p ≺ vi+1 ≺ q for some carets p and q. But since vi+1 is a right caret in T− with
both Ai+1 and Ai+2 empty, and vi+1 is an exposed caret T+, its generalized left and right
edges are just the actual left and right edges, so there is only one such caret p and one
caret q, and hence p = vi and q = vi+2. Construct P ′ by removing the vertex vi+1 from P,
and adding the edge vi ≺ vi+2, since this adjacency exists in the reduced tree pair diagram
corresponding to (S′−, T+) after caret vi+1 is removed. In this way, vi is not a leaf of P ′ so
its penalty status, or any change therein, is irrelevant.

In each case above, it is clear that pn(P ′) ≤ pn(P).

If more than one caret is removed when the tree pair diagram (S′−, T+) is reduced, say the string of
carets vk, vk+1, . . . , vi+2 for some 1 ≤ k ≤ i+ 1, the situation is actually simpler. In this case carets
vk−1, vk, . . . , vi are all penalty carets for g, because they are right carets in both trees, and are not
the final caret in the diagram. Thus they must appear as vertices of P, and using Observation 3.6
one concludes that they must appear in P as a path vk−1 ≺ vk ≺ · · · ≺ vi, with the vertex vi as
the leaf.

13

In this case, we take P ′ to be the tree P with the string of vertices from vk−1 through vi removed. It
is possible that some leaf of this tree which is created by the removal of these vertices corresponds
to a caret which is no longer a penalty caret for gα. In this case, this leaf may be removed, and
the resulting tree is a penalty tree for gα. It is clear again that pn(P ′) ≤ pn(P), which implies that
pn(gα) ≤ pn(g).

We now reverse the procedure outlined above to show that pn(g) ≤ pn(gα); namely we begin
with a penalty tree P ′ for gα and describe how to alter it to obtain a penalty tree P for g with
pn(P) ≤ pn(P ′). One of three things may occur:

(1) P ′ may already be a penalty tree for g,
(2) if caret vi changed penalty status between gα and g, it may need to be added as a vertex

of the penalty tree, if it was not on P ′, or
(3) if caret vk−1 changed penalty status between gα and g, for some k with 1 ≤ k ≤ i + 1, in

which case the carets vk, . . . , vi were not present in the reduced tree pair diagram for gα,
the entire string of carets vk−1 ≺ vk ≺ · · · ≺ vi may need to be added to form a penalty
tree for g.

Assume we are not in case (1), so we do need to add some of these carets to P ′. If we simply add the
desired string of carets to P ′ to form P, we may increase the penalty quite a bit, but the vertices
of the tree which contribute to this increase must lie on a path in P ′ between v0 and p, where p
is the caret at the top of the newly added string. If any of these vertices do become weighted, we
alter the tree again in such a way that the only vertices which are weighted in the new penalty
tree but not weighted in P ′ must now lie between v0 and some other vertex q, where q is closer to
v0 than p was, and continue if necessary until there are no more vertices which might switch from
being unweighted in P ′ to being weighted in the altered tree P.

More precisely, to construct P, we will inductively construct a series of trees P ′ = P0,P1, . . .Pr
associated with carets vj1 , . . . , vjr , a certain subset of the carets {v1, . . . , vk−2, where jr < jr−1 · · · <
j1. For each r ≥ 1, Pr is a penalty tree for g, Pr contains vertices corresponding to all carets vk
where jr ≤ k ≤ i, and jr is the largest index k with k < jr−1 and vk on Pr−1. In addition, either:

(1) pn(Pr) ≤ pn(P ′), or
(2) pn(Pr) > pn(P ′) , dPr(v0, vjr) = dP ′(v0, vjr) > jr, the reason that pn(Pr) exceeds pn(P ′) is

that there are vertices along the path from v0 to vjr in P ′ which count towards pn(Pr) but
not towards pn(P ′), and vi is always the leaf at maximal distance from vertex vjr in Pr.

In the first case we take P = Pr, and in the second case, we must construct Pr+1. But since 0 <
jr ≤ i and jr+1 < jr, eventually case 1 above will occur, since v0 ∈ P ′ and dP ′(v0, v0) = 0. Hence,
we can construct a penalty tree P for g with pn(P) ≤ pn(P ′), which implies that pn(g) ≤ pn(gα).

To complete the argument, we must show that the construction of penalty trees Pr satisfying the
properties above is possible. We first describe the construction of P1. Let j1 be the largest index
j for which vj appears on the penalty tree P ′. Then we can attach a string of i − j1 vertices
and edges corresponding to vj1 ≺ . . . ≺ vi to P ′ to form P1, which is then a penalty tree for g.
The added vertices themselves will never be weighted, since i < n, but it is possible that their
addition might cause other unweighted vertices to become weighted. Either this does not occur, so
pn(P1) ≤ pn(P ′), or it does occur, so pn(P1) > pn(P ′), but this only happens if the distance in P ′
between vertices v0 and vj1 satisfies dP ′(v0, vj1) > j1. Moreover, it is only vertices along the path
from v0 to vj1 which may be weighted in P1 but not in P ′. Furthermore, if there was a leaf of P ′
further from vj1 than vi is, then appending the new path to vi would not increase the total penalty.

14

For the inductive step, suppose the penalty tree Pr−1 has been constructed, and pn(Pr−1) > pn(P ′).
Furthermore, vi is the leaf at maximal distance from vjr−1 in Pr−1, and the reason that pn(Pr−1)
exceeds pn(P ′) is that there are vertices along the path from v0 to vjr−1 in Pr−1 which are weighted
in Pr−1 but not in P ′. Then we construct Pr as follows. Choose jr to be the largest index j
with 0 ≤ j < jr−1 so that vj corresponds to a vertex of Pr−1 (or equivalently, of P ′). Delete the
first edge along the path connecting vjr−1 to v0 in Pr−1, and attach to vjr the vertices and edges
corresponding to vjr ≺ . . . ≺ v(jr−1)−1, and then add an edge connecting vjr−1−1 to vjr−1 . The
result, Pjr , is clearly an allowable tree for g. Since vi was the most distant leaf from vjr−1 in Pr−1,
vi is also the most distant leaf from vjr−1 , . . . , vjr in Pr. Now in Pr−1, only vertices between v0 and
vjr−1 may be weighted in Pr−1 but not in P ′, so deleting the edge connected to vjr−1 eliminates that
difference in penalty. None of the vertices between vjr and vjr−1 are close enough to a leaf to count
towards pn, since they are too close to vi, and vi is the most distant leaf. Therefore, pn(Pr) ≤ pn(P ′)
unless dPjr

(v0, vjr) > jr, and then only vertices between v0 and vjr can account for this increase in
penalty. This completes the desired construction, and thus the proof that pn(g) ≤ pn(gα).

Summing up, in this case where α = x−1
i , we have shown that pn(gα) ≤ pn(g) and pn(g) ≤ pn(gα),

and hence pn(g) = pn(gα).

Case 2: α = xi. When α = xi and we are assuming that l∞(gα) = l∞(g)− 1, we must be in either
Case 3 or Case 2b of Observation 3.15.

To obtain the tree pair diagram for α = xi, we switch the order of the trees given for α = x−1
i in

Figure 11. Thus S− is a tree consisting of a string of i + 2 right carets, and S+ has a single caret
which is not a right caret: this caret is an interior caret if i > 0 and a left caret if i = 0.

Since we are not in case 1 of Observation 3.15, S+ is a subtree of T−. This guarantees an interior
caret in T− which is the left child of the right caret at level i from the root. As in Case 1, let
v1 ≺ v2 ≺ · · · ≺ vi ≺ vi+2 be the first i + 1 right carets in T−, and let vi+1 be the interior caret
hanging from the left leaf of caret vi+2. Number the leaves of the subtree consisting of the {vi}
from 1 through i+ 3, and let Aj be the (possibly empty) subtree attached to leaf j.

If we are in Case 2(b) of Observation 3.15 in which the pair (S′−, T+) is a reduced tree pair dia-
gram, then there are two carets which may change penalty status, as opposed to one in Case 3 of
Observation 3.15. In either case, the adjacency vi ≺ vi+2 which is present in g = (T−, T+) may not
exist in the reduced tree pair diagram for gα.

We claim first that pn(gα) ≤ pn(g)+1, and begin our argument by choosing a penalty tree P for g.
Below we summarize the possible situations, which are not mutually exclusive, which might force
us to alter P to obtain a penalty tree P ′ for gα.

(1) P contains the edge corresponding to vi ≺ vi+2, an adjacency present in g but not in gα,
and the tree pair diagram (S′−, T+) is reduced. (Case 2(b) of Observation 3.15.)

(2) Caret vi+1 is not a penalty caret for g, but is for gα, and the tree pair diagram (S′−, T+)
is reduced. (Case 2(b) of Observation 3.15 and these conditions also require that Ai+2 =
∅, Ai+3 6= ∅, and caret vi+1 is a right caret which is not type N in T+.)

(3) There is a single caret which is a penalty caret for g, but no longer is one for gα. This
occurs as follows:
(a) In either Case 2b of Observation 3.15, or Case 3 of Observation 3.15 if exactly one

caret is removed when (S′−, T+) is reduced, it may be the case that vi is a penalty caret
for g but not for gα. This occurs if Ai+1 = ∅ and vi is a left or interior caret which is
not type N in T+.

15

(b) In Case 3 of Observation 3.15, if carets vk, · · · vi+1, vi+2 are removed when (S′−, T+) is
reduced, for some 0 ≤ k ≤ i + 1, then vk−1, if it exists, always changes from being a
penalty caret for g to a non-penalty caret for gα.

We describe a method for altering a penalty tree P for g into a penalty tree for gα depending on
which combination of the above situations occurs.

Suppose first that the first situation does occur. Then either vi+1 is a vertex on P, or it is not. If
vi+1 is already a vertex on P, then we delete both the edge corresponding to vi ≺ vi+2 as well as
the edge along the path from v0 to vi+1 which goes into vi+1. We reconnect the tree by adding two
edges corresponding to the adjacency vi ≺ vi+1 ≺ vi+2. The resulting tree P ′ has vertices for all
penalty carets for gα.

We now claim that pn can increase by at most 1, and show this by considering the distance from
each vertex of the penalty tree to a leaf of the penalty tree. Recall that weighted carets, that is,
those which count towards pn(P), are connected to the root of the tree by a path of length at least
two, and a leaf of the tree by a path of length at least n− 1.

In altering P in this way to obtain P ′, there are two carets which might become weighted penalty
carets. First, it may be that vi+1 was not a weighted caret for P but is weighted in P ′, since
now all of the leaves which are connected by paths to vi+2 become leaves connected to vi+1 also.
This can happen only if dP(vi+2, l) ≥ n − 2 where l is a leaf of P at maximal distance from
vi+2. Second, it is possible that there is a vertex v along the path from v0 to vi in P which is
not far enough from a leaf of P to be weighted, yet altering the tree by the addition of the edges
vi ≺ vi+1 ≺ vi+2 may now make this caret weighted. But this can happen only if both dP(v0, v) ≥ 2
and a leaf l of P which has maximal distance from vi+2 has dP(v, l) = n− 2. But this implies that
dP(vi+2, l) ≤ n− 3. Since these conditions are mutually exclusive, we see that at most one of them
can occur, so pn(P ′) ≤ pn(P) + 1.

If, on the other hand, caret vi+1 does not correspond to a vertex of P, the situation is simpler.
Simply delete the edge vi ≺ vi+2, and add a new vertex labeled vi+1 along with the edges vi ≺ vi+1 ≺
vi+2. Again, remove leaves as necessary until all remaining leaves correspond to penalty carets of
the tree pair diagram for gα. The resulting penalty tree P ′ for gα again satisfies pn(P ′) ≤ pn(P)+1.

Now if situation (2) also occurs, no additional alteration of the penalty tree P ′ is required, since
vi+1 is already on it. Although situation (3a) may also occur, since vi is not a leaf of P ′, it does not
concern us that it may no longer be a penalty caret. However it is possible that some leaves of P ′
may no longer correspond to penalty carets in the reduced tree pair diagram for gα, since we may
have created a new leaf when we removed edges of P. Then we simply remove non-penalty leaves
from P ′ until all leaves do correspond to penalty carets. This can never increase pn(P ′). Thus, P ′
is a penalty tree for gα with pn(P ′) ≤ pn(P) + 1.

Now suppose that situation (1) above does not occur, but situation (2) does. This implies that we
are once again in Case 2(b) of Observation 3.15, and hence the adjacency vi ≺ vi+2 is not present in
T+, which implies that vi ≺ vi+2 no longer holds for gα. Therefore, since we assumed that situation
(1) does not occur, the edge vi ≺ vi+2 does not occur in P. However, since Ai+3 6= ∅, it follows
that vi+2 is a penalty caret for g, and hence must appear on P. However, the facts that Ai+2 = ∅
and vi+1 is a right caret in T+ which is not type N imply that the only two carets v with v ≺ vi+2

in g are vi and vi+1. Since situation (1) does not occur, the edge vi+1 ≺ vi+2 is forced to exist in
P, so caret vi+1, though not a penalty caret for g, was nonetheless already on P. Now if situation
(3a) occurs, and vi is a leaf of P, simply delete it. Continue to delete any non-penalty leaves from
P to form a penalty tree P ′ for gα with pn(P ′) ≤ pn(P).

16

Finally, suppose that neither situations 1 nor 2 occur, but situation 3 does. We must then be
either in Case 2(b) or Case 3 of Observation 3.15. First we consider what happens if we are in case
2(b) of Observation 3.15. Then the only reason P might not be a penalty tree for gα is that caret
vi corresponds to a leaf of P, but vi is not a penalty caret for gα. In this case, to form P ′, we
delete the vertex corresponding to vi as well as any additional leaves which no longer correspond
to penalty carets in gα. The resulting tree satisfies pn(P ′) ≤ pn(P).

If we are in Case 3 of Observation 3.15, then some carets are removed when the tree pair diagram
(S′−, T+) for gα is reduced. If these carets appear in P, we must delete them when forming P ′.
Once again, Observation 3.6 reveals that these carets, if they appear in P, appear as a string
vk ≺ . . . ≺ vi of vertices, with vi as a leaf of the tree, and no other edges on the tree out of any of
these vertices. Thus they can be easily deleted, along with the vertex corresponding to caret vk−2

if necessary, to produce a penalty tree P ′ for gα with pn(P ′) ≤ pn(P).

Thus in all of these situations, we can always construct a penalty tree P ′ for gα with pn(P ′) ≤ pn(P),
and it follows that pn(gα) ≤ pn(g) + 1.

We now prove that if we begin with a penalty tree P ′ for gα, we can always alter it to construct a
penalty tree P for g with pn(P) ≤ pn(P ′). If we are in Case 3 of Observation 3.15, we must add
vertices corresponding to the carets vk, vk+1 . . . , vi to P ′ to form P. We do this using the same
inductive procedure used in Case 1 of the proof of this lemma.

If we are in case 2(b) of Observation 3.15, there are two possible situations to consider.

(1) Caret vi+1 is a penalty caret for gα, but not for g. This happens if Ai+2 = ∅, caret vi+1 is
a right caret in T+ which is not type N , and Ai+3 6= ∅.

(2) Caret vi is a not a penalty caret for gα, but is a penalty caret for g. This occurs if Ai+1 = ∅
and vi is a left or interior caret in T+ which is not type N .

If the second situation above does not occur, or it does but vi corresponds to a vertex already on
P ′, then constructing P from P ′ requires only deleting any leaves which no longer correspond to
penalty carets in g. This process cannot increase the penalty weight of the tree. If the second
situation does occur, and vi does not correspond to a vertex of P ′, we again use the inductive
procedure from the first case of the proof of this lemma to construct the desired penalty tree P for
g containing a vertex corresponding to vi. Hence, pn(g) ≤ pn(gα), which in turn implies that in
this case, either pn(gα) = pn(g) or pn(gα) = pn(g) + 1, as desired. �

5. Proof of Lemma 3.14

Before embarking on the proof itself, we gather together a few cases in which φn(gα) = φn(g)− 1.
We will show that any g ∈ F falls into at least one of these situations for some choice of α. As
usual, we let (T−, T+) be the reduced tree pair diagram for g, and let v1 ≺ v2 ≺ v3 ≺ . . . ≺ vj be
all of the right carets in T− , and we let Ak be the (possibly empty) subtree attached to the left
leaf of vk for 1 ≤ k ≤ j. All of these observations essentially follow from the proof of Lemma 3.13,
and we supply details following the statements below.

Observation 5.1. For 0 ≤ i ≤ n, if l∞(gx−1
i) = l∞(g)−1, then φn(gx−1

i) = φn(g)−1. This occurs
precisely when T− contains at least i + 2 right carets, Ai+1 = Ai+2 = ∅ in T−, and caret vi+1 is
exposed in T+.

Observation 5.2. For 0 ≤ i ≤ n, if T− contains at least i+ 2 right carets and Ai+1 6= ∅, and there
is a minimal penalty tree P for g not containing vi ≺ vi+1, then φn(gxi) = φn(g)− 1.

17

Observation 5.3. If there is a minimal penalty tree P for g in which the caret v2 is a weighted
caret, then φn(gx−1

0) = φn(g)− 1.

The first two observations follow directly from the proof of Lemma 3.13. Observation 5.1 falls
into case 1 of the proof of Lemma 3.13, and notice that in this case we actually proved that
pn(g) = pn(gx−1

i), which implies φn(gx−1
i) = φn(g) − 1. Now for Observation 5.2, since the

generator α = xi, we look to case 2 of the proof. But the fact that there is a penalty tree P for
g not containing the edge vi ≺ vi+1 corresponds to Situation 1 of the proof not occurring (Note
that the caret labeling is not the same as in the proof). As long as situation 1 does not occur,
pn(g) = pn(gxi).

Observation 5.3 can be established by a similar type of argument. Note that the situation in
Observation 5.3 is distinct from the case i = 0 in Observation 5.1, for if v1 were exposed in T+

and A1 = A2 = ∅ in T−, then v2 must be a left caret in T+, and thus is not a weighted penalty
caret. Hence, in the situation of Observation 5.3, l∞(gx−1

0) = l∞(g) + 1. Given a minimal penalty
tree P for g in which v2 is weighted, we can construct a caret tree P ′ for gx−1

0 by replacing the
edge into v2 by the edge v0 ≺ v2. In P ′, v2 is not weighted, and so pn(P ′) ≤ pn(P)− 1, and hence
pn(gx−1

0) ≤ pn(g)− 1. This implies that φn(gx−1
0) = φn(g)− 1.

Proof of Lemma 3.14. Let g ∈ F be represented by the reduced tree pair diagram (T−, T+). As
usual, we let v1 ≺ v2 ≺ · · · ≺ vj be the right carets in T−, and let Ak be the (possibly empty)
subtree attached to the left leaf of vk for 1 ≤ k ≤ j. We proceed by analyzing two cases based on
the number of right carets in T− and the infix numbers of the penalty carets.

Case 1: Either T− has at most n + 1 right carets, or T− has more than n + 1 right carets, caret
vn+1 is not a penalty caret and there are no penalty carets above vn+1 in the infix ordering.

First, if T− consists entirely of right carets, then T+ must have an exposed caret vk where k 6= j, or
else the tree pair diagram would not be reduced. But we claim 1 ≤ k ≤ n+ 1, for if vk is exposed
in T+ for k > n + 1, then vk−1 would be a penalty caret with k − 1 ≥ n + 1, contradicting the
conditions of this case. But then φn(gx−1

k−1) = φn(g)− 1 by Observation 5.1.

If T− has some carets which are not right, let i be the greatest index such that Ai 6= ∅. So
i ≤ n + 1, since neither vn+1 nor caret beyond it are penalty carets. Now vi−1 is type N in T−,
but vi, vi+1, . . . , vj are all right carets which are not type N . Hence, in T+, one of vi, . . . , vj must
not be a right caret, else the tree pair diagram is not reduced. If there is some penalty caret at or
beyond vi, then it must either be of type N or a right caret in T+, and hence one of vi, . . . , vj must
have type N in T+. Let vk be the highest (in infix order) type N caret in T+; since there are no
penalty carets at or beyond vn+1, i ≤ k ≤ n. Then this implies that caret vk+1 is an exposed caret
in T+, and i+ 1 ≤ k+ 1 ≤ n+ 1, which implies by Observation 5.1 that x−1

k reduces φn. If, on the
other hand, there are no penalty carets at or beyond vi, then vi−1 ≺ vi is not on any caret tree for
g, so by Observation 5.2, xi−1 reduces φn.

Case 2: T− has at least n + 2 right carets and there are penalty carets at or above vn+1 in the
infix ordering.

In this case, if for some 0 ≤ i ≤ n, Ai+1 6= ∅ and there is a minimal penalty tree P for g not
containing the edge vi ≺ vi+1, then by Observation 5.2, φ(gxi) = φ(g) − 1. Furthermore, if v2 is
weighted in some minimal penalty tree P for g, then by Observation 5.3, φn(gx−1

0) = φn(g)− 1.

So, we may assume that for every minimal penalty tree P for g, v2 is not a weighted caret and for
each 0 ≤ k ≤ n such that Ak+1 6= ∅, P contains the edge vk ≺ vk+1. We split into subcases; in each
subcase we will show that Observation 5.1 applies for some i.

18

Subcase 2.1: v2 is a left caret in T+.

In this subcase, Observation 5.1 applies with i = 0. To see this, first note that A2 = ∅, for if not,
then every minimal penalty tree for g must contain the edge v1 ≺ v2. The proof of Lemma 3.8
implies that we can always construct a minimal penalty tree for g which contains the edge v0 ≺ v2
and does not contain the edge v1 ≺ v2. Therefore A2 = ∅, and hence v1 and v2 are consecutive
carets with v2 a left caret in T+. So in T+, v1 is not a caret of type N or a right caret, and recall
that in T−, caret v1 is not of type N , so v1 is not a penalty caret. Furthermore, v1 ≺ v2 is the
only edge out of v1. But this implies that A1 = ∅, for if not, then by assumption all minimal trees
P realizing pn(g) contain the edge v0 ≺ v1. Given such a P, v1 cannot be a leaf since it is not
a penalty caret, so P also must contain v1 ≺ v2. Then alter P by removing v1 along with both
edges v0 ≺ v1 and v1 ≺ v2, and adding the edge v0 ≺ v2, obtaining a penalty tree P ′ not containing
v0 ≺ v1 with pn(P ′) ≤ pn(P). So A1 = A2 = ∅, v1 must be a left caret in T+, and Observation 5.1
applies with i = 0 to show that φn(gx−1

0) = φn(g)− 1.

Subcase 2.2: v2 is not left in T+, and v2 /∈ P for some minimal penalty tree P for g.

In this subcase, Observation 5.1 applies with i = 1. To see this, first note that v2 /∈ P which implies
that v1 ≺ v2 /∈ P and hence that A2 = ∅. Also, v2 /∈ P implies that v2 is not a penalty caret, which
implies that v2 cannot have type N in T−, and hence A3 = ∅.

Moreover, since v2 is not a penalty caret, it follows that v2 is an interior caret in T+ which is not
of type N . This implies that v1 is either of type N in T+ or is an interior caret which is not of
type N . We claim that v1 must be of type N . Suppose v1 is interior, but not of type N . It follows
that A1 6= ∅, which implies by our assumption that P contains the edge v0 ≺ v1. We know that v1
is not a penalty caret because it is not type N in either tree, and is an interior caret in T+. Thus
v1 is not a leaf of P, so there must be some edge out of v1 in P. The only possible edge out of v1
is v1 ≺ v2, which means v2 ∈ P, a contradiction. Therefore v1 has type N in T+, which in turn
implies that v2 is exposed in T+, and so by observation 5.1, φn(gx−1

1) = φn(g)− 1.

Subcase 2.3: v2 is not a left caret in T+, and for every minimal penalty tree P for g, v2 ∈ P but
v2 is not weighted.

Choose a minimal penalty tree P for g. Since v2 is neither a left caret nor weighted, it follows that
dP(v2, l) < n− 1 for all leaves l of P. Now note that if all edges vk ≺ vk+1 for 2 ≤ k ≤ n are on P,
then dP(v2, vn+1) = n− 1, so v2 would be at least distance n− 1 from some leaf of P. So let i be
the smallest index such that vi ≺ vi+1 is not on P. Hence, Ai+1 = ∅, for otherwise vi ≺ vi+1 would
be on P by the conditions of Case (2). Note that Ai+1 = ∅ means that the carets vi and vi+1 are
consecutive in infix order.

Since vi−1 ≺ vi is on P, vi ∈ P. We claim that vi must have type N in T+, otherwise vi ≺ vi+1 is
the only possible edge out of vi, so vi is a leaf of P. But then vi must be a penalty caret, so must be
a right caret in T+. Since there must be some penalty caret v beyond vi, and vi is a right caret in
both trees, by Observation 3.6, the path in P connecting v to v0 must pass through vi, contradicting
the fact that vi is a leaf of P. So vi has type N in T+, which implies that vi ≺ vi+1 is the only
possible edge into vi+1, so vi+1 /∈ P, so vi+1 is not a penalty caret, and thus must be an interior
caret in T+ which is not of type N , hence exposed in T+. Also, since vi+1 is not a penalty caret, it
cannot have type N in T−, and hence Ai+2 = ∅. So, by observation 5.1, φn(gx−1

i) = φn(g)− 1. �

19

6. (F,Xn) is not almost convex

A finitely generated group G is almost convex(k), or AC(k) with respect to a finite generating set
X if there is a constant L(k) satisfying the following property. For every positive integer n, any
two elements x and y in the ball of radius n with dX(x, y) ≤ k can be connected by a path of
length L(k) which lies completely within this ball. Cannon, who introduced this property in [C],
proved that if a group G is AC(2) with respect to a generating set X then it is also AC(k) for all
k ≥ 2 with respect to that generating set. Thus if a group is AC(2), it is called almost convex with
respect to that generating set. If a group is almost convex with respect to any generating set, then
we simply call it almost convex, omitting the mention of a generating set.

There are interesting examples of families of groups with and without this property. Groups which
are almost convex with respect to any generating set include hyperbolic groups [C] and fundamental
groups of closed 3-manifolds whose geometry is not modeled on Sol [SS]. Moreover, amalgamated
products of almost convex groups retain this property [C]. Groups which are not almost convex
include fundamental groups of closed 3-manifolds whose geometry is modeled on Sol [CFGT] and
the solvable Baumslag-Solitar groups BS(1, n) [MS].

Almost convexity is a property which depends on generating set; this was proven by Thiel using
the generalized Heisenberg groups [T]. Cleary and Taback prove in [CT1] that Thompson’s group
F is not almost convex with respect to the standard generating set X1 = {x0, x1}, but this has no
implications for the convexity of the group with respect to other generating sets. Below we prove
that F is not almost convex with respect to any consecutive generating set Xn = {x0, x1, · · · , xn}.
The proof below follows the outline of [CT1].

Theorem 6.1. Thompson’s group F is not almost convex with respect to the generating set Xn =
{x0, x1, · · · , xn} .

We begin with an overview of the proof of the theorem. Assume that (F,Xn) is almost convex, and
construct particular group elements gxn and gx−1

n so that ln(g) = ln(gxn)+1 = ln(gx−1
n)+1 = k+1.

Almost convexity guarantees a short path γ from gxn to gx−1
n which lies completely within the ball

of radius k. Label the right caret at level n+ 1 in the reduced tree pair diagram for g by rn+1. Let
γi for 0 ≤ i ≤ k denote the prefix of γ of length i. In the tree pair diagram for gxnγi, caret rn+1

will change type and level as i increases. The salient point is that in gxn the caret rn+1 is the right
caret at level n+ 2, and in gx−1

n it is an interior caret of level n+ 2, which is the left child of the
right caret at level n + 1. Thus there is a point along γ where the caret with label rn+1 is again
the right caret at level n+ 1. Suppose this happens when the prefix γm is applied to gxn. To prove
the theorem, we show that gxnγm /∈ B(k), contradicting the assumption of almost convexity.

Proof. Suppose that (F,Xn) is almost convex. Then there is a constant L so that elements x, y ∈
B(k) with dXn(x, y) = 2 can be connected by a path of length at most L which is contained in
B(k).

We now construct a group element g by giving a reduced tree pair diagram (T−, T+), so that the
elements gx±1

n yield a counterexample to this assumption.

Constructing T−. Let r1 ≺ · · · ≺ r2n+1 ≺ r2n+2 be the right carets of T−, where r1 is the root
caret. These carets form a subtree with 2n + 2 leaves; let Ai be the subtree of T− whose root is
attached to the left leaf of caret ri. For i ≤ n + 1, we take Ai to be the complete tree with L + 1
levels. When n+ 2 ≤ i ≤ 2n+ 2, Ai will be empty.

Constructing T+. The root caret of T+ will be the caret immediately preceding rn+1 in infix order.
The right carets of the right subtree of this caret will be rn+1 ≺ rn+2 ≺ · · · ≺ r2n−1 ≺ r2n ≺ r2n+2,

20

Figure 12. An example of a group element g constructed so that gx±1
n will con-

tradict the assumption of almost convexity.

with the left subtree of rj empty for n+ 1 ≤ j ≤ 2n, and the left subtree of r2n+2 consisting of the
single caret r2n+1. The caret r2n+1 is added as an interior caret to ensure that the pair of trees is
reduced. All carets before rn+1 in infix order will be left carets in this tree, except for the caret
with infix number two, which will be an interior caret, again simply to ensure that the tree pair
diagram is reduced.

Figure 12 gives an example of a group element which is of this form.

We first prove a lemma which shows that both xn and x−1
n decrease the word length of g. We then

use gxn and gx−1
n as the two elements which will contradict the assumption of almost convexity.

Lemma 6.2. Let g = (T−, T+) be defined as above. Then ln(gxn) = ln(gx−1
n) = ln(g)− 1.

Proof. We show that multiplication by both xn and x−1
n decrease the word length of the element g

constructed above.

Case 1. Multiplication by x−1
n . Multiplication by x−1

n creates a pair of trees (T̃−, T̃+) in which
the caret rn+1 is now an interior caret in T̃−, and T̃+ = T+. Thus l∞(gx−1

n) = l∞(g) + 1.

We will show that any penalty tree for g can be altered to yield a penalty tree for gx−1
n with one

fewer weighted caret. First we observe that all penalty carets in the reduced tree pair diagram
for gx−1

n were also penalty carets for g. The only two possible differences in the reduced tree pair
diagrams for g and gx−1

n which might influence the construction of penalty trees are:

(1) the caret rn+1 is a right caret in both T− and T+, but in T̃− it becomes an interior caret
which is not of type N , hence is no longer a penalty caret in gx−1

n , and
(2) the adjacency rn ≺ rn+2, not present for g, is present in gx−1

n .

Since r2n is a penalty caret for g, by Observation 3.6, the string of edges rn+1 ≺ · · · ≺ r2n must
appear in every penalty tree for g, and rn+1 is not a left caret in either T− or T+. Hence rn+1

is a weighted caret in every penalty tree for g. Furthermore, since rn+1 and rn+2 are consecutive
carets in the infix order, no other carets other than the ri carets in the string above are connected
to the root of the penalty tree by a path passing through rn+1. Let P be any penalty tree for g.
Since caret rn is a left caret in T+, we may assume, by the proof of Lemma 3.8, that if rn is a
vertex of P, then the edge v0 ≺ rn also appears on P. We construct a penalty tree P ′ for gx−1

n

as follows: delete the edge rn+1 ≺ rn+2 from P. This leaves the caret rn+1 as a leaf of P ′, so we
simply remove it, as it is not a penalty caret in gx−1

n . Now if rn did appear on P, connect rn+2

via the edge rn ≺ rn+2. If not, add the two edges v0 ≺ rn ≺ rn+2. In either case, the number of
21

weighted carets in the subtree whose root is rn+1 does not increase, and even if we added the caret
rn to P, it is not weighted. Thus caret rn+1, which was a weighted penalty caret in P, is not even
present in P ′. Hence, pn(P ′) ≤ pn(P)− 1, so applying this argument to a minimal penalty tree for
g yields pn(gx−1

n) = pn(g)− 1, and we conclude that ln(gx−1
n) = ln(g)− 1.

Case 2. Multiplication by xn. Let c be the caret which is the left child of caret rn+1 in T−,
that is, the root of the subtree An+1. Then multiplication by xn produces a pair (T ′−, T

′
+) in which

c is now the right caret at level n+ 1 in T ′−, and rn+1 is the right caret at level n+ 2 in T ′−. Since
an interior caret has been changed to a right caret, l∞(gxn) = l∞(g)− 1. Caret rn+1, however, has
not changed type: it is of type N in both T− and T̃−, and a left caret which is not of type N in
both T+ and T̃+. The only other change is that the adjacency rn ≺ rn+1 in T− no longer exists
in T ′−, and hence is not available for constructing a minimal penalty tree. We will show that any
penalty tree for g may be altered to construct a penalty tree for gxn with no additional weighted
penalty carets.

Let P be any penalty tree for g. Let croot be the root caret of T+. As before, since croot is a left
caret in T+, we may assume that either croot does not appear on P, or if it does, so does the edge
v0 ≺ croot. If the edge rn ≺ rn+1 is not present in P, then P ′ = P is a penalty tree for gxn. If the
edge rn−1 ≺ rn is present in P, we construct P ′ as follows. Delete the edge rn ≺ rn+1 in P. If croot
was on P, it appears on the edge v0 ≺ croot, and we add the edge croot ≺ rn+1. If croot was not
on P, add it together with the two edges v0 ≺ croot ≺ rn+1 to form P ′. Thus the vertices rn and
rn+1 are present in both P and P ′. It follows from the construction of P ′ that pn(P ′) ≤ pn(P),
and hence pn(gxn) = pn(g). Thus ln(gxn) = ln(g)− 1 and the lemma follows. �

It follows from the assumption that (G,Xn) is almost convex that there is a path γ of length at most
L from gxn to gx−1

n which is completely contained in the ball of radius k, where k = ln(g)− 1. We
view γ as a product α1α2 · · ·αL where each α ∈ {x±1

0 , x±1
1 , · · · , x±1

n , Id}, and consider the prefixes
gxnγi = gxnα1α2 · · ·αi.

We first consider the effect of multiplication by xn and x−1
n on the caret rn+1 in the initial word

g = (T−, T+). This caret, in T−, is a right caret at level n+1. After multiplication by xn, we obtain
gxn = (T ′−, T

′
+), and now caret rn+1 is a right caret in T ′− at level n + 2. After multiplication by

x−1
n , we obtain gx−1

n = (T̃−, T̃+), and this caret is an interior caret in T̃− which is the left child of
the right caret at level n+ 1.

In each prefix gxnγi = gxnα1α2 · · ·αi we note the position of the caret with label rn+1. The
generators in the set Xn and their inverses perform combinatorial rearrangements of the subtrees
of the tree pair diagram representing gxnγi at levels one through n+ 1 along the right side of the
negative tree in the pair. Thus, there is a first point along the path γ at which caret rn+1 is again
the right caret at level n + 1. Denote this prefix of γ by β, which has length j where 1 ≤ j ≤ L.
Denote the prefixes of β by βi, where 1 ≤ i ≤ j.

We note that because of the choice of g, multiplication of gxnβi by αi+1 never requires the addition
of carets to the tree pair diagram for gxnβi, and as a result, the positive tree is always unchanged by
this multiplication. Additionally, after this multiplication is performed, no cancelation is necessary
to obtain the reduced tree pair diagram. The only exposed carets in T+ are in the second and
the penultimate carets, and these carets are not exposed in T−, nor can they ever become exposed
along β. This means that the number of carets in the tree pair diagrams for gxnβi remains constant
for i = 1, 2 · · · , j.

For each prefix βi of β, we consider the tree pair diagram for gi = gxnβi. As the values of i increase,
the position of caret rn+1 moves up and down the right side of the negative tree at levels at least

22

n+ 1, and is unchanged in the positive tree. If the next generator in the path β is of the form xj ,
then the level of rn in the negative tree increases by one. If the next generator in the path β is
x−1
j , then the level of rn in the negative tree decreases by one. In either case, the position of this

caret in the positive tree is unchanged. Since the level of caret rn+1 must have a net decrease of
1, the path β necessarily consists of m + 1 generators with negative exponents and m generators
with positive exponents.

To prove this theorem, we show that generators of the form x−1
j as part of the path β always

increase the word length. Thus the word length ln(gxnβ) satisfies the following inequality:

ln(gxnβ) ≥ ln(gxn) + (m+ 1)−m = k + 1 > k.

It follows from this inequality that the element gxnβ does not lie in the ball of radius k, contradicting
the assumption of almost convexity.

Since multiplication by x−1
j will always move a right caret to an interior or left caret, and carets

are never added in order to complete multiplication along the path β, multiplication of gxnβi by
x−1
j will always yield l∞(gxnβi+1) = l∞(gxnβi) + 1.

We now show that the penalty contribution to the word length is unchanged when gxnβi is multi-
plied by x−1

j . Each such multiplication changes a right caret into an interior caret, and also disrupts
some adjacency, which might affect the penalty tree. However, we note two salient points:

(1) The caret which is shifted from right to interior by this multiplication always precedes caret
rn+1 in infix order, and any such caret can be connected to the right side of the negative
tree for gxnβi by a path of at most length L. Thus such a carets is a left caret in T+ as
well as in the positive tree in the reduced pair representing gxnβi.

(2) It follows from Lemma 3.8 that this caret is never a weighted penalty caret in any minimal
penalty tree for gxnβi, for any i.

Thus when gxnβi is multiplied by x−1
j to obtain gxnβi+1, we must have pn(gxnβi) = pn(gxnβi+1).

Combining this with the fact that l∞(gxnβi+1) = l∞(gxnβi) + 1 implies that ln(gxnβi+1) =
ln(gxnβi) + 1, which proves the theorem. �

7. Depth of Pockets in (F,Xn)

Let G be a finitely generated group with a finite generating set S. We say that w ∈ G, with
|w|S = n, is a k-pocket if Bw(k) ⊂ BId(n), taking the maximal k for which this is true. Thus
any path from w in the Cayley graph Γ(G,S) of length at most k remains in the ball of radius n
centered at the identity, and there is some path of length k+ 1 emanating from w which leaves this
ball. The integer k is called the depth of the pocket.

We say that a group G has deep pockets with respect to a finite generating set S if there is no bound
on the depth of group elements. Bogopol’sk̆i proved in [B] that hyperbolic groups have finite depth,
that is, for every generating set there is a uniform upper bound on the depth of all pockets. There
are many examples of finitely-generated infinite groups with deep pockets: the lamplighter groups
Zn o Z = 〈a, t|tn, [a, ati], i ∈ Z〉 with respect to the generating set {a, t} were the first examples of
such groups [CT3], and a finitely presented example of such a group is given in [CR]. Warshall,
in [W], proves that the discrete Heisenberg group 〈x, y|[x, [x, y]], [y, [x, y]]〉 has deep pockets with
respect to any finite generating set. Riley and Warshall in [RW] prove that the property of having
deep pockets does depend on the choice of generating set.

23

Figure 13. An example of a group element which will be a pocket of depth at least k.

We show below that for any k ∈ Z+, Thompson’s group F has a generating setXn = {x0, x1, · · · , xn}
which yields pockets of depth at least k, as long as n ≥ 2k+ 2. Since 2k+ 2 is always greater than
one, this does not contradict the result in [CT1] stating that (F,X1) has only pockets of depth
two. The theorem below is really of interest for large values of k. It is proved by example; for a
given k we construct a family of pockets whose depth is at least k with respect to Xn. In [CT1],
an exhaustive description is given of all pockets with respect to X1, which are necessarily of depth
two. We do not give such a description below with respect to Xn.

In addition, we give upper bounds on pocket depth in each of these generating sets. We show that
for fixed a n, there are no pockets of depth greater than or equal to the maximum of 4n − 3 and
2n+ 1. Note that for n ≥ 2 we have 4n− 3 ≥ 2n+ 1, so it is only for the case n = 1 that the upper
bound on pocket depth is 2n+ 1 = 3, and in this n = 1 case, there are in fact pockets of depth 2.

Theorem 7.1. For any k ≥ 1, Thompson’s group F has pockets of depth at least k with respect to
the generating set Xn = {x0, x1, · · · , xn}, for n ≥ 2k + 2.

Proof. We construct a group element g = gk = (T−, T+) for each k ∈ Z+ which is a pocket of depth
at least k with respect to the generating set Xn, for n ≥ 2k+ 2 by describing the trees T− and T+.
We assume that the carets of these trees are numbered in infix order.

(1) Let r1 ≺ · · · r2n+k+2 be the right carets of T−. Let Ai be the left subtree of ri; we choose
Ai to be the complete tree with k + 1 levels for 1 ≤ i ≤ n+ k + 1. For i > n+ k + 1, Ai is
empty.

(2) The right carets of T+ are r1 ≺ · · · ≺ r2n+k ≺ r2n+k+2, but caret r2n+k+1 is the left child
of caret r2k+k+2, an interior caret. Denote the left subtree of caret ri by Bi, and as in T−,
Bi is empty for n+ k + 1 < i ≤ 2n+ k. For 1 ≤ i ≤ n+ k + 1, as an independent tree, Bi
consists of a string of right carets, one fewer in number than the number of carets in Ai,
with a penultimate interior caret. This additional caret ensures that the tree pair diagram
will be reduced.

Figure 13 gives an example of a group element of the above form.

Let β = α1α2 . . . αk be any word with αi ∈ Xn or α−1
i ∈ Xn for all i, and denote the prefixes of β

by βi = α1α2 . . . αi. The original word g was constructed so that the following are always true:

(1) The original tree pair diagram (T−, T+) is reduced.

24

(2) For each i, multiplication of gβi by αi+1 can be accomplished without adding additional
carets to the tree pair diagram, and the resulting tree pair diagram for each gβi is always
reduced. Thus the number of carets in the reduced tree pair diagram for gβi remains
constant for i = 1, 2, · · · , k.

(3) In the tree pair diagram for gβi, the positive tree in the pair is always T+, the same positive
tree as in the initial word g. Let gβi be represented by the reduced tree pair diagram
(Ti, T+).

(4) The only carets that can be affected when gβi is multiplied by αi+1 are penalty carets.
Moreover, these carets remain penalty carets when the multiplication is completed, since
they have type N in T+, and the tree T+ is unchanged by the multiplication.

(5) The subtree of Ti with root caret rn+k+2 remains unchanged for each gβi, and always hangs
from the right leaf of caret rn+k+1. All carets in this subtree but the final two are penalty
carets, and necessarily form a string of length n− 1 which hangs from vertex rn+k+1 in any
penalty tree for gβi, as described in Observation 3.6.

To prove Theorem 7.1, we will show that ln(gβi) ≤ ln(g) for all 1 ≤ i ≤ k. We will describe the
change in l∞ between g and gβi, and bound the change in penalty contribution between these two
elements as well.

First note that a minimal penalty tree for g is easily constructed by joining each penalty caret to
v0 by choosing the shortest adjacency path in the single tree T−. Namely, connect each caret to the
caret adjacent to it via its honest, not generalized, left edge. We call this path the greedy path from
a caret to v0. It follows that the only penalty carets which are weighted in this minimal penalty
tree are r2, . . . rn+k+1, yielding pn(g) = n+ k.

We begin with a lemma bounding the length of the greedy paths from any caret to v0. This lemma
is easily proved by induction.

Lemma 7.2. Let T be any nonempty subtree of the complete tree on m levels. Then the maximum
length of the greedy path from any caret to v0 is m.

When considering possible penalty trees for gβi = (Ti, T+), we again must consider those carets
on the right side the tree Ti. Let Mi denote the number of carets rj , for 1 ≤ j ≤ 2n + k + 2,
which were right carets in (T−, T+) but are no longer right carets in Ti, and Ni the number of right
carets in Ti which are not amongst the carets numbered rj for 1 ≤ j ≤ 2n + k + 2. Observe that
l∞(gβi) = l∞(g) +Mi −Ni.

We give an upper bound for pn(gβi) in order to control ln(gβi) by constructing a penalty tree for
gβi which is not necessarily minimal but will give the estimate necessary to prove Theorem 7.1.
We do this in two cases, depending on the sign of Mi −Ni.

Case 1: Mi−Ni > 0. Construct a penalty tree Pi for gβi once again by choosing the greedy paths
in the tree Ti. The right carets of Ti are c1 ≺ c1 ≺ c2 ≺ · · · ≺ cl ≺ rn+k+1 ≺ rn+k+2 ≺ · · · ≺ r2n+k+2

where some subset of the first l right carets are equal to rj for values of j between 1 and n + k.
These adjacencies alone yield a subtree where each vertex, other than the initial and final vertices,
has valence two. For each j, the left subtree of cj in the tree Ti is a subtree of the complete tree
with k + i+ 1 levels, where i ≤ k. It follows from Lemma 7.2 that the greedy path from a caret in
the left subtree of cj to cj−1 has length at most k+ i+1, where k+ i+1 ≤ 2k+1 ≤ n−1. Therefore
we see that none of the carets in the left subtrees of the ci correspond to weighted penalty carets in
Pi. Thus pn(Pi) = n+ k −Mi +Ni = pn(g)−Mi +Ni, and the difference in penalty contribution

25

to the word length between g and gβi is bounded as follows:

pn(gβi)− pn(g) ≤ Ni −Mi.

Recall from above that l∞(gβi) = l∞(g) + Mi − Ni, and combine these estimates to bound the
difference in word length:

ln(gβi)− ln(g) = (l∞(gβi)− l∞(g)) + 2(pn(gβi)− pn(g))
= (Mi −Ni) + 2(pn(gβi)− pn(g))
≤ (Mi −Ni) + 2(Ni −Mi)
= Ni −Mi

< 0

It follows that when Mi −Ni > 0, we have ln(gβi) < ln(g).

Case 2: Mi −Ni ≤ 0 . Unlike Case 1, we now build a penalty tree Pi using first the adjacencies
rj ≺ rj+1 present in T+ for 1 ≤ j ≤ 2n+ k, attaching r1 to the dummy caret v0. This again yields
a tree where each vertex other than the final and initial ones has valence two.

We now attach vertices to Pi representing the other penalty carets of Ti, those not amongst the
carets rj for 1 ≤ j ≤ 2n + k. For each such caret p, we use the adjacencies along the greedy path
in Ti from p to v0. We take the longest subpath of the greedy path containing p but none of the
rj carets, and attach vertices and edges corresponding to these adjacencies to Pi, joining this path
to the existing tree at the next caret along the path, which is necessarily either v0 or rj for some
1 ≤ j ≤ 2n+ k. We claim that the distance between p and that rj caret is at most 2k+ 1 ≤ n− 1.
This will imply that none of these other carets p will be weighted carets in Pi. To see why the
claim is true, note that if caret p is a right caret in Ti, then the distance along the greedy path to
the next rj caret is at most i ≤ k. If p is not a right caret, then it is in the left subtree of a right
caret p′ of Ti. The caret p′ is the right child of a caret q, where q is either a right caret of Ti or
the dummy caret v0, and the greedy path from p to v0 passes through q. If the distance from q to
the next rj caret along that greedy path is m ≤ i ≤ k, then the left subtree of p′ is a subtree of a
complete tree with k + (i−m) + 1 levels. It follows from Lemma 7.2 that the greedy path from p
to q has length at most k+ (i−m) + 1. Hence, the greedy path from p to an rj caret has length at
most k + (i−m) +m+ 1 = k + i+ 1 ≤ 2k + 1, establishing the claim. Therefore, pn(Pi) = pn(P),
and hence pn(gβi) ≤ pn(g).

We bound the difference in word length between g and gβi as above, again using the fact that
l∞(gβi) = l∞(g) +Mi −Ni.

ln(gβi)− ln(g) = (l∞(gβi)− l∞(g)) + 2(pn(gβi)− pn(g))
= (Mi −Ni) + 2(pn(gβi)− pn(g))
≤ (Mi −Ni) + 0
= Mi −Ni

≤ 0

This shows that g is a pocket of depth at least k and completes the proof of the theorem. �

Finally, we establish an upper bound on pocket depth.
26

Theorem 7.3. For n ≥ 1, F has no pockets of depth k with respect to Xn, if k ≥ Max{4n −
3, 2n+ 1}.

Proof. We will show that for every g ∈ F , at least one of ln(gxi), for 0 ≤ i ≤ 2n, or ln(gα), where
α = x−1

2n−1x
−1
2n−2 · · ·x

−1
2 x−1

1 is greater than ln(g). Since ln(xi) ≤ ln(x2n) = 2n + 1 for 0 ≤ i ≤ 2n,
and ln(α) = 4n− 3, this proves the theorem.

Let g ∈ F be represented by the reduced pair diagram (T−, T+), and let r1 ≺ r2 ≺ · · · ≺ rl be
the right carets of T−, and let Ai be the left subtree of ri for 1 ≤ i ≤ l. First observe that, for
1 ≤ i ≤ 2n, if l < i+ 1 or if both l ≥ i+ 1 and Ai+1 = ∅, then ln(gxi) > ln(g). Thus we need only
consider the case that l ≥ 2n+ 1 and A1, A2, . . . A2n+1 are all not empty.

Assume that we are in this case; we will show below that it follows that ln(gα) > ln(g). Note that
in this case, the reduced tree pair diagram for gα is (Tα, T+). In Tα, carets ri for 2 ≤ i ≤ 2n are
all interior, whereas they were right carets in T−, so l∞(gα) = l∞(g) + 2n− 1. To compare penalty
weight between g and gα, notice that all of the ri carets which are interior in Tα are type N , so
they remain penalty carets for gα. The only change is in the caret adjacencies; the adjacencies
ri ≺ r2n+1, for 2 ≤ i ≤ 2n−1 are present in Tα, but not in T−. We claim that pn(g) ≤ pn(gα)+n−1.

To prove this claim, suppose P is a minimal penalty tree for gα. We will construct a penalty tree
P ′ for g as follows. If P contains no edges of the form ri ≺ r2n+1, for 2 ≤ i ≤ 2n− 1, then P ′ = P
is a penalty tree for g, so pn(g) ≤ pn(gα). If P does contain one such edge, it contains only one,
say ri ≺ r2n+1. Then alter P to form P ′ by deleting the edge, and inserting the edge r2n ≺ r2n+1,
noting that r2n was already a vertex on P, since it is has type N in Tα. Then P ′ is a penalty tree
for g. It is possible that pn(P ′) > pn(P), but this possible increase can only be caused by carets
along the path from v0 to r2n which were not weighted in P but become weighted in P ′. However,
there can be at most n−1 of these, so pn(P ′) ≤ pn(P)+n−1, and therefore pn(g) ≤ pn(gα)+n−1.
Thus we obtain the necessary inequality:

ln(gα) = (l∞(gα) + 2pn(gα))
≥ l∞(g) + (2n− 1) + 2(pn(g)− n+ 1)
= ln(g) + (2n− 1) + 2(1− n)
= ln(g) + 1

which proves the theorem. �

References

[BB] J.M. Belk and K.S. Brown, Forest diagrams for Thompson’s group F ,Internat. J. Algebra Comput.15(2005),
no. 5-6, 815-850.

[B] O.V. Bogopol’sk̆i , Infinite commensurable hyperbolic groups are bi-Lipshitz equivalent. Algebra and Logic
36 (1997), no. 3., 155-163.

[BG] K.S. Brown and R. Geoghegan, An infinite-dimensional torsion-free FP∞ group, Invent. Math. 77 (1984),
367-381.

[C] J. Cannon, Almost convex groups, Geom. Dedicata 22(1987), 197-210.
[CFGT] J. Cannon, W. Floyd, M. Grayson, and W. Thurston, Solvgroups are not almost convex, Geom. Dedicata

31(1989), 291-300.
[CFP] J.W. Cannon, W.J. Floyd, and W.R. Parry, Introductory notes on Richard Thompson’s groups, Enseign.

Math. 42(1996), 215-256.
[CR] S. Cleary and T.R. Riley, A finitely presented group with unbounded dead end depth, Proc. Amer. Math. Soc.

134(2006), no.2., 343-349.
[CT1] S. Cleary and J. Taback, Thompson’s group F is not almost convex, J. Algebra 270(2003), no.1., 133-149.

27

[CT2] S. Cleary and J. Taback, Combinatorial Properties of Thompson’s group F , Trans. Amer. Math. Soc. 356
(2004), no. 7., 2825-2849 (electronic).

[CT3] S. Cleary and J. Taback, Dead end words in Lamplighter groups and other wreath products, Q. J. Math. 56
(2005), no. 2., 165-178.

[F] S.B. Fordham, Minimal length elements of Thompson’s group F , Geom. Dedicata, 99(2003), 179-220.
[G] V.S. Guba, On the Properties of the Cayley Graph of Richard Thompson’s Group F , in International Con-

ference on Semigroups and Groups in honor of the 65th birthday of Prof. John Rhodes. Internat. J. Algebra
Comput. 14(2004), no. 5-6, 677-702.

[MS] C.F. Miller, III and M. Shapiro, Solvable Baumslag-Solitar groups are not almost convex, Geom. Dedicata
72(1998), no. 2, 123-127.

[RW] T.R. Riley and A.D. Warshall, The unbounded dead-end depth property is not a group invariant, Int. J. of
Algebra and Computation 16(2006), no.5., 969-983. 343-349.

[SS] M. Shapiro and M. Stein, Almost Convex Groups and the Eight Geometries, Geom. Dedicata 55 (1995),
125-140.

[T] C. Thiel Zur Fast-Konvexität einiger nilpotenter Gruppen, Bonner Math. Schriften (1992).
[W] A.D. Warshall, A group with deep pockets for all finite generating sets, preprint(2007).

Department of Mathematics, Statistics and Computer Science, University of Wisconsin-Stout, Menomonie,
WI 54751

E-mail address: horakm@uwstout.edu

Department of Mathematics, Trinity College, Hartford, CT 06106

E-mail address: melanie.stein@trincoll.edu

Department of Mathematics, Bowdoin College, Brunswick, ME 04011

E-mail address: jtaback@bowdoin.edu

28

	1. Introduction
	2. Background on Thompson's group F
	3. Computing word length with respect to a consecutive generating set
	3.1. Constructing a penalty tree
	3.2. Comparison with known methods when n=1
	3.3. Proof of Theorem ??

	4. Proof of Lemma ??
	5. Proof of Lemma ??
	6. (F,Xn) is not almost convex
	7. Depth of Pockets in (F,Xn)
	References

