Compressed words and automorphisms in fully residually free groups

Jeremy Macdonald
Department of Mathematics and Statistics, McGill University
805 Sherbrooke Street West
Montréal, Québec, Canada, H3A 2K6
email: jmacdonald@math.mcgill.ca

November 21, 2018

Abstract

We show that the compressed word problem in a finitely generated fully residually free group (\mathcal{F}-group) is decidable in polynomial time, and use this result to show that the word problem in the automorphism group of an \mathcal{F}-group is decidable in polynomial time.

Contents

1 Preliminaries 1
1.1 The compressed word problem 2
1.2 Fully residually free groups and Lyndon's group $F^{\mathbb{Z}}[t] \ldots . .$.

2 The compressed word problem in \mathcal{F}-groups 5
2.1 Normal form . 5
2.2 Algorithm for the compressed word problem 7

3 Word problem in the automorhpism group of an \mathcal{F}-group 10

1 Preliminaries

The word problem for a finitely presented group $G=\langle X \mid R\rangle$ asks, given a word w over the alphabet $X^{ \pm}=X \cup X^{-1}$, whether w represents the identity element of G. Being proposed for study by Dehn in 1911, decidabliliy of the word problem for particular groups and classes of groups was the main focus of study, without regard to the efficiency of the proposed algorithms. Once computational complexity became of interest, time complexity of word problems was considered and has now been studied in many classes of groups. One such class was the automorphism group of a finite rank free group. The problem reduces, with an
exponential increase in size, to the word problem in the underlying free group. Schleimer has shown ($\overline{\mathrm{Sch} 08}$) that one can encode the exponential expansion using Plandowski's techinque of compressed words and, using an algorithm for comparing compressed words (Pla 94), obtain a polynomial time algorithm. We use a similar strategy to obtain a polynomial time algorithm for the word problem in the automorphism group of a finitely generated fully residually free group.

1.1 The compressed word problem

A straight-line program (SLP) is a tuple $\mathbb{A}=\left(X, \mathcal{A}, A_{n}, \mathcal{P}\right)$ consisting of a finite alphabet $\mathcal{A}=\left\{A_{n}, \ldots, A_{1}\right\}$ of non-terminal symbols, a finite alphabet X of terminal symbols, a root non-terminal $A_{n} \in \mathcal{A}$, and a set of productions $\mathcal{P}=$ $\left\{A_{i} \rightarrow W_{i} \mid 1 \leq i \leq n\right\}$ where $W_{i} \in\left\{A_{j} A_{k} \mid j, k<i\right\} \cup X \cup\{\phi\}$, where ϕ represents the empty word. Computer scientists will recognize SLPs as a type of context-free grammar. We 'run' the program \mathbb{A} by starting with the word A_{n} and replacing each non-terminal A_{i} by W_{i} and continuing this replacement procedure until only terminal symbols remain. The condition $j, k<i$ ensures that the program terminates. The resulting word is denoted w_{A}, and we also denote by $w_{A_{i}}$ the result of running the same program starting with A_{i} instead of the root A_{n}. The SLP \mathbb{A} (and, abusing language, $w_{\mathbb{A}}$) is also called a compressed word over X. The reader may consult [Sch08] for a more detailed introduction to compressed words.

The production tree associated with a non-terminal A_{m} is the rooted binary tree with root labelled A_{m} and where vertex A_{i} has children as follows: if $A_{i} \rightarrow A_{j} A_{k}$ then A_{i} has left child A_{j} and right child A_{k}, if $A_{i} \rightarrow x$ (where $x \in X)$ then A_{i} has a single child labelled x, and if $A_{i} \rightarrow \phi$ then A_{i} has a single child labelled by the empty word ϕ. Notice that $w_{A_{m}}$ is the word appearing at the leaves of the production tree. We say that A_{m} produces $w_{A_{m}}$.

Let the size $|\mathbb{A}|$ of an SLP be the number n of non-terminal symbols. Note that the number of bits required to write down \mathbb{A} is $O\left(n \log _{2} n\right)$ (the factor of $\log _{2} n$ appears in writing down the non-terminal symbols A_{i}). An SLP with n non-terminal symbols can encode a word w_{A} of length 2^{n}. Any algorithm that takes as input a word over the alphabet X can, of course, be used on compressed words over X by simply running the algorithm on w_{A}, but this converts a time $f(n)$ algorithm to one that runs in time $O\left(f\left(2^{|\boldsymbol{A}|}\right)\right)$. The goal then is to develop algorithms that work directly with the SLP without expanding it.

In this paper we consider the compressed word problem for finitely generated fully residually free groups. For an alphabet X, let X^{-1} be the set of symbols $\left\{x^{-1} \mid x \in X\right\}$ and set $X^{ \pm}=X \cup X^{-1}$. If G is a group presented by $G=\langle X \mid R\rangle$ the compressed word problem asks to decide, given a compressed word \mathbb{A} over $X^{ \pm}$, whether w_{A} represents the identity element of G.

We will use the following result of Lohrey [Loh04 that solves the compressed word problem for free groups in polynomial time:

Lemma 1 (Lohrey). There is a polynomial time algorithm which, given a
straight-line program \mathbb{A} over the alphabet $X^{ \pm}$, decides whether $w_{\mathbb{A}}=1$ in the free group on X.

Lohrey's result relies on the fundamental result of Plandowski Pla94:
Lemma 2 (Plandowski's Algorithm). There is a polynomial time algorthim which, given straight-line programs \mathbb{A} and \mathbb{B} over an alphabet X, decides if $w_{A}=$ w_{B} (as words in the free monoid over X).

A nice description of both results and their proofs is given in [Sch08].

1.2 Fully residually free groups and Lyndon's group $F^{\mathbb{Z}[t]}$

Definition 3. A group G is fully residually free if for every finite set $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ of elements of G there exists a free group F and a homomorphism $\varphi: G \rightarrow F$ such that $\varphi\left(g_{i}\right) \neq 1$ for all $i=1,2, \ldots, n$. We refer to finitely generated fully residually free groups as \mathcal{F}-groups (they are also known as limit groups).

Finitely generated free groups are \mathcal{F}-groups, and the first example of a nonfree \mathcal{F}-group was Lyndon's group $F^{\mathbb{Z}[t]}$, introduced in Lyn60. \mathcal{F}-groups are now known to be precisely the finitely-generated subgroups of $F^{\mathbb{Z}}[t]$ ([KM98]). We will use a description of $F^{\mathbb{Z}}[t]$ in terms of HNN-extensions, following MRS05 rather than Lyn60. The construction is as follows.

For a group G, let $R(G)$ be a set of representatives of conjugacy classes of generators of all proper cyclic centralizers of G. That is, every centralizer in G which is cyclic is conjugate to $C_{G}(u)=\langle u\rangle$ for some $u \in R(G)$, and no two elements of $R(G)$ are conjugate. Then the extension of (all) cyclic centralizers of G is the HNN-extension

$$
\begin{equation*}
\left\langle G, t_{u, i}(u \in R(G), i \in \mathbb{N}) \mid \forall(u \in R(G), i, j \in \mathbb{N})\left[t_{u, i}, u\right]=\left[t_{u, i}, t_{u, j}\right]=1\right\rangle \tag{1}
\end{equation*}
$$

Let F be a free group. Then Lyndon's group $F^{\mathbb{Z}}[t]$ is (isomorphic to) the direct limit (i.e. union) of the infinite chain of groups

$$
\begin{equation*}
F=H_{0}<H_{1}<H_{2}<\ldots \tag{2}
\end{equation*}
$$

where H_{i+1} is obtained from H_{i} by extension of all cyclic centralizers. Lyndon showed that $F^{\mathbb{Z}}[t]$ is fully residually free Lyn60, hence so are all its subgroups.

In addition to this HNN construction, there are two other constructions of $F^{\mathbb{Z}}[t]$. Lyndon's original construction represented elements as parametric words, and Myasnikov, Remeslennikov, and Serbin MRS05] construct $F^{\mathbb{Z}[t]}$ using infinite words. The latter construction has proven to be particularly fruitful in solving algorithmic problems, yielding solutions to the conjugacy and power problems in $F^{\mathbb{Z}}[t]$. Two of the important constructions from MRS05 that we will need are normal forms for elements of $F^{\mathbb{Z}}[t]$ (in terms of infinite words) and a Lyndon length function on $F^{\mathbb{Z}}[t]$.

A regular free Lyndon length function on a group G is a map $l: G \rightarrow A$, where A is an ordered abelian group, satisfying
(i) $\forall g \in G: l(g) \geq 0$ and $l(1)=0$,
(ii) $\forall g \in G: \quad l(g)=l\left(g^{-1}\right)$,
(iii) $\forall g \in G: \quad g \neq 1 \Longrightarrow l\left(g^{2}\right)>l(g)$, and,
setting

$$
c_{p}\left(g_{1}, g_{2}\right)=\frac{1}{2}\left(l\left(g_{1}\right)+l\left(g_{2}\right)-l\left(g_{1}^{-1} g_{2}\right)\right),
$$

called the length of the maximum common prefix,
(iv) $\forall g_{1}, g_{2} \in G: c_{p}\left(g_{1}, g_{2}\right) \in \mathbb{Z}[t]$,
(v) $\forall g_{1}, g_{2}, g_{3} \in G: c_{p}\left(g_{1}, g_{2}\right)>c_{p}\left(g_{1}, g_{3}\right) \Longrightarrow c_{p}\left(g_{1}, g_{3}\right)=c_{p}\left(g_{2}, g_{3}\right)$,
(vi) $\forall g_{1}, g_{2} \in G \exists h, g_{1}^{\prime}, g_{2}^{\prime} \in G$ such that $l(h)=c_{p}\left(g_{1}, g_{2}\right)$ and $g_{1}=h \circ g_{1}^{\prime}$ and $g_{2}=h \circ g_{2}^{\prime}$
where \circ is defined by

$$
g_{1}=g_{2} \circ g_{3} \Longleftrightarrow g_{1}=g_{2} g_{3} \text { and } l\left(g_{1}\right)=l\left(g_{2}\right)+l\left(g_{3}\right) .
$$

For elements $g, h \in G$ we say that h is a prefix of g if there exists $g^{\prime} \in G$ such that $g=h \circ g^{\prime}$.

Consider $\mathbb{Z}[t]$ as an ordered abelian group via the right lexicographic order induced by the direct sum decomposition $\mathbb{Z}[t]=\oplus_{m=0}^{\infty}\left\langle t^{m}\right\rangle \simeq \mathbb{Z}^{\infty}$. We use the natural isomorphism $\mathbb{Z}[t] \simeq \mathbb{Z}^{\infty}$ throughout. Using the infinite words technique, MRS05] shows that $F^{\mathbb{Z}[t]}$ has a regular free Lyndon length function $l: F^{\mathbb{Z}[t]} \rightarrow$ $\mathbb{Z}[t] \simeq \mathbb{Z}^{\infty}$.

Recall that any word w over an alphabet X has a word length $|w|$ equal to the number of characters in $w . F^{\mathbb{Z}[t]}$ is generated by $X=X_{0} \cup\left\{t_{u, i} \mid u \in\right.$ $\left.\bigcup_{j=0}^{\infty} R\left(H_{j}\right), i \in \mathbb{Z}\right\}$, where X generates F, so every word w over $X^{ \pm}$has length $|w|$ as a word as well as Lyndon length $l(w)$ as an element of $F^{\mathbb{Z}}[t]$.

Example 4 (A Lyndon length function). Let $F=F(a, b)$ be the free group on generators a, b. We will construct a Lyndon length function $l: G \rightarrow \mathbb{Z}^{2}$ on the extension of centralizer $G=\langle a, b, t \mid[a b, t]=1\rangle$. For the construction in a more general setting and for proof, refer to KM05 and MRS05. Let w be a word over G. First, write w in reduced form as an element of the HNN-extension,

$$
w=g_{1} t^{a_{1}} g_{2} t^{a_{2}} \cdots g_{m} t^{a_{m}} g_{m+1}
$$

where $g_{i} \in F$ for all i and $\left[g_{i}, t\right] \neq 1$ for $i=2, \ldots, m+1$. Let l_{F} be the usual length function on F (i.e. $l_{F}(w)=\min \left\{|u| \mid u \in\left\{a^{ \pm 1}, b^{ \pm 1}\right\}^{*}, u=w\right.$ in $\left.F\right\}$), and for $M \in \mathbb{Z}$ set

$$
l_{1}(w, M)=l_{F}\left(g_{1}(a b)^{\epsilon_{1} M} g_{2} \cdots g_{m}(a b)^{\epsilon_{m} M} g_{m+1}\right)-m l_{F}\left((a b)^{M}\right)
$$

where $\epsilon_{i}=\operatorname{sgn}\left(a_{i}\right)$. Observe that there exists a positive integer M_{0} such that for any $M>M_{0}, l_{1}\left(w, M_{0}\right)=l_{1}(w, M)$ (in particular, $M_{0}=|w|$ will suffice). Then set the Lyndon length of w to be

$$
l(w)=\left(l_{1}\left(w, M_{0}\right), \sum_{i=1}^{m}\left|a_{i}\right|\right) .
$$

For example, the word $w=a(a b)^{11} t^{-1} a a b a^{-1} t$ (which is in reduced form as written) has word length $|w|=29$. For its Lyndon length, use $M=30$ and compute

$$
l_{1}(w, 30)=l_{F}\left(a(a b)^{11}(a b)^{-30} a a b a^{-1}(a b)^{30}\right)-2(60)=-21 .
$$

Hence w has Lyndon length $l(w)=(-21,2)$.
Every \mathcal{F}-group G is known to embed into $F^{\mathbb{Z}[t]}$, and the embedding is effective (KM98). Since G is finitely generated, G embeds in some finitely generated subgroup G_{n} of some H_{n} of (22), and G_{n} can be obtained by a sequence of finite extensions of centralizers,

$$
\begin{equation*}
F=G_{0}<G_{1}<\ldots<G_{n} \tag{3}
\end{equation*}
$$

where $G_{k}<H_{k}$ for all k. That is, there are finite subsets $R\left(G_{k}\right) \subset R\left(H_{k}\right)$ and $T_{k}=\left\{t_{u, i} \mid u \in R\left(G_{k}\right), 1 \leq i \leq N_{k}(u)\right\}$ such that G_{k} is the HNN-extension

$$
\begin{equation*}
\left\langle G_{k-1}, T_{k} \mid \forall u \in R\left(G_{k-1}\right), 1 \leq i, j \leq N_{k}(u):\left[u, t_{u, j}\right]=\left[t_{u, i}, t_{u, j}\right]=1\right\rangle \tag{4}
\end{equation*}
$$

Denote by X_{k} the generating set of G_{k} such that X_{0} is a generating set of F and $X_{k+1}=X_{k} \cup T_{k}$.

2 The compressed word problem in \mathcal{F}-groups

In this section we prove the following theorem.
Theorem 5. Let G be a finitely generated fully residually free group. Then there is an algorithm that decides the compressed word problem for G in polynomial time.

Since G embeds (effectively) in some G_{n}, it suffices to give a polynomial time algorithm for the compressed word problem in G_{n} (Theorem 10).

2.1 Normal form

We will need to represent elements of G_{n} in a normal form, which is based on the normal form given in MRS05 for infinite word elements of $F^{\mathbb{Z}}[t]$.

We define normal form in G_{n} recursively. For $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots\right) \in \mathbb{Z}[t]$ let $\sigma(\alpha)=\operatorname{sgn}\left(\alpha_{d}\right)$ where $d=\operatorname{deg}(\alpha)$. A word w over $X_{0}^{ \pm}$is written in normal
form if it is freely reduced. A word w over $X_{k}^{ \pm}$is in normal form if w is written as

$$
\begin{equation*}
w=g_{1} u_{1}^{c_{1}} \tau_{1}^{\alpha_{1}} g_{2} \ldots g_{m} u_{m}^{c_{m}} \tau_{m}^{\alpha_{m}} g_{m+1} \tag{5}
\end{equation*}
$$

where $\alpha_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{i N_{k}\left(u_{i}\right)}\right) \in \mathbb{Z}^{N_{k}\left(u_{i}\right)}, \tau_{i}^{\alpha_{i}}=t_{u_{i}, 1}^{\alpha_{i 1}} t_{u_{i}, 2}^{\alpha_{i 2}} \cdots t_{u_{i}, N_{k}\left(u_{i}\right)}^{\alpha_{i N_{k}\left(u_{i}\right)}}$ and
(i) for all $i, \alpha_{i} \neq 0$,
(ii) for each i, g_{i} is a word over $X_{k-1}^{ \pm}$,
(iii) for every $i=1, \ldots, m$, either $\left[u_{i}, u_{i+1}\right] \neq 1$ or $\left[u_{i}, g_{i+1}\right] \neq 1$,
(iv) for any integers $q_{i} \neq 0$ with $\operatorname{sgn}\left(q_{i}\right)=\sigma\left(\alpha_{i}\right)$ we have

$$
g_{1} u_{1}^{q_{1}} g_{2} \ldots g_{m} u_{m}^{q_{m}} g_{m+1}=g_{1} \circ u_{1}^{q_{1}} \circ g_{2} \circ \ldots \circ g_{m} \circ u_{m}^{q_{m}} \circ g_{m+1}
$$

Note that we do not require the g_{i} to be written in normal form for G_{k-1}. We call m the number of syllables of w.
Lemma 6. For every word w over $X_{n}^{ \pm}$there is a word $\operatorname{NF}(w)$ in normal form such that $w=\mathrm{NF}(w)$ in G_{n} and $|\mathrm{NF}(w)| \leq(10 L)^{n}|w|$, where $L=\max \{|u| \mid u \in$ $\left.\bigcup_{i=0}^{n} R\left(G_{i}\right)\right\}$.
Proof. Proceed by induction on n. For $n=0, G_{0}$ is a free group and reduced forms are simply freely-reduced words, so they exist with $|\mathrm{NF}(w)| \leq|w|$. Assume that the theorem holds for $n-1$.

Using the commutation relations $\left[u, t_{u, i}\right]=\left[t_{u, i}, t_{u, j}\right]=1$ in G_{n}, and an algorithm for the word problem in G_{n-1} (an algorithm for the conjugacy problem, hence for the word problem, is given in MRS05), we can bring the word w into the form

$$
w^{\prime}=h_{1} \tau_{1}^{\alpha_{1}} h_{2} \ldots h_{m} \tau_{m}^{\alpha_{m}} h_{m+1}
$$

where $\tau_{i}^{\alpha_{i}}$ are as in (5) with $\alpha_{i} \neq 0$ for all i, and for every $i=1, \ldots, m$ either $\left[u_{i}, u_{i+1}\right] \neq 1$ or $\left[u_{i}, h_{i+1}\right] \neq 1$. Notice that $\left|w^{\prime}\right| \leq|w|$.

To produce a reduced form from w^{\prime}, we appeal to MRS05, which constructs normal forms for elements of $F^{\mathbb{Z}}[t]$, but without proof of the length bound that we require. Only minor changes to that construction are needed, and we draw the reader's attention to the relevant sections.

The key fact is the following: for any word g over $X_{n-1}^{ \pm}$and any $u \in R\left(G_{n-1}\right)$ we have that, for any $r>(10 L)^{n-1}|g|$,

$$
\begin{equation*}
u^{r+1} g=u \circ\left(u^{r} g\right) \quad \text { and } \quad g u^{r+1}=\left(g u^{r}\right) \circ u \tag{6}
\end{equation*}
$$

The proof of this fact is part of Lemma 7.1 of MRS05], which shows that the above holds as long as r is greater than the number of syllables in a normal form of g. Since $g \in G_{n-1}$, we have by induction that $|\mathrm{NF}(g)| \leq(10 L)^{n-1}|g|$ hence $\mathrm{NF}(g)$ has at most $(10 L)^{n-1}|g|$ syllables.

There is an isomorphism ϕ from our HNN-representation of $F^{\mathbb{Z}[t]}$ to the infinite words representation. The word w^{\prime} corresponds, via ϕ, to what in MRS05
is called a reduced R-form. Lemma 6.13 of MRS05] constructs normal forms from reduced R -forms, and the first step of this construction produces a form that corresponds, via ϕ, to our normal form. The construction attaches powers of u_{i-1} and u_{i} to h_{i}, using rewritings of the form

$$
\begin{aligned}
h_{i} \tau_{i}^{\alpha_{i}} & \longrightarrow\left(h_{i} u_{i}^{\sigma\left(\alpha_{i}\right) r_{i}}\right)\left(u_{i}^{-\sigma\left(\alpha_{i}\right)} \tau_{i}^{\alpha_{i}}\right), \\
\tau_{i}^{\alpha_{i}} h_{i+1} & \longrightarrow\left(\tau_{i}^{\alpha_{i}} u_{i}^{-\sigma\left(\alpha_{i}\right)}\right)\left(u_{i}^{\sigma\left(\alpha_{i}\right) r_{i+1}} h_{i+1}\right),
\end{aligned}
$$

where $r_{i}=(10 L)^{n-1}\left|h_{i}\right|+1$, with property (6) being used to achieve condition (iv). It produces a normal form

$$
\mathrm{NF}\left(w^{\prime}\right)=g_{1} u_{1}^{c_{1}} \tau_{1}^{\alpha_{1}} g_{2} \ldots g_{m} u_{m}^{c_{m}} \tau_{m}^{\alpha_{m}} g_{m+1}
$$

where $\left|g_{i}\right| \leq r_{i}\left|u_{i-1}\right|+\left|h_{i}\right|+r_{i}\left|u_{i}\right|$ and $\left|c_{i}\right| \leq r_{i}+r_{i+1}$ for all i. Then the length of $\mathrm{NF}\left(w^{\prime}\right)$ has the bound

$$
\begin{aligned}
\left|\mathrm{NF}\left(w^{\prime}\right)\right| & =\sum_{i=1}^{m}\left(\left|\tau_{i}^{\alpha_{i}}\right|+\left|c_{i}\right|\left|u_{i}\right|+\left|g_{i}\right|\right)+\left|g_{m+1}\right| \\
& \leq\left(\left|w^{\prime}\right|-\sum_{i=1}^{m+1}\left|h_{i}\right|\right)+\sum_{i=1}^{m}\left(\left(r_{i}+r_{i+1}\right) L+2 r_{i} L+\left|h_{i}\right|\right)+2 r_{m+1} L+\left|h_{m+1}\right| \\
& \leq|w|+4 L \sum_{i=1}^{m+1} r_{i} \leq\left|w^{\prime}\right|+4 L\left(10^{n-1} L^{n-1}\left|w^{\prime}\right|+\left|w^{\prime}\right|\right) \\
& \leq(10 L)^{n}|w|
\end{aligned}
$$

as required.
Example 7 (Normal forms). Consider again the word $w=a(a b)^{11} t^{-1} a a b a^{-1} t$ from Example 4. A normal form for w is given by

$$
a\left((a b)^{12}\right) t^{-1}\left(b^{-1} a^{-1} a a b a^{-1} a b\right)\left((a b)^{-1}\right) t
$$

where $g_{1}=a, c_{1}=12, g_{2}=b^{-1} a^{-1} a a b a^{-1} a b, c_{2}=-1$. It is not necessray to freely reduce g_{2}, though we may do so if desired. Notice that for any $q_{1}<0$ and $q_{2}>0$,

$$
a(a b)^{q_{1}}\left(b^{-1} a^{-1} a a b a^{-1} a b\right)(a b)^{q_{2}}=a \circ(a b)^{q_{1}} \circ\left(b^{-1} a^{-1} a a b a^{-1} a b\right) \circ(a b)^{q_{2}}
$$

satisfying (iv).

2.2 Algorithm for the compressed word problem

To solve the compressed word problem in G_{n}, we construct a reduction of the word problem in G_{n} to the word problem in F, then apply the reduction to compressed words and use Lemma 1 to solve the compressed word problem in F.

Definition 8. For $P \in \mathbb{N}$, define a homomorphism $\varphi_{(n, P)}: G_{n} \rightarrow G_{n-1}$ by setting $\varphi_{(n, P)}$ to be the identity on G_{n-1} and setting $\varphi_{(n, P)}\left(t_{u, i}\right)=u^{P^{i}}$.

Note that $\varphi_{(n, P)}$ is a homomorphism since, for every i, j,

$$
\left[u, \varphi_{(n, P)}\left(t_{u, i}\right)\right]=\left[u, u^{P^{i}}\right]=1=\left[u^{P^{i}}, u^{P^{j}}\right]=\left[\varphi_{(n, P)}\left(t_{u, i}\right), \varphi_{(n, P)}\left(t_{u, j}\right)\right]
$$

Let w be a word over $X_{n}^{ \pm}$. Recalling from (4) that $N_{k}(u)$ is the number of letters $t_{u, i}$ for a given $u \in R\left(G_{k}\right)$, set $N=1+\max \left\{N_{k}(u) \mid k \in[0, n-1], u \in\right.$ $\left.\bigcup_{i=0}^{n-1} R\left(G_{i}\right)\right\}$. For $P \in \mathbb{N}$ define a sequence of n constants $P_{n}, P_{n-1}, \ldots, P_{1}$ by $P_{n}=P$ and

$$
P_{i-1}=P_{i}^{N} \cdot L
$$

i.e. $P_{n-i}=P^{N^{i}} L^{N^{i-1}} L^{N^{i-2}} \cdots L$, and define a homomorphism $\Phi_{\left(n, P_{n}\right)}: G_{n} \rightarrow$ F by the composition $\Phi_{(n, P)}=\varphi_{\left(1, P_{1}\right)} \varphi_{\left(2, P_{2}\right)} \cdots \varphi_{\left(n, P_{n}\right)}$. The sequence is defined so that when $P_{n}>(10 L)^{n}|w|, P_{i-1}$ is an upper bound on the length of $\varphi_{\left(i, P_{i}\right)} \cdots \varphi_{\left(n, P_{n}\right)}(w)$, as we will see below.

Theorem 9. Let G_{n} be obtained by a sequence of extensions of centralizers as in (3) and let w be a word over $X_{n}^{ \pm}$. Then for any $P>(10 L)^{n}|w|$,

$$
\Phi_{\left(n, P_{n}\right)}(w)=1 \text { in } F \Longleftrightarrow w=1 \text { in } G_{n} .
$$

Proof. Since $\Phi_{\left(n, P_{n}\right)}$ is a homomorphism, if $w=1$ in G_{n} then $\Phi_{\left(n, P_{n}\right)}(w)=1$ in F. It remains to show that for any $P>(10 L)^{n}|w|$,

$$
w \neq 1 \text { in } G_{n} \Longrightarrow \Phi_{(n, P)}(w) \neq 1 \text { in } F
$$

We proceed by induction on n. Letting $\Phi_{\left(0, P_{0}\right)}: F \rightarrow F$ be the identity map, there is nothing to prove in the base case $n=0$. Assume the theorem holds up to $n-1$ and that $w \neq 1 \mathrm{in} G_{n}$. If for all $t_{u, i} \in T_{n}$ and $\epsilon=\in\{ \pm 1\}$ the letter $t_{u, i}^{\epsilon}$ does not appear in w, then $w \in G_{n-1}$ so $\Phi_{\left(n, P_{n}\right)}(w)=\Phi_{\left(n-1, P_{n-1}\right)}(w)$. Since $P_{n-1}>P_{n}>(10 L)^{n-1}|w|$ the induction assumption applies, so $\Phi_{\left(n, P_{n}\right)}(w) \neq 1$ in F.

Now assume that $t_{u, i}^{\epsilon}$ appears in w for at least one $t_{u, i} \in T_{n}$. Let

$$
\operatorname{NF}(w)=g_{1} u_{1}^{c_{1}} \tau_{1}^{\alpha_{1}} g_{2} \ldots g_{m} u_{m}^{c_{m}} \tau_{m}^{\alpha_{m}} g_{m+1}
$$

be a normal form of w, as in Lemma 6. Since $t_{u, i}^{\epsilon}$ appears we have $m \geq 1$. We claim that $\varphi_{\left(n, P_{n}\right)}\left(u_{i}^{c_{i}} \tau_{i}^{\alpha_{i}}\right)$ is a non-zero power of u_{i} of sign $\sigma\left(\alpha_{i}\right)$. We simplify notation by setting $u=u_{i}, a=\alpha_{i}$, and $d=N_{n-1}(u)$. We have

$$
\varphi_{\left(n, P_{n}\right)}\left(\tau_{i}^{\alpha_{i}}\right)=\varphi_{\left(n, P_{n}\right)}\left(t_{u, 1}^{a_{1}} \cdots t_{u, d}^{a_{d}}\right)=u^{a_{d} P_{n}^{d}+a_{d-1} P_{n}^{d-1}+\ldots+a_{1} P_{n}}
$$

and we want a lower bound of the magnitude of the exponent of u. Since, for all s,

$$
\left|a_{s}\right| \leq|\mathrm{NF}(w)| \leq(10 L)^{n}|w| \leq P_{n}-1,
$$

we have that

$$
\sum_{s=1}^{d-1}\left|a_{s}\right| P_{n}^{s} \leq \sum_{s=1}^{d-1}\left(P_{n}-1\right) P_{n}^{s}=P_{n}^{d}-P_{n}
$$

Hence $\left|a_{d} P_{n}^{d}\right|-\left|a_{d-1} P_{n}^{d-1}+\ldots+a_{1} P_{n}\right| \geq P_{n}$, and so

$$
a_{d} P_{n}^{d}+a_{d-1} P_{n}^{d-1}+\ldots+a_{1} P_{n}=C_{i}
$$

where $\left|C_{i}\right| \geq P_{n}$ and $\operatorname{sgn}\left(C_{i}\right)=\operatorname{sgn}\left(a_{d}\right)=\sigma(a)$. Then

$$
\varphi_{\left(n, P_{n}\right)}\left(u_{i}^{c_{i}} \tau_{i}^{\alpha_{i}}\right)=u^{C_{i}+c_{i}}
$$

with $C_{i}+c_{i} \neq 0\left(\right.$ since $\left.\left|c_{i}\right| \leq \mid \mathrm{NF}(w)<P_{n}\right)$ and $\operatorname{sgn}\left(C_{i}+c_{i}\right)=\sigma\left(\alpha_{i}\right)$, proving the claim.

Since $\varphi_{\left(n, P_{n}\right)}$ is the identity on G_{n-1}, we have, using property (iv) of normal forms,

$$
\varphi_{\left(n, P_{n}\right)}(w)=\varphi_{\left(n, P_{n}\right)}(\operatorname{NF}(w))=g_{1} \circ u_{1}^{C_{1}+c_{1}} \circ g_{2} \circ \cdots \circ g_{m} \circ u_{m}^{C_{m}+c_{m}} \circ g_{m+1}
$$

In particular, $l\left(\varphi_{\left(n, P_{n}\right)}(w)\right) \geq l\left(u_{1}^{C_{1}+c_{1}}\right)>0$ hence $\varphi_{\left(n, P_{n}\right)}(w) \neq 1$ in G_{n-1}. We have $\Phi_{\left(n, P_{n}\right)}(w)=\Phi_{\left(n-1, P_{n-1}\right)}\left(\varphi_{(n, P)}(w)\right)$ and we can apply the induction hypothesis to $\varphi_{(n, P)}(w)$ since P_{n-1} is large enough. Indeed, in the worst case $w=t_{u, i}^{|w|}$ where $|u|=L$ and $i=N-1$ making

$$
\left|\varphi_{\left(n, P_{n}\right)}(w)\right|=\left|u^{P_{n}^{N-1}|w|}\right|=|w| P_{n}^{N-1} L<P_{n}^{N} L=P_{n-1},
$$

so by induction $1 \neq \Phi_{\left(n-1, P_{n-1}\right)}\left(\varphi_{\left(n, P_{n}\right)}(w)\right)=\Phi_{\left(n, P_{n}\right)}(w)$ in F.
We now can solve the word problem in G_{n} by setting $P=(5 L)^{n}|w|+1$ and checking if $\Phi_{\left(n, P_{n}\right)}(w)$ is trivial in F. Notice that the bound on the length of $\Phi_{\left(n, P_{n}\right)}(w)$ is given by

$$
P_{0}=P^{N^{n}} L^{N^{n-1}} L^{N^{n-2}} \cdots L .
$$

We use this reduction to solve the compressed word problem in G_{n}.
Theorem 10. Let G_{n} be a group obtained from a free group by a finite sequence of finite extensions of centralizers as in (3). There is an algorithm that decides the compressed word problem for G_{n} in polynomial time.

Proof. Let \mathbb{A} be a compressed word over $X_{n}^{ \pm}$. For any word w and any $q \in \mathbb{Z}$ we can write a straight-line program W^{q} of size $2|w|+\log _{2}|q|$ producing w^{q}. Indeed, the root production is $W^{q} \rightarrow W^{q / 2} W^{q / 2}$, where $W^{q / 2}$ produces $w^{q / 2}$, and we continue by induction (make the appropriate changes when q is odd), noting that we get at most $\log _{2}|q|$ non-terminals of the form W^{p}. We can obtain the program W^{1}, which produces w and has size $2|w|$, by successively dividing w in half. Consequently, for each $u \in R\left(G_{n}\right)$ and $q \in \mathbb{Z}$, we have an SLP with root U^{q} producing u^{q} and having size $2|u|+\log _{2}|q|$.

Set $P=(10 L)^{n}\left|w_{\mathbb{A}}\right|+1$ and build an SLP \mathbb{A}_{n} by replacing every production of \mathbb{A} of the form

$$
A \rightarrow t_{u, i}^{\epsilon}
$$

where $t_{u, i} \in T_{n}$ and $\epsilon= \pm 1$, by

$$
A \rightarrow U^{\epsilon P_{n}^{i}}
$$

Notice that $w_{\mathbb{A}_{n}}=\varphi_{\left(n, P_{n}\right)}\left(w_{\mathbb{A}}\right)$. Repeat this replacement process for \mathbb{A}_{n} to produce \mathbb{A}_{n-1} and continue until we get \mathbb{A}_{1}, which is an SLP producing $\Phi_{(n, P)}\left(w_{\mathbb{A}}\right)$. By Theorem 6, $w_{\mathbb{A}_{1}}=1$ in F if and only if $w_{\mathbb{A}}=1$ in G_{n} so we now apply Lohrey's algorithm (Lemma 1) to decide if $w_{\mathbb{A}_{1}}=1$ in F.

We need to show that the size of \mathbb{A}_{1} is polynomial (in fact, linear) in the size of \mathbb{A}. At each level k, we add, for each $u \in R\left(G_{k}\right)$, programs $U^{P^{1}}, U^{P^{2}}, \ldots, U^{P^{N_{k}(u)}}$. Recalling that $N=1+\max \left\{N_{k}(u) \mid k \in[0, n-1], u \in\right.$ $\left.\bigcup_{i=0}^{n-1} R\left(G_{i}\right)\right\}$, each new $U^{P^{i}}$ adds less than

$$
2|u|+\log _{2}\left|P^{i}\right| \leq 2 L+\log _{2}\left(P_{k}^{N}\right)
$$

new non-terminals to \mathbb{A}_{k}. Letting $M=\max _{k}\left\{\left|R\left(G_{k}\right)\right|\right\}$, level k introduces less than

$$
2 L M+N M \log _{2}\left(P_{k}\right)
$$

new non-terminals. In total, over all n levels, the number of new non-terminals is bounded by

$$
2 n L M+N M \sum_{i=0}^{n-1} \log _{2}\left(P_{n-i}\right)
$$

Noting that L, M, n are constants (i.e. they depend of G_{n}, not on w) and recalling $P_{n-i}=P^{N^{i}} L^{N^{i-1}} L^{N^{i-2}} \cdots L$, we have that the number of new nonterminals is in

$$
\begin{aligned}
O\left(\sum_{i=0}^{n-1} \log \left(P_{n-i}\right)\right) & =O\left(\sum_{i=0}^{n-1} N^{i} \log (P)\right)=O(\log (P)) \\
& =O\left(\log \left((10 L)^{n} 2^{|\mathbb{A}|}+1\right)\right)=O(|\mathbb{A}|)
\end{aligned}
$$

Therefore $\left|\mathbb{A}_{1}\right| \in O(|\mathbb{A}|)$ and since Lohrey's algorithm runs in polynomial time in $\left|\mathbb{A}_{1}\right|$ we have a polynomial time algorithm for the compressed word problem in G_{n}.

3 Word problem in the automorhpism group of an \mathcal{F}-group

In Sch08, Schleimer uses a polynomial time algorithm for the compressed word problem in a free group to produce a polynomial time algorithm for the word problem in its automorphism group. We apply the same method to \mathcal{F}-groups.

Theorem 11. Let G be a finitely generated fully residually free group. Then the word problem for $\operatorname{Aut}(G)$ is decidable in polynomial time.

The theorem follows from Theorem [5 and known results, which we collect and summarize here. The main idea is that the word problem in Aut (G) reduces to the compressed word problem in G :

Lemma 12 (Proposition 2 of [S07]). Let G be a finitely generated group and H a finitely generated subgroup of $\operatorname{Aut}(G)$. Then the word problem in H reduces in logarithmic space to the compressed word problem in G.

To construct the reduction, one needs the generators of H to be described by their action on generators of G. That is, if $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ then each $\phi_{i} \in H$ must be given by

$$
\begin{equation*}
\phi_{i}\left(g_{j}\right)=w_{i j}\left(g_{1}, \ldots, g_{n}\right) \tag{7}
\end{equation*}
$$

where $w_{i j}\left(g_{1}, \ldots, g_{n}\right)$ is a word over the alphabet $\left\{g_{1} \ldots, g_{n}\right\}^{ \pm 1}$. Now suppose $H=\left\langle\phi_{1}, \ldots, \phi_{k}\right\rangle$ and we want to decide if a word $\phi_{i_{1}} \ldots \phi_{i_{m}}$ represents the trivial element of H. Build a set of non-terminals $\left\{A_{j, p}, \overline{A_{j, p}}\right\}$, where $j \in\{1, \ldots, n\}$ and $p \in\{1, \ldots, m\}$, with productions

$$
\begin{aligned}
& \frac{A_{j, 0}}{\overline{A_{j, 0}} \rightarrow g_{j}} \\
& A_{j, p}^{-1} \\
& \overline{A_{j, p}} \rightarrow w_{i_{p} j}\left(A_{1, p-1}, \ldots, A_{n, p-1}\right), p \geq 1 \\
& \left(w_{i_{p} j}\left(A_{1, p-1}, \ldots, A_{n, p-1}\right)\right)^{-1}, p \geq 1
\end{aligned}
$$

where $w_{i_{p} j}\left(A_{1, p-1}, \ldots, A_{n, p-1}\right)$ is the word $w_{i_{p} j}$ with every instance of g_{i} replaced by $A_{i, p-1}$ and of g_{i}^{-1} by $\overline{A_{i, p-1}}$. One sees that $w_{A_{j, m}}=\phi_{i_{1}} \ldots \phi_{i_{m}}\left(g_{j}\right)$. Then the word problem in H reduces to checking that $w_{A_{j, m}}=g_{j}$ for all j, i.e. it reduces to n instances of the compressed word problem in G.

To prove Theorem 11 then, it suffices to show that $\operatorname{Aut}(G)$ is finitely generated and that every generator can be described as in (7).

First, consider the case when G is freely indecomposable. The structure of the automorphism group of such G has been described in BKM07 using an Abelian JSJ-decomposition of G. It follows from the results in $\S 5$ of that paper that $\operatorname{Aut}(G)$ is finitely generated and the automorphisms can be described as in (7). Note that constructing an Abelian JSJ-decomposition of an \mathcal{F}-group is effective (Theorem 13.1 of KM05).

For the general case, let G be any \mathcal{F}-group. Then G has a Grushko decomposition as a free product

$$
G=G_{1} * \cdots * G_{k} * F_{r},
$$

where the G_{i} are freely indecomposable non-cyclic groups and F_{r} is a free group of rank r. This decomposition is unique in the sense that any other such decomposition has the same k and r and its freely indecompasable non-cyclic factors are conjugated in G to the factors G_{1}, \ldots, G_{k}. One can effectively find a Grushko decomposition for \mathcal{F}-groups KM05.

The automorphism group of a free product has been described by FouxeRabinovitch and Gilbert Gil87 in terms of the automorphisms of its factors. Aut (G) is generated by the following automorphisms.
(i) Permutation automorphisms. For each pair of isomorphic factors $G_{i} \simeq G_{j}$, fix an automorhism $\phi_{i j}$. Choose $\phi_{i j}$ such that the collection is compatible, that is if $G_{i} \simeq G_{j}$ and $G_{j} \simeq G_{k}$ then $\phi_{i k}=\phi_{j k} \phi_{i j}$.
(ii) Factor automorphisms. Each automorphism of G_{i} and of F_{r} induces an automorphism of G by acting as the identity on all other factors. Any product of such automorphisms is called a factor automorphism.
(iii) Whitehead automorhpisms. Let S be a basis of F_{r}. An automorhpism of G is a Whitehead automorphism if there is an x in some G_{i} or in S such that each factor G_{j} is conjugated by x of fixed pointwise, and each $s \in S$ is sent to one of $s, s x, x^{-1} s, x^{-1} s x$.

It follows from Theorem 4.13 of BKM07 that we can construct a compatible set of permutation automorphisms. Since each G_{i} is freely indecomposable we can construct a finite generating set for $\operatorname{Aut}\left(G_{i}\right)$. The automorphism group of a free group $F\left(x_{1}, \ldots, x_{r}\right)$ is well-known to be finitely generated by the Nielsen automorphisms,

$$
\begin{aligned}
\alpha_{i}\left(x_{k}\right) & =\left\{\begin{array}{ll}
x_{k}^{-1} & k=i \\
x_{k} & k \neq i
\end{array}, i \in\{1, \ldots, r\}\right. \\
\beta_{i j}\left(x_{k}\right) & =\left\{\begin{array}{ll}
x_{k} x_{j} & k=i \\
x_{k} & k \neq i
\end{array}, i, j \in\{1, \ldots, r\}, i \neq j\right.
\end{aligned}
$$

Consequently, the factor automorphisms are finitely generated. Since each G_{i} (and F_{r}) is finitely generated, the set of Whitehead automorphisms is finitely generated. Therefore we have proven the following lemma, which completes the proof of Theorem 11.

Lemma 13. Let G be an \mathcal{F}-group. Then $\operatorname{Aut}(G)$ is finitely generated and one can construct a generating set in the form (7).

References

[BKM07] I. Bumagin, O. Kharlampovich, and A. Miasnikov. The isomorphism problem for finitely generated fully residually free groups. J. Pure Appl. Algebra, 208(3):961-977, 2007.
[Gil87] N. D. Gilbert. Presentations of the automorphism group of a free product. Proc. London Math. Soc. (3), 54(1):115-140, 1987.
[KM98] O. Kharlampovich and A. Myasnikov. Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups. J. Algebra, 200(2):517-570, 1998.
[KM05] O. Kharlampovich and A. Myasnikov. Effective JSJ decompositions. Comtemporary Mathematics, 378, 2005.
[Loh04] M. Lohrey. Word problems on compressed words. In Automata, languages and programming, volume 3142 of Lecture Notes in Comput. Sci., pages 906-918. Springer, Berlin, 2004.
[LS07] M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In Second International Symposium on Computer Science in Russia, CSR 2007, Ekaterinburg, Russia, September 3-7, 2007. Proceedings, volume 4649 of Lecture Notes in Computer Science, pages 249-258. Springer Berlin / Heidelberg, 2007.
[Lyn60] R. Lyndon. Groups with parametric exponents. Trans. Amer. Math. Soc., 96:518-533, 1960.
[MRS05] A. Myasnikov, V. Remeslennikov, and D. Serbin. Regular free length functions on Lyndon's free $\mathbb{Z}[t]$-group $F^{\mathbb{Z}}[t]$. In Groups, languages, algorithms, volume 378 of Contemp. Math., pages 37-77. Amer. Math. Soc., Providence, RI, 2005.
[Pla94] W. Plandowski. Testing equivalence of morphisms on context-free languages. In Algorithms-ESA '94 (Utrecht), volume 855 of Lecture Notes in Comput. Sci., pages 460-470. Springer, Berlin, 1994.
[Sch08] S. Schleimer. Polynomial-time word problems. Comment. Math. Helv., 83(4):741-765, 2008.

