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A PROFINITE APPROACH TO STABLE PAIRS

KARSTEN HENCKELL, JOHN RHODES, AND BENJAMIN STEINBERG

Dedicated to the memory of Bret Tilson

Abstract. We give a short proof, using profinite techniques, that idem-
potent pointlikes, stable pairs and triples are decidable for the pseu-
dovariety of aperiodic monoids. Stable pairs are also described for the
pseudovariety of all finite monoids.

1. Introduction

In this paper we introduce a new combinatorial technique for working
with elements of free pro-V monoids where V is a pseudovariety of monoids
closed under Malcev product on the left by the pseudovariety of aperiodic
monoids. The approach uses the Henckell-Schützenberger expansion, and
essentially allows one to transfer arguments from Combinatorics on Words
to the profinite context. Let us describe some of the applications. Detailed
definitions are given below.

If V is a pseudovariety of monoids, then a finite monoid M belongs to the
Malcev product V©m A if and only if the maximal A-idempotent pointlikes of
M belong to V [11,14,18]. If V is a local pseudovariety of monoids [19], then
M belongs to the semidirect product V ∗A if and only if, for each maximal
A-stable pair (Y,N) of M , the quotient of N by the kernel of the action
of N on Y belongs to V [8]. Henckell proved that A-idempotent pointlikes
and A-stable pairs are computable [7, 8]. We give a much easier proof of
his results using profinite techniques. Also we characterize the stable pairs
for the pseudovariety M of all finite monoids, giving a partial answer to a
question raised in [2]. We also prove that A-triples (introduced below) are
decidable.

The paper is organized as follows. First we introduce stable pairs and
pointlike sets, and prove a standard compactness result. Next, we recall
the definition of the Henckell-Schützenberger expansion. We then describe
stabilizers in certain free pro-V semigroups and introduce a discontinuous
homomorphism. This leads to a proof of Henckell’s theorem on idempotent
pointlikes. As a warm-up, we handle M-stable pairs before turning to A-
stable pairs. The final section concerns aperiodic triples, which we believe
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will play a role in the solution to deciding membership in the complexity
one pseudovariety.

2. Stable pairs and pointlikes

If X is a set, we use X∗ for the free monoid, X+ for the free semigroup and

X̂∗ for the free profinite monoid generated by X [1]. If V is a pseudovariety

of monoids we use F̂V(X) to denote the free pro-V monoid generated by X.
If M is a monoid generated by a set X, then the image of an element w of

X∗ or X̂∗ (or F̂V(X) if applicable) in M is denoted [w]M . As a shorthand,

if γ ∈ X̂∗, then the image of γ in F̂V(X) is denoted [γ]V.
If M and N are X-generated monoids, we define the canonical relational

morphism ϕ : M → N by n ∈ mϕ if and only if there exists w ∈ X∗ such

that [w]M = m and [w]N = n; this is equivalent to there existing α ∈ X̂∗

with [α]M = m and [α]N = n. If M is an X-generated monoid and V is

a pseudovariety, then the canonical relational morphism ρV : M → F̂V(X)
is the relational morphism given by α ∈ mρV if and only if there exists

α′ ∈ X̂∗ with [α′]M = m and [α′]V = α. Alternatively, α ∈ mρV if and only
if there is a sequence wn ∈ X

∗ such that wn → α and [wn] = m for all n.

We remark that mρV is a closed subset of F̂V(X) (see [12,14,17,18]).

Definition 2.1 (V-pointlikes). If M is a finite monoid and Z ⊆ M is
a subset, then Z is said to be V-pointlike, if for all relational morphisms
ϕ : M → N with N ∈ V, there exists n ∈ N such that Z ⊆ nϕ−1.

The collection PLV(M) of V-pointlikes of M is a submonoid of the power
set P (M), which is downwards closed in the order ⊆. The following fact
about pointlike sets is well known. Proofs can be found in [6, 17, 18], for
instance.

Proposition 2.2. Let V be a pseudovariety of monoids. The map M 7→
PLV(M) is a functor preserving onto maps. More precisely, if ϕ : M → N

is a homomorphism and Z ∈ PLV(M), then Zϕ ∈ PLV(N). If, in addition,
ϕ is onto, then given Z ∈ PLV(N), there exists Z ′ ∈ PLV(M) with Z ′ϕ = Z.

So given a homomorphism ϕ : M → N , there is an induced homomor-
phism ϕ∗ : PLV(M)→ PLV(N) given by Zϕ∗ = Zϕ (the direct image).

An element Z ∈ PLV(M) is called V-idempotent pointlike if, for all re-
lational morphisms ϕ : M → N with N ∈ V, there exists an idempotent
e ∈ N with Z ⊆ eϕ−1. Notice that if Z ∈ PLV(M) and Z = Z2, then Z

is trivially idempotent pointlike since if Z ⊆ nϕ−1, then Z ⊆ nωϕ−1. Also
the set of V-idempotent pointlikes of M form a downwards closed subset of
P (M).

Next we consider the notion of a V-stable pair. If M is a monoid and
s ∈M , then the stabilizer of m is the submonoid

Stab(m) = {m′ ∈M | mm′ = m}.
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Definition 2.3 (V-stable pairs). Let M be a monoid. A pair (Y,U) with
Y ⊆ M and U ≤ M (a submonoid) is called a V-stable pair if, for all
relational morphisms ϕ : M → N with N ∈ V, there exists n ∈ N such that
Y ⊆ nϕ−1 and N ≤ Stab(n)ϕ−1.

If we use the product ordering on pairs (Y,N) with Y a subset and N a
submonoid of M , then the set of V-stable pairs is downwards closed. Notice
that to decide which pairs are V-stable, we just need to be able to compute
all the maximal ones. Therefore, we focus our attention on these. Observe
that if (Y,U) is a stable pair, then so is (Y U,U). Thus the maximal stable
pairs are transformation monoids. It is straightforward to verify that if V is
a local pseudovariety of monoids in the sense of Tilson [19], then M ∈ V∗W
if and only if, for each maximal W-stable pair (Y,U) of M , the quotient of
U by the kernel of the action on Y belongs to V, c.f. [8, 9].

Let us consider a more general notion. A directed graph Γ consists of
a vertex set V (Γ), an edge set E(Γ) and functions ι, τ : E(Γ) → V (Γ)
selecting the initial and terminal vertices e of an edge, respectively. We
consider only finite graphs. A labelling of a graph Γ over a monoid M is
a function ℓ : V (Γ) ∪ E(Γ) → P (M). If the image of ℓ is contained in M ,
we call ℓ a singleton labelling. A singleton labelling ℓ is said to commute if,
for each edge e, eιℓeℓ = eτℓ. If ϕ : M → N is a relational morphism, ℓ is
a labelling of Γ over M and ℓ′ is a singleton labelling of Γ over N , then ℓ

is said to be ϕ-related to ℓ′ if xℓ ⊆ xℓ′ϕ−1 for all vertices and edges x of
Γ. The following notion generalizes a notion of Almeida [2], which in turn
generalizes a notion of Ash [3].

Definition 2.4 (V-inevitable graph). Let M be a finite monoid and V a
pseudovariety. A labelling ℓ of a graph Γ over M is V-inevitable if, for all
relational morphisms ϕ : M → N with N ∈ V, there is a singleton labelling
ℓ′ of Γ over N which commutes and which is ϕ-related to ℓ.

For instance, Z ⊆M is V-pointlike if and only if the graph with a single
vertex labelled by Z is V-inevitable. Let Y ⊆ M and N ≤ M . Let Γ be
a graph with one vertex and |N | loops. Then (Y,N) is a V-stable pair if
and only if the labelling of Γ that assigns Y to the vertex and labels the
edges by the elements of N is V-inevitable. Conversely, a labelling of a
graph with one vertex with label Y and that assigns singletons to the loops
at the vertex is V-inevitable if and only if (Y, 〈Z〉) is a V-stable pair where
Z is the set of labels of the edges. A singleton labelling of a graph Γ by M
is V-inevitable if and only if it is V-inevitable in the sense of Almeida [2].
Conversely, one can go from inevitable labellings in our sense to that of
Almeida by changing the graph. For instance, Z ⊆M is V-pointlike if and
only if the singleton labelling of a graph with two vertices and |Z| directed
edges, where the initial vertex is labelled 1, the edges are labelled by the
elements of Z and the terminal vertex is labelled by some element of Z,
is V-inevitable [2]. Similarly, (Y,N) is a V-stable pair, if and only if the
singleton labelling of the graph Γ with two vertices v1, v2, |Y | edges from v1
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to v2 and |N | loops from v2 to v2 where v1 is labelled by 1, v2 is labelled by
some element of Y , the |Y | edges are labelled by the elements of Y and the
|N | loops are labelled by the elements of N is V-inevitable. We leave the
general construction to the reader.

Our notion has the advantage that it is closed downwards in the partial
order. That is, a labelling ℓ : V (Γ) ∪ E(Γ) → P (M) can be viewed as an

element of P (M)V (Γ)∪E(Γ). If we order this set by the product ordering, then
the V-inevitable elements form a down-set. Decidability is then reduced to
calculating the maximal elements.

The next two results give the relationship between the notions we have
been discussing and profinite techniques. We include them for completeness,
and readers already conversant with this subject should feel free to skip
them.

Lemma 2.5. Let M be a finite X-generated monoid and V a pseudovariety

of monoids. Let ρV : M → F̂V(X) be the canonical relational morphism.

Write F̂V(X) = lim←−Mα where the Mα are X-generated monoids in V. Let

ρα : M →Mα be the canonical relational morphism and πα : F̂V(X)→Mα

the canonical projection for each α. Then:

(1) If C = lim
←−

Cα ⊆ F̂V(X) is an inverse limit of subsets Cα ⊆ Mα

(with the induced inverse system), then Cρ−1
V

=
⋂
Cαρ

−1
α ;

(2) ρ−1
V

=
⋂
παρ

−1
α ;

(3) If γ ∈ F̂V(X), then Stab(γ) = lim←−Stab(γπα).

Proof. Since ρα = ρVπα and Cπα ⊆ Cα, we have, for all α,

Cρ−1
V
⊆ Cπαπ

−1
α ρ−1

V
= Cπαρ

−1
α ⊆ Cαρ

−1
α .

For the converse, suppose m ∈
⋂
Cαρ

−1
α . Let Yα = {y ∈ Cα | m ∈ yρ

−1
α }.

Then the Yα are easily verified to form an inverse system. By assumption on
m, the Yα are non-empty finite sets. Hence ∅ 6= lim

←−
Yα ⊆ lim

←−
Cα = C. Now

(lim←−Yα)πβ ⊆ Yβ ⊆ mρβ = mρVπβ, for all β, and hence lim←−Yα ⊆ mρV, since

mρV is closed [12,14,17,18]. This shows that m ∈ Cρ−1
V

and completes the
proof of (1).

One deduces (2) from (1) by observing that if γ ∈ F̂V(X), then {γ} =
lim←−{γπα}. Item (3) is clear from the description of lim←−Mα as a subsemigroup

of
∏
Mα (see also [12, Proposition 9.6]). �

The following compactness result encompasses several well-known such
results [2, 11,14,17,18].

Theorem 2.6. Let M be a finite X-generated monoid and V a pseudovari-

ety of monoids. Let ρV : M → F̂V(X) be the canonical relational morphism.
Then:

(1) A subset Z ⊆M is V-pointlike if and only if there exists α ∈ F̂V(X)
with Z ⊆ αρ−1

V
;
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(2) A subset Z ⊆M is V-idempotent pointlike if and only if there exists

an idempotent α ∈ F̂V(X) with Z ⊆ αρ−1
V

;

(3) (Y,N) is a V-stable pair for M if and only if there exists α ∈ F̂V(X)
with Y ⊆ αρ−1

V
and N ≤ Stab(α)ρ−1

V
;

(4) A labelling ℓ of a graph Γ is V-inevitable if and only if there is a

singleton labelling of Γ over F̂V(X) that is ρV-related to ℓ and which
commutes.

Proof. We prove (3) and (4). A proof of (1) and (2) can be found in [18]
(alternatively, (2) follows from (4)).

For (3), let Y ⊆M and N ≤M . If ϕ : M → T is a relational morphism,
there is always an X-generated submonoid T ′ of T and a canonical relational
morphism ψ : M → T ′ such that ψ ⊆ ϕ (as relations) [14]. So we may
take all the relational morphisms in the definition of a V-stable pair to
be canonical relational morphisms of X-generated monoids. Suppose that

F̂V(X) = lim
←−

Mα where the Mα run over all X-generated monoids in V. Let

ρα : M →Mα and ρV : M → F̂V(X) be the canonical relational morphisms

and denote by πα : F̂V(X)→Mα the canonical projection. Set

Cα = {m ∈Mα | Y ⊆ mρ
−1
α , N ≤ Stab(m)ρ−1

α }

C = {γ ∈ F̂V(X) | Y ⊆ γρ−1
V
, N ≤ Stab(γ)ρ−1

V
}.

Then the Cα are easily verified to form an inverse system. We claim that
C = lim←−Cα. Since an inverse limit of finite sets is non-empty if and only

if each of the finite sets is non-empty, this will yield (3). Indeed, applying

Lemma 2.5 we see that, for γ ∈ F̂V(X), the equalities

γρ−1
V

=
⋂
γπαρ

−1
α

Stab(γ)ρ−1
V

=
⋂

Stab(γπα)ρ−1
α

hold. Thus γ ∈ C if and only if Y ⊆ γρ−1
V

, N ≤ Stab(γ)ρ−1
V

, if and only if
Y ⊆ γπαρ

−1
α , N ≤ Stab(γπα)ρ−1

α all α, if and only if γ ∈ lim
←−

Cα, as required.

For (4), let Γ be a graph. If N is a monoid, we use NΓ as a short-

hand for NV (Γ)∪E(Γ). As before, we need only consider canonical relational
morphisms of X-generated monoids when considering V-inevitability.

Consider a labelling ℓ ∈ P (M)Γ. Write F̂V(X) = lim←−Mα where the
Mα run over all X-generated monoids in V. Let ρα : M → Mα and

ρV : M → F̂V(X) be the canonical relational morphisms. Let Cα(Γ) ⊆MΓ
α

be the set of all commuting singleton labellings of Γ that are ρα-related to
ℓ. Then the Cα(Γ) form an inverse system. Indeed, if πα,β : Mα → Mβ is
the canonical projection, then the image under πα,β of a commuting single-

ton labelling of Mα clearly commutes and also ρ−1
α ⊆ πα,βρ

−1
β so ρα-related

labellings to ℓ are sent to ρβ-related labellings.
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Let C(Γ) ⊆ F̂V(X)Γ be the set of all commuting singleton labellings of Γ
that are ρV-related to ℓ. Then C(Γ) is a closed subset of the profinite monoid

F̂V(X)Γ and, in fact, C(Γ) = lim
←−

Cα(Γ). Indeed, writing πα : F̂V(X)→Mα

for the canonical projection, we have that ρ−1
V

=
⋂
παρ

−1
α by Lemma 2.5

and a labelling ℓ′ ∈ F̂V(X)Γ commutes if and only if all its images in the Mα

commute (viewing F̂V(X) as a submonoid of
∏
Mα). Since the inverse limit

of an inverse system of finite sets is non-empty if and only if each of the sets
is non-empty, we conclude that ℓ is V-inevitable if and only if C(Γ) 6= ∅.
This completes the proof. �

3. The Henckell-Schützeneberger Expansion

Our key tool for understanding stable pairs and related notions is the
Henckell-Schützenberger expansion. Further applications of this expansion
can be found in [13]. Recall that if M and N are monoids, then their
Schützenberger product [4, 5] is the monoid

M♦N =

[
M P (M ×N)
0 N

]

with multiplication given by
[
m U

0 n

] [
m′ U ′

0 n′

]
=

[
mm′ mU ′ + Un′

0 nn′

]

where addition is union and where P (M×N) is viewed as an M -N -bimodule
in the obvious way.

If M is an X-generated monoid, then the Henckell-Schützenberger expan-

sion M̃ is the submonoid of M♦M generated by matrices of the form
[
x (1, x) + (x, 1)
0 x

]

with x ∈ X. So M̃ is an X-generated monoid mapping naturally onto M

via the projection η : M̃ → M to the diagonal. Thus M̃ is an expansion
cut-to-generators in the sense of [4]. Since M♦M is really a double semidi-
rect product of M with P (M ×M), it follows η is an LSl-morphism [14],
meaning that the inverse image of each idempotent is locally a semilattice.
In particular η is an aperiodic morphism (see also [4, 5]).

Let w ∈ X+. By a cut of w we mean a pair (u, v) ∈ X∗ ×X∗ such that
w = uv. The set of cuts of w will be denoted ~c(w); we set ~c(ε) = ∅. The next
proposition is well known [4,5] and can be proved by a simple induction on
length.

Proposition 3.1. Let w ∈ X∗ and M an X-generated monoid. Then

[w]fM
=

[
[w]M

∑
(u,v)∈~c(w)([u]M , [v]M )

0 [w]M

]
.
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In particular, for w,w′ ∈ X+, the equality [w]fM
= [w′]fM

holds if and only

if, for each factorization w = uv, there is a factorization w′ = u′v′ such that
[u]M = [u′]M and [v]M = [v′]M , and vice versa.

Henckell [8] observed that stabilizers in M̃ enjoy a certain nice property.

Lemma 3.2 (Henckell). Let M be an X-generated monoid and let w ∈ X∗.
Then Stab([w]fM

)η is an  L-chain in the monoid Stab([w]M ).

Proof. If w = ε, there is nothing to prove, so assume w ∈ X+. Suppose
that u, v ∈ X∗ with [wu]fM

= [w]fM
= [wv]fM

. Then wu = w1w2 where
[w1]M = [w]M and [w2]M = [v]M . There are two cases. Suppose first that
|w| ≤ |w1|. Then w1 = wx and wxw2 = wu, so u = xw2. Therefore,
[w]M = [w1]M = [w]M [x]M , establishing that [x]M ∈ Stab([w]M ). In addi-
tion, [u]M = [x]M [w2]M = [x]M [v]M and so [u]M ≤ L [v]M in Stab([w]M ). If
|w| > |w1|, then w = w1y and w1w2 = w1yu, so w2 = yu. A similar argu-
ment to the above one then shows that [y]M ∈ Stab([w]M ) and [v]M ≤ L [u]M
in Stab([w]M ). This completes the proof. �

4. The structure of stabilizers and idempotent pointlikes

We begin with some applications of the Henckell-Schützenberger expan-
sion to stabilizers and idempotent pointlikes.

4.1. The structure of stabilizers. Our first goal is to characterize stabi-
lizers for free pro-V semigroups when V = A©m V, that is, V is closed under
the Henckell-Schützenberger expansion. The approach is similar to the one
taken in [12] for related results. A monoid M will be called an internal
 L-chain if the  L-classes of M form a chain for the  L-ordering. The reason
the word internal is used is because if M ≤ N , then M can be an  L-chain
in N without being an internal  L-chain.

Theorem 4.1. Let V be a pseudovariety of monoids such that V = A©m V

and let X be a finite set. Then, for each γ ∈ F̂V(X), the submonoid Stab(γ)
is an internal  L-chain.

Proof. Since X is finite, we may write F̂V(X) = lim
←−n∈N

Mn where the Mn

are finite X-generated monoids in V. Let πn : F̂V(X)→Mn be the canoni-

cal projection. Then, for γ ∈ F̂V(X), we have Stab(γ) = lim
←−n∈N

Stab(γπn),

by Lemma 2.5. Let δ, σ ∈ Stab(γ) and consider Mn. Since V = A©m V,

we have that M̃n ∈ V. Then [δ]gMn
, [σ]gMn

∈ Stab([γ]gMn
) and so Lemma 3.2

implies that [δ]Mn
, [σ]Mn

are comparable in the ≤ L-order on Stab([γ]Mn
).

By going to a subsequence we may assume without loss of generality that,
say, [δ]Mn

≤ L [σ]Mn
in Stab([γ]Mn

) for all n. It then follows that δ ≤ L σ in
Stab(γ) (c.f. [1, Theorem 5.6.1] or [12, Proposition 9.1]). Hence Stab(γ) is
an internal  L-chain. �
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In [12, Corollary 14.5] it was shown that, for α ∈ X̂∗, Stab(α) is an
R-trivial band. We can now refine this result.

Corollary 4.2. Let X be a finite set and α ∈ X̂∗. Then Stab(α) is an
 L-chain of idempotents. In particular, it is an R-trivial band.

4.2. A discontinuous homomorphism. The next lemma is the principal
advantage obtained by our profinite approach over Henckell’s approach [8].

Lemma 4.3. Let V be a pseudovariety of monoids such that V = A©m V.

Let X be a finite set, M an X-generated finite monoid and ρV : M → F̂V(X)
the canonical relational morphism. Then

γρ−1
V
σρ−1

V
= (γσ)ρ−1

V

for all γ, σ ∈ F̂V(X).

Proof. The inclusion γρ−1
V
σρ−1

V
⊆ (γσ)ρ−1

V
is true for any relational mor-

phism. Since 1 ∈ ερ−1
V

, the reverse inclusion is trivial if either σ or γ is ε, so
assume σ 6= ε 6= γ. Let m ∈ (γσ)ρV. Then there exists a sequence of words
wn ∈ X

+ such that wn → γσ and [wn]M = m. Since X is a finite set, we can

write F̂V(X) = lim
←−n∈N

Mn where the Mn are X-generated monoids from V.

Again, V is closed under the expansion N 7→ Ñ . By going to a subsequence,
we may assume that [wn]gMn

= [γσ]gMn
, all n. Similarly, we can find sequences

un, vn ∈ X
+ such that un → γ, vn → σ and [un]gMn

= [γ]gMn
, [vn]gMn

= [σ]gMn
.

Hence [unvn]gMn
= [γσ]gMn

= [wn]gMn
and so, by Proposition 3.1, wn = cnsn

with [cn]Mn
= [un]Mn

= [γ]Mn
and [sn]Mn

= [vn]Mn
= [σ]Mn

. Thus cn → γ

and sn → σ. Since M is finite, by going to a subsequence, we may as-
sume that [cn]M and [sn]M are constant, say [cn]M = m1 and [sn]M = m2.
Then m1 ∈ γρ−1

V
, m2 ∈ σρ−1

V
and m1m2 = [cnsn]M = [wn]M = m. So

m ∈ γρ−1
V
σρ−1

V
. This establishes (γσ)ρ−1

V
⊆ γρ−1

V
σρ−1

V
and completes the

proof of the lemma. �

Let us reformulate the above result into our critical lemma.

Lemma 4.4. Let M be an X-generated finite monoid, let V be a pseudova-

riety such that V = A©m V and let ρV : M → F̂V(X) be the canonical

relational morphism. Then the map fV : F̂V(X) → PLV(M) defined by
γfV = γρ−1

V
is a monoid homomorphism.

Proof. Theorem 2.6 shows that fV is well defined. Lemma 4.3 shows that

fV is a semigroup homomorphism. Since ε is an isolated point of F̂V(X)

(as the congruence class of ε is trivial in M̃ for any M ∈ V), we conclude
εfV = ερ−1

V
= {1} and thus fV is a monoid homomorphism. �

We remark that fV is not necessarily continuous. For instance, if γfA =
Z, then γωfA ⊇

⋃
n∈N Z

ωZn, which can be strictly bigger than Zω. This
discontinuity is what underlies the analysis of aperiodic pointlike sets [6,10].
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4.3. Idempotent pointlikes. As a warm-up we prove the result of Henck-
ell [7] relating V-idempotent pointlikes with idempotent V-pointlikes.

Theorem 4.5 (Henckell). Let V be a pseudovariety of monoids such that
A©m V = V and let M be a finite monoid. Then the maximal V-idempotent
pointlikes of M are precisely the maximal idempotents of PLV(M).

Proof. We already observed that idempotents of PLV(M) are V-idempotent
pointlike. Conversely, suppose that Z is a maximal V-idempotent pointlike

subset of M . LetX be a finite generating set forM and let ρV : M → F̂V(X)

and fV : F̂V(X) → PLV(M) be as per Lemma 4.4. By maximality and
Theorem 2.6, we must have that Z = eρ−1

V
= efV for some idempotent

e ∈ F̂V(X). Since fV is a homomorphism, Z ∈ PLV(A) is idempotent. �

Since Henckell proved [6,10] that A-pointlikes are decidable, we have the
following corollaries.

Corollary 4.6. If V = A©m V and V-pointlikes are decidable, then V-
idempotent pointlikes are decidable. In particular, A-idempotent pointlikes
are decidable.

Corollary 4.7. If V has decidable membership, then do does V©m A.

5. M-stable pairs

Let M be the pseudovariety of all finite monoids. As a second warm-
up exercise we characterize the M-stable pairs. This partially answers a
question raised in [2]. By considering the identity map, we see that an M-
stable pair of a monoid M must be of the form ({x}, N) where N ≤ Stab(x).
Corollary 4.2 suggests that  L-chains of idempotents should play a role. The
next lemma describes what kind of monoid you can obtain by such a chain.

Lemma 5.1. Suppose that e1 ≥ L e2 ≥ L · · · ≥ L en is an  L-chain of idem-
potents in a monoid M . Then 〈e1, . . . , en〉 is an R-trivial band.

Proof. Set N = 〈e1, . . . , en〉. First we observe that eiej = ei if i ≥ j. Thus,
each element of T can be written in the form ei1ei2 · · · eim where the indices
are increasing: i1 < i2 < · · · < im. Clearly then one has

(ei1ei2 · · · eim)2 = ei1ei2 . . . eim ,

since im ≥ ij for all 1 ≤ j ≤ m. Let s = ei1ei2 · · · eim and t = ej1ej2 · · · ejℓ .
Then st = s if im ≥ jℓ, or else st = sejk · · · ejℓ , where k is the smallest index
such that im < jk. In the first case, clearly sts = s2 = s = st, while in
the latter case we have jℓ ≥ ir for all r and so ejℓs = ejℓ , from which we
conclude that sts = st. This proves that N is an R-trivial band. �

Theorem 5.2. Let M be a finite monoid. Then ({y}, N) is an M-stable
pair of M if and only if there there is an  L-chain Y of idempotents in Stab(y)
such that N ≤ 〈Y 〉.
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Proof. Suppose that Y ⊆ Stab(y) is an  L-chain of idempotents. Without
loss of generality, we may assume that N = 〈Y 〉 (since stable pairs are
downwards closed). Since every monoid belongs to M, it clearly suffices to
show that if ϕ : S ։M is an onto homomorphism, then there exists y′ ∈ S
such that y′ϕ = y and N ≤ Stab(y′)ϕ.

Choose ỹ ∈ S with ỹϕ = y. Next, suppose Y = e1 ≥ L e2 ≥ L · · · ≥ L en
and choose an idempotent f1 ∈ S with f1ϕ = e1. Assume inductively
that, for 1 ≤ i < n we have found f1 ≥ L · · · ≥ L fi in S with fjϕ = ej ,
for 1 ≤ j ≤ i. Then ei+1 ∈ Mei ⊆ (Sfi)ϕ. So there exists an idempotent
fi+1 of Sfi with fi+1ϕ = ei+1. This completes the induction. Set Y ′ =
{f1, . . . , fn}. Clearly N ′ = 〈Y ′〉 maps onto N via ϕ. Also N ′ is an R-trivial
band by Lemma 5.1. In particular, if s belongs to the minimal ideal of N ′

and t ∈ N ′, then st R s and hence, since N ′ is R-trivial, st = s. Thus
N ′ ≤ Stab(s) ≤ Stab(ỹs). But (ỹs)ϕ = ỹϕsϕ = ysϕ ∈ yN = {y}. This
shows that ({y}, N) is an M-stable pair.

For the converse, choose a generating set X for M . Let π : X̂∗ → M

be the canonical projection. Then π−1 is the canonical relational morphism

ρM : M → X̂∗. So Theorem 2.6 shows there exists α ∈ X̂∗ with απ = y and
N ≤ Stab(α)π. Corollary 4.2 yields Stab(α) is an  L-chain of idempotents,
from which the result easily follows. �

6. A-stable pairs

The situation for A-stable pairs is more complicated since we no longer

have that the stabilizers in F̂A(X) must be bands. Let us recall some termi-
nology from [15,16] (see also [14]). Let ER be the pseudovariety of monoids
whose idempotent-generated submonoids are R-trivial. It is well-known
that M ∈ ER if and only if each regular R-class of M contains a unique
idempotent [14].

Proposition 6.1. Let M ∈ ER∩A. Then, for any x in the minimal ideal
of M , one has Stab(x) = M .

Proof. Since M ∈ ER, the minimal ideal I of M contains a unique  L-class.
If x ∈ I and m ∈ M , then xm R x by stability of finite semigroups and
xm Lx since I has a unique  L-class. Since M is aperiodic, xm = x. �

A monoid M is said to be absolute Type I [9,14–16] if it can be generated
by a chain of its  L-classes. In particular, an internal  L-chain is absolute
Type I. The facts contained in our next proposition are from [15]; see [14]
for proofs.

Proposition 6.2.

(1) An aperiodic absolute Type I-monoid belongs to ER.
(2) If ϕ : M ։ N is an onto homomorphism and M is absolute Type I,

then N is absolute Type I.



A PROFINITE APPROACH TO STABLE PAIRS 11

(3) If ϕ : M ։ N is an onto homomorphism and N is absolute Type I,
then there is an absolute Type I-submonoid M ′ ≤M with M ′ϕ = N .

We now present a sufficient condition for (Y,N) to be an A-stable pair
for a monoid M .

Proposition 6.3. Let M be a finite monoid. Suppose that Y ∈ PLA(M)
and W ≤ PLA(M) is a submonoid which is an internal  L-chain such that:

(1)
⋃
W = N ;

(2) W ≤ Stab(Y ).

Then (Y,N) is an A-stable pair.

Proof. Let ϕ : M → A with A ∈ A be a relational morphism. Factor
ϕ = α−1β where α : R ։ M is an onto homomorphism, β : R → A

is a homomorphism and R is finite. Let α∗ : PLA(R) ։ PLA(M) and
β∗ : PLA(R)→ PLA(A) = A be the induced maps from Proposition 2.2. We
shall use several times that if Xβ∗ = x, then X ⊆ xβ−1. Since W is absolute
Type I, we can find, by Proposition 6.2, an absolute Type I submonoid
W ′ ≤ PLA(R) with W ′α∗ = W . Then W ′′ = W ′β∗ is absolute Type I and
hence belongs to ER ∩A (again by Proposition 6.2). Choose a ∈ A with
Y ⊆ aϕ−1 and choose z′′ from the minimal ideal of W ′′. By definition of
W ′′, there exists Z ′ ∈ W ′ with Z ′β∗ = z′′. Setting Z = Z ′α∗ ∈ W , we have
Z = Z ′α ⊆ z′′β−1α = z′′ϕ−1 and so, as W ≤ Stab(Y ),

Y = Y Z ⊆ aϕ−1z′′ϕ−1 ⊆ (az′′)ϕ−1. (6.1)

Now Proposition 6.1 shows that W ′′ ⊆ Stab(z′′) ⊆ Stab(az′′). So we are
left with showing that N ≤W ′′ϕ−1. Let U ∈W . Then we can find U ′ ∈W ′

such that U ′α∗ = U . Set U ′β∗ = u′′ ∈ W ′′. Then U = U ′α ⊆ u′′β−1α =
u′′ϕ−1. Thus U ⊆W ′′ϕ−1 and so we may conclude

N =
⋃
W ⊆W ′′ϕ−1 ⊆ Stab(az′′)ϕ−1. (6.2)

Combining (6.1) and (6.2) yields that (Y,N) is an A-stable pair. �

We now prove the converse for maximal A-stable pairs; Henckell proves
an apparently stronger formulation in [8].

Theorem 6.4. Suppose that M is a finite monoid. Then the maximal A-
stable pairs of M are the maximal pairs (Y,N) such that Y ∈ PLA(M) and
there exists a submonoid W ≤ PLA(M) with W an internal  L-chain and:

(1)
⋃
W = N ;

(2) W ≤ Stab(Y ).

Proof. By Proposition 6.3 any such pair (Y,N) is A-stable. Conversely,
suppose that (Y,N) is a maximal A-stable pair for M . Choose a finite

generating set X for M and let ρA : M → F̂A(X) be the canonical re-

lational morphism. Let fA : F̂A(X) → PLA(M) be the homomorphism
from Lemma 4.4; so fA = ρ−1

A
. Maximality and Theorem 2.6 implies there
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exists γ ∈ F̂A(X) such that Y = γρ−1
A

= γfA and N = Stab(γ)ρ−1
A

. By
Theorem 4.1, Stab(γ) is an internal  L-chain. Then we see that

W = Stab(γ)fA ≤ Stab(γfA) = Stab(Y )

is a submonoid of PLA(M) and an internal  L-chain. Moreover, we have
⋃
W =

⋃

β∈Stab(γ)

βfA =
⋃

β∈Stab(γ)

βρ−1
A

= Stab(γ)ρ−1
A

= N.

This completes the proof of the theorem. �

Since PLA(M) is computable [6, 10], Theorem 6.4 admits as corollaries:

Corollary 6.5. Stable pairs are decidable for A. Equivalently, A-inevita-
bility is decidable for labellings of graphs with a single vertex, with singletons
on the edges.

Corollary 6.6. If V is a local pseudovariety with decidable membership,
then V ∗A is decidable.

7. A-triples

To compute the Krohn-Rhodes complexity of a monoid, we shall need
some other notions, related to those we have been considering.

Definition 7.1 (V-triple). Let us call a triple (A,B,C) of subsets of a
finite monoid M a V-triple if, for all relational morphisms ϕ : M → N with
N ∈ V, there exist a, b, c ∈ N such that A ⊆ aϕ−1, B ⊆ cϕ−1, C ⊆ cϕ−1

and abc = ab.

Equivalently, (A,B,C) is a V-triple if and only if the graph with two
vertices v1, v2, an edge e1 from v1 to v2 and a loop e2 from v2 to v2 with
v1 labelled by A, e1 by B, v2 by AB and e2 by C is V-inevitable. Thus an
analogue of Theorem 2.6 holds for V-triples.

We are particularly interested in A-triples and so we begin by investigat-

ing solutions to equations of the from xyz = xy in F̂A(X). It turns out that
the Henckell-Schützenberger expansion allows one to treat equations over

F̂A(X) in a similar way to equations over free monoids.

Proposition 7.2. Let X be a finite set and let α, β, γ ∈ F̂A(X). Then
αβγ = αβ if and only if one of the following three situations occur:

(1) βγ = β;

(2) there exists τ ∈ F̂A(X) such that αβτ = α and γ = τβ;

(3) there exist σ, τ ∈ F̂A(X) and i ≥ 1 such that α = ατσ, β = (τσ)iτ
and γ = στ .

Proof. Clearly any of (1), (2) or (3) implies αβγ = αβ. For the converse,
if α or γ are ε, we are in case (1). If β = ε, then we are in case (2) with
τ = γ. So we may assume that none of α, β and γ are ε. Since X is

finite, we may write F̂A(X) = lim←−n∈N
Mn with the Mn finite X-generated
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aperiodic monoids. Moreover, M̃n ∈ A for all n. Choose sequences of words
an, bn, cn from X+ such that an → α, bn → β and cn → γ. By passing
to subsequences, we may assume that [an]gMn

= [α]gMn
, [bn]gMn

= [β]gMn
and

[cn]gMn
= [γ]gMn

, for all n.

Then, for each n, we have the equality [anbncn]gMn
= [anbn]gMn

. Propo-

sition 3.1 says that anbncn = a′nb
′

n with [a′n]Mn
= [an]Mn

= [α]Mn
and

[b′n]Mn
= [bn]Mn

= [β]Mn
. In particular, a′n → α and b′n → β.

For each n, there are three cases: |a′n| ≤ |an|, |a
′
n| ≥ |anbn| and finally

|an| < |a
′
n| < |anbn|. By passing to a subsequence, we may assume that the

same case occurs for all n.
Suppose that |a′n| ≤ |an| for all n. Then, for each n, there exists tn ∈ X

∗

so that an = a′ntn, b′n = tnbncn. By passing to a subsequence, we may

assume that tn → τ ∈ F̂A(X). Then β = τβγ and so we have β = τωβγω.
Thus βγ = τωβγωγ = τωβγω = β and we are in case (1).

Next suppose that |a′n| ≥ |anbn| for all n. Then, for each n, we can find
tn ∈ X

∗ such that a′n = anbntn and cn = tnb
′

n. By passing to a subsequence,

we may assume tn → τ ∈ F̂A(X). Then α = αβτ and γ = τβ, and so we
are in case (2).

Finally, suppose |an| < |a
′

n| < |anbn| for all n. Then, for each n, we
can find pn, tn ∈ X∗ such that a′n = anpn, b′n = tncn and bn = pntn. By
extracting a subsequence, we may assume that pn → π and tn → τ1 in

F̂A(X). Then we have in F̂A(X) the equalities τ1γ = β = πτ1 and

α = απ. (7.1)

Define τ0 = β and suppose inductively that we have found τi ∈ F̂A(X),
for i ≥ 1, such that τiγ = τi−1 = πτi. Notice that a simple induction yields

τiγ
i = β = πiτi (7.2)

Then we can choose sequences of words Pn, Tn such that Pn → π, Tn → τi
and [Pn]gMn

= [π]gMn
, [Tn]gMn

= [τi]gMn
, all n. Then, for each n, we have

[Tncn]gMn
= [τiγ]gMn

= [πτi]gMn
= [PnTn]gMn

.

Proposition 3.1 then shows Tncn = P ′

nT
′

n where

[P ′

n]Mn
= [Pn]Mn

= [π]Mn
, [T ′

n]Mn
= [Tn]Mn

= [τi]Mn
.

In particular, we have P ′

n → π and T ′

n → τi.
For any n, there are two cases: |P ′

n| < |Tn| and |P ′

n| ≥ |Tn|. By passing
to a subsequence, we may assume that the same case applies for all n.
Suppose first that |P ′

n| < |Tn| for all n. Then we can find Rn ∈ X
∗ so that

Tn = P ′
nRn and T ′

n = Rncn. Extracting a subsequence, we may assume that

Rn converges to some τi+1 in F̂A(X). Then πτi+1 = τi = τi+1γ, allowing us
to continue the induction.

Next assume that |P ′
n| ≥ |Tn| for all n. Then P ′

n = TnSn and cn = SnT
′
n

for some Sn ∈ X∗. By passing to a subsequence, we may assume that



14 KARSTEN HENCKELL, JOHN RHODES, AND BENJAMIN STEINBERG

Sn → σ in F̂A(X). Then π = τiσ and γ = στi. Therefore, by (7.1) and
(7.2), we have the equalities

α = ατiσ, β = πiτi = (τiσ)iτi, γ = στi,

and so we are in case (3) and may stop.
Hence, either one of cases (1), (2) or (3) arises, or we can find an infinite

sequence {τi} of elements of F̂A(X) with β = τiγ
i. By passing to a subse-

quence, we may assume that τi → τ ∈ F̂A(X). Since limi→∞ γi = γω, we
obtain β = τγω and hence βγ = τγωγ = τγω = β, so we are again in case
(1). This completes the proof. �

Corollary 7.3. Let M be a finite monoid. Then the maximal A-triples are
the maximal triples (A,B,C) ∈ PLA(M)3 such that one of the following
occurs:

(1) BC = B;
(2) there exists T ∈ PLA(M) such that ABT = A and C = TB;
(3) there exist S, T ∈ PLA(M) and i ≥ 1 such that A = ATS, B =

(TS)iT and C = ST .

In particular, A-triples are decidable.

Proof. First we show that if (A,B,C) ∈ PLA(M)3 satisfies any of (1)–(3),
then it is an A-triple. Let ϕ : M → N with N ∈ A be a relational morphism.

Suppose that (1) holds. Choose a, b, c ∈ N with A ⊆ aϕ−1, B ⊆ bϕ−1

and C ⊆ cϕ−1. Then B ⊆ bcωϕ−1 and a(bcω)c = a(bcω). Thus (A,B,C) is
an A-triple.

Next assume that (2) holds. Choose a, b, t ∈ N with A ⊆ aϕ−1, B ⊆ bϕ−1

and T ⊆ tϕ−1. Then we have A ⊆ a(bt)ωϕ−1, C ⊆ tbϕ−1 and the equality
[a(bt)ω]b(tb) = [a(bt)ω]b, and so (A,B,C) is an A-triple.

Finally, assume that (3) holds. Choose a, s, t ∈ N with A ⊆ aϕ−1,
S ⊆ sϕ−1 and T ⊆ tϕ−1. Then we have A ⊆ a(ts)ωϕ−1, B ⊆ (ts)itϕ−1

and C ⊆ stϕ−1. Moreover, [a(ts)ω][(ts)it](st) = [a(ts)ω][(ts)it]. So we see
that in all cases (A,B,C) is an A-triple.

Next suppose that (A,B,C) is a maximal A-triple. Choose a generating

set X for M and let ρA : M → F̂A(X) be the canonical relational morphism.

Let fA : F̂A(X) → PLA(M) be the homomorphism from Lemma 4.4. By

Theorem 2.6 and maximality, we can find α, β, γ ∈ F̂A(X) such that

A = αρ−1
A

= αfA, B = βρ−1
A

= βfA, C = γρ−1
A

= γfA.

and αβγ = αβ. We analyze the situation according to the three cases of
Proposition 7.2. If βγ = β, then

BC = βfAγfA = (βγ)fA = βfA = B
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and we are in case (1). If there exists τ ∈ F̂A(X) such that αβτ = α and
γ = τβ, then setting T = τfA, we have

A = αfA = (αβτ)fA = αfAβfAτfA = ABT

C = γfA = (τβ)fA = τfAβfA = TB,

and so we are in case (2).

Finally, if there exist σ, τ ∈ F̂A(X) and i ≥ 1 such that α = ατσ, β =
(τσ)iτ and γ = στ , then setting S = σfA and T = τfA, we have

A = αfA = (ατσ)fA = αfAτfAσfA = ATS

B = βfA = ((τσ)iτ)fA = (τfAσfA)iτfA = (TS)iT

C = γfA = (στ)fA = σfAτfA = ST,

and hence we are in case (3). This completes the proof. �
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