Gröbner-Shirshov bases for dialgebras

L. A. Bokut*
School of Mathematical Sciences, South China Normal University Guangzhou 510631, P. R. China
Sobolev Institute of Mathematics, Russian Academy of Sciences
Siberian Branch, Novosibirsk 630090, Russia
Email: bokut@math.nsc.ru
Yuqun Chen ${ }^{\dagger \ddagger}$ and Cihua Liu
School of Mathematical Sciences, South China Normal University Guangzhou 510631, P. R. China
Email: yqchen@scnu.edu.cn
langhua01duo@yahoo.com.cn

Abstract

In this paper, we define the Gröbner-Shirshov bases for a dialgebra. The composition-diamond lemma for dialgebras is given then. As a result, we obtain a Gröbner-Shirshov basis for the universal enveloping algebra of a Leibniz algebra. Key words: dialgebra, Gröbner-Shirshov bases, composition-diamond lemma, Leibniz algebra

AMS 2000 Subject Classification: 16S15, 13P10, 17A32

1 Introduction

Recently, J.-L. Loday (1995, [10]) gave the definition of a new class of algebras, dialgebras, which is closely connected to his notion of Leibniz algebras (1993, [9]) and in the same way as associative algebras are connected to Lie algebras. In the manuscript [11], J.-L. Loday found a normal form of elements of a free dialgebra. Here we continue to study free dialgebras and prove the composition-diamond lemma for them. As it is well known, this kind of lemma is the cornerstone of the theory of Gröbner and Gröbner-Shirshov bases (see, for example, [5] and cited literature). In commutative-associative case, this lemma is equivalent to the Main Buchberger's Theorem ([6], [7]). For Lie and associative algebras, this is the Shirshov's lemma [12] (see also L.A. Bokut [3], 4] and G. Bergman [2]). As an application, we get another proof of the Poincare-Birkhoff-Witt theorem for Leibniz algebras, see M. Aymon, P.-P. Grivel [1] and P. Kolesnikov [8].

[^0]
2 Preliminaries

Definition 2.1 Let k be a field. A k-linear space D equipped with two bilinear multiplications \vdash and \dashv is called a dialgebra, if both \vdash and \dashv are associative and

$$
\begin{aligned}
a \dashv(b \vdash c) & =a \dashv b \dashv c \\
(a \dashv b) \vdash c & =a \vdash b \vdash c \\
a \vdash(b \dashv c) & =(a \vdash b) \dashv c
\end{aligned}
$$

for any $a, b, c \in D$.
Definition 2.2 Let D be a dialgebra, $B \subset D$. Let us define diwords (dimonomials) of D in the set B by induction:
(i) $b=(b), b \in B$ is a diword in B of length $|b|=1$.
(ii) (u) is called a diword in B of length n, if $(u)=((v) \dashv(w))$ or $(u)=((v) \vdash(w))$, where $(v),(w)$ are diwords in B of length k, l respectively and $k+l=n$.

Proposition 2.3 ([11]) Let D be a dialgebra and $B \subset D$. Any diword of D in the set B is equal to a diword in B of the form

$$
\begin{equation*}
(u)=b_{-m} \vdash \cdots \vdash b_{-1} \vdash b_{0} \dashv b_{1} \dashv \cdots \dashv b_{n} \tag{1}
\end{equation*}
$$

where $b_{i} \in B,-m \leq i \leq n, m \geq 0, n \geq 0$. Any bracketing of the right side of (1) gives the same result.

Definition 2.4 Let X be a set. A free dialgebra $D(X)$ generated by X over k is defined in a usual way by the following commutative diagram:

where D is any dialgebra.
In [11], a construction of a free dialgebra is given.
Proposition 2.5 ([11]) Let $D(X)$ be free dialgebra generated by X over k. Any diword in X is equal to the unique diword in X of the form

$$
\begin{equation*}
[u]=x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n}=x_{-m} \cdots x_{-1} \dot{x_{0}} x_{1} \cdots x_{n} \tag{2}
\end{equation*}
$$

where $x_{i} \in X, m \geq 0, n \geq 0$. We call $[u]$ a normal diword (in X) with the associative word $u, u \in X^{*}$. Clearly, if $[u]=[v]$, then $u=v$. In (园), x_{0} is called the center of the normal diword $[u]$. Let $[u]$, $[v]$ be two normal diwords, then $[u] \vdash[v]$ is the normal diword $[u v]$ with the center at the center of $[v]$. Accordingly, $[u] \dashv[v]$ is the normal diword $[u v]$ with the center at the center of $[u]$.

Example 2.6

$$
\begin{gathered}
\left(x_{-1} \vdash x_{0} \dashv x_{1}\right) \vdash\left(y_{-1} \vdash y_{0} \dashv y_{1}\right)=x_{-1} \vdash x_{0} \vdash x_{1} \vdash y_{-1} \vdash y_{0} \dashv y_{1}, \\
\left(x_{-1} \vdash x_{0} \dashv x_{1}\right) \dashv\left(y_{-1} \vdash y_{0} \dashv y_{1}\right)=x_{-1} \vdash x_{0} \dashv x_{1} \dashv y_{-1} \dashv y_{0} \dashv y_{1} .
\end{gathered}
$$

Definition 2.7 A-linear space L equipped with bilinear multiplication [,] is called a Leibniz algebra if for any $a, b, c \in L$,

$$
[[a, b], c]=[[a, c], b]+[a,[b, c]]
$$

i.e., the Jacobi identity is valid in L.

It is clear that if (D, \dashv, \vdash) is a dialgebra then $D^{(-)}=(D,[]$,$) is a Leibniz algebra, where$ $[a, b]=a \dashv b-b \vdash a$ for any $a, b \in D$.

3 Composition-Diamond lemma for dialgebras

Let X be a well ordered set, $D(X)$ the free dialgebra over k, X^{*} the free monoid generated by X and $\left[X^{*}\right]$ the set of normal diwords in X. Let us define deg-lex order on $\left[X^{*}\right]$ in the following way: for any $[u],[v] \in\left[X^{*}\right]$,

$$
[u]<[v] \Longleftrightarrow w t([u])<w t([v]) \text { lexicographicaly, }
$$

where

$$
w t([u])=\left(n+m+1, m, x_{-m}, \cdots, x_{0}, \cdots, x_{n}\right)
$$

if $[u]=x_{-m} \cdots x_{-1} \dot{x_{0}} x_{1} \cdots x_{n}$. It is easy to see that the order $<$ is monomial in the sense:

$$
[u]<[v] \Longrightarrow x \vdash[u]<x \vdash[v],[u] \dashv x<[v] \dashv x, \text { for any } x \in X .
$$

Any polynomial $f \in D(X)$ has the form

$$
f=\sum_{[u] \in\left[X^{*}\right]} f([u])[u]=\alpha[\bar{f}]+\sum \alpha_{i}\left[u_{i}\right],
$$

where $[\bar{f}],\left[u_{i}\right]$ are normal diwords in $X,[\bar{f}]>\left[u_{i}\right], \alpha, \alpha_{i}, f([u]) \in k$. We call $[\bar{f}]$ the leading term of f. Denote by suppf the set $\{[u] \mid f([u]) \neq 0\}$ and $\operatorname{deg}(f)$ by $|[\bar{f}]| . f$ is called monic if $\alpha=1 . f$ is called left (right) normed if $f=\sum \alpha_{i} u_{i} \dot{x_{i}} \quad\left(f=\sum \alpha_{i} \dot{x}_{i} u_{i}\right)$, where each $\alpha_{i} \in k, x_{i} \in X$ and $u_{i} \in X^{*}$. The same terminology will be used for normal diwords.

If $[u],[v]$ are both left normed or both right normed, then it is clear that for any $w \in\left[X^{*}\right]$,

$$
[u]<[v] \Longrightarrow[u] \vdash w<[v] \vdash w, w \vdash[u]<w \vdash[v],[u] \dashv w<[v] \dashv w, w \dashv[u]<w \dashv[v] .
$$

Let $S \subset D(X)$. By an S-diword g we will mean g is a diword in $\{X \cup S\}$ with only one occurrence of $s \in S$. If this is the case and $g=(a s b)$ for some $a, b \in X^{*}$ and $s \in S$, we also call g an s-diword.

From Proposition 2.3 it follows easily that any S-diword is equal to

$$
\begin{equation*}
[a s b]=\left.x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n}\right|_{x_{k} \mapsto s} \tag{3}
\end{equation*}
$$

where $-m \leq k \leq n, x_{k} \in X, s \in S$. To be more precise, $[a s b]=[a \dot{s} b]$ if $k=0$; $[a s b]=\left[a s b_{1} \dot{x_{0}} b_{2}\right]$ if $k<0$ and $[a s b]=\left[a_{1} \dot{x_{0}} a_{2} s b\right]$ if $k>0$. Note that any bracketing of [asb] gives the same result, for example, $[a s b]=\left[\left(a_{1} a_{2}\right) s b\right]=\left[a_{1}\left(a_{2} s\right) b\right]$ if $a=a_{1} a_{2}$. If the center of the s-diword $[a s b]$ is in a, then we denote by $[\dot{a} s b]=\left[a_{1} \dot{x_{0}} a_{2} s b\right]$. Similarly, $[a s \dot{b}]=\left[a s b_{1} \dot{x_{0}} b_{2}\right]$ (of course, some a_{i}, b_{i} may be empty).

Definition 3.1 The S-diword (3) is called a normal S-diword if one of the following conditions holds:
(i) $k=0$.
(ii) $k<0$ and s is left normed.
(iii) $k>0$ and s is right normed.

We call a normal s-diword [asb] a left (right) normed s-diword, if both s and [asb] are left (right) normed. In particulary, s is a left (right) normed s-diword, if s is left (right) normed polynomial.

The following lemma follows from the above properties of the order of normal diwords.

Lemma 3.2 For a normal S-diword $[a s b]$, the leading term of $[$ asb $]$ is equal to $[a[\bar{s}] b]$, that is, $\overline{[a s b]}=[a[\bar{s}] b]$. More specifically, if

$$
[a s b]=\left.x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n}\right|_{x_{k} \mapsto s},
$$

then

$$
\begin{aligned}
& \overline{x_{-m} \vdash \cdots \vdash x_{-1} \vdash s \dashv x_{1} \dashv \cdots \dashv x_{n}}=x_{-m} \vdash \cdots \vdash x_{-1} \vdash[\bar{s}] \dashv x_{1} \dashv \cdots \dashv x_{n} \\
& \overline{x_{-m} \vdash \cdots \vdash s \vdash \cdots \vdash x_{0} \dashv \cdots \dashv x_{n}}=x_{-m} \vdash \cdots \vdash[\bar{s}] \vdash \cdots \vdash x_{0} \dashv \cdots \dashv x_{n} \\
& \overline{x_{-m} \vdash \cdots \vdash x_{0} \dashv \cdots \dashv s \dashv \cdots \dashv x_{n}}=x_{-m} \vdash \cdots \vdash x_{0} \dashv \cdots \dashv[\bar{s}] \dashv \cdots \dashv x_{n}
\end{aligned}
$$

For convenience, we denote $[a[\bar{s}] b]$ by $[a \bar{s} b]$ for a normal S-diword [asb].
Now, we define compositions of dipolynomials in $D(X)$.
Definition 3.3 Let the order $<$ be as before and $f, g \in D(X)$ with f, g monic.

1) Composition of left (right) multiplication.

Let f be a not right normed polynomial and $x \in X$. Then $x \dashv f$ is called the composition of left multiplication. Clearly, $x \dashv f$ is a right normed polynomial (or $0)$.
Let f be a not left normed polynomial and $x \in X$. Then $f \vdash x$ is called the composition of right multiplication. Clearly, $f \vdash x$ is a left normed polynomial (or $0)$.
2) Composition of including.

Let

$$
[w]=[\bar{f}]=[a \bar{g} b],
$$

where $[a g b]$ is a normal g-diword. Then

$$
(f, g)_{[w]}=f-[a g b]
$$

is called the composition of including. The transformation $f \mapsto f-[a g b]$ is called the elimination of leading diword (ELW) of g in f.
3) Composition of intersection.

Let

$$
[w]=[\bar{f} b]=[a \bar{g}],|\bar{f}|+|\bar{g}|>|w|,
$$

where $[f b]$ is a normal f-diword and $[a g]$ a normal g-diword. Then

$$
(f, g)_{[w]}=[f b]-[a g]
$$

is called the composition of intersection.
Remark In the Definition 3.3, for the case of 2) or 3), we have $\overline{(f, g)_{[w]}}<[w]$. For the case of 1$)$, $\operatorname{deg}(x \dashv f) \leq \operatorname{deg}(f)+1$ and $\operatorname{deg}(f \vdash x) \leq \operatorname{deg}(f)+1$.

Definition 3.4 Let the order $<$ be as before, $S \subset D(X)$ a monic set and $f, g \in S$.

1) Let $x \dashv f$ be a composition of left multiplication. Then $x \dashv f$ is called trivial modulo S, denoted by $\quad x \dashv f \equiv 0 \bmod (S), \quad i f$

$$
x \dashv f=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right], s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ right normed s_{i}-diword and $\left|\left[a_{i} \bar{S}_{i} b_{i}\right]\right| \leq \operatorname{deg}(x \dashv f)$.

Let $f \vdash x$ be a composition of right multiplication. Then $f \vdash x$ is called trivial modulo S, denoted by $\quad f \vdash x \equiv 0 \bmod (S)$, if

$$
f \vdash x=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right], s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ left normed s_{i}-diword and $\left|\left[a_{i} \overline{s_{i}} b_{i}\right]\right| \leq$ $\operatorname{deg}(f \vdash x)$.
2) Composition $(f, g)_{[w]}$ of including (intersection) is called trivial modulo $(S,[w])$, denoted by $\quad(f, g)_{[w]} \equiv 0 \bmod (S,[w]), \quad$ if

$$
(f, g)_{[w]}=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right], s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ normal s_{i}-diword, $\left[a_{i} \overline{s_{i}} b_{i}\right]<[w]$ and each $\left[a_{i} s_{i} b_{i}\right]$ is right (left) normed s_{i}-diword whenever both f and $[a g b]$ ($[f b]$ and [ag]) are right (left) normed S-diwords.

The following proposition is useful when one checks the compositions of left and right multiplications.

Proposition 3.5 Let the order $<$ be as before, $S \subset D(X)$ a monic set and $f \in S$. Let $x \dashv f$ be a composition of left multiplication. Then $x \dashv f \equiv 0 \bmod (S)$ if and only if

$$
x \dashv f=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in X^{*}, s_{i} \in S$ is right normed, $\left[a_{i} s_{i} b_{i}\right]=\left[\dot{a}_{i} s_{i} b_{i}\right]$ and $\left|\left[a_{i} \overline{S_{i}} b_{i}\right]\right| \leq$ $\operatorname{deg}(x \dashv f)$.

Accordingly, for the composition of right multiplication, we have a similar conclusion.

Proof Assume that $x \dashv f=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right]$, where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right],\left[a_{i} s_{i} b_{i}\right]=$ $\left[\dot{a}_{i} s_{i} b_{i}\right], s_{i} \in S$ right normed and $\left|\left[a_{i} \overline{s_{i}} b_{i}\right]\right| \leq \operatorname{deg}(x \dashv f)$. Then, we have the expression

$$
x \dashv f=[\dot{x} f]=\sum_{I_{1}} \alpha_{p}\left[\dot{x_{p}} a_{p} s_{p} b_{p}\right]+\sum_{I_{2}} \beta_{q}\left[a_{q} \dot{x_{q}} a_{q}^{\prime} s_{q} b_{q}\right],
$$

where each $\alpha_{p}, \beta_{q} \in k, x_{p}, x_{q} \in X, a_{p}, a_{q}, a_{q}^{\prime}, b_{p}, b_{q} \in X^{*}, a_{q} \neq 1, s_{p}, s_{q} \in S$ are right normed. From this it follows that $\sum_{I_{2}} \beta_{q}\left[a_{q} \dot{x_{q}} a_{q}^{\prime} s_{q} b_{p}\right]=0$. Now, the results follow.

Definition 3.6 Let $S \subset D(X)$ be a monic set and the order $<$ as before. We call the set S a Gröbner-Shirshov set (basis) in $D(X)$ if any composition of polynomials in S is trivial modulo S (and $[w]$).

The following two lemmas play key role in the proof of Theorem 3.9,

Lemma 3.7 Let $S \subset D(X)$ and $[a s b]$ an S-diword. Assume that each composition of right or left multiplication is trivial modulo S. Then, $[$ asb $]$ has a presentation:

$$
[a s b]=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right]
$$

where each $\alpha_{i} \in k, s_{i} \in S, a_{i}, b_{i} \in\left[X^{*}\right]$ and each $\left[a_{i} s_{i} b_{i}\right]$ is normal s_{i}-diword.
Proof Following Proposition 2.3, we assume that

$$
[a s b]=\left.x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n}\right|_{x_{k} \mapsto s} .
$$

There are three cases to consider.
Case 1. $k=0$. Then $[a s b]$ is a normal S-diword.
Case 2. $k<0$. Then $[a s b]=a \vdash\left(s \vdash x_{k+1}\right) \vdash b, k<-1$ or $[a s b]=a \vdash\left(s \vdash x_{0}\right) \dashv b$. If s is left normed then $[a s b]$ is a normal S-diword. If s is not left normed then for the composition $s \vdash x_{k+1} \quad(k<0)$ of right multiplication, we have

$$
s \vdash x_{k+1}=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right], s_{i} \in S$ and $\left[a_{i} s_{i} b_{i}\right]$ is left normed s_{i}-diword. Then

$$
[a s b]=\sum \alpha_{i}\left(a \vdash\left[a_{i} s_{i} b_{i}\right] \vdash b\right)
$$

or

$$
[a s b]=\sum \alpha_{i}\left(a \vdash\left[a_{i} s_{i} b_{i}\right] \dashv b\right)
$$

is a linear combination of normal S-diwords.
Case 3. $k>0$ is similar to the Case 2.
Lemma 3.8 Let $S \subset D(X)$ and each composition $(f, g)_{[w]}$ in S of including (intersection) trivial modulo $(S,[w])$. Let $\left[a_{1} s_{1} b_{1}\right]$ and $\left[a_{2} s_{2} b_{2}\right]$ be normal S-diwords such that $[w]=$ $\left[a_{1} \overline{s_{1}} b_{1}\right]=\left[a_{2} \overline{s_{2}} b_{2}\right]$. Then,

$$
\left[a_{1} s_{1} b_{1}\right] \equiv\left[a_{2} s_{2} b_{2}\right] \bmod (S,[w]) .
$$

Proof Because $a_{1} \overline{s_{1}} b_{1}=a_{2} \overline{s_{2}} b_{2}$ as words, there are three cases to consider.
Case 1. Subwords $\overline{s_{1}}, \overline{s_{2}}$ have empty intersection. Assume, for example, that $b_{1}=b \overline{s_{2}} b_{2}$ and $a_{2}=a_{1} \overline{s_{1}} b$. Because any normal S-diword may be bracketing in any way, we have

$$
\left[a_{2} s_{2} b_{2}\right]-\left[a_{1} s_{1} b_{1}\right]=\left(a_{1} s_{1}\left(b\left(s_{2}-\left[\overline{s_{2}}\right]\right) b_{2}\right)\right)-\left(\left(a_{1}\left(s_{1}-\left[\overline{s_{1}}\right]\right) b\right) s_{2} b_{2}\right) .
$$

For any $t \in \operatorname{supp}\left(s_{2}-\overline{s_{2}}\right) \quad\left(t \in \operatorname{supp}\left(s_{1}-\overline{s_{1}}\right)\right)$, we prove that $\left(a_{1} s_{1} b t b_{2}\right)\left(\left(a_{1} t b s_{2} b_{2}\right)\right)$ is a normal s_{1}-diword (s_{2}-diword). There are five cases to consider.
$1.1[w]=\left[a_{1} \overline{s_{1}} b \overline{s_{2}} b_{2}\right] ;$
$1.2[w]=\left[a_{1} \dot{\overline{s_{1}}} b \overline{s_{2}} b_{2}\right] ;$
$1.3[w]=\left[a_{1} \overline{s_{1}} \dot{b} \overline{s_{2}} b_{2}\right] ;$
$1.4[w]=\left[a_{1} \overline{s_{1}} b \dot{\overline{s_{2}}} b_{2}\right] ;$
$1.5[w]=\left[a_{1} \overline{s_{1}} b \overline{s_{2}} \dot{b_{2}}\right]$.
For 1.1, since $\left[a_{1} s_{1} b_{1}\right]$ and $\left[a_{2} s_{2} b_{2}\right]$ are normal S-diwords, both s_{1} and s_{2} are right normed by the definition, in particular, t is right normed. It follows that $\left(a_{1} s_{1} b t b_{2}\right)=\left[a_{1} s_{1} b t b_{2}\right]$ is a normal s_{1}-diword.

For 1.2, it is clear that $\left(a_{1} s_{1} b t b_{2}\right)$ is a normal s_{1}-diword and t is right normed.
For 1.3, 1.4 and 1.5 , since $\left[a_{1} s_{1} b_{1}\right]$ is normal s_{1}-diword, s_{1} is left normed by the definition, which implies that $\left(a_{1} s_{1} b t b_{2}\right)$ is a normal s_{1}-diword. Moreover, t is right normed, if 1.3, and left normed, if 1.5.

Thus, for all cases, we have $\left.\overline{\left[a_{1} s_{1} b t b_{2}\right.}\right]=\left[a_{1} \overline{s_{1}} b t b_{2}\right]<\left[a_{1} \overline{s_{1}} b \overline{s_{2}} b_{2}\right]=[w]$.
Similarly, for any $t \in \operatorname{supp}\left(s_{1}-\overline{s_{1}}\right),\left(a_{1} t b s_{2} b_{2}\right)$ is a normal s_{2}-diword and $\left[a_{1} t b \overline{s_{2}} b_{2}\right]<[w]$.
Case 2. Subwords $\overline{s_{1}}$ and $\overline{s_{2}}$ have non-empty intersection c. Assume, for example, that $b_{1}=b b_{2}, a_{2}=a_{1} a, w_{1}=\overline{s_{1}} b=a \overline{s_{2}}=a c b$.

There are following five cases to consider:
$2.1[w]=\left[a_{1} \overline{s_{1}} b b_{2}\right]$;
$2.2[w]=\left[a_{1} \overline{s_{1}} b \dot{b_{2}}\right] ;$
$2.3[w]=\left[a_{1} \dot{a} c b b_{2}\right] ;$
$2.4[w]=\left[a_{1} a \dot{c} b b_{2}\right] ;$
$2.5[w]=\left[a_{1} a c \dot{b} b_{2}\right]$.
Then

$$
\left[a_{2} s_{2} b_{2}\right]-\left[a_{1} s_{1} b_{1}\right]=\left(a_{1}\left(\left[a s_{2}\right]-\left[s_{1} b\right]\right) b_{2}\right)=\left(a_{1}\left(s_{1}, s_{2}\right)_{\left[w_{1}\right]} b_{2}\right)
$$

where $\left[w_{1}\right]=[a c b]$ is as follows:
$2.1\left[w_{1}\right]$ is right normed;
$2.2\left[w_{1}\right]$ is left normed;
$2.3\left[w_{1}\right]=[\dot{a} c b]$;
$2.4\left[w_{1}\right]=[a \dot{c} b] ;$
$2.5\left[w_{1}\right]=[a c \dot{b}]$.
Since S is a Gröbner-Shirshov basis, there exist $\beta_{j} \in k, u_{j}, v_{j} \in\left[X^{*}\right], s_{j} \in S$ such that $\left[s_{1} b\right]-\left[a s_{2}\right]=\sum_{j} \beta_{j}\left[u_{j} s_{j} v_{j}\right]$, where each $\left[u_{j} s_{j} v_{j}\right]$ is normal S-diword and $\left[u_{j} \overline{s_{j}} v_{j}\right]<\left[w_{1}\right]=$ [acb]. Therefore,

$$
\left[a_{2} s_{2} b_{2}\right]-\left[a_{1} s_{1} b_{1}\right]=\sum_{j} \beta_{j}\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)
$$

Now, we prove that each $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)$ is normal s_{j}-diword and $\overline{\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)}<[w]=$ [$\left.a_{1} \overline{s_{1}} b b_{2}\right]$.

For 2.1, since $\left[\dot{a}_{1} s_{1} b b_{2}\right]$ and $\left[\dot{a}_{1} a s_{2} b_{2}\right]$ are normal S-diwords, both $\left[s_{1} b\right]$ and $\left[a s_{2}\right]$ are right normed S-diwords. Then, by the definition, each $\left[u_{j} s_{j} v_{j}\right]$ is right normed S-diword, and so each $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)=\left[\dot{1}_{1} u_{j} s_{j} v_{j} b_{2}\right]$ is a normal S-diword.

For 2.2, both $\left[s_{1} b\right]$ and $\left[a s_{2}\right]$ must be left normed S-diwords. Then, by the definition, each $\left[u_{j} s_{j} v_{j}\right]$ is left normed S-diword, and so each $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)=\left[a_{1} u_{j} s_{j} v_{j} \dot{b}_{2}\right]$ is a normal S-diword.

For 2.3, 2.4 or 2.5, by noting that $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)=\left(\left(a_{1}\right) \vdash\left[u_{j} s_{j} v_{j}\right] \dashv\left(b_{2}\right)\right)$ and $\left[u_{j} s_{j} v_{j}\right]$ is normal S-diword, $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)$ is also normal S-diword.

Now, for all cases, we have $\overline{\left[a_{1} u_{j} s_{j} v_{j} b_{2}\right]}=\left[a_{1} u_{j} \overline{s_{j}} v_{j} b_{2}\right]<[w]=\left[a_{1} a c b b_{2}\right]$.
Case 3. One of the subwords $\overline{s_{1}}$ and $\overline{s_{2}}$ contains another as a subword. Assume, for example, that $b_{2}=b b_{1}, a_{2}=a_{1} a, w_{1}=\overline{s_{1}}=a \overline{s_{2}} b$.

Again there are following five cases to consider:
$2.1[w]=\left[a_{1} a \overline{s_{2}} b b_{1}\right] ;$
$2.2[w]=\left[a_{1} a \overline{a_{2}} b \dot{b_{1}}\right] ;$
$2.3[w]=\left[a_{1} \dot{a} \overline{s_{2}} b b_{1}\right] ;$
$2.4[w]=\left[a_{1} a \dot{\overline{s_{2}}} b b_{1}\right] ;$
$2.5[w]=\left[a_{1} a \overline{a_{2}} \dot{b} b_{1}\right]$.
Then

$$
\left[a_{1} s_{1} b_{1}\right]-\left[a_{2} s_{2} b_{2}\right]=\left(a_{1}\left(s_{1}-a s_{2} b\right) b_{1}\right)=\left(a_{1}\left(s_{1}, s_{2}\right)_{\left[w_{1}\right]} b_{1}\right)
$$

It is similar to the proof of the Case 2, that we have $\left[a_{1} s_{1} b_{1}\right] \equiv\left[a_{2} s_{2} b_{2}\right] \bmod (S,[w])$.

The following theorem is the main result.

Theorem 3.9 (Composition-Diamond Lemma) Let $S \subset D(X)$ be a monic set and the order $<$ as before. Then $(i) \Rightarrow(i i) \Leftrightarrow(i i)^{\prime} \Leftrightarrow(i i i) \Rightarrow(i v)$, where
(i) S is a Gröbner-Shirshov basis.
(ii) For any $f \in D(X), 0 \neq f \in I d(S) \Rightarrow \bar{f}=[a \bar{s} b]$ for some $s \in S, a, b \in\left[X^{*}\right]$ and [asb] a normal S-diword.
(ii) $)^{\prime}$ For any $f \in D(X)$, if $0 \neq f \in \operatorname{Id}(S)$, then $f=\alpha_{1}\left[a_{1} s_{1} b_{1}\right]+\alpha_{2}\left[a_{2} s_{2} b_{2}\right]+\cdots+\alpha_{n}\left[a_{n} s_{n} b_{n}\right]$ with $\left[a_{1} \overline{s_{1}} b_{1}\right]>\left[a_{2} \overline{s_{2}} b_{2}\right]>\cdots>\left[a_{n} \overline{s_{n}} b_{n}\right]$, where $\left[a_{i} s_{i} b_{i}\right]$ is normal S-diword, $i=1,2, \cdots, n$.
(iii) The set

$$
\operatorname{Irr}(S)=\left\{u \in\left[X^{*}\right] \mid u \neq[a \bar{s} b], s \in S, a, b \in\left[X^{*}\right],[a s b] \text { is normal } S \text {-diword }\right\}
$$ is a linear basis of the dialgebra $D(X \mid S)$.

(iv) For each composition $(f, g)_{[w]}$ of including (intersection), we have

$$
(f, g)_{[w]}=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right], s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ normal S-diword and $\left[a_{i} \bar{S}_{i} b_{i}\right]<[w]$.
Proof $(i) \Rightarrow(i i)$. Let S be a Gröbner-Shirshov basis and $0 \neq f \in \operatorname{Id}(S)$. We can assume, by Lemma 3.7, that

$$
f=\sum_{i=1}^{n} \alpha_{i}\left[a_{i} s_{i} b_{i}\right]
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right], s_{i} \in S$ and $\left[a_{i} s_{i} b_{i}\right]$ normal S-diword. Let

$$
\left[w_{i}\right]=\left[a_{i} \bar{S}_{i} b_{i}\right],\left[w_{1}\right]=\left[w_{2}\right]=\cdots=\left[w_{l}\right]>\left[w_{l+1}\right] \geq \cdots
$$

We will use the induction on l and $\left[w_{1}\right]$ to prove that $\bar{f}=[a \bar{s} b]$, for some $s \in S$ and $a, b \in$ $\left[X^{*}\right]$. If $l=1$, then $\bar{f}=\overline{\left[a_{1} s_{1} b_{1}\right]}=\left[a_{1} \overline{s_{1}} b_{1}\right]$ and hence the result holds. Assume that $l \geq 2$. Then, by Lemma 3.8, we have $\left[a_{1} s_{1} b_{1}\right] \equiv\left[a_{2} s_{2} b_{2}\right] \bmod \left(S,\left[w_{1}\right]\right)$.

Thus, if $\alpha_{1}+\alpha_{2} \neq 0$ or $l>2$, then the result holds. For the case $\alpha_{1}+\alpha_{2}=0$ and $l=2$, we use the induction on $\left[w_{1}\right]$. Now, the result follows.
$(i i) \Rightarrow(i i)^{\prime}$. Assume (ii) and $f \in \operatorname{Id}(S)$. Let $f=\alpha_{1} \bar{f}+\sum_{\left[u_{i}\right]<\bar{f}} \alpha_{i}\left[u_{i}\right]$. Then, by (ii), $\bar{f}=\left[a_{1} \overline{s_{1}} b_{1}\right]$, where $\left[a_{1} s_{1} b_{1}\right]$ is a normal S-diword. Therefore,

$$
f_{1}=f-\alpha_{1}\left[a_{1} s_{1} b_{1}\right], \overline{f_{1}}<\bar{f}, f_{1} \in I d(S)
$$

Now, by using induction on \bar{f}, we have $(i i)^{\prime}$.
$(i i)^{\prime} \Rightarrow(i i)$. This part is clear.
$(i i)^{\prime} \Rightarrow(i i i)$. Assume $(i i)^{\prime}$. We firstly prove that, for any $h \in D(X)$, we have

$$
\begin{equation*}
h=\sum_{I_{1}} \alpha_{i}\left[u_{i}\right]+\sum_{I_{2}} \beta_{j}\left[a_{j} s_{j} b_{j}\right] \tag{4}
\end{equation*}
$$

where $\left[u_{i}\right] \in \operatorname{Irr}(S), i \in I_{1},\left[a_{j} s_{j} b_{j}\right]$ normal S-diwords, $j \in I_{2}$.

Let $h=\alpha_{1} \bar{h}+\cdots$. We use the induction on \bar{h}.
If $\bar{h} \in \operatorname{Irr}(S)$, then take $\left[u_{1}\right]=\bar{h}$ and $h_{1}=h-\alpha_{1}\left[u_{1}\right]$. Clearly, $\overline{h_{1}}<\bar{h}$.
If $\bar{h} \notin \operatorname{Irr}(S)$, then $\bar{h}=\left[a_{1} \overline{s_{1}} b_{1}\right]$ with $\left[a_{1} s_{1} b_{1}\right]$ a normal S-diword. Let $h_{1}=h-\beta_{1}\left[a_{1} s_{1} b_{1}\right]$. Then $\overline{h_{1}}<\bar{h}$.
Suppose that $0 \neq \sum \alpha_{i}\left[u_{i}\right]=\sum \beta_{j}\left[a_{j} s_{j} b_{j}\right]$, where $\left[u_{1}\right]>\left[u_{2}\right]>\cdots,\left[u_{i}\right] \in \operatorname{Irr}(S)$ and $\left[a_{1} \overline{\bar{s}_{1}} b_{1}\right]>\left[a_{2} \overline{\bar{s}_{2}} b_{2}\right]>\cdots$. Then, $\left[u_{1}\right]=\left[a_{1} \overline{s_{1}} b_{1}\right]$, a contradiction.

Now, (iii) follows.
$(i i i) \Rightarrow(i i)$ and (iv). Assume (iii). For any $0 \neq f \in \operatorname{Id}(S), \bar{f} \notin \operatorname{Irr}(S)$ implies that $\bar{f}=[a \bar{s} b]$, where $[a s b]$ is a normal S-diword. This shows (ii).

By noting that $(f, g)_{[w]} \in I d(S)$ and by using (4) and ELW, we have

$$
(f, g)_{[w]}=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right]
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in\left[X^{*}\right], s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ normal S-diword and $\left[a_{i} \overline{s_{i}} b_{i}\right]<[w]$.

4 Applications

Now, by using Theorem [3.9, we obtain a Gröbner-Shirshov basis for the universal enveloping algebra of a Leibniz algebra.

Theorem 4.1 Let \mathcal{L} be a Leibniz algebra over a field k with the product $\{$,$\} . Let \mathcal{L}_{0}$ be the subspace of \mathcal{L} generated by the set $\{\{a, a\},\{a, b\}+\{b, a\} \mid a, b \in \mathcal{L}\}$. Let $\left\{x_{i} \mid i \in I_{0}\right\}$ be a basis of \mathcal{L}_{0} and $X=\left\{x_{i} \mid i \in I\right\}$ a linearly ordered basis of \mathcal{L} such that $I_{0} \subseteq I$. Let $D\left(X \mid x_{i} \dashv x_{j}-x_{j} \vdash x_{i}-\left\{x_{i}, x_{j}\right\}\right)$ be the dialgebra and the order $<$ on $\left[X^{*}\right]$ as before. Then
(i) $D\left\langle X \mid x_{i} \dashv x_{j}-x_{j} \vdash x_{i}-\left\{x_{i}, x_{j}\right\}\right\rangle=D(X \mid S)$, where S consists of the following polynomials:

1. $f_{j i}=x_{j} \vdash x_{i}-x_{i} \dashv x_{j}+\left\{x_{i}, x_{j}\right\} \quad(i, j \in I)$
2. $f_{j i \vdash t}=x_{j} \vdash x_{i} \vdash x_{t}-x_{i} \vdash x_{j} \vdash x_{t}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \quad(i, j, t \in I, j>i)$
3. $h_{i_{0} \vdash t}=x_{i_{0}} \vdash x_{t} \quad\left(i_{0} \in I_{0}, t \in I\right)$
4. $f_{t \dashv j i}=x_{t} \dashv x_{j} \dashv x_{i}-x_{t} \dashv x_{i} \dashv x_{j}+x_{t} \dashv\left\{x_{i}, x_{j}\right\} \quad(i, j, t \in I, j>i)$
5. $h_{t \dashv i_{0}}=x_{t} \dashv x_{i_{0}} \quad\left(i_{0} \in I_{0}, t \in I\right)$
(ii) S is a Gröbner-Shirshov basis.
(iii) The set

$$
\left\{x_{j} \dashv x_{i_{1}} \dashv \cdots \dashv x_{i_{k}} \mid j \in I, i_{p} \in I-I_{0}, 1 \leq p \leq k, i_{1} \leq \cdots \leq i_{k}, k \geq 0\right\}
$$

is a linear basis of the universal enveloping algebra $U(\mathcal{L})=D(X \mid S)$. In particular, \mathcal{L} can be embedded into $U(\mathcal{L})$.

Proof (i) By using the following

$$
f_{j i \vdash t}=f_{j i} \vdash x_{t} \text { and } f_{j i} \vdash x_{t}+f_{i j} \vdash x_{t}=\left(\left\{x_{i}, x_{j}\right\}+\left\{x_{j}, x_{i}\right\}\right) \vdash x_{t},
$$

we have 2 and 3 are in $\operatorname{Id}\left(f_{j i}\right)$. By symmetry, 4 and 5 are in $\operatorname{Id}\left(f_{j i}\right)$. This shows (i).
(ii) We will prove that all compositions in S are trivial modulo S. We denote by $(i \wedge j)$ the composition of the polynomials of type i and type j. For convenience, we extend linearly the functions $f_{j i}, f_{j i \vdash t}, f_{t \dashv j i}, h_{i_{0} \vdash t}$ and $h_{t \dashv i_{0}}$ to $f_{j\{p, q\}}\left(f_{\{p, q\} i}\right), f_{j i \vdash\{p, q\}}$ and $h_{\{p, q\}-i_{0}}$, etc respectively, where, for example, if $\left\{x_{p}, x_{q}\right\}=\sum \alpha_{p q}^{s} x_{s}$, then

$$
\begin{aligned}
f_{j\{p, q\}} & =x_{j} \vdash\left\{x_{p}, x_{q}\right\}-\left\{x_{p}, x_{q}\right\} \dashv x_{j}+\left\{\left\{x_{p}, x_{q}\right\}, x_{j}\right\}=\sum \alpha_{p q}^{s} f_{j s}, \\
f_{j i \vdash\{p, q\}} & =\sum \alpha_{p q}^{s}\left(x_{j} \vdash x_{i} \vdash x_{s}-x_{i} \vdash x_{j} \vdash x_{s}+\left\{x_{i}, x_{j}\right\} \vdash x_{s}\right)=f_{j i} \vdash\left\{x_{p}, x_{q}\right\}, \\
h_{\{p, q\} \dashv i_{0}} & =\sum \alpha_{p q}^{s} h_{s \dashv i_{0}} .
\end{aligned}
$$

By using the Jacobi identity in \mathcal{L}, for any $a, b, c \in \mathcal{L}$,

$$
\begin{equation*}
\{\{a, b\}, c\}=\{a,\{b, c\}\}+\{\{a, c\}, b\} \tag{5}
\end{equation*}
$$

we have

$$
\{a,\{b, b\}\}=0 \text { and }\{a,\{b, c\}+\{c, b\}\}=0
$$

and in particular, for any $i_{0} \in I_{0}, j \in I$,

$$
\begin{equation*}
\left\{x_{j}, x_{i_{0}}\right\}=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{x_{i_{0}}, x_{j}\right\} \in \mathcal{L}_{0} \tag{7}
\end{equation*}
$$

which implies that \mathcal{L}_{0} is an ideal of \mathcal{L}. Clearly, $\mathcal{L} / \mathcal{L}_{0}$ is a Lie algebra.
Since $\left\{x_{i_{0}}, x_{j}\right\}=\left\{x_{i_{0}}, x_{j}\right\}+\left\{x_{j}, x_{i_{0}}\right\} \in \mathcal{L}_{0}$, the (7) follows.
The formulas (5), (6) and (7) are useful in the sequel.
In S, all the compositions are as follows.

1) Compositions of left or right multiplication.

All possible compositions in S of left multiplication are ones related to 1,2 and 3 .
By noting that for any $s, i, j, t \in I$, we have

$$
\begin{aligned}
x_{s} \dashv f_{j i} & =f_{s \dashv j i} \quad(j>i), \\
x_{s} \dashv f_{j i} & =-f_{s \dashv i j}+x_{s} \dashv\left(\left\{x_{i}, x_{j}\right\}+\left\{x_{j}, x_{i}\right\}\right) \quad(j<i), \\
x_{s} \dashv f_{i i} & =x_{s} \dashv\left\{x_{i}, x_{i}\right\}, \\
x_{s} \dashv f_{j i \vdash t} & =f_{s \dashv j i} \dashv x_{t} \quad(j>i) \quad \text { and } \\
x_{s} \dashv h_{i_{0} \vdash t} & =h_{s \dashv i_{0}} \dashv x_{t},
\end{aligned}
$$

it is clear that all cases are trivial modulo S.
By symmetry, all compositions in S of right multiplication are trivial modulo S.
2) Compositions of including or intersection.

All possible compositions of including or intersection are as follows.
$(1 \wedge 3) \quad w=x_{i_{0}} \vdash x_{i}\left(i_{0} \in I_{0}\right)$. We have, by (6),

$$
\left(f_{i_{0} i}, h_{i_{0} \vdash i}\right)_{w}=-x_{i} \dashv x_{i_{0}}+\left\{x_{i}, x_{i_{0}}\right\}=-h_{i \dashv i_{0}} .
$$

$(1 \wedge 4) \quad w=x_{j} \vdash x_{i} \dashv x_{q} \dashv x_{p} \quad(q>p)$. We have

$$
\begin{aligned}
& \left(f_{j i}, f_{i \dashv q p}\right)_{w} \\
= & -x_{i} \dashv x_{j} \dashv x_{q} \dashv x_{p}+\left\{x_{i}, x_{j}\right\} \dashv x_{q} \dashv x_{p}+x_{j} \vdash x_{i} \dashv x_{p} \dashv x_{p}-x_{j} \vdash x_{i} \dashv\left\{x_{p}, x_{q}\right\} \\
= & -x_{i} \dashv f_{j \dashv q p}+f_{\{i, j\} \dashv q p}+f_{j i} \dashv x_{p} \dashv x_{q}-f_{j i} \dashv\left\{x_{p}, x_{q}\right\} .
\end{aligned}
$$

$(1 \wedge 5) \quad w=x_{j} \vdash x_{i} \dashv x_{i_{0}}\left(i_{0} \in I_{0}\right)$. We have

$$
\left(f_{j i}, h_{i \dashv i_{0}}\right)_{w}=-x_{i} \dashv x_{j} \dashv x_{i_{0}}+\left\{x_{i}, x_{j}\right\} \dashv x_{i_{0}}=-x_{i} \dashv h_{j \dashv i_{0}}+h_{\{i, j\} \dashv i_{0}} .
$$

$(2 \wedge 1)$ There are two cases to consider: $w=x_{j} \vdash x_{i} \vdash x_{t}$ and $w=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{p}$.
For $w=x_{j} \vdash x_{i} \vdash x_{t}(j>i)$, by (5), we have

$$
\begin{aligned}
\left(f_{j i \vdash t}, f_{i t}\right)_{w} & =-x_{i} \vdash x_{j} \vdash x_{t}+\left\{x_{i}, x_{j}\right\} \vdash x_{t}+x_{j} \vdash x_{t} \dashv x_{i}-x_{j} \vdash\left\{x_{t}, x_{i}\right\} \\
& =-x_{i} \vdash f_{j t}+f_{\{i, j\} t}+f_{j t} \dashv x_{i}-f_{j\{t, i\}}+f_{i\{t, j\}}-f_{i t} \dashv x_{j}+f_{t \dashv j i} .
\end{aligned}
$$

For $w=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{p} \quad(j>i)$, we have

$$
\begin{aligned}
& \left(f_{j \vdash \vdash t}, f_{t p}\right)_{w} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \vdash x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{p}+x_{j} \vdash x_{i} \vdash x_{p} \dashv x_{t}-x_{j} \vdash x_{i} \vdash\left\{x_{p}, x_{t}\right\} \\
= & -x_{i} \vdash x_{j} \vdash f_{t p}+\left\{x_{i}, x_{j}\right\} \vdash f_{t p}+f_{j i \vdash p} \dashv x_{t}-f_{j i \vdash\{p, t\}} .
\end{aligned}
$$

$(2 \wedge 2) \quad$ There are two cases to consider: $w=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{s} \vdash x_{p}$ and $w=x_{j} \vdash x_{i} \vdash x_{t} \vdash$ x_{p}.
For $w=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{s} \vdash x_{p} \quad(j>i, t>s)$, we have

$$
\begin{aligned}
& \left(f_{j i \vdash t}, f_{t s \vdash p}\right)_{w} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \vdash x_{s} \vdash x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{s} \vdash x_{p}+x_{j} \vdash x_{i} \vdash x_{s} \vdash x_{t} \vdash x_{p} \\
& -x_{j} \vdash x_{i} \vdash\left\{x_{s}, x_{t}\right\} \vdash x_{p} \\
= & -x_{i} \vdash x_{j} \vdash f_{t s \vdash p}+\left\{x_{i}, x_{j}\right\} \vdash f_{t s \vdash p}+f_{j i \vdash s} \vdash x_{t} \vdash x_{p}-f_{j i \vdash\{s, t\}} \vdash x_{p} .
\end{aligned}
$$

For $w=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{p} \quad(j>i>t)$, suppose that

$$
\left\{x_{i}, x_{j}\right\}=\sum_{m \in I_{1}} \alpha_{i j}^{m} x_{m}+\alpha_{i j}^{t} x_{t}+\sum_{n \in I_{2}} \alpha_{i j}^{n} x_{n}(m<t<n) .
$$

Denote by

$$
B_{t \vdash\{i, j\} \vdash p}=x_{t} \vdash\left\{x_{i}, x_{j}\right\} \vdash x_{p}-\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{p}-\left\{x_{t},\left\{x_{i}, x_{j}\right\}\right\} \vdash x_{p} .
$$

Then

$$
B_{t \vdash\{i, j\} \vdash p}=\sum_{m \in I_{1}} \alpha_{i j}^{m} f_{t m \vdash p}-\sum_{n \in I_{2}} \alpha_{i j}^{n} f_{n t \vdash p}-\sum_{q \in I_{0}} \beta_{q} h_{q \vdash p}
$$

is a linear combination of normal s-diwords of length 2 or 3 , where

$$
\sum_{q \in I_{0}} \beta_{q} x_{q}=\sum_{m \in I_{1}} \alpha_{i j}^{m}\left(\left\{x_{t}, x_{m}\right\}+\left\{x_{m}, x_{t}\right\}\right)+\alpha_{i j}^{t}\left\{x_{t}, x_{t}\right\} .
$$

Now, by (5), we have

$$
\begin{aligned}
& \left(f_{j i \vdash t}, f_{i \vdash \vdash p}\right)_{w} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \vdash x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{p}+x_{j} \vdash x_{t} \vdash x_{i} \vdash x_{p}-x_{j} \vdash\left\{x_{t}, x_{i}\right\} \vdash x_{p} \\
= & -x_{i} \vdash f_{j \vdash \vdash p}-B_{t \vdash\{i, j\} \vdash p}+f_{j \vdash \vdash i} \vdash x_{p}-B_{j \vdash\{t, i\} \vdash p}+\sum_{l \in I_{0}} \gamma_{l} h_{l \vdash p} \\
& +B_{i \vdash\{t, j\} \vdash p}-f_{i t \vdash j} \vdash x_{p}+x_{t} \vdash f_{j \vdash \vdash p},
\end{aligned}
$$

where $\sum_{l \in I_{0}} \gamma_{l} x_{l}=-\left(\left\{x_{j},\left\{x_{t}, x_{i}\right\}\right\}+\left\{\left\{x_{t}, x_{i}\right\}, x_{j}\right\}\right)+\left(\left\{x_{i},\left\{x_{t}, x_{j}\right\}\right\}+\left\{\left\{x_{t}, x_{j}\right\}, x_{i}\right\}\right)$.
$(2 \wedge 3)$ There are three cases to consider: $w=x_{j} \vdash x_{i_{0}} \vdash x_{t}\left(i_{0} \in I_{0}\right), w=x_{j_{0}} \vdash x_{i} \vdash$ $x_{t}\left(j_{0} \in I_{0}\right)$ and $w=x_{j} \vdash x_{i} \vdash x_{t_{0}} \vdash x_{n}\left(t_{0} \in I_{0}\right)$.
Case 1. $w=x_{j} \vdash x_{i_{0}} \vdash x_{t} \quad\left(j>i_{0}, i_{0} \in I_{0}\right)$. By (7), we can assume that $\left\{x_{i_{0}}, x_{j}\right\}=\sum_{l \in I_{0}} \gamma_{l} x_{l}$. Then, we have

$$
\left(f_{j i_{0} \vdash t}, h_{i_{0} \vdash t}\right)_{w}=-x_{i_{0}} \vdash x_{j} \vdash x_{t}+\left\{x_{i_{0}}, x_{j}\right\} \vdash x_{t}=-h_{i_{0} \vdash j} \vdash x_{t}+\sum_{l \in I_{0}} \gamma_{l} h_{l \vdash t} .
$$

Case 2. $w=x_{j_{0}} \vdash x_{i} \vdash x_{t} \quad\left(j_{0}>i, j_{0} \in I_{0}\right)$. By (6), we have

$$
\left(f_{j_{0} i \vdash t}, h_{j_{0} \vdash i}\right)_{w}=-x_{i} \vdash x_{j_{0}} \vdash x_{t}+\left\{x_{i}, x_{j_{0}}\right\} \vdash x_{t}=-x_{i} \vdash h_{j_{0} \vdash t} .
$$

Case 3. $w=x_{j} \vdash x_{i} \vdash x_{t_{0}} \vdash x_{n} \quad\left(j>i, t_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(f_{j i \vdash t_{0}}, h_{t_{0} \vdash n}\right)_{w} & =-x_{i} \vdash x_{j} \vdash x_{t_{0}} \vdash x_{n}+\left\{x_{i}, x_{j}\right\} \vdash x_{t_{0}} \vdash x_{n} \\
& =\left(-x_{i} \vdash x_{j}+\left\{x_{i}, x_{j}\right\}\right) \vdash h_{t_{0} \vdash n} .
\end{aligned}
$$

$(2 \wedge 4) \quad w=x_{j} \vdash x_{i} \vdash x_{t} \dashv x_{q} \dashv x_{p} \quad(j>i, q>p)$. We have

$$
\begin{aligned}
& \left(f_{j i \vdash t}, f_{t \dashv q \mathrm{q}}\right)_{w} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \dashv x_{q} \dashv x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \dashv x_{q} \dashv x_{p} \\
& +x_{j} \vdash x_{i} \vdash x_{t} \dashv x_{p} \dashv x_{q}-x_{j} \vdash x_{i} \vdash x_{t} \dashv\left\{x_{p}, x_{q}\right\} \\
= & -x_{i} \vdash x_{j} \vdash f_{t \dashv q p}+\left\{x_{i}, x_{j}\right\} \vdash f_{t \dashv q p}+f_{j i \vdash t} \dashv x_{p} \dashv x_{q}-f_{j i \vdash t} \dashv\left\{x_{p}, x_{q}\right\} .
\end{aligned}
$$

$(2 \wedge 5) \quad w=x_{j} \vdash x_{i} \vdash x_{t} \dashv x_{n_{0}}\left(j>i, n_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(f_{j \vdash \vdash t}, h_{t \dashv n_{0}}\right)_{w} & =-x_{i} \vdash x_{j} \vdash x_{t} \dashv x_{n_{0}}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \dashv x_{n_{0}} \\
& =\left(-x_{i} \vdash x_{j}+\left\{x_{i}, x_{j}\right\}\right) \vdash h_{t \dashv n_{0}} .
\end{aligned}
$$

$(3 \wedge 1)$ There are two cases to consider: $w=x_{n_{0}} \vdash x_{t}\left(n_{0} \in I_{0}\right)$ and $w=x_{n_{0}} \vdash x_{t} \vdash$ $x_{s}\left(n_{0} \in I_{0}\right)$.
For $w=x_{n_{0}} \vdash x_{t}\left(n_{0} \in I_{0}\right)$, we have

$$
\left(h_{n_{0} \vdash t}, f_{n_{0} t}\right)_{w}=x_{t} \dashv x_{n_{0}}-\left\{x_{t}, x_{n_{0}}\right\}=h_{t \dashv n_{0}} .
$$

For $w=x_{n_{0}} \vdash x_{t} \vdash x_{s}\left(n_{0} \in I_{0}\right)$, we have

$$
\left(h_{n_{0} \vdash t}, f_{t s}\right)_{w}=x_{n_{0}} \vdash x_{s} \dashv x_{t}-x_{n_{0}} \vdash\left\{x_{s}, x_{t}\right\}=h_{n_{0} \vdash s} \dashv x_{t}-h_{n_{0} \vdash\{s, t\}} .
$$

$(3 \wedge 2) \quad w=x_{n_{0}} \vdash x_{t} \vdash x_{s} \vdash x_{p} \quad\left(t>s, n_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(h_{n_{0} \vdash t}, f_{t s \vdash p}\right)_{w} & =x_{n_{0}} \vdash x_{s} \vdash x_{t} \vdash x_{p}-x_{n_{0}} \vdash\left\{x_{s}, x_{t}\right\} \vdash x_{p} \\
& =h_{n_{0} \vdash s} \vdash x_{t} \vdash x_{p}-h_{n_{0} \vdash\{s, t\}} \vdash x_{p} .
\end{aligned}
$$

$(3 \wedge 3) \quad w=x_{n_{0}} \vdash x_{t_{0}} \vdash x_{r}\left(n_{0}, t_{0} \in I_{0}\right)$. We have

$$
\left(h_{n_{0} \vdash t_{0}}, h_{t_{0} \vdash r}\right)_{w}=0 .
$$

$(3 \wedge 4) \quad w=x_{n_{0}} \vdash x_{t} \dashv x_{q} \dashv x_{p} \quad\left(q>p, n_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(h_{n_{0} \vdash t}, f_{t \dashv q p}\right)_{w} & =x_{n_{0}} \vdash x_{t} \dashv x_{p} \dashv x_{q}-x_{n_{0}} \vdash x_{t} \dashv\left\{x_{p}, x_{q}\right\} \\
& =h_{n_{0} \vdash t} \dashv\left(x_{p} \dashv x_{q}-\left\{x_{p}, x_{q}\right\}\right) .
\end{aligned}
$$

$(3 \wedge 5) \quad w=x_{n_{0}} \vdash x_{t} \dashv x_{s_{0}}\left(n_{0}, s_{0} \in I_{0}\right)$. We have

$$
\left(h_{n_{0} \vdash t}, h_{t \dashv s_{0}}\right)_{w}=0 .
$$

Since $(4 \wedge 4),(4 \wedge 5),(5 \wedge 4),(5 \wedge 5)$ are symmetric with $(2 \wedge 2),(2 \wedge 3),(3 \wedge 2)$, $(3 \wedge 3)$ respectively, they have the similar representations. We omit the details.

From the above representations, we know that all compositions in S are trivial modulo S. So, S is a Gröbner-Shirshov basis.
(iii) Clearly, the mentioned set is just the set $\operatorname{Irr}(S)$. Now, the results follow from Theorem 3.9,

By using the Theorem 4.1, we have the following corollary.
Corollary 4.2 ([1], [8]) Let the notations be as in Theorem 4.1. Then $U(\mathcal{L})$ is isomorphic to $\mathcal{L} \otimes U\left(\mathcal{L} / \mathcal{L}_{0}\right)$, where $U\left(\mathcal{L} / \mathcal{L}_{0}\right)$ is the universal enveloping of the Lie algebra $\mathcal{L} / \mathcal{L}_{0}$.

References

[1] M. Aymon and P.-P. Grivel, Un theoreme de Poincare-Birkhoff-Witt pour les algebres de Leibniz, Comm. Algebra, 31(2003), N2, 527-544.
[2] G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29, 178-218(1978).
[3] L. A. Bokut, Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Mat., 36, 1173-1219(1972).
[4] L. A. Bokut, Imbeddings into simple associative algebras, Algebra i Logika, 15, 117142(1976).
[5] L. A. Bokut and K. P. Shum, Gröbner and Gröbner-Shirshov bases in algebra: an elementary approach, SEA Bull. Math., 29, 227-252(2005).
[6] B. Buchberger, An algorithm for finding a basis for the residue class ring of a zerodimensional polynomial ideal [in German], Ph.D. thesis, University of Innsbruck, Austria, (1965).
[7] B. Buchberger, An algorithmical criteria for the solvability of algebraic systems of equations[in German], Aequationes Math., 4, 374-383(1970).
[8] P. Kolesnikov, Conformal representations of Leibniz algebras, arXiv:math/0611501.
[9] J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Ens. Math. 39, 269-293(1993).
[10] J.-L. Loday, Algebres ayant deux operations associatives (digebres), C. R. Acad. Sci. Paris 321, 141-146(1995).
[11] J.-L. Loday, Dialgebras, in: Dialgebras and related operads, Lecture Notes in Mathematics, Vol. 1763. Berlin: Springer Verl., 2001, 7-66.
[12] A. I. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z., 3(1962), 292-296(in Russian); English translation in SIGSAM Bull., 33(2), 3-6(1999).

Gröbner-Shirshov bases for dialgebras*

L. A. Bokut ${ }^{\dagger}$
School of Mathematical Sciences, South China Normal University Guangzhou 510631, P. R. China
Sobolev Institute of Mathematics, Russian Academy of Sciences
Siberian Branch, Novosibirsk 630090, Russia
Email: bokut@math.nsc.ru
Yuqun Chen ${ }^{\ddagger}$ and Cihua Liu
School of Mathematical Sciences, South China Normal University
Guangzhou 510631, P. R. China
Email: yqchen@scnu.edu.cn
langhua01duo@yahoo.com.cn

Abstract

In this paper, we define the Gröbner-Shirshov basis for a dialgebra. The Composition-Diamond lemma for dialgebras is given then. As results, we give GröbnerShirshov bases for the universal enveloping algebra of a Leibniz algebra, the bar extension of a dialgebra, the free product of two dialgebras, and Clifford dialgebra. We obtain some normal forms for algebras mentioned the above.

Key words: dialgebra; Gröbner-Shirshov basis; Leibniz algebra; Clifford dialgebra.
AMS 2000 Subject Classification: 16S15, 13P10, 17A32, 17A99

1 Introduction

J.-L. Loday (1995, [1]) gave the definition of a new class of algebras, dialgebras, which is closely connected to his notion of Leibniz algebras (1993, [10]) in the same way as associative algebras connected to Lie algebras. In the manuscript [12], J.-L. Loday found a normal form of elements of a free dialgebra. Here we continue to study free dialgebras and prove the Composition-Diamond lemma for dialgebras. As it is well known, this kind of lemma is the cornerstone of the theory of Gröbner and Gröbner-Shirshov bases (see, for example, [6] and cited literature). In commutative-associative case, this lemma

[^1]is equivalent to the Main Buchberger's Theorem ([7, 8]). For Lie and associative algebras, this is the Shirshov's lemma [14] (see also L.A. Bokut [3, 4], G. Bergman [2], L.A. Bokut and Y. Chen [5]). As results, we obtain Gröbner-Shirshov bases for the universal enveloping algebra of a Leibniz algebra, the bar extension of a dialgebra, the free product of two dialgebras, and Clifford dialgebra. By using our Composition-Diamond lemma for dialgebras (Theorem 3.9), we obtain some normal forms for algebras mentioned the above. Moreover, we get another proof of the M. Aymon, P.-P. Grivel's result (1]) on the Poincare-Birkhoff-Witt theorem for Leibniz algebras (see P. Kolesnikov [9] for other proof).

2 Preliminaries

Definition 2.1 Let k be a field. A k-linear space D equipped with two bilinear multiplications \vdash and \dashv is called a dialgebra, if both \vdash and \dashv are associative and

$$
\begin{aligned}
a \dashv(b \vdash c) & =a \dashv b \dashv c \\
(a \dashv b) \vdash c & =a \vdash b \vdash c \\
a \vdash(b \dashv c) & =(a \vdash b) \dashv c
\end{aligned}
$$

for any $a, b, c \in D$.
Definition 2.2 Let D be a dialgebra, $B \subset D$. Let us define diwords of D in the set B by induction:
(i) $b=(b), b \in B$ is a diword in B of length $|b|=1$.
(ii) (u) is called a diword in B of length $|(u)|=n$, if $(u)=((v) \dashv(w))$ or $(u)=((v) \vdash$ $(w))$, where $(v),(w)$ are diwords in B of length k, l respectively and $k+l=n$.

Proposition 2.3 ([12]) Let D be a dialgebra and $B \subset D$. Any diword of D in the set B is equal to a diword in B of the form

$$
\begin{equation*}
(u)=b_{-m} \vdash \cdots \vdash b_{-1} \vdash b_{0} \dashv b_{1} \dashv \cdots \dashv b_{n} \tag{1}
\end{equation*}
$$

where $b_{i} \in B,-m \leq i \leq n, m \geq 0, n \geq 0$. Any bracketing of the right side of (1) gives the same result.

Definition 2.4 Let X be a set. A free dialgebra $D(X)$ generated by X over k is defined in a usual way by the following commutative diagram:

where D is any dialgebra.

In［12］，a construction of a free dialgebra is given．
Proposition 2.5 （［12］）Let $D(X)$ be a free dialgebra over k generated by X ．Any diword in $D(X)$ is equal to the unique diword of the form

$$
\begin{equation*}
[u]=x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n} \triangleq x_{-m} \cdots x_{-1} \dot{x_{0}} x_{1} \cdots x_{n} \tag{2}
\end{equation*}
$$

where $x_{i} \in X, m \geq 0, n \geq 0$ ，and x_{0} is called the center of the normal diword $[u]$ ．We call $[u]$ a normal diword（in X ）with the associative word $u, u \in X^{*}$ ．Clearly，if $[u]=[v]$ ， then $u=v$ ．In（⿴囗⿱一𧰨丶（）．Let $[u],[v]$ be two normal diwords．Then $[u] \vdash[v]$ is the normal diword $[u v]$ with the center at the center of $[v]$ ．Accordingly，$[u] \dashv[v]$ is the normal diword ［uv］with the center at the center of $[u]$ ．

Example 2.6

$$
\begin{gathered}
\left(x_{-1} \vdash x_{0} \dashv x_{1}\right) \vdash\left(y_{-1} \vdash y_{0} \dashv y_{1}\right)=x_{-1} \vdash x_{0} \vdash x_{1} \vdash y_{-1} \vdash y_{0} \dashv y_{1}, \\
\left(x_{-1} \vdash x_{0} \dashv x_{1}\right) \dashv\left(y_{-1} \vdash y_{0} \dashv y_{1}\right)=x_{-1} \vdash x_{0} \dashv x_{1} \dashv y_{-1} \dashv y_{0} \dashv y_{1} .
\end{gathered}
$$

3 Composition－Diamond lemma for dialgebras

Let X be a well ordered set，$D(X)$ the free dialgebra over k, X^{*} the free monoid generated by X and $\left[X^{*}\right]$ the set of normal diwords in X ．Let us define the deg－lex ordering on $\left[X^{*}\right]$ in the following way：for any $[u],[v] \in\left[X^{*}\right]$ ，

$$
[u]<[v] \Longleftrightarrow w t([u])<w t([v]) \text { lexicographicaly, }
$$

where

$$
w t([u])=\left(n+m+1, m, x_{-m}, \cdots, x_{0}, \cdots, x_{n}\right)
$$

if $[u]=x_{-m} \cdots x_{-1} \dot{x_{0}} x_{1} \cdots x_{n}$ ．
Throughout the paper，we will use this ordering．
It is easy to see that the ordering＜is satisfied the following properties：

$$
[u]<[v] \Longrightarrow x \vdash[u]<x \vdash[v],[u] \dashv x<[v] \dashv x, \text { for any } x \in X .
$$

Any polynomial $f \in D(X)$ has the form

$$
f=\sum_{[u] \in\left[X^{*}\right]} f([u])[u]=\alpha[\bar{f}]+\sum \alpha_{i}\left[u_{i}\right],
$$

where $[\bar{f}],\left[u_{i}\right]$ are normal diwords in $X,[\bar{f}]>\left[u_{i}\right], \alpha, \alpha_{i}, f([u]) \in k, \alpha \neq 0$ ．We call $[\bar{f}]$ the leading term of f ．Denote suppf by the set $\{[u] \mid f([u]) \neq 0\}$ and $\operatorname{deg}(f)$ by $|[\bar{f}]| . f$ is called monic if $\alpha=1 . f$ is called left（right）normed if $f=\sum \alpha_{i} u_{i} \dot{x_{i}} \quad\left(f=\sum \alpha_{i} \dot{x_{i}} u_{i}\right)$ ， where each $\alpha_{i} \in k, x_{i} \in X$ and $u_{i} \in X^{*}$ ．

If $[u],[v]$ are both left normed or both right normed，then it is clear that for any $[w] \in\left[X^{*}\right]$,

$$
\begin{aligned}
{[u]<[v] \Longrightarrow } & {[u] \vdash[w]<[v] \vdash[w],[w] \vdash[u]<[w] \vdash[v], } \\
& {[u] \dashv[w]<[v] \dashv[w],[w] \dashv[u]<[w] \dashv[v] . }
\end{aligned}
$$

Let $S \subset D(X)$. By an S-diword g we will mean a diword in $\{X \cup S\}$ with only one occurrence of $s \in S$. If this is the case and $g=(a s b)$ for some $a, b \in X^{*}, s \in S$, we also call g an s-diword.

From Proposition 2.3 it follows that any s-diword is equal to

$$
\begin{equation*}
[a s b]=\left.x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n}\right|_{x_{k} \mapsto s} \tag{3}
\end{equation*}
$$

where $-m \leq k \leq n, s \in S, x_{i} \in X,-m \leq i \leq n$. To be more precise, $[a s b]=[a \dot{s} b]$ if $k=0 ;[a s b]=\left[a s b_{1} \dot{x_{0}} b_{2}\right]$ if $k<0$ and $[a s b]=\left[a_{1} \dot{x_{0}} a_{2} s b\right]$ if $k>0$. If the center of the s-diword $[a s b]$ is in a, then we denote it by $[\dot{a} s b]=\left[a_{1} \dot{x_{0}} a_{2} s b\right]$. Similarly, $[a s \dot{b}]=\left[a s b_{1} \dot{x_{0}} b_{2}\right]$ (of course, either a_{i} or b_{i} may be empty).

Definition 3.1 The s-diword (3) is called a normal s-diword if one of the following conditions holds:
(i) $k=0$,
(ii) $k<0$ and s is left normed,
(iii) $k>0$ and s is right normed.

We call a normal s-diword [asb] a left (right) normed s-diword if both s and [asb] are left (right) normed. In particulary, s is a left (right) normed s-diword if s is left (right) normed polynomial.

The following lemma follows from the above properties of the ordering $<$.
Lemma 3.2 For a normal s-diword $[a s b]$, the leading term of $[a s b]$ is equal to $[a[\bar{s}] b]$, that is, $\overline{[a s b]}=[a[\bar{s}] b]$. More specifically, if

$$
[a s b]=\left.x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n}\right|_{x_{k} \mapsto s},
$$

then corresponding to $k=0, k<0, k>0$, respectively, we have

$$
\begin{aligned}
& \overline{x_{-m} \vdash \cdots \vdash x_{-1} \vdash s \dashv x_{1} \dashv \cdots \dashv x_{n}}=x_{-m} \vdash \cdots \vdash x_{-1} \vdash[\bar{s}] \dashv x_{1} \dashv \cdots \dashv x_{n}, \\
& \overline{x_{-m} \vdash \cdots \vdash s \vdash \cdots \vdash x_{0} \dashv \cdots \dashv x_{n}}=x_{-m} \vdash \cdots \vdash[\bar{s}] \vdash \cdots \vdash x_{0} \dashv \cdots \dashv x_{n}, \\
& \overline{x_{-m} \vdash \cdots \vdash x_{0} \dashv \cdots \dashv s \dashv \cdots \dashv x_{n}}=x_{-m} \vdash \cdots \vdash x_{0} \dashv \cdots \dashv[\bar{s}] \dashv \cdots \dashv x_{n} .
\end{aligned}
$$

Now, we define compositions of polynomials in $D(X)$.
Definition 3.3 Let the ordering $<$ be as before and $f, g \in D(X)$ with f, g monic.

1) Composition of left (right) multiplication.

Let f be not a right normed polynomial and $x \in X$. Then $x \dashv f$ is called the composition of left multiplication. Clearly, $x \dashv f$ is a right normed polynomial (or 0).

Let f be not a left normed polynomial and $x \in X$. Then $f \vdash x$ is called the composition of right multiplication. Clearly, $f \vdash x$ is a left normed polynomial (or $0)$.
2) Composition of inclusion.

Let

$$
[w]=[\bar{f}]=[a[\bar{g}] b],
$$

where $[a g b]$ is a normal g-diword. Then

$$
(f, g)_{[w]}=f-[a g b]
$$

is called the composition of inclusion. The transformation $f \mapsto f-[a g b]$ is called the elimination of leading diword (ELW) of g in f, and $[w]$ is called the ambiguity of f and g.
3) Composition of intersection.

Let

$$
[w]=[[\bar{f}] b]=[a[\bar{g}]],|\bar{f}|+|\bar{g}|>|w|,
$$

where $[f b]$ is a normal f-diword and $[a g]$ a normal g-diword. Then

$$
(f, g)_{[w]}=[f b]-[a g]
$$

is called the composition of intersection, and $[w]$ is called the ambiguity of f and g.
Remark In the Definition [3.3, for the case of 2) or 3), we have $\overline{(f, g)_{[w]}}<[w]$. For the case of 1$), \operatorname{deg}(x \dashv f) \leq \operatorname{deg}(f)+1$ and $\operatorname{deg}(f \vdash x) \leq \operatorname{deg}(f)+1$.

Definition 3.4 Let the ordering $<$ be as before, $S \subset D(X)$ a monic set and $f, g \in S$.

1) Let $x \dashv f$ be a composition of left multiplication. Then $x \dashv f$ is called trivial modulo S, denoted by $\quad x \dashv f \equiv 0 \bmod (S), \quad i f$

$$
x \dashv f=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in X^{*}, s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ right normed s_{i}-diword and $\left|\left[a_{i}\left[\overline{s_{i}}\right] b_{i}\right]\right| \leq \operatorname{deg}(x \dashv f)$.

Let $f \vdash x$ be a composition of right multiplication. Then $f \vdash x$ is called trivial modulo S, denoted by $f \vdash x \equiv 0 \bmod (S)$, if

$$
f \vdash x=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in X^{*}, s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ left normed s_{i}-diword and $\left|\left[a_{i}\left[\overline{s_{i}}\right] b_{i}\right]\right| \leq$ $\operatorname{deg}(f \vdash x)$.
2) Composition $(f, g)_{[w]}$ of inclusion (intersection) is called trivial modulo $(S,[w])$, denoted by $\quad(f, g)_{[w]} \equiv 0 \bmod (S,[w]), \quad$ if

$$
(f, g)_{[w]}=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in X^{*}, s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ normal s_{i}-diword, $\left[a_{i}\left[\overline{s_{i}}\right] b_{i}\right]<[w]$ and each $\left[a_{i} s_{i} b_{i}\right]$ is right (left) normed s_{i}-diword whenever either both f and $[a g b]$ or both $[f b]$ and $[a g]$ are right (left) normed S-diwords.

We call the set S a Gröbner-Shirshov basis in $D(X)$ if any composition of polynomials in S is trivial modulo S (and $[w]$).

The following lemmas play key role in the proof of Theorem 3.9.

Lemma 3.5 Let $S \subset D(X)$ and $[a s b]$ an s-diword, $s \in S$. Assume that each composition of right and left multiplication is trivial modulo S. Then, $[a s b]$ has a presentation:

$$
[a s b]=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right]
$$

where each $\alpha_{i} \in k, s_{i} \in S, a_{i}, b_{i} \in X^{*}$ and each $\left[a_{i} s_{i} b_{i}\right]$ is normal s_{i}-diword.
Proof. Following Proposition 2.3, we assume that

$$
[a s b]=\left.x_{-m} \vdash \cdots \vdash x_{-1} \vdash x_{0} \dashv x_{1} \dashv \cdots \dashv x_{n}\right|_{x_{k} \rightarrow s}
$$

There are three cases to consider.
Case 1. $k=0$. Then $[a s b]$ is a normal s-diword.
Case 2. $k<0$. Then $[a s b]=a \vdash\left(s \vdash x_{k+1}\right) \vdash b, k<-1$ or $[a s b]=a \vdash\left(s \vdash x_{0}\right) \dashv b$. If s is left normed then $[a s b]$ is a normal s-diword. If s is not left normed then for the composition $s \vdash x_{k+1} \quad(k<0)$ of right multiplication, we have

$$
s \vdash x_{k+1}=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right],
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in X^{*}, s_{i} \in S$ and $\left[a_{i} s_{i} b_{i}\right]$ is left normed s_{i}-diword. Then

$$
[a s b]=\sum \alpha_{i}\left(a \vdash\left[a_{i} s_{i} b_{i}\right] \vdash b\right)
$$

or

$$
[a s b]=\sum \alpha_{i}\left(a \vdash\left[a_{i} s_{i} b_{i}\right] \dashv b\right)
$$

is a linear combination of normal s_{i}-diwords.
Case 3. $k>0$ is similar to the Case 2.
Lemma 3.6 Let $S \subset D(X)$ and each composition $(f, g)_{[w]}$ in S of inclusion (intersection) trivial modulo $(S,[w])$. Let $\left[a_{1} s_{1} b_{1}\right]$ and $\left[a_{2} s_{2} b_{2}\right]$ be normal S-diwords such that $[w]=$ $\left[a_{1}\left[\bar{s}_{1}\right] b_{1}\right]=\left[a_{2}\left[\overline{s_{2}}\right] b_{2}\right]$, where $s_{1}, s_{2} \in S, a_{1}, a_{2}, b_{1}, b_{2} \in X^{*}$. Then,

$$
\left[a_{1} s_{1} b_{1}\right] \equiv\left[a_{2} s_{2} b_{2}\right] \quad \bmod (S,[w])
$$

i.e., $\left[a_{1} s_{1} b_{1}\right]-\left[a_{2} s_{2} b_{2}\right]=\sum \alpha_{i}\left[a_{i} s_{i} b_{i}\right]$, where each $\alpha_{i} \in k, a_{i}, b_{i} \in X^{*}, s_{i} \in S,\left[a_{i} s_{i} b_{i}\right]$ normal s_{i}-diword and $\left[a_{i}\left[\overline{s_{i}}\right] b_{i}\right]<[w]$.

Proof. In the following, all letters a, b, c with indexis are words and $s_{1}, s_{2}, s_{j} \in S$.
Because $a_{1} \overline{s_{1}} b_{1}=a_{2} \overline{s_{2}} b_{2}$ as ordinary words, there are three cases to consider.

Case 1. Subwords $\overline{s_{1}}, \overline{s_{2}}$ have empty intersection. Assume, for example, that $b_{1}=b \overline{s_{2}} b_{2}$ and $a_{2}=a_{1} \overline{s_{1}} b$. Because any normal S-diword may be bracketing in any way, we have

$$
\left[a_{2} s_{2} b_{2}\right]-\left[a_{1} s_{1} b_{1}\right]=\left(a_{1} s_{1}\left(b\left(s_{2}-\left[\overline{s_{2}}\right]\right) b_{2}\right)\right)-\left(\left(a_{1}\left(s_{1}-\left[\overline{s_{1}}\right]\right) b\right) s_{2} b_{2}\right) .
$$

For any $[t] \in \operatorname{supp}\left(s_{2}-\left[\overline{s_{2}}\right]\right)$, we prove that $\left(a_{1} s_{1} b[t] b_{2}\right)$ is a normal s_{1}-diword. There are five cases to consider.
$1.1[w]=\left[\dot{a}_{1}\left[\overline{s_{1}}\right] b\left[\overline{s_{2}}\right] b_{2}\right] ;$
$1.2[w]=\left[a_{1}\left[\dot{s_{1}}\right] b\left[\overline{s_{2}}\right] b_{2}\right] ;$
$1.3[w]=\left[a_{1}\left[\overline{s_{1}}\right] b\left[\overline{s_{2}}\right] b_{2}\right] ;$
$1.4[w]=\left[a_{1}\left[\overline{s_{1}}\right] b\left[\dot{s_{2}}\right] b_{2}\right] ;$
$1.5[w]=\left[a_{1}\left[\overline{s_{1}}\right] b\left[\overline{s_{2}}\right] \dot{b_{2}}\right]$.
For 1.1, since $\left[a_{1} s_{1} b_{1}\right]$ and $\left[a_{2} s_{2} b_{2}\right]$ are normal S-diwords, both s_{1} and s_{2} are right normed by the definition, in particular, $[t]$ is right normed. It follows that $\left(a_{1} s_{1} b[t] b_{2}\right)=\left[\dot{a}_{1} s_{1} b[t] b_{2}\right]$ is a normal s_{1}-diword.

For 1.2, it is clear that $\left(a_{1} s_{1} b[t] b_{2}\right)$ is a normal s_{1}-diword and $[t]$ is right normed.
For 1.3, 1.4 and 1.5 , since $\left[a_{1} s_{1} b_{1}\right]$ is normal s_{1}-diword, s_{1} is left normed by the definition, which implies that $\left(a_{1} s_{1} b[t] b_{2}\right)$ is a normal s_{1}-diword. Moreover, $[t]$ is right normed, if 1.3 , and left normed, if 1.5.

Clearly, for all cases, we have $\overline{\left[a_{1} s_{1} b[t] b_{2}\right]}=\left[a_{1}\left[\overline{s_{1}}\right] b[t] b_{2}\right]<\left[a_{1}\left[\overline{s_{1}}\right] b\left[\overline{s_{2}}\right] b_{2}\right]=[w]$.
Similarly, for any $[t] \in \operatorname{supp}\left(s_{1}-\left[\overline{s_{1}}\right]\right),\left(a_{1}[t] b s_{2} b_{2}\right)$ is a normal s_{2}-diword and $\left[a_{1}[t] b\left[\overline{s_{2}}\right] b_{2}\right]<$ [w].

Case 2. Subwords $\overline{s_{1}}$ and $\overline{s_{2}}$ have non-empty intersection c. Assume, for example, that $b_{1}=b b_{2}, a_{2}=a_{1} a, w_{1}=\overline{s_{1}} b=a \overline{s_{2}}=a c b$.

There are following five cases to consider:
$2.1[w]=\left[a_{1}\left[\overline{s_{1}}\right] b b_{2}\right] ;$
$2.2[w]=\left[a_{1}\left[\overline{s_{1}}\right] b \dot{b_{2}}\right] ;$
$2.3[w]=\left[a_{1} \dot{a} c b b_{2}\right] ;$
$2.4[w]=\left[a_{1} a \dot{c} b b_{2}\right] ;$
$2.5[w]=\left[a_{1} a c \dot{b} b_{2}\right]$.
Then

$$
\left[a_{2} s_{2} b_{2}\right]-\left[a_{1} s_{1} b_{1}\right]=\left(a_{1}\left(\left[a s_{2}\right]-\left[s_{1} b\right]\right) b_{2}\right)=\left(a_{1}\left(s_{1}, s_{2}\right)_{\left[w_{1}\right]} b_{2}\right),
$$

where $\left[w_{1}\right]=[a c b]=\left[\left[\overline{s_{1}}\right] b\right]=\left[a\left[\overline{s_{2}}\right]\right]$ is as follows:
$2.1\left[w_{1}\right]$ is right normed;
$2.2\left[w_{1}\right]$ is left normed;
$2.3\left[w_{1}\right]=[\dot{a} c b]$;
$2.4\left[w_{1}\right]=[a \dot{c} b] ;$
$2.5\left[w_{1}\right]=[a c b]$.
Since each composition $(f, g)_{[w]}$ in S is trivial modulo ($S,[w]$), there exist $\beta_{j} \in k, u_{j}, v_{j} \in$ $X^{*}, s_{j} \in S$ such that $\left[s_{1} b\right]-\left[a s_{2}\right]=\sum_{j} \beta_{j}\left[u_{j} s_{j} v_{j}\right]$, where each $\left[u_{j} s_{j} v_{j}\right]$ is normal S-diword and $\left[u_{j}\left[\overline{s_{j}}\right] v_{j}\right]<\left[w_{1}\right]=[a c b]$. Therefore,

$$
\left[a_{2} s_{2} b_{2}\right]-\left[a_{1} s_{1} b_{1}\right]=\sum_{j} \beta_{j}\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right) .
$$

Now, we prove that each $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)$ is normal s_{j}-diword and $\overline{\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)}<[w]=$ $\left[a_{1}\left[\left[\overline{s_{1}}\right] b\right] b_{2}\right]$.

For 2.1, since $\left[\dot{a}_{1} s_{1} b b_{2}\right]$ and $\left[\dot{a}_{1} a s_{2} b_{2}\right]$ are normal S-diwords, both $\left[s_{1} b\right]$ and $\left[a s_{2}\right]$ are right normed S-diwords. Then, by definition, each $\left[u_{j} s_{j} v_{j}\right]$ is right normed S-diword, and so each $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)=\left[\dot{a}_{1} u_{j} s_{j} v_{j} b_{2}\right]$ is normal S-diword.

For 2.2, both $\left[s_{1} b\right]$ and $\left[a s_{2}\right]$ must be left normed S-diwords. Then, by definition, each $\left[u_{j} s_{j} v_{j}\right]$ is left normed S-diword, and so each $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)=\left[a_{1} u_{j} s_{j} v_{j} \dot{b}_{2}\right]$ is normal S-diword.

For 2.3, 2.4 or 2.5 , by noting that $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)=\left(\left(a_{1}\right) \vdash\left[u_{j} s_{j} v_{j}\right] \dashv\left(b_{2}\right)\right)$ and $\left[u_{j} s_{j} v_{j}\right]$ is normal S-diword, $\left(a_{1}\left[u_{j} s_{j} v_{j}\right] b_{2}\right)$ is also normal S-diword.

Now, for all cases, we have $\overline{\left[a_{1} u_{j} s_{j} v_{j} b_{2}\right]}=\left[a_{1} u_{j}\left[\overline{s_{j}}\right] v_{j} b_{2}\right]<[w]=\left[a_{1}[a c b] b_{2}\right]$.
Case 3. One of the subwords $\overline{s_{1}}$ and $\overline{s_{2}}$ contains another as a subword. Assume, for example, that $b_{2}=b b_{1}, a_{2}=a_{1} a, w_{1}=\overline{s_{1}}=a \overline{s_{2}} b$.

Again there are following five cases to consider:
$2.1[w]=\left[\dot{a}_{1} a\left[\overline{s_{2}}\right] b b_{1}\right] ;$
$2.2[w]=\left[a_{1} a\left[\overline{s_{2}}\right] b \dot{b_{1}}\right] ;$
$2.3[w]=\left[a_{1} \dot{a}\left[\overline{s_{2}}\right] b b_{1}\right] ;$
$2.4[w]=\left[a_{1} a\left[\dot{\overline{s_{2}}}\right] b b_{1}\right] ;$
$2.5[w]=\left[a_{1} a\left[\bar{s}_{2}\right] \dot{b} b_{1}\right]$.
Then

$$
\left[a_{1} s_{1} b_{1}\right]-\left[a_{2} s_{2} b_{2}\right]=\left(a_{1}\left(s_{1}-a s_{2} b\right) b_{1}\right)=\left(a_{1}\left(s_{1}, s_{2}\right)_{\left[w_{1}\right]} b_{1}\right)
$$

It is similar to the proof of the Case 2 that we have $\left[a_{1} s_{1} b_{1}\right] \equiv\left[a_{2} s_{2} b_{2}\right] \bmod (S,[w])$.

Definition 3.7 Let $S \subset D(X)$. Then

$$
\operatorname{Irr}(S) \triangleq\left\{u \in\left[X^{*}\right] \mid u \neq[a[\bar{s}] b], s \in S, a, b \in X^{*},[a s b] \text { is normal s-diword }\right\} .
$$

Lemma 3.8 Let $S \subset D(X)$ and $h \in D(X)$. Then h has a representation

$$
h=\sum_{I_{1}} \alpha_{i}\left[u_{i}\right]+\sum_{I_{2}} \beta_{j}\left[a_{j} s_{j} b_{j}\right]
$$

where $\left[u_{i}\right] \in \operatorname{Irr}(S), i \in I_{1},\left[a_{j} s_{j} b_{j}\right]$ normal s_{j}-diwords, $s_{j} \in S, j \in I_{2}$ with $\left[a_{1}\left[\overline{s_{1}}\right] b_{1}\right]>$ $\left[a_{2}\left[\overline{s_{2}}\right] b_{2}\right]>\cdots>\left[a_{n}\left[\overline{s_{n}}\right] b_{n}\right]$.

Proof. Let $h=\alpha_{1}[\bar{h}]+\cdots$. We prove the result by induction on $[\bar{h}]$.
If $[\bar{h}] \in \operatorname{Irr}(S)$, then take $\left[u_{1}\right]=[\bar{h}]$ and $h_{1}=h-\alpha_{1}\left[u_{1}\right]$. Clearly, $\left[\overline{h_{1}}\right]<[\bar{h}]$ or $h_{1}=0$.
If $[\bar{h}] \notin \operatorname{Irr}(S)$, then $[\bar{h}]=\left[a_{1}\left[\overline{s_{1}}\right] b_{1}\right]$ with $\left[a_{1} s_{1} b_{1}\right]$ a normal s_{1}-diword. Let $h_{1}=$ $h-\beta_{1}\left[a_{1} s_{1} b_{1}\right]$. Then $\left[\overline{h_{1}}\right]<[\bar{h}]$ or $h_{1}=0$.

The following theorem is the main result.

Theorem 3.9 (Composition-Diamond lemma) Let $S \subset D(X)$ be a monic set and the ordering $<$ as before, $\operatorname{Id}(S)$ is the ideal generated by S. Then $(i) \Rightarrow(i i) \Leftrightarrow(i i)^{\prime} \Leftrightarrow(i i i)$, where
(i) S is a Gröbner-Shirshov basis in $D(X)$.
(ii) $f \in I d(S) \Rightarrow[\bar{f}]=[a[\bar{s}] b]$ for some $s \in S, a, b \in X^{*}$ and [asb] a normal S-diword.
$(i i)^{\prime} f \in \operatorname{Id}(S) \Rightarrow f=\alpha_{1}\left[a_{1} s_{1} b_{1}\right]+\alpha_{2}\left[a_{2} s_{2} b_{2}\right]+\cdots+\alpha_{n}\left[a_{n} s_{n} b_{n}\right]$ with $\left[a_{1}\left[\overline{s_{1}}\right] b_{1}\right]>$ $\left[a_{2}\left[\overline{s_{2}}\right] b_{2}\right]>\cdots>\left[a_{n}\left[\overline{s_{n}}\right] b_{n}\right]$, where $\left[a_{i} s_{i} b_{i}\right]$ is normal s_{i}-diword, $i=1,2, \cdots, n$.
(iii) The set $\operatorname{Irr}(S)$ is a linear basis of the dialgebra $D(X \mid S)=D(X) / \operatorname{Id}(S)$ generated by X with defining relations S.

Proof. $\quad(i) \Rightarrow(i i)$. Let S be a Gröbner-Shirshov basis and $0 \neq f \in I d(S)$. We may assume, by Lemma 3.5, that

$$
f=\sum_{i=1}^{n} \alpha_{i}\left[a_{i} s_{i} b_{i}\right]
$$

where each $\alpha_{i} \in k, a_{i}, b_{i} \in X^{*}, s_{i} \in S$ and $\left[a_{i} s_{i} b_{i}\right]$ normal S-diword. Let

$$
\left[w_{i}\right]=\left[a_{i}\left[\overline{s_{i}}\right] b_{i}\right], \quad\left[w_{1}\right]=\left[w_{2}\right]=\cdots=\left[w_{l}\right]>\left[w_{l+1}\right] \geq \cdots, l \geq 1 .
$$

We will use induction on l and $\left[w_{1}\right]$ to prove that $[\bar{f}]=[a[\bar{s}] b]$ for some $s \in S$ and $a, b \in X^{*}$. If $l=1$, then $[\bar{f}]=\overline{\left[a_{1} s_{1} b_{1}\right]}=\left[a_{1}\left[\overline{s_{1}}\right] b_{1}\right]$ and hence the result holds. Assume that $l \geq 2$. Then, by Lemma 3.6, we have $\left[a_{1} s_{1} b_{1}\right] \equiv\left[a_{2} s_{2} b_{2}\right] \bmod \left(S,\left[w_{1}\right]\right)$.

Thus, if $\alpha_{1}+\alpha_{2} \neq 0$ or $l>2$, then the result follows from induction on l. For the case $\alpha_{1}+\alpha_{2}=0$ and $l=2$, we use induction on $\left[w_{1}\right]$. Now, the result follows.
(ii) $\Rightarrow(i i)^{\prime}$. Assume (ii) and $0 \neq f \in \operatorname{Id}(S)$. Let $f=\alpha_{1}[\bar{f}]+\sum_{\left[u_{i}\right]<[\bar{f}]} \alpha_{i}\left[u_{i}\right]$. Then, by (ii), $[\bar{f}]=\left[a_{1}\left[\overline{s_{1}}\right] b_{1}\right]$, where $\left[a_{1} s_{1} b_{1}\right]$ is a normal S-diword. Therefore,

$$
f_{1}=f-\alpha_{1}\left[a_{1} s_{1} b_{1}\right],\left[\overline{f_{1}}\right]<[\bar{f}] \text { or } f_{1}=0, f_{1} \in I d(S)
$$

Now, by using induction on $[\bar{f}]$, we have $(i i)^{\prime}$.
$(i i)^{\prime} \Rightarrow(i i)$. This part is clear.
$(i i) \Rightarrow(i i i)$. Assume $(i i)$. Then by Lemma [3.8, $\operatorname{Irr}(S)$ spans $D(X \mid S)$ as k-space.
Suppose that $0 \neq \sum \alpha_{i}\left[u_{i}\right] \in \operatorname{Id}(S)$ where $\left[u_{1}\right]>\left[u_{2}\right]>\cdots,\left[u_{i}\right] \in \operatorname{Irr}(S)$. Then by (ii), $\left[u_{1}\right]=\left[a_{1}\left[\overline{s_{1}}\right] b_{1}\right]$ where $\left[a_{1} s_{1} b_{1}\right]$ is a normal S-diword, a contradiction.

This shows (iii).
(iii) $\Rightarrow(i i)$. Assume (iii). Let $0 \neq f \in \operatorname{Id}(S)$. Since the elements in $\operatorname{Irr}(S)$ are linearly independent in $D(X \mid S)$, by Lemma $3.8,[\bar{f}]=[a[\bar{s}] b]$, where $[a s b]$ is a normal S-diword. Thus, (ii) follows.

Remark: In general, $(i i i) \nRightarrow(i)$. For example, it is noted that

$$
\operatorname{Irr}(S)=\left\{x_{j} \dashv x_{i_{1}} \dashv \cdots \dashv x_{i_{k}} \mid j \in I, i_{p} \in I-I_{0}, 1 \leq p \leq k, i_{1} \leq \cdots \leq i_{k}, k \geq 0\right\}
$$

is a linear basis of $D(X \mid S)$ in Theorem 4.3, Let

$$
S_{1}=\left\{x_{j} \vdash x_{i}-x_{i} \dashv x_{j}+\left\{x_{i}, x_{j}\right\}, x_{t} \dashv x_{i_{0}}, i, j, t \in I, i_{0} \in I_{0}\right\} .
$$

Then $\operatorname{Irr}\left(S_{1}\right)=\operatorname{Irr}(S)$ is a linear basis of $D(X \mid S)$. But in the proof of Theorem 4.3, we know that S_{1} is not a Gröbner-Shirshov basis of $D(X \mid S)$.

4 Applications

In this section, we give Gröbner-Shirshov bases for the universal enveloping dialgebra of a Leibniz algebra, the bar extension of a dialgebra, the free product of two dialgebras, and the Clifford dialgebra. By using our Theorem 3.9, we obtain some normal forms for dialgebras mentioned the above.
Definition 4.1 ([10]) A k-linear space L equipped with bilinear multiplication [,] is called a Leibniz algebra if for any $a, b, c \in L$,

$$
[[a, b], c]=[[a, c], b]+[a,[b, c]]
$$

i.e., the Leibniz identity is valid in L.

It is clear that if (D, \dashv, \vdash) is a dialgebra then $D^{(-)}=(D,[]$,$) is a Leibniz algebra, where$ $[a, b]=a \dashv b-b \vdash a$ for any $a, b \in D$.

If f is a Leibniz polynomial in variables X, then by $f^{(-)}$we mean a dialgebra polynomial in X obtained from f by transformation $[a, b] \mapsto a \dashv b-b \vdash a$.

Definition 4.2 Let L be a Leibniz algebra. A dialgebra $U(L)$ together with a Leibniz homomorphism $\varepsilon: L \rightarrow U(L)$ is called the universal enveloping dialgebra for L, if the following diagram commute:

where D is a dialgebra, δ is a Leibniz homomorphism and $f: U(L) \rightarrow D$ is a dialgebra homomorphism such that $f \varepsilon=\delta$ (i.e., $\varepsilon: L \rightarrow U(L)$ is a universal arrow in the sense of S. MacLane [13], p55).

An equivalent definition is as follows: Let $L=\operatorname{Lei}(X \mid S)$ is a Leibniz algebra presented by generators X and definition relations S. Then $U(L)=D\left(X \mid S^{(-)}\right)$is the dialgebra with generators X and definition relations $S^{(-)}=\left\{s^{(-)} \mid s \in S\right\}$.

Theorem 4.3 Let \mathcal{L} be a Leibniz algebra over a field k with the product $\{$,$\} . Let \mathcal{L}_{0}$ be the subspace of \mathcal{L} generated by the set $\{\{a, a\},\{a, b\}+\{b, a\} \mid a, b \in \mathcal{L}\}$. Let $\left\{x_{i} \mid i \in I_{0}\right\}$ be a basis of \mathcal{L}_{0} and $X=\left\{x_{i} \mid i \in I\right\}$ a well ordered basis of \mathcal{L} such that $I_{0} \subseteq I$. Let $U(L)=D\left(X \mid x_{i} \dashv x_{j}-x_{j} \vdash x_{i}-\left\{x_{i}, x_{j}\right\}\right)$ be the universal enveloping dialgebra for L and the ordering $<$ on $\left[X^{*}\right]$ as before. Then
(i) $D\left(X \mid x_{i} \dashv x_{j}-x_{j} \vdash x_{i}-\left\{x_{i}, x_{j}\right\}\right)=D(X \mid S)$, where S consists of the following polynomials:
(a) $f_{j i}=x_{j} \vdash x_{i}-x_{i} \dashv x_{j}+\left\{x_{i}, x_{j}\right\}$

$$
\text { (b) } \quad f_{j i \vdash t}=x_{j} \vdash x_{i} \vdash x_{t}-x_{i} \vdash x_{j} \vdash x_{t}+\left\{x_{i}, x_{j}\right\} \vdash x_{t}
$$

$$
\text { (e) } \quad h_{t \dashv i_{0}}=x_{t} \dashv x_{i_{0}}
$$

$$
\begin{aligned}
& (i, j \in I) \\
& (i, j, t \in I, j>i) \\
& \left(i_{0} \in I_{0}, t \in I\right) \\
& (i, j, t \in I, j>i) \\
& \left(i_{0} \in I_{0}, t \in I\right)
\end{aligned}
$$

(c) $h_{i_{0} \vdash t}=x_{i_{0}} \vdash x_{t}$
(d) $\quad f_{t \dashv j i}=x_{t} \dashv x_{j} \dashv x_{i}-x_{t} \dashv x_{i} \dashv x_{j}+x_{t} \dashv\left\{x_{i}, x_{j}\right\}$
(ii) S is a Gröbner-Shirshov basis in $D(X)$.
(iii) The set

$$
\left\{x_{j} \dashv x_{i_{1}} \dashv \cdots \dashv x_{i_{k}} \mid j \in I, i_{p} \in I-I_{0}, 1 \leq p \leq k, i_{1} \leq \cdots \leq i_{k}, k \geq 0\right\}
$$ is a linear basis of the universal enveloping algebra $U(\mathcal{L})$. In particular, \mathcal{L} is a Leibniz subalgebra of $U(\mathcal{L})$.

Proof. (i) By using the following

$$
f_{j i \vdash t}=f_{j i} \vdash x_{t} \text { and } f_{j i} \vdash x_{t}+f_{i j} \vdash x_{t}=\left(\left\{x_{i}, x_{j}\right\}+\left\{x_{j}, x_{i}\right\}\right) \vdash x_{t}
$$

we have (b) and (c) are in $\operatorname{Id}\left(f_{j i}\right)$. By symmetry, (d) and (e) are in $\operatorname{Id}\left(f_{j i}\right)$. This shows (i).
(ii) We will prove that all compositions in S are trivial modulo S (and [w]). For convenience, we extend linearly the functions $f_{j i}, f_{j i \vdash t}, f_{t \dashv j i}, h_{i_{0} \vdash t}$ and $h_{t \dashv i_{0}}$ to $f_{j\{p, q\}}\left(f_{\{p, q\} i}\right), f_{j i \vdash\{p, q\}}$ and $h_{\{p, q\} \dashv i_{0}}$, etc respectively. For example, if $\left\{x_{p}, x_{q}\right\}=\sum \alpha_{p q}^{s} x_{s}$, then

$$
\begin{aligned}
f_{j\{p, q\}} & =x_{j} \vdash\left\{x_{p}, x_{q}\right\}-\left\{x_{p}, x_{q}\right\} \dashv x_{j}+\left\{\left\{x_{p}, x_{q}\right\}, x_{j}\right\}=\sum \alpha_{p q}^{s} f_{j s}, \\
f_{j i \vdash\{p, q\}} & =\sum \alpha_{p q}^{s}\left(x_{j} \vdash x_{i} \vdash x_{s}-x_{i} \vdash x_{j} \vdash x_{s}+\left\{x_{i}, x_{j}\right\} \vdash x_{s}\right)=f_{j i} \vdash\left\{x_{p}, x_{q}\right\}, \\
h_{\{p, q\} \dashv i_{0}} & =\sum \alpha_{p q}^{s} h_{s \dashv i_{0}} .
\end{aligned}
$$

By using the Leibniz identity,

$$
\begin{equation*}
\{\{a, b\}, c\}=\{a,\{b, c\}\}+\{\{a, c\}, b\} \tag{4}
\end{equation*}
$$

we have

$$
\{a,\{b, b\}\}=0 \text { and }\{a,\{b, c\}+\{c, b\}\}=0
$$

for any $a, b, c \in \mathcal{L}$. It means that for any $i_{0} \in I_{0}, j \in I$,

$$
\begin{equation*}
\left\{x_{j}, x_{i_{0}}\right\}=0 \tag{5}
\end{equation*}
$$

and by noting that $\left\{x_{i_{0}}, x_{j}\right\}=\left\{x_{j}, x_{i_{0}}\right\}+\left\{x_{i_{0}}, x_{j}\right\}$, we have

$$
\begin{equation*}
\left\{x_{i_{0}}, x_{j}\right\} \in \mathcal{L}_{0} . \tag{6}
\end{equation*}
$$

This implies that \mathcal{L}_{0} is an ideal of \mathcal{L}. Clearly, $\mathcal{L} / \mathcal{L}_{0}$ is a Lie algebra.
The formulas (4), (5) and (6) are useful in the sequel.
In S, all the compositions are as follows.

1) Compositions of left or right multiplication.

All possible compositions in S of left multiplication are ones related to (a), (b) and (c).
By noting that for any $s, i, j, t \in I$, we have

$$
\begin{aligned}
x_{s} \dashv f_{j i} & =f_{s \dashv j i} \quad(j>i), \\
x_{s} \dashv f_{j i} & =-f_{s \dashv i j}+x_{s} \dashv\left(\left\{x_{i}, x_{j}\right\}+\left\{x_{j}, x_{i}\right\}\right) \quad(j<i), \\
x_{s} \dashv f_{i i} & =x_{s} \dashv\left\{x_{i}, x_{i}\right\}, \\
x_{s} \dashv f_{j i \vdash t} & =f_{s \dashv j i} \dashv x_{t} \quad(j>i) \quad \text { and } \\
x_{s} \dashv h_{i_{0} \vdash t} & =h_{s \dashv \imath_{0}} \dashv x_{t},
\end{aligned}
$$

it is clear that all cases are trivial modulo S.
By symmetry, all compositions in S of right multiplication are trivial modulo S.
2) Compositions of inclusion and intersection.

We denote, for example, $(a \wedge b)$ the composition of the polynomials of type (a) and type (b). It is noted that since (b) and (c) are both left normed, we have to prove that the corresponding compositions of the cases of $(b \wedge b),(b \wedge c),(c \wedge c)$ and $(c \wedge b)$ must be a linear combination of left normed S-diwords in which the leading term of each S-diword is less than w. Symmetrically, we consider the cases for the right normed (d) and (e).

All possible compositions of inclusion and intersection are as follows.
$(a \wedge c) \quad[w]=x_{i_{0}} \vdash x_{i}\left(i_{0} \in I_{0}\right)$. We have, by (5),

$$
\left(f_{i_{0} i}, h_{i_{0} \vdash i}\right)_{[w]}=-x_{i} \dashv x_{i_{0}}+\left\{x_{i}, x_{i_{0}}\right\}=-h_{i \dashv i_{0}} \equiv 0 \bmod (S,[w]) .
$$

$(a \wedge d) \quad[w]=x_{j} \vdash x_{i} \dashv x_{q} \dashv x_{p} \quad(q>p)$. We have

$$
\begin{aligned}
& \left(f_{j i}, f_{i \dashv q p}\right)_{[w]} \\
= & -x_{i} \dashv x_{j} \dashv x_{q} \dashv x_{p}+\left\{x_{i}, x_{j}\right\} \dashv x_{q} \dashv x_{p}+x_{j} \vdash x_{i} \dashv x_{p} \dashv x_{p}-x_{j} \vdash x_{i} \dashv\left\{x_{p}, x_{q}\right\} \\
= & -x_{i} \dashv f_{j \dashv q p}+f_{\{i, j\} \dashv q p}+f_{j i} \dashv x_{p} \dashv x_{q}-f_{j i} \dashv\left\{x_{p}, x_{q}\right\} \\
\equiv & 0 \bmod (S,[w]) .
\end{aligned}
$$

$(a \wedge e) \quad[w]=x_{j} \vdash x_{i} \dashv x_{i_{0}}\left(i_{0} \in I_{0}\right)$. We have

$$
\left(f_{j i}, h_{i \dashv i_{0}}\right)_{[w]}=-x_{i} \dashv x_{j} \dashv x_{i_{0}}+\left\{x_{i}, x_{j}\right\} \dashv x_{i_{0}}=-x_{i} \dashv h_{j \dashv i_{0}}+h_{\{i, j\} \dashv i_{0}} \equiv 0 \bmod (S,[w]) .
$$

$(b \wedge a)$ There are two cases to consider: $[w]=x_{j} \vdash x_{i} \vdash x_{t}$ and $[w]=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{p}$.
For $[w]=x_{j} \vdash x_{i} \vdash x_{t} \quad(j>i)$, by (4), we have

$$
\begin{aligned}
\left(f_{j i \vdash t}, f_{i t}\right)_{[w]} & =-x_{i} \vdash x_{j} \vdash x_{t}+\left\{x_{i}, x_{j}\right\} \vdash x_{t}+x_{j} \vdash x_{t} \dashv x_{i}-x_{j} \vdash\left\{x_{t}, x_{i}\right\} \\
& =-x_{i} \vdash f_{j t}+f_{\{i, j\} t}+f_{j t} \dashv x_{i}-f_{j\{t, i\}}+f_{i\{t, j\}}-f_{i t} \dashv x_{j}+f_{t \dashv j i} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

For $[w]=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{p} \quad(j>i)$, we have

$$
\begin{aligned}
& \left(f_{j i \vdash t}, f_{t p}\right)_{[w]} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \vdash x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{p}+x_{j} \vdash x_{i} \vdash x_{p} \dashv x_{t}-x_{j} \vdash x_{i} \vdash\left\{x_{p}, x_{t}\right\} \\
= & -x_{i} \vdash x_{j} \vdash f_{t p}+\left\{x_{i}, x_{j}\right\} \vdash f_{t p}+f_{j i \vdash p} \dashv x_{t}-f_{j i \vdash\{p, t\}} \\
\equiv & 0 \bmod (S,[w]) .
\end{aligned}
$$

$(b \wedge b) \quad$ There are two cases to consider: $[w]=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{s} \vdash x_{p}$ and $[w]=x_{j} \vdash x_{i} \vdash$ $x_{t} \vdash x_{p}$.
For $[w]=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{s} \vdash x_{p} \quad(j>i, t>s)$, we have

$$
\begin{aligned}
& \left(f_{j i \vdash t}, f_{t s \vdash p}\right)_{[w]} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \vdash x_{s} \vdash x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{s} \vdash x_{p}+x_{j} \vdash x_{i} \vdash x_{s} \vdash x_{t} \vdash x_{p} \\
& -x_{j} \vdash x_{i} \vdash\left\{x_{s}, x_{t}\right\} \vdash x_{p} \\
= & -x_{i} \vdash x_{j} \vdash f_{t s \vdash p}+\left\{x_{i}, x_{j}\right\} \vdash f_{t s \vdash p}+f_{j i \vdash s} \vdash x_{t} \vdash x_{p}-f_{j i \vdash\{s, t\}} \vdash x_{p} \\
\equiv & 0 \bmod (S,[w])
\end{aligned}
$$

since it is a combination of left normed S-diwords in which the leading term of each S-diword is less than w.
For $[w]=x_{j} \vdash x_{i} \vdash x_{t} \vdash x_{p} \quad(j>i>t)$, suppose that

$$
\left\{x_{i}, x_{j}\right\}=\sum_{m \in I_{1}} \alpha_{i j}^{m} x_{m}+\alpha_{i j}^{t} x_{t}+\sum_{n \in I_{2}} \alpha_{i j}^{n} x_{n}(m<t<n) .
$$

Denote

$$
B_{t \vdash\{i, j\} \vdash p}=x_{t} \vdash\left\{x_{i}, x_{j}\right\} \vdash x_{p}-\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{p}-\left\{x_{t},\left\{x_{i}, x_{j}\right\}\right\} \vdash x_{p} .
$$

Then

$$
B_{t \vdash\{i, j\} \vdash p}=\sum_{m \in I_{1}} \alpha_{i j}^{m} f_{t m \vdash p}-\sum_{n \in I_{2}} \alpha_{i j}^{n} f_{n \vdash \vdash p}-\sum_{q \in I_{0}} \beta_{q} h_{q \vdash p}
$$

is a linear combination of left normed S-diwords of length 2 or 3 , where

$$
\sum_{q \in I_{0}} \beta_{q} x_{q}=\sum_{m \in I_{1}} \alpha_{i j}^{m}\left(\left\{x_{t}, x_{m}\right\}+\left\{x_{m}, x_{t}\right\}\right)+\alpha_{i j}^{t}\left\{x_{t}, x_{t}\right\} .
$$

Denote

$$
\sum_{l \in I_{0}} \gamma_{l} x_{l}=-\left(\left\{x_{j},\left\{x_{t}, x_{i}\right\}\right\}+\left\{\left\{x_{t}, x_{i}\right\}, x_{j}\right\}\right)+\left(\left\{x_{i},\left\{x_{t}, x_{j}\right\}\right\}+\left\{\left\{x_{t}, x_{j}\right\}, x_{i}\right\}\right)
$$

Now, by (4), we have

$$
\begin{aligned}
& \left(f_{j i \vdash t}, f_{i \vdash \vdash p}\right)_{[w]} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \vdash x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \vdash x_{p}+x_{j} \vdash x_{t} \vdash x_{i} \vdash x_{p}-x_{j} \vdash\left\{x_{t}, x_{i}\right\} \vdash x_{p} \\
= & -x_{i} \vdash f_{j \nvdash \vdash p}-B_{t \vdash\{i, j\} \vdash p}+f_{j \vdash \vdash i} \vdash x_{p}-B_{j \vdash\{t, i\} \vdash p}+\sum_{l \in I_{0}} \gamma_{l} h_{l \vdash p} \\
& +B_{i \vdash\{t, j\} \vdash p}-f_{i \vdash \vdash j} \vdash x_{p}+x_{t} \vdash f_{j i \vdash p} \\
\equiv & 0 \bmod (S,[w])
\end{aligned}
$$

since it is a combination of left normed S-diwords in which the leading term of each S-diword is less than w.
$(b \wedge c)$ There are three cases to consider: $[w]=x_{j} \vdash x_{i_{0}} \vdash x_{t}\left(i_{0} \in I_{0}\right), \quad[w]=x_{j_{0}} \vdash x_{i} \vdash$ $x_{t}\left(j_{0} \in I_{0}\right)$ and $[w]=x_{j} \vdash x_{i} \vdash x_{t_{0}} \vdash x_{n}\left(t_{0} \in I_{0}\right)$.
Case 1. $[w]=x_{j} \vdash x_{i_{0}} \vdash x_{t} \quad\left(j>i_{0}, i_{0} \in I_{0}\right)$. By (6), we can assume that $\left\{x_{i_{0}}, x_{j}\right\}=\sum_{l \in I_{0}} \gamma_{l} x_{l}$. Then, we have

$$
\left(f_{j i_{0} \vdash t}, h_{i_{0} \vdash t}\right)_{[w]}=-x_{i_{0}} \vdash x_{j} \vdash x_{t}+\left\{x_{i_{0}}, x_{j}\right\} \vdash x_{t}=-h_{i_{0} \vdash j} \vdash x_{t}+\sum_{l \in I_{0}} \gamma_{l} h_{l \vdash t} \equiv 0 \bmod (S,[w]) .
$$

Case 2. $[w]=x_{j_{0}} \vdash x_{i} \vdash x_{t}\left(j_{0}>i, j_{0} \in I_{0}\right)$. By (5), we have

$$
\left(f_{j_{0} i \vdash t}, h_{j_{0} \vdash i}\right)_{[w]}=-x_{i} \vdash x_{j_{0}} \vdash x_{t}+\left\{x_{i}, x_{j_{0}}\right\} \vdash x_{t}=-x_{i} \vdash h_{j_{0} \vdash t} \equiv 0 \quad \bmod (S,[w]) .
$$

Case 3. $[w]=x_{j} \vdash x_{i} \vdash x_{t_{0}} \vdash x_{n} \quad\left(j>i, t_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(f_{j i \vdash t_{0}}, h_{t_{0} \vdash n}\right)_{[w]} & =-x_{i} \vdash x_{j} \vdash x_{t_{0}} \vdash x_{n}+\left\{x_{i}, x_{j}\right\} \vdash x_{t_{0}} \vdash x_{n} \\
& =\left(-x_{i} \vdash x_{j}+\left\{x_{i}, x_{j}\right\}\right) \vdash h_{t_{0} \vdash n} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

$(b \wedge d) \quad[w]=x_{j} \vdash x_{i} \vdash x_{t} \dashv x_{q} \dashv x_{p} \quad(j>i, q>p)$. We have

$$
\begin{aligned}
& \left(f_{j \vdash \vdash t}, f_{t \dashv q p}\right)_{[w]} \\
= & -x_{i} \vdash x_{j} \vdash x_{t} \dashv x_{q} \dashv x_{p}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \dashv x_{q} \dashv x_{p} \\
& +x_{j} \vdash x_{i} \vdash x_{t} \dashv x_{p} \dashv x_{q}-x_{j} \vdash x_{i} \vdash x_{t} \dashv\left\{x_{p}, x_{q}\right\} \\
= & -x_{i} \vdash x_{j} \vdash f_{t \dashv q p}+\left\{x_{i}, x_{j}\right\} \vdash f_{t \dashv q p}+f_{j i \vdash t} \dashv x_{p} \dashv x_{q}-f_{j i \vdash t} \dashv\left\{x_{p}, x_{q}\right\} \\
\equiv & 0 \bmod (S,[w]) .
\end{aligned}
$$

$(b \wedge e) \quad[w]=x_{j} \vdash x_{i} \vdash x_{t} \dashv x_{n_{0}} \quad\left(j>i, n_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(f_{j i \vdash t}, h_{t \dashv n_{0}}\right)_{[w]} & =-x_{i} \vdash x_{j} \vdash x_{t} \dashv x_{n_{0}}+\left\{x_{i}, x_{j}\right\} \vdash x_{t} \dashv x_{n_{0}} \\
& =\left(-x_{i} \vdash x_{j}+\left\{x_{i}, x_{j}\right\}\right) \vdash h_{t \dashv n_{0}} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

$(c \wedge a) \quad$ There are two cases to consider: $[w]=x_{n_{0}} \vdash x_{t}\left(n_{0} \in I_{0}\right)$ and $[w]=x_{n_{0}} \vdash x_{t} \vdash$ $x_{s}\left(n_{0} \in I_{0}\right)$.
For $[w]=x_{n_{0}} \vdash x_{t}\left(n_{0} \in I_{0}\right)$, we have

$$
\left(h_{n_{0} \vdash t}, f_{n_{0} t}\right)_{[w]}=x_{t} \dashv x_{n_{0}}-\left\{x_{t}, x_{n_{0}}\right\}=h_{t \dashv n_{0}} \equiv 0 \bmod (S,[w]) .
$$

For $[w]=x_{n_{0}} \vdash x_{t} \vdash x_{s}\left(n_{0} \in I_{0}\right)$, we have

$$
\left(h_{n_{0} \vdash t}, f_{t s}\right)_{[w]}=x_{n_{0}} \vdash x_{s} \dashv x_{t}-x_{n_{0}} \vdash\left\{x_{s}, x_{t}\right\}=h_{n_{0} \vdash s} \dashv x_{t}-h_{n_{0} \vdash\{s, t\}} \equiv 0 \quad \bmod (S,[w]) .
$$

$(c \wedge b) \quad[w]=x_{n_{0}} \vdash x_{t} \vdash x_{s} \vdash x_{p} \quad\left(t>s, n_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(h_{n_{0} \vdash t}, f_{t s \vdash p}\right)_{[w]} & =x_{n_{0}} \vdash x_{s} \vdash x_{t} \vdash x_{p}-x_{n_{0}} \vdash\left\{x_{s}, x_{t}\right\} \vdash x_{p} \\
& =h_{n_{0} \vdash s} \vdash x_{t} \vdash x_{p}-h_{n_{0} \vdash\{s, t\}} \vdash x_{p} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

$(c \wedge c) \quad[w]=x_{n_{0}} \vdash x_{t_{0}} \vdash x_{r}\left(n_{0}, t_{0} \in I_{0}\right)$. We have

$$
\left(h_{n_{0} \vdash t_{0}}, h_{t_{0} \vdash r r}\right)_{[w]}=0 .
$$

$(c \wedge d) \quad[w]=x_{n_{0}} \vdash x_{t} \dashv x_{q} \dashv x_{p} \quad\left(q>p, n_{0} \in I_{0}\right)$. We have

$$
\begin{aligned}
\left(h_{n_{0} \vdash t}, f_{t \dashv q p}\right)_{[w]} & =x_{n_{0}} \vdash x_{t} \dashv x_{p} \dashv x_{q}-x_{n_{0}} \vdash x_{t} \dashv\left\{x_{p}, x_{q}\right\} \\
& =h_{n_{0} \vdash t} \dashv\left(x_{p} \dashv x_{q}-\left\{x_{p}, x_{q}\right\}\right) \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

$(c \wedge e) \quad[w]=x_{n_{0}} \vdash x_{t} \dashv x_{s_{0}}\left(n_{0}, s_{0} \in I_{0}\right)$. We have

$$
\left(h_{n_{0} \vdash t}, h_{t \dashv s_{0}}\right)_{[w]}=0 .
$$

Since $(d \wedge d),(d \wedge e),(e \wedge d),(e \wedge e)$ are symmetric with $(b \wedge b),(b \wedge c),(c \wedge b),(c \wedge c)$ respectively, they have the similar representations. We omit the details.

So, we show that S is a Gröbner-Shirshov basis.
(iii) Clearly, the mentioned set is just the set $\operatorname{Ir}(S)$. Now, the results follow from Theorem 3.9,

A Gröbner-Shirshov basis S is called reduced if S is a monic set and no monomial in any element of the basis contains the leading words of the other elements of the basis as subwords.

Remark: Let the notation be in Theorem 4.3. Let $S^{\text {red }}$ consist of the following polynomials:
(a) $\quad f_{j i}=x_{j} \vdash x_{i}-x_{i} \dashv x_{j}+\left\{x_{i}, x_{j}\right\}$
(b) $\quad f_{j i \vdash t}=x_{j} \vdash x_{i} \vdash x_{t}-x_{i} \vdash x_{j} \vdash x_{t}+\left\{x_{i}, x_{j}\right\} \vdash x_{t}$
(c) $\quad h_{i_{0} \vdash t}=x_{i_{0}} \vdash x_{t}$
(d) $\quad f_{t \dashv j i}=x_{t} \dashv x_{j} \dashv x_{i}-x_{t} \dashv x_{i} \dashv x_{j}+x_{t} \dashv\left\{x_{i}, x_{j}\right\}$
(e) $\quad h_{t \dashv i_{0}}=x_{t} \dashv x_{i_{0}}$

$$
\begin{aligned}
& \left(i \in I, j \in I-I_{0}\right) \\
& \left(i, j \in I-I_{0}, j>i, t \in I\right) \\
& \left(i_{0} \in I_{0}, t \in I\right) \\
& \left(i, j \in I-I_{0}, j>i, t \in I\right) \\
& \left(i_{0} \in I_{0}, t \in I\right)
\end{aligned}
$$

Then $S^{r e d}$ is a reduced Gröbner-Shirshov basis for $D(X \mid S)$.
We have the following corollary.

Corollary 4.4 ([1]) Let the notation be as in Theorem 4.3. Then as linear spaces, $U(\mathcal{L})$ is isomorphic to $\mathcal{L} \otimes U\left(\mathcal{L} / \mathcal{L}_{0}\right)$, where $U\left(\mathcal{L} / \mathcal{L}_{0}\right)$ is the universal enveloping of the Lie algebra $\mathcal{L} / \mathcal{L}_{0}$.

Proof. Clearly, $\left\{x_{j} \mid j \in I-I_{0}\right\}$ is a k-basis of the Lie algebra $\mathcal{L} / \mathcal{L}_{0}$. It is well known that the universal enveloping $U\left(\mathcal{L} / \mathcal{L}_{0}\right)$ of the Lie algebra $\mathcal{L} / \mathcal{L}_{0}$ has a k-basis

$$
\left\{x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}} \mid i_{1} \leq \cdots \leq i_{k}, \quad i_{p} \in I-I_{0}, 1 \leq p \leq k, \quad k \geq 0\right\}
$$

By using (iii) in Theorem 4.3, the result follows.

Definition 4.5 Let D be a dialgebra. An element $e \in D$ is called a bar unit of D if $e \vdash x=x \dashv e=x$ for any $x \in D$.

Theorem 4.6 Each dialgebra has a bar unit extension.

Proof. Let (D, \vdash, \dashv) be an arbitrary dialgebra over a field k and A the ideal of D generated by the set $\{a \dashv b-a \vdash b \mid a, b \in D\}$. Let $X_{0}=\left\{x_{i_{0}} \mid i_{0} \in I_{0}\right\}$ be a k-basis of A and $X=\left\{x_{i} \mid i \in I\right\}$ a well ordered k-basis of D such that $I_{0} \subseteq I$. Then D has a presentation by the multiplication table $D=D(X \mid S)$, where $S=\left\{x_{i} \vdash x_{j}-\left\{x_{i} \vdash\right.\right.$ $\left.\left.x_{j}\right\}, x_{i} \dashv x_{j}-\left\{x_{i} \dashv x_{j}\right\}, i, j \in I\right\}$, where $\left\{x_{i} \vdash x_{j}\right\}$ and $\left\{x_{i} \dashv x_{j}\right\}$ are linear combinations of $x_{t}, t \in I$.

Let $D_{1}=D\left(X \cup\{e\} \mid S_{1}\right)$, where $S_{1}=S \cup\left\{e \vdash y-y, y \dashv e-y, e \dashv x_{0}, x_{0} \vdash e \mid y \in\right.$ $\left.X \cup\{e\}, x_{0} \in X_{0}\right\}$. Then D_{1} is a dialgebra with a bar unit e.

Denote

1. $f_{i \vdash j}=x_{i} \vdash x_{j}-\left\{x_{i} \vdash x_{j}\right\}$,
2. $f_{i \dashv j}=x_{i} \dashv x_{j}-\left\{x_{i} \dashv x_{j}\right\}$,
3. $g_{e \vdash y}=e \vdash y-y$,
4. $g_{y \dashv e}=y \dashv e-y$,
5. $\quad h_{x_{i_{0}} \vdash e}=x_{i_{0}} \vdash e$,
6. $h_{e \dashv x_{i_{0}}}=e \dashv x_{i_{0}}$,
where $i, j \in I, i_{0} \in I_{0}, y \in X \cup\{e\}$.
We show that $\left\{x_{t} \dashv x_{i_{0}}\right\}=0$ and $\left\{x_{i_{0}} \vdash x_{t}\right\}=0$ for any $t \in I, i_{0} \in I_{0}$.
Since $x_{i_{0}} \in A$, we have $x_{i_{0}}=\sum \alpha_{i}\left(c_{i} f_{i} d_{i}\right)$, where $f_{i}=a_{i} \dashv b_{i}-a_{i} \vdash b_{i}, \alpha_{i} \in k, a_{i}, b_{i} \in D$ and $c_{i}, d_{i} \in X^{*}$.

Since $x_{t} \dashv\left(c_{i}\left(a_{i} \dashv b_{i}-a_{i} \vdash b_{i}\right) d_{i}\right)=0$, we have $\left\{x_{t} \dashv\left\{c_{i}\left\{a_{i} \dashv b_{i}-a_{i} \vdash b_{i}\right\} d_{i}\right\}\right\}=0$ for each i. Then $\left\{x_{t} \dashv x_{i_{0}}\right\}=0$.

By symmetry, we have $\left\{x_{i_{0}} \vdash x_{t}\right\}=0$.
To prove the theorem, by using our Theorem [3.9, it suffices to prove that with the ordering on $\left[(X \cup\{e\})^{*}\right]$ as before, where $x<e, x \in X, S_{1}$ is a Gröbner-Shirshov basis in $D(X \cup\{e\})$. Now, we show that all compositions in S_{1} are trivial.

All possible compositions of left and right multiplication are: $z \dashv f_{i \vdash j}, z \dashv g_{e \vdash y}$, $z \dashv$ $h_{x_{i_{0}} \vdash e}, f_{i \dashv j} \vdash z, g_{y \dashv e} \vdash z, h_{e \dashv x_{i_{0}}} \vdash z, z \in X \cup\{e\}$.

For $z \dashv f_{i \vdash j}, z=x_{t} \in X$, since $\left(x_{t} \dashv x_{i}\right) \dashv x_{j}=x_{t} \dashv\left(x_{i} \vdash x_{j}\right)$, we have $\left\{\left\{x_{t} \dashv x_{i}\right\} \dashv\right.$ $\left.x_{j}\right\}=\left\{x_{t} \dashv\left\{x_{i} \vdash x_{j}\right\}\right\}$ and

$$
\begin{aligned}
& x_{t} \dashv f_{i \vdash j} \\
= & x_{t} \dashv x_{i} \dashv x_{j}-x_{t} \dashv\left\{x_{i} \vdash x_{j}\right\} \\
= & f_{t \dashv i} \dashv x_{j}+f_{\{t \dashv i\} \dashv j}-f_{t \dashv\{i \vdash j\}}+\left\{\left\{x_{t} \dashv x_{i}\right\} \dashv x_{j}\right\}-\left\{x_{t} \dashv\left\{x_{i} \vdash x_{j}\right\}\right\} \\
= & f_{t \dashv i} \dashv x_{j}+f_{\{t \dashv i\} \dashv j}-f_{t \dashv\{i \vdash j\}} \\
\equiv & 0 \bmod \left(S_{1}\right) .
\end{aligned}
$$

For $z \dashv f_{i \vdash j}, z=e$, let $\left\{x_{i} \dashv x_{j}\right\}-\left\{x_{i} \vdash x_{j}\right\}=\sum \alpha_{i 0} x_{i_{0}}$. Then

$$
\begin{aligned}
e \dashv f_{i \vdash j} & =e \dashv x_{i} \dashv x_{j}-e \dashv\left\{x_{i} \vdash x_{j}\right\} \\
& =e \dashv\left(x_{i} \dashv x_{j}-\left\{x_{i} \dashv x_{j}\right\}\right)+e \dashv\left\{x_{i} \dashv x_{j}\right\}-e \dashv\left\{x_{i} \vdash x_{j}\right\} \\
& =e \dashv f_{i \dashv j}+\sum \alpha_{i_{0}} h_{e \dashv x_{i_{0}}} \\
& \equiv 0 \bmod \left(S_{1}\right) .
\end{aligned}
$$

For $z \dashv g_{\text {e卜 } y}$, we have

$$
z \dashv g_{e \vdash y}=z \dashv e \dashv y-z \dashv y=(z \dashv e-z) \dashv y=g_{z \dashv e} \dashv y \equiv 0 \bmod \left(S_{1}\right)
$$

For $z \dashv h_{x_{i_{0}} \vdash e}$, we have

$$
z \dashv h_{x_{i_{0}} \dashv e}=z \dashv x_{i_{0}} \dashv e=z \dashv g_{x_{i_{0}} \dashv e}+z \dashv x_{i_{0}} .
$$

It is clear that $z \dashv x_{i_{0}}=h_{e \dashv x_{i_{0}}}$ if $z=e$ and $z \dashv x_{i_{0}}=x_{t} \dashv x_{i_{0}}-\left\{x_{t} \dashv x_{i_{0}}\right\}=f_{t-i_{0}}$ if $z=x_{t} \in X$, since $\left\{x_{t} \dashv x_{i_{0}}\right\}=0$. This implies that $z \dashv h_{x_{i_{0}} \vdash e} \equiv 0 \bmod \left(S_{1}\right)$.

Thus we show that all compositions of left multiplication in S_{1} are trivial modulo S_{1}. By symmetry, all compositions of right multiplication in S_{1} are trivial modulo S_{1}.

Now, all possible ambiguities [w] of compositions of intersection in S_{1} are:
$1 \wedge 1,\left[x_{i} x_{j} \dot{x}_{t}\right] ; 1 \wedge 2,\left[x_{i} \dot{x_{j}} x_{t}\right] ; 1 \wedge 4,\left[x_{i} \dot{x}_{j} e\right] ; 1 \wedge 5,\left[x_{i} x_{i_{0}} \dot{e}\right]$.
$2 \wedge 2,\left[\dot{x}_{i} x_{j} x_{t}\right] ; 2 \wedge 4,\left[\dot{x}_{i} x_{j} e\right]$.
$3 \wedge 1,\left[e x_{i} \dot{x}_{j}\right] ; 3 \wedge 2,\left[e \dot{x}_{i} x_{j}\right] ; 3 \wedge 3,[e e \dot{y}] ; 3 \wedge 4,[e \dot{y} e] ; 3 \wedge 5,\left[e x_{i_{0}} \dot{e}\right] ; 3 \wedge 6,\left[e \dot{e} x_{i_{0}}\right]$.
$4 \wedge 4,[$ yee $] ; 4 \wedge 6,\left[\right.$ yex $\left._{i_{0}}\right]$.
$5 \wedge 3,\left[x_{i_{0}} e \dot{y}\right] ; 5 \wedge 4,\left[x_{i_{0}} \dot{e} e\right] ; 5 \wedge 6,\left[x_{i_{0}} \dot{e} x_{j_{0}}\right]$.
$6 \wedge 2,\left[\dot{e} x_{i_{0}} x_{j}\right] ; 6 \wedge 4,\left[\dot{e} x_{i_{0}} e\right]$.
In the above, all $i, j, t \in I, i_{0}, j_{0} \in I_{0}$ and $y \in X \cup\{e\}$.
There is no composition of inclusion in S_{1}.
We will show that all compositions of intersection in S_{1} are trivial. We check only the cases of $1 \wedge 2,1 \wedge 5$ and $4 \wedge 6$. Others can be similarly proved.

For $1 \wedge 2,[w]=\left[x_{i} \dot{x_{j}} x_{t}\right]$, since $\left(x_{i} \vdash x_{j}\right) \dashv x_{t}=x_{i} \vdash\left(x_{j} \dashv x_{t}\right)$, we have $\left\{\left\{x_{i} \vdash x_{j}\right\} \dashv\right.$ $\left.x_{t}\right\}=\left\{x_{i} \vdash\left\{x_{j} \dashv x_{t}\right\}\right\}$ and

$$
\begin{aligned}
(1 \wedge 2)_{[w]} & =-\left\{x_{i} \vdash x_{j}\right\} \dashv x_{t}+x_{i} \vdash\left\{x_{j} \dashv x_{t}\right\} \\
& =-f_{\{i \vdash j\} \dashv t}+f_{i \vdash\{j \dashv t t\}}-\left\{\left\{x_{i} \vdash x_{j}\right\} \dashv x_{t}\right\}+\left\{x_{i} \vdash\left\{x_{j} \dashv x_{t}\right\}\right\} \\
& =-f_{\{i \vdash j\} \dashv t}+f_{i \vdash 〔 j \dashv-t\}} \\
& \equiv 0 \bmod \left(S_{1},[w]\right) .
\end{aligned}
$$

For $1 \wedge 5,[w]=\left[x_{i} x_{i_{0}} \dot{e}\right]$, since $x_{i} \vdash x_{i_{0}} \in A$, we have $\left\{x_{i} \vdash x_{i_{0}}\right\}=\sum \alpha_{j_{0}} x_{j_{0}}$ and

$$
(1 \wedge 5)_{[w]}=\left\{x_{i} \vdash x_{i_{0}}\right\} \vdash e=\sum \alpha_{j_{0}} h_{x_{j_{0}} \vdash e} \equiv 0 \bmod \left(S_{1},[w]\right) .
$$

For $4 \wedge 6,[w]=\left[\right.$ yex $\left._{i_{0}}\right]$, we have $(4 \wedge 6)_{[w]}=-h_{e \dashv x_{i_{0}}}$ if $y=e$ and $(4 \wedge 6)_{[w]}=-f_{t-i_{0}}$ if $y=x_{t} \in X$ since $\left\{x_{t} \dashv x_{i_{0}}\right\}=0$. Then $(4 \wedge 6)_{[w]} \equiv 0 \bmod \left(S_{1},[w]\right)$.

Then all the compositions in S_{1} are trivial.
The proof is complete.

Remark: Let the notation be as in the proof of Theorem4.6. Let $D^{\prime}=D\left(X \cup\left\{e_{j}\right\}_{J} \mid S^{\prime}\right)$ be a dialgebra, where $S^{\prime}=S \cup\left\{e_{j} \vdash y-y, y \dashv e_{j}-y, e_{j} \dashv x_{0}, x_{0} \vdash e_{j} \mid y \in X \cup\left\{e_{j}\right\}_{J}, x_{0} \in\right.$ $\left.X_{0}, j \in J\right\}$. Let J be a well ordered set. Then with the ordering on $\left[\left(X \cup\left\{e_{j}\right\}_{J}\right)^{*}\right]$ as before, where $x_{i}<e_{j}$ for all $i \in I, j \in J$, by a similar proof of Theorem 4.6, S^{\prime} is a Gröbner-Shirshov basis in $D\left(X \cup\left\{e_{j}\right\}_{J}\right)$. It follows from Theorem 3.9 that D can be embedded into the dialgebra D^{\prime} while D^{\prime} has bar units $\left\{e_{j}\right\}_{J}$.

Definition 4.7 Let D_{1}, D_{2} be dialgebras over a field k. The dialgebra $D_{1} * D_{2}$ with two dialgebra homomorphisms $\varepsilon_{1}: D_{1} \rightarrow D_{1} * D_{2}, \varepsilon_{2}: D_{2} \rightarrow D_{1} * D_{2}$ is called the free product of D_{1}, D_{2}, if the following diagram commute:

where D is a dialgebra, δ_{1}, δ_{2} are dialgebra homomorphisms and $f: D_{1} * D_{2} \rightarrow D$ is a dialgebra homomorphism such that $f \varepsilon_{1}=\delta_{1}, f \varepsilon_{2}=\delta_{2}$ (i.e., $\left(\varepsilon_{1}, \varepsilon_{2}\right):\left(D_{1}, D_{2}\right) \rightarrow$ $\left(D_{1} * D_{2}, D_{1} * D_{2}\right)$ is a universal arrow in the sense of S. Maclane [13]).

An equivalent definition is as follows: Let $D_{i}=D\left(X_{i} \mid S_{i}\right)$ be a presentation by generators and defining relations with $X_{1} \cap X_{2}=\varnothing, i=1,2$. Then $D_{1} * D_{2}=D\left(X_{1} \cup X_{2} \mid S_{1} \cup S_{2}\right)$.

Let $\left(D_{1}, \vdash, \dashv\right),\left(D_{2}, \vdash, \dashv\right)$ be two dialgebras over a field k, A_{1} the ideal of D_{1} generated by the set $\left\{a \dashv b-a \vdash b \mid a, b \in D_{1}\right\}$ and A_{2} the ideal of D_{2} generated by the set $\left\{c \dashv d-c \vdash d \mid c, d \in D_{2}\right\}$. Let $X_{0}=\left\{x_{i_{0}} \mid i_{0} \in I_{0}\right\}$ be a k-basis of A_{1} and $X=\left\{x_{i} \mid i \in I\right\}$ a well ordered k-basis of D_{1} such that $I_{0} \subseteq I$. Let $Y_{0}=\left\{y_{l_{0}} \mid l_{0} \in J_{0}\right\}$ be a k-basis of A_{2} and $Y=\left\{y_{l} \mid l \in J\right\}$ a well ordered k-basis of D_{2} such that $J_{0} \subseteq J$. Then D_{1} and D_{2} have multiplication tables:

$$
\begin{array}{ll}
D_{1}=D\left(X \mid S_{1}\right), & S_{1}=\left\{x_{i} \vdash x_{j}-\left\{x_{i} \vdash x_{j}\right\}, x_{i} \dashv x_{j}-\left\{x_{i} \dashv x_{j}\right\}, i, j \in I\right\}, \\
D_{2}=D\left(Y \mid S_{2}\right), & S_{2}=\left\{y_{l} \vdash y_{m}-\left\{y_{l} \vdash y_{m}\right\}, y_{l} \dashv y_{m}-\left\{y_{l} \dashv y_{m}\right\}, l, m \in J\right\} .
\end{array}
$$

The free product $D_{1} * D_{2}$ of D_{1} and D_{2} is

$$
D_{1} * D_{2}=D\left(X \cup Y \mid S_{1} \cup S_{2}\right)
$$

We order $X \cup Y$ by $x_{i}<y_{j}$ for any $i \in I, j \in J$. Then we have the following theorem.
Theorem 4.8 (i) S is a Gröbner-Shirshov basis of $D_{1} * D_{2}=D\left(X \cup Y \mid S_{1} \cup S_{2}\right)$, where S consists of the following relations:

1. $f_{x_{i} \vdash x_{j}}=x_{i} \vdash x_{j}-\left\{x_{i} \vdash x_{j}\right\}, \quad i, j \in I$,
2. $f_{x_{i} \dashv x_{j}}=x_{i} \dashv x_{j}-\left\{x_{i} \dashv x_{j}\right\}, \quad i, j \in I$,
3. $\quad f_{y_{l} \vdash y_{m}}=y_{l} \vdash y_{m}-\left\{y_{l} \vdash y_{m}\right\}, \quad l, m \in J$,
4. $\quad f_{y_{l} \dashv y_{m}}=y_{l} \dashv y_{m}-\left\{y_{l} \dashv y_{m}\right\}, \quad l, m \in J$,
5. $\quad h_{x_{i_{0}} \vdash y_{l}}=x_{i_{0}} \vdash y_{l}, \quad i_{0} \in I_{0}, l \in J$,
6. $\quad h_{y_{l} \dashv x_{i_{0}}}=y_{l} \dashv x_{i_{0}}, \quad i_{0} \in I_{0}, l \in J$,
7. $h_{y_{l_{0}}+x_{i}}=y_{l_{0}} \vdash x_{i}, \quad i \in I, l_{0} \in J_{0}$,
8. $h_{x_{i} \dashv y_{l_{0}}}=x_{i} \dashv y_{l_{0}}, \quad i \in I, l_{0} \in J_{0}$.
(ii) $\operatorname{Irr}(S)$, which is a k-linear basis of $D_{1} * D_{2}$, consists of all elements $z_{-m} \cdots z_{-1} \dot{z}_{0} z_{1} \cdots z_{n}$, where $m, n \geq 0, z_{0} \in X \cup Y, z_{i} \in\left(X \backslash X_{0}\right) \cup\left(Y \backslash Y_{0}\right),-m \leq i \leq n, i \neq 0$, neither $\left\{z_{j}, z_{j+1}\right\} \subseteq$ X nor $\left\{z_{j}, z_{j+1}\right\} \subseteq Y,-m \leq j \leq n-1$.

Proof. By the proof of Theorem 4.6, we have $\left\{x_{i} \dashv x_{i_{0}}\right\}=0,\left\{x_{i_{0}} \vdash x_{i}\right\}=0,\left\{y_{l} \dashv\right.$ $\left.y_{l_{0}}\right\}=0$ and $\left\{y_{l_{0}} \vdash y_{l}\right\}=0$ for any $i \in I, i_{0} \in I_{0}, l \in J, l_{0} \in J_{0}$.

Firstly, we prove that $h_{y_{l} \dashv x_{i_{0}}} \in I d\left(S_{1} \cup S_{2}\right)$ for any $i_{0} \in I_{0}, l \in J$.
Since $y_{l} \dashv\left(c_{i}\left(\left\{a_{i} \dashv b_{i}\right\}-\left\{a_{i} \vdash b_{i}\right\}\right) d_{i}\right)=y_{l} \dashv\left(c_{i}\left(\left(a_{i} \dashv b_{i}-\left\{a_{i} \dashv b_{i}\right\}\right)-\left(a_{i} \vdash b_{i}-\left\{a_{i} \vdash\right.\right.\right.\right.$ $\left.\left.\left.b_{i}\right\}\right) d_{i}\right) \in \operatorname{Id}\left(S_{1} \cup S_{2}\right)$, we have $y_{l} \dashv\left\{c_{i}\left\{a_{i} \dashv b_{i}-a_{i} \vdash b_{i}\right\} d_{i}\right\} \in \operatorname{Id}\left(S_{1} \cup S_{2}\right)$ for all i, l. Then $h_{y_{l} \dashv x_{i_{0}}} \in \operatorname{Id}\left(S_{1} \cup S_{2}\right)$.

Similarly, we have $h_{x_{i_{0}} \vdash y_{l}}, h_{y_{l_{0}} \vdash x_{i}}, h_{x_{i} \dashv y_{l_{0}}} \in I d\left(S_{1} \cup S_{2}\right)$ for any $i \in I, i_{0} \in I_{0}, l \in$ $J, l_{0} \in J_{0}$.

Secondly, we will show that all compositions in S are trivial.
All possible compositions of left and right multiplication are: $z \dashv f_{x_{i} \vdash x_{j}}, z \dashv f_{y_{l} \vdash y_{m}}, z \dashv$ $h_{x_{i_{0}} \vdash y_{l}}, z \dashv h_{y_{l_{0}} \vdash x_{i}}, f_{x_{i} \dashv x_{j}} \vdash z, f_{y_{l} \dashv y_{m}} \vdash z, h_{y_{l} \dashv x_{i_{0}}} \vdash z, h_{x_{i} \dashv y_{l_{0}}} \vdash z$, where $z \in X \cup Y$.

By a similar proof in Theorem 4.6, all compositions of left and right multiplication mentioned the above are trivial modulo S.

Now, all possible ambiguities $[w]$ of compositions of intersection in S are:

$$
\begin{aligned}
& 1 \wedge 1,\left[x_{i} x_{j} \dot{x}_{t}\right] ; 1 \wedge 2,\left[x_{i} \dot{x}_{j} x_{t}\right] ; 1 \wedge 5,\left[x_{i} x_{i_{0}} \dot{y}_{l}\right] ; 1 \wedge 8,\left[x_{i} \dot{x}_{j} y_{l_{0}}\right] . \\
& 2 \wedge 2,\left[\dot{x}_{i} x_{j} x_{t}\right] ; 2 \wedge 8,\left[\dot{x}_{i} x_{j} y_{l_{0}}\right] . \\
& 3 \wedge 3,\left[y_{l} y_{m} \dot{y}_{t}\right] ; 3 \wedge 4,\left[y_{l} \dot{y}_{m} y_{t}\right] ; 3 \wedge 6,\left[y_{l} \dot{y}_{m} x_{i_{0}}\right] ; 3 \wedge 7,\left[y_{m} y_{l_{0}} \dot{x}_{i}\right] . \\
& 4 \wedge 4,\left[\dot{y}_{l} y_{m} y_{t}\right] ; 4 \wedge 6,\left[\dot{y}_{l} y_{m} x_{i_{0}}\right] . \\
& 5 \wedge 3,\left[x_{i_{0}} y_{l} \dot{y}_{t}\right] ; 5 \wedge 4,\left[x_{i_{0}} \dot{y}_{l} y_{t}\right] ; 5 \wedge 6,\left[x_{i_{0}} \dot{y}_{j_{l}}\right] ; 5 \wedge 7,\left[x_{i_{0}} y_{l_{0}} \dot{x}_{t}\right] . \\
& 6 \wedge 2,\left[\dot{y}_{l} x_{i_{0}} x_{t}\right] ; 6 \wedge 8,\left[\dot{y}_{m} x_{i_{0}} y_{l_{0}}\right] . \\
& 7 \wedge 1,\left[y_{l_{0}} x_{i} \dot{x}_{j}\right] ; 7 \wedge 2,\left[y_{l_{0}} \dot{x}_{i} x_{j}\right] ; 7 \wedge 5,\left[y_{l_{0}} x_{i_{0}} \dot{y}_{m}\right] ; 7 \wedge 8,\left[{l_{0}} y_{m_{0}}\right] . \\
& 8 \wedge 4,\left[\dot{x} i_{i} y_{l_{0}} y_{t}\right] ; 8 \wedge 6,\left[\dot{x}_{i} y_{l_{0}} x_{i_{0}}\right] .
\end{aligned}
$$

There is no composition of inclusion in S.
We will show that all compositions of intersection in S are trivial. We check only the cases of $1 \wedge 5$ and $2 \wedge 8$. Others can be similarly proved.

For $1 \wedge 5,[w]=\left[x_{i} x_{i_{0}} \dot{y}_{l}\right]$, let $\left\{x_{i} \vdash x_{i_{0}}\right\}=\sum \alpha_{t_{0}} x_{t_{0}}$. Then

$$
(1 \wedge 5)_{[w]}=-\left\{x_{i} \vdash x_{i_{0}}\right\} \vdash y_{l}=-\sum \alpha_{t_{0}} h_{x_{t_{0}} \vdash y_{l}} \equiv 0 \quad \bmod (S,[w]) .
$$

For $2 \wedge 8,[w]=\left[\dot{x}_{i} x_{j} y_{l_{0}}\right]$, let $\left\{x_{i} \dashv x_{j}\right\}=\sum \alpha_{t} x_{t}$. Then

$$
(2 \wedge 8)_{[w]}=-\left\{x_{i} \dashv x_{j}\right\} \dashv y_{l_{0}}=-\sum \alpha_{t} h_{x_{t} \dashv y_{l_{0}}} \equiv 0 \bmod (S,[w]) .
$$

Then all the compositions in S are trivial. This show (i).
(ii) follows from our Theorem 3.9,

Definition 4.9 Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set, k a field of characteristic $\neq 2$ and $\left(a_{i j}\right)_{n \times n}$ a non-zero symmetric matrix over k. Denote

$$
D\left(X \cup\{e\} \mid x_{i} \vdash x_{j}+x_{j} \dashv x_{i}-2 a_{i j} e, e \vdash y-y, y \dashv e-y, x_{i}, x_{j} \in X, y \in X \cup\{e\}\right)
$$

by $C(n, f)$. Then $C(n, f)$ is called a Clifford dialgebra.

We order $X \cup\{e\}$ by $x_{1}<\cdots<x_{n}<e$.
Theorem 4.10 Let the notation be as the above. Then
(i) S is a Gröbner-Shirshov basis of Clifford dialgebra $C(n, f)$, where S consists of the following relations:

$$
\begin{aligned}
& \text { 1. } f_{x_{i} x_{j}}=x_{i} \vdash x_{j}+x_{j} \dashv x_{i}-2 a_{i j} e, \\
& \text { 2. } g_{e \vdash y}=e \vdash y-y, \\
& \text { 3. } g_{y \dashv e}=y \dashv e-y, \\
& \text { 4. } f_{y \dashv x_{i} x_{j}}=y \dashv x_{i} \dashv x_{j}+y \dashv x_{j} \dashv x_{i}-2 a_{i j} y, \quad(i>j) \text {, } \\
& \text { 5. } f_{y \dashv x_{i} x_{i}}=y \dashv x_{i} \dashv x_{i}-a_{i i} y, \\
& \text { 6. } f_{x_{i} x_{j} \vdash y}=x_{i} \vdash x_{j} \vdash y+x_{j} \vdash x_{i} \vdash y-2 a_{i j} y, \quad(i>j) \text {, } \\
& \text { 7. } f_{x_{i} x_{i} \vdash y}=x_{i} \vdash x_{i} \vdash y-a_{i i} y, \\
& \text { 8. } h_{x_{i} e}=x_{i} \vdash e-e \dashv x_{i} \text {, }
\end{aligned}
$$

where $x_{i}, x_{j} \in X, y \in X \cup\{e\}$.
(ii) A k-linear basis of $C(n, f)$ is a set of all elements of the form $\dot{y} x_{i_{1}} \cdots x_{i k}$, where $y \in X \cup\{e\}, x_{i j} \in X$ and $i_{1}<i_{2}<\cdots<i_{k} \quad(k \geq 0)$.

Proof. Let $S_{1}=\left\{f_{x_{i} x_{j}}, g_{e \vdash y}, g_{y \dashv e} \mid x_{i}, x_{j} \in X, y \in X \cup\{e\}\right\}$.
Firstly, we will show that $f_{y \dashv x_{i} x_{j}}, f_{y \dashv x_{i} x_{i}}, f_{x_{i} x_{j} \vdash y}, f_{x_{i} x_{i} \vdash y}, h_{x_{i} e} \in \operatorname{Id}\left(S_{1}\right)$.
In fact, $f_{y \dashv x_{i} x_{j}}=y \dashv f_{x_{i} x_{j}}+2 a_{i j} g_{y \dashv e}$ implies $f_{y \dashv x_{i} x_{j}}, f_{y \dashv x_{i} x_{i}} \in I d\left(S_{1}\right)$. By symmetry, we have $f_{x_{i} x_{j} \vdash y}, f_{x_{i} x_{i} \vdash y} \in \operatorname{Id}\left(S_{1}\right)$.

If there exists t such that $a_{i t} \neq 0$, then

$$
2 a_{i t} h_{x_{i} e}=f_{x_{i} x_{i} \vdash x_{t}}-x_{i} \vdash f_{x_{i} \vdash x_{t}}+f_{x_{i} \vdash x_{t}} \dashv x_{i}-f_{x_{t} \dashv x_{i} x_{i}} \in I d\left(S_{1}\right) .
$$

Otherwise, $a_{i t}=0$ for any t. Since $\left(a_{i j}\right) \neq 0$, there exists $j \neq i$ such that $a_{j t} \neq 0$ for some t. Then

$$
\begin{aligned}
& 2 a_{j t} h_{x_{i} e} \\
= & f_{x_{i} x_{j} \vdash x_{t}}-x_{i} \vdash f_{x_{j} \vdash x_{t}}-x_{j} \vdash f_{x_{i} \vdash x_{t}}+f_{x_{i} \vdash x_{t}} \dashv x_{j}+f_{x_{j} \vdash x_{t}} \dashv x_{i}-f_{x_{t} \dashv x_{i} x_{j}} \in \operatorname{Id}\left(S_{1}\right) .
\end{aligned}
$$

This shows that $h_{x_{i} e} \in \operatorname{Id}\left(S_{1}\right)$.
Secondly, we will show that all compositions in S is trivial.
All possible compositions of left and right multiplication are: $z \dashv f_{x_{i} x_{j}}, z \dashv g_{\text {eคy }}, z \dashv$ $f_{x_{i} x_{j} \vdash y}, z \dashv f_{x_{i} x_{i} \vdash y}, z \dashv h_{x_{i} e}, f_{x_{i} x_{j}} \vdash z, g_{y \dashv e} \vdash z, f_{y \dashv x_{i} x_{j}} \vdash z, f_{y \dashv x_{i} x_{i}} \vdash z, h_{x_{i} e} \vdash z$, where $z \in X \cup\{e\}$. We just check the cases of $f_{y \dashv x_{i} x_{j}} \vdash z$ and $h_{x_{i} e} \vdash z$. Others can be similarly proved.

For $f_{y \dashv x_{i} x_{j}} \vdash z$, we have

$$
f_{y \dashv x_{i} x_{j}} \vdash z=y \vdash x_{i} \vdash x_{j} \vdash z+y \vdash x_{j} \vdash x_{i} \vdash z-2 a_{i j} y \vdash z=y \vdash f_{x_{i} x_{j} \vdash z} \equiv 0 \bmod (S) .
$$

For $h_{x_{i} e} \vdash z$,

$$
h_{x_{i} e} \vdash z=x_{i} \vdash e \vdash z-e \vdash x_{i} \vdash z=x_{i} \vdash g_{e \vdash z}-g_{e \vdash x_{i}} \vdash z \equiv 0 \bmod (S) .
$$

Now, all possible ambiguities $[w]$ of compositions of intersection in S are:

$$
\begin{aligned}
& 1 \wedge 3,\left[x_{i} \dot{x}_{j} e\right] ; 1 \wedge 4,\left[x_{i} \dot{x}_{j} x_{m} x_{n}\right](m>n) ; 1 \wedge 5,\left[x_{i} \dot{x}_{j} x_{n} x_{n}\right] . \\
& 2 \wedge 1,\left[e x_{i} \dot{x}_{j}\right] ; 2 \wedge 2,[e e \dot{y}] ; 2 \wedge 3,[e \dot{y} e] ; 2 \wedge 4,\left[e \dot{y} x_{i} x_{j}\right](i>j) ; \\
& 2 \wedge 5,\left[e \dot{y} x_{i} x_{i}\right] ; 2 \wedge 6,\left[e x_{i} x_{j} \dot{y}\right](i>j) ; 2 \wedge 7,\left[e x_{i} x_{i} \dot{y}\right] ; 2 \wedge 8,\left[e x_{i} \dot{e}\right] . \\
& 3 \wedge 3,[\dot{y} e e] ; 3 \wedge 4,\left[\dot{\text { y }} e x_{i} x_{j}\right](i>j) ; 3 \wedge 5 \text {, }\left[\dot{\text { y }} e x_{i} x_{i}\right] \text {. } \\
& 4 \wedge 3,\left[\dot{y} x_{i} x_{j} e\right](i>j) ; 4 \wedge 4,\left[\dot{y} x_{i} x_{j} x_{m} x_{n}\right](i>j, m>n),\left[\dot{y} x_{i} x_{j} x_{t}\right](i>j>t) ; \\
& 4 \wedge 5,\left[\dot{y} x_{i} x_{j} x_{t} x_{t}\right](i>j),\left[\dot{y} x_{i} x_{j} x_{j}\right](i>j) . \\
& 5 \wedge 3,\left[\dot{y} x_{i} x_{i} e\right] ; 5 \wedge 4,\left[\dot{y} x_{i} x_{i} x_{m} x_{n}\right](m>n),\left[\dot{y} x_{i} x_{i} x_{j}\right](i>j) \text {; } \\
& 5 \wedge 5,\left[\dot{y} x_{i} x_{i} x_{m} x_{m}\right],\left[\dot{y} x_{i} x_{i} x_{i}\right] . \\
& 6 \wedge 1,\left[x_{i} x_{j} x_{m} \dot{x}_{n}\right](i>j) ; 6 \wedge 2,\left[x_{i} x_{j} e \dot{y}\right](i>j) ; 6 \wedge 3,\left[x_{i} x_{j} \dot{y} e\right](i>j) ; \\
& 6 \wedge 4,\left[x_{i} x_{j} \dot{y} x_{m} x_{n}\right](i>j, m>n) ; 6 \wedge 5,\left[x_{i} x_{j} \dot{y} x_{m} x_{m}\right](i>j) ; \\
& 6 \wedge 6,\left[x_{i} x_{j} x_{m} x_{n} \dot{y}\right](i>j, m>n),\left[x_{i} x_{j} x_{t} \dot{y}\right](i>j>t) \text {; } \\
& 6 \wedge 7,\left[x_{i} x_{j} x_{m} x_{m} \dot{y}\right](i>j),\left[x_{i} x_{j} x_{j} \dot{y}\right](i>j) ; 6 \wedge 8,\left[x_{i} x_{j} x_{t} \dot{e}\right](i>j) . \\
& 7 \wedge 1,\left[x_{i} x_{i} x_{m} \dot{x}_{n}\right] ; 7 \wedge 2,\left[x_{i} x_{i} e \dot{y}\right] ; 7 \wedge 3,\left[x_{i} x_{i} \dot{y} e\right] ; 7 \wedge 4,\left[x_{i} x_{i} \dot{y} x_{m} x_{n}\right](m>n) ; \\
& 7 \wedge 5,\left[x_{i} x_{i} \dot{y} x_{m} x_{m}\right] ; 7 \wedge 6,\left[x_{i} x_{i} x_{m} x_{n} \dot{y}\right](m>n),\left[x_{i} x_{i} x_{t} \dot{y}\right](i>t) ; \\
& 7 \wedge 7,\left[x_{i} x_{i} x_{m} x_{m} \dot{y}\right],\left[x_{i} x_{i} x_{i} \dot{y}\right] ; 7 \wedge 8,\left[x_{i} x_{i} x_{j} \dot{e}\right] . \\
& 8 \wedge 3,\left[x_{i} \dot{e} e\right] ; 8 \wedge 4,\left[x_{i} \dot{e} x_{m} x_{n}\right](m>n) ; 8 \wedge 5,\left[x_{i} \dot{e} x_{m} x_{m}\right] \text {. }
\end{aligned}
$$

All possible ambiguities [w] of compositions of inclusion in S are:

$$
\begin{aligned}
& 6 \wedge 1,\left[x_{i} x_{j} \dot{x}_{t}\right](i>j) ; 6 \wedge 8,\left[x_{i} x_{j} \dot{e}\right](i>j) . \\
& 7 \wedge 1,\left[x_{i} x_{i} \dot{x}_{j}\right] ; 7 \wedge 8,\left[x_{i} x_{i} \dot{e}\right] .
\end{aligned}
$$

We just check the cases of intersection $1 \wedge 4,4 \wedge 4,6 \wedge 4,6 \wedge 8,8 \wedge 4$ and of inclusion $6 \wedge 1,6 \wedge 8$. Others can be similarly proved.

For $1 \wedge 4,[w]=\left[x_{i} \dot{x}_{j} x_{m} x_{n}\right](m>n)$, we have

$$
\begin{aligned}
& (1 \wedge 4)_{[w]} \\
= & x_{j} \dashv x_{i} \dashv x_{m} \dashv x_{n}-2 a_{i j} e \dashv x_{m} \dashv x_{n}-x_{i} \vdash x_{j} \dashv x_{n} \dashv x_{m}+2 a_{m n} x_{i} \vdash x_{j} \\
= & x_{j} \dashv f_{x_{i} \dashv x_{m} x_{n}}-2 a_{i j} f_{e \dashv x_{m} x_{n}}-f_{x_{i} x_{j}} \dashv x_{n} \dashv x_{m}+2 a_{m n} f_{x_{i} x_{j}} \\
\equiv & 0 \bmod (S,[w]) .
\end{aligned}
$$

For $4 \wedge 4$, there are two cases to consider: $\left[w_{1}\right]=\left[\dot{y} x_{i} x_{j} x_{m} x_{n}\right](i>j, m>n)$ and $\left[w_{2}\right]=\left[\dot{y} x_{i} x_{j} x_{t}\right](i>j>t)$. We have
$(4 \wedge 4)_{\left[w_{1}\right]}$
$=y \dashv x_{j} \dashv x_{i} \dashv x_{m} \dashv x_{n}-2 a_{i j} y \dashv x_{m} \dashv x_{n}-y \dashv x_{i} \dashv x_{j} \dashv x_{n} \dashv x_{m}+2 a_{m n} y \dashv x_{i} \dashv x_{j}$
$=y \dashv x_{j} \dashv f_{x_{i} \dashv x_{m} x_{n}}-2 a_{i j} f_{y \dashv x_{m} x_{n}}-f_{y \dashv x_{i} x_{j}} \dashv x_{n} \dashv x_{m}+2 a_{m n} f_{y \dashv x_{i} x_{j}}$
$\equiv 0 \bmod \left(S,\left[w_{1}\right]\right) \quad$ and
$(4 \wedge 4)_{\left[w_{2}\right]}$
$=y \dashv x_{j} \dashv x_{i} \dashv x_{t}-2 a_{i j} y \dashv x_{t}-y \dashv x_{i} \dashv x_{t} \dashv x_{j}+2 a_{j t} y \dashv x_{i}$
$=y \dashv f_{x_{j} \dashv x_{i} x_{t}}-f_{y \dashv x_{j} x_{t}} \dashv x_{i}-f_{y \dashv x_{i} x_{t}} \dashv x_{j}+y \dashv f_{x_{t} \dashv x_{i} x_{j}}$
$\equiv 0 \bmod \left(S,\left[w_{2}\right]\right)$.

For $6 \wedge 4,[w]=\left[x_{i} x_{j} \dot{y} x_{m} x_{n}\right](i>j, m>n)$, we have

$$
\begin{aligned}
& (6 \wedge 4)_{[w]} \\
= & x_{j} \vdash x_{i} \vdash y \dashv x_{m} \dashv x_{n}-2 a_{i j} y \dashv x_{m} \dashv x_{n}-x_{i} \vdash x_{j} \vdash y \dashv x_{n} \dashv x_{m}+2 a_{m n} x_{i} \vdash x_{j} \vdash y \\
= & x_{j} \vdash x_{i} \vdash f_{y \dashv x_{m} x_{n}}-2 a_{i j} f_{y \dashv x_{m} x_{n}}-f_{x_{i} x_{j} \vdash y} \dashv x_{n} \dashv x_{m}+2 a_{m n} f_{x_{i} x_{j} \vdash y} \\
\equiv & 0 \bmod (S,[w]) .
\end{aligned}
$$

For $6 \wedge 8,[w]=\left[x_{i} x_{j} x_{t} \dot{e}\right](i>j)$, we have

$$
\begin{aligned}
(6 \wedge 8)_{[w]} & =x_{j} \vdash x_{i} \vdash x_{t} \vdash e-2 a_{i j} x_{t} \vdash e+x_{i} \vdash x_{j} \vdash e \dashv x_{t} \\
& =x_{j} \vdash x_{i} \vdash h_{x_{t} e}-2 a_{i j} h_{x_{t} e}+f_{x_{i} x_{j} \vdash e} \dashv x_{t} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

For $8 \wedge 4,[w]=\left[x_{i} \dot{e} x_{m} x_{n}\right](m>n)$, we have

$$
\begin{aligned}
(8 \wedge 4)_{[w]} & =-e \dashv x_{i} \dashv x_{m} \dashv x_{n}-x_{i} \vdash e \dashv x_{n} \dashv x_{m}+2 a_{m n} x_{i} \vdash e \\
& =-e \dashv f_{x_{i} \dashv x_{m} x_{n}}-h_{x_{i} e} \dashv x_{n} \dashv x_{m}+2 a_{m n} h_{x_{i} e} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

Now, we check the compositions of inclusion $6 \wedge 1$ and $6 \wedge 8$.
For $6 \wedge 1,[w]=\left[x_{i} x_{j} \dot{x}_{t}\right](i>j)$, we have

$$
\begin{aligned}
(6 \wedge 1)_{[w]} & =x_{j} \vdash x_{i} \vdash x_{t}-2 a_{i j} x_{t}-x_{i} \vdash x_{t} \dashv x_{j}+2 a_{j t} x_{i} \vdash e \\
& =x_{j} \vdash f_{x_{i} x_{t}}-f_{x_{i} x_{t}} \dashv x_{j}+2 a_{j t} h_{x_{i} e}-f_{x_{j} x_{t}} \dashv x_{i}+f_{x_{t} \dashv x_{i} x_{j}}+2 a_{i t} h_{x_{j} e} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

For $6 \wedge 8,[w]=\left[x_{i} x_{j} \dot{e}\right](i>j)$, we have

$$
\begin{aligned}
(6 \wedge 8)_{[w]} & =x_{j} \vdash x_{i} \vdash e-2 a_{i j} e+x_{i} \vdash e \dashv x_{j} \\
& =x_{j} \vdash h_{x_{i} e}+h_{x_{i} e} \dashv x_{j}+h_{x_{j} e} \dashv x_{i}+f_{e \dashv x_{i} x_{j}} \\
& \equiv 0 \bmod (S,[w]) .
\end{aligned}
$$

Then all the compositions in S are trivial. We have proved (i).
For (ii), since the mentioned set is just the set $\operatorname{Irr}(S)$, by Theorem 3.9 the result holds. The proof is complete.

Remark: In the Theorem4.10, if the matrix $\left(a_{i j}\right)_{n \times n}=0$, then Clifford dialgebra $C(n, f)$ has a Gröbner-Shirshov basis S^{\prime} which consists of the relations 1-7.

Acknowledgement: The authors would like to thank P.S. Kolesnikov who gives some valuable remarks for this paper.

References

[1] M. Aymon and P.-P. Grivel, Un theoreme de Poincare-Birkhoff-Witt pour les algebres de Leibniz, Comm. Algebra, 31(2003), N2, 527-544.
[2] G.M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29, 178-218(1978).
[3] L.A. Bokut, Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Mat., 36, 1173-1219(1972).
[4] L.A. Bokut, Imbeddings into simple associative algebras, Algebra i Logika, 15, 117142(1976).
[5] L.A. Bokut and Yuqun Chen, Gröbner-Shirshov bases for Lie algebras: after A.I. Shirshov, Southeast Asian Bull. Math., 31, 1057-1076(2007).
[6] L.A. Bokut and K.P. Shum, Gröbner and Gröbner-Shirshov bases in algebra: an elementary approach, Southeast Asian Bull. Math., 29, 227-252(2005).
[7] B. Buchberger, An algorithm for finding a basis for the residue class ring of a zerodimensional polynomial ideal [in German], Ph.D. thesis, University of Innsbruck, Austria, (1965).
[8] B. Buchberger, An algorithmical criteria for the solvability of algebraic systems of equations[in German], Aequationes Math., 4, 374-383(1970).
[9] P.S. Kolesnikov, Conformal representations of Leibniz algebras, arXiv:math/0611501.
[10] J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Ens. Math. 39, 269-293(1993).
[11] J.-L. Loday, Algebras with two associative operations (dialgebras), C. R. Acad. Sci. Paris 321, 141-146(1995).
[12] J.-L. Loday, Dialgebras, in: Dialgebras and related operads, Lecture Notes in Mathematics, Vol. 1763. Berlin: Springer Verl., 2001, 7-66.
[13] S. MacLane, Categories for the Working Mathematician, Springer, 1997.
[14] A.I. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z., 3(1962), 292-296(in Russian); English translation in SIGSAM Bull., 33(2), 3-6(1999).

[^0]: *Supported by the RFBR and the Integration Grant of the SB RAS (No. 1.9).
 ${ }^{\dagger}$ Corresponding author.
 \ddagger Supported by the NNSF of China (No.10771077) and the NSF of Guangdong Province (No.06025062).

[^1]: *Supported by the NNSF of China (Nos.10771077, 10911120389) and the NSF of Guangdong Province (No.06025062).
 †Supported by RFBR 01-09-00157, LSS-344.2008.1 and SB RAS Integration grant No. 2009.97 (Russia).
 ${ }^{\ddagger}$ Corresponding author.

