
ar
X

iv
:0

80
4.

06
38

v4
  [

m
at

h.
R

A
] 

 1
6 

M
ay

 2
01

0
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1 Introduction

Recently, J.-L. Loday (1995, [10]) gave the definition of a new class of algebras, dialgebras,
which is closely connected to his notion of Leibniz algebras (1993, [9]) and in the same
way as associative algebras are connected to Lie algebras. In the manuscript [11], J.-L.
Loday found a normal form of elements of a free dialgebra. Here we continue to study free
dialgebras and prove the composition-diamond lemma for them. As it is well known, this
kind of lemma is the cornerstone of the theory of Gröbner and Gröbner-Shirshov bases
(see, for example, [5] and cited literature). In commutative-associative case, this lemma is
equivalent to the Main Buchberger’s Theorem ([6], [7]). For Lie and associative algebras,
this is the Shirshov’s lemma [12] (see also L.A. Bokut [3], [4] and G. Bergman [2]). As
an application, we get another proof of the Poincare-Birkhoff-Witt theorem for Leibniz
algebras, see M. Aymon, P.-P. Grivel [1] and P. Kolesnikov [8].
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‡Supported by the NNSF of China (No.10771077) and the NSF of Guangdong Province (No.06025062).
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2 Preliminaries

Definition 2.1 Let k be a field. A k-linear space D equipped with two bilinear multipli-
cations ⊢ and ⊣ is called a dialgebra, if both ⊢ and ⊣ are associative and

a ⊣ (b ⊢ c) = a ⊣ b ⊣ c

(a ⊣ b) ⊢ c = a ⊢ b ⊢ c

a ⊢ (b ⊣ c) = (a ⊢ b) ⊣ c

for any a, b, c ∈ D.

Definition 2.2 Let D be a dialgebra, B ⊂ D. Let us define diwords (dimonomials) of D
in the set B by induction:

(i) b = (b), b ∈ B is a diword in B of length |b| = 1.

(ii) (u) is called a diword in B of length n, if (u) = ((v) ⊣ (w)) or (u) = ((v) ⊢ (w)),
where (v), (w) are diwords in B of length k, l respectively and k + l = n.

Proposition 2.3 ([11]) Let D be a dialgebra and B ⊂ D. Any diword of D in the set B
is equal to a diword in B of the form

(u) = b−m ⊢ · · · ⊢ b−1 ⊢ b0 ⊣ b1 ⊣ · · · ⊣ bn (1)

where bi ∈ B, −m ≤ i ≤ n, m ≥ 0, n ≥ 0. Any bracketing of the right side of (1) gives
the same result. �

Definition 2.4 Let X be a set. A free dialgebra D(X) generated by X over k is defined
in a usual way by the following commutative diagram:

✲

❄

�
�

�
��✠

D

D(X)X i

ϕ
∃!ϕ∗ (homomorphism)

where D is any dialgebra.

In [11], a construction of a free dialgebra is given.

Proposition 2.5 ([11]) Let D(X) be free dialgebra generated by X over k. Any diword
in X is equal to the unique diword in X of the form

[u] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn = x−m · · ·x−1ẋ0x1 · · ·xn (2)

where xi ∈ X, m ≥ 0, n ≥ 0. We call [u] a normal diword (in X) with the associative
word u, u ∈ X∗. Clearly, if [u] = [v], then u = v. In (2), x0 is called the center of the
normal diword [u]. Let [u], [v] be two normal diwords, then [u] ⊢ [v] is the normal diword
[uv] with the center at the center of [v]. Accordingly, [u] ⊣ [v] is the normal diword [uv]
with the center at the center of [u]. �
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Example 2.6

(x−1 ⊢ x0 ⊣ x1) ⊢ (y−1 ⊢ y0 ⊣ y1) = x−1 ⊢ x0 ⊢ x1 ⊢ y−1 ⊢ y0 ⊣ y1,

(x−1 ⊢ x0 ⊣ x1) ⊣ (y−1 ⊢ y0 ⊣ y1) = x−1 ⊢ x0 ⊣ x1 ⊣ y−1 ⊣ y0 ⊣ y1. �

Definition 2.7 A k-linear space L equipped with bilinear multiplication [, ] is called a
Leibniz algebra if for any a, b, c ∈ L,

[[a, b], c] = [[a, c], b] + [a, [b, c]]

i.e., the Jacobi identity is valid in L.

It is clear that if (D,⊣,⊢) is a dialgebra then D(−) = (D, [, ]) is a Leibniz algebra, where
[a, b] = a ⊣ b− b ⊢ a for any a, b ∈ D.

3 Composition-Diamond lemma for dialgebras

Let X be a well ordered set, D(X) the free dialgebra over k, X∗ the free monoid generated
by X and [X∗] the set of normal diwords in X . Let us define deg-lex order on [X∗] in the
following way: for any [u], [v] ∈ [X∗],

[u] < [v] ⇐⇒ wt([u]) < wt([v]) lexicographicaly,

where
wt([u]) = (n +m+ 1, m, x−m, · · · , x0, · · · , xn)

if [u] = x−m · · ·x−1ẋ0x1 · · ·xn. It is easy to see that the order < is monomial in the sense:

[u] < [v] =⇒ x ⊢ [u] < x ⊢ [v], [u] ⊣ x < [v] ⊣ x, for any x ∈ X.

Any polynomial f ∈ D(X) has the form

f =
∑

[u]∈[X∗]

f([u])[u] = α[f ] +
∑

αi[ui],

where [f ], [ui] are normal diwords in X , [f ] > [ui], α, αi, f([u]) ∈ k. We call [f ] the
leading term of f . Denote by suppf the set {[u]|f([u]) 6= 0} and deg(f) by |[f ]|. f is
called monic if α = 1. f is called left (right) normed if f =

∑
αiuiẋi (f =

∑
αiẋiui),

where each αi ∈ k, xi ∈ X and ui ∈ X∗. The same terminology will be used for normal
diwords.

If [u], [v] are both left normed or both right normed, then it is clear that for any
w ∈ [X∗],

[u] < [v] =⇒ [u] ⊢ w < [v] ⊢ w, w ⊢ [u] < w ⊢ [v], [u] ⊣ w < [v] ⊣ w, w ⊣ [u] < w ⊣ [v].

Let S ⊂ D(X). By an S-diword g we will mean g is a diword in {X ∪ S} with only
one occurrence of s ∈ S. If this is the case and g = (asb) for some a, b ∈ X∗ and s ∈ S,
we also call g an s-diword.
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From Proposition 2.3 it follows easily that any S-diword is equal to

[asb] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn|xk 7→s (3)

where −m ≤ k ≤ n, xk ∈ X, s ∈ S. To be more precise, [asb] = [aṡb] if k = 0;
[asb] = [asb1ẋ0b2] if k < 0 and [asb] = [a1ẋ0a2sb] if k > 0. Note that any bracketing of
[asb] gives the same result, for example, [asb] = [(a1a2)sb] = [a1(a2s)b] if a = a1a2. If
the center of the s-diword [asb] is in a, then we denote by [ȧsb] = [a1ẋ0a2sb]. Similarly,
[asḃ] = [asb1ẋ0b2] (of course, some ai, bi may be empty).

Definition 3.1 The S-diword (3) is called a normal S-diword if one of the following
conditions holds:

(i) k = 0.

(ii) k < 0 and s is left normed.

(iii) k > 0 and s is right normed.

We call a normal s-diword [asb] a left (right) normed s-diword, if both s and [asb] are
left (right) normed. In particulary, s is a left (right) normed s-diword, if s is left (right)
normed polynomial.

The following lemma follows from the above properties of the order of normal diwords.

Lemma 3.2 For a normal S-diword [asb], the leading term of [asb] is equal to [a[s]b],
that is, [asb] = [a[s]b]. More specifically, if

[asb] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn|xk 7→s,

then

x−m ⊢ · · · ⊢ x−1 ⊢ s ⊣ x1 ⊣ · · · ⊣ xn = x−m ⊢ · · · ⊢ x−1 ⊢ [s] ⊣ x1 ⊣ · · · ⊣ xn

x−m ⊢ · · · ⊢ s ⊢ · · · ⊢ x0 ⊣ · · · ⊣ xn = x−m ⊢ · · · ⊢ [s] ⊢ · · · ⊢ x0 ⊣ · · · ⊣ xn

x−m ⊢ · · · ⊢ x0 ⊣ · · · ⊣ s ⊣ · · · ⊣ xn = x−m ⊢ · · · ⊢ x0 ⊣ · · · ⊣ [s] ⊣ · · · ⊣ xn �

For convenience, we denote [a[s]b] by [asb] for a normal S-diword [asb].

Now, we define compositions of dipolynomials in D(X).

Definition 3.3 Let the order < be as before and f, g ∈ D(X) with f, g monic.

1) Composition of left (right) multiplication.

Let f be a not right normed polynomial and x ∈ X. Then x ⊣ f is called the
composition of left multiplication. Clearly, x ⊣ f is a right normed polynomial (or
0).

Let f be a not left normed polynomial and x ∈ X. Then f ⊢ x is called the
composition of right multiplication. Clearly, f ⊢ x is a left normed polynomial (or
0).
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2) Composition of including.

Let
[w] = [f ] = [agb],

where [agb] is a normal g-diword. Then

(f, g)[w] = f − [agb]

is called the composition of including. The transformation f 7→ f − [agb] is called
the elimination of leading diword (ELW) of g in f .

3) Composition of intersection.

Let
[w] = [fb] = [ag], |f |+ |g| > |w|,

where [fb] is a normal f -diword and [ag] a normal g-diword. Then

(f, g)[w] = [fb]− [ag]

is called the composition of intersection.

Remark In the Definition 3.3, for the case of 2) or 3), we have (f, g)[w] < [w]. For the
case of 1), deg(x ⊣ f) ≤ deg(f) + 1 and deg(f ⊢ x) ≤ deg(f) + 1.

Definition 3.4 Let the order < be as before, S ⊂ D(X) a monic set and f, g ∈ S.

1) Let x ⊣ f be a composition of left multiplication. Then x ⊣ f is called trivial modulo
S, denoted by x ⊣ f ≡ 0 mod(S), if

x ⊣ f =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ [X∗], si ∈ S, [aisibi] right normed si-diword and
|[aisibi]| ≤ deg(x ⊣ f).

Let f ⊢ x be a composition of right multiplication. Then f ⊢ x is called trivial
modulo S, denoted by f ⊢ x ≡ 0 mod(S), if

f ⊢ x =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ [X∗], si ∈ S, [aisibi] left normed si-diword and |[aisibi]| ≤
deg(f ⊢ x).

2) Composition (f, g)[w] of including (intersection) is called trivial modulo (S, [w]),
denoted by (f, g)[w] ≡ 0 mod(S, [w]), if

(f, g)[w] =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ [X∗], si ∈ S, [aisibi] normal si-diword, [aisibi] < [w]
and each [aisibi] is right (left) normed si-diword whenever both f and [agb] ([fb] and
[ag]) are right (left) normed S-diwords.
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The following proposition is useful when one checks the compositions of left and right
multiplications.

Proposition 3.5 Let the order < be as before, S ⊂ D(X) a monic set and f ∈ S. Let
x ⊣ f be a composition of left multiplication. Then x ⊣ f ≡ 0 mod(S) if and only if

x ⊣ f =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S is right normed, [aisibi] = [ȧisibi] and |[aisibi]| ≤
deg(x ⊣ f).

Accordingly, for the composition of right multiplication, we have a similar conclusion.

Proof Assume that x ⊣ f =
∑

αi[aisibi], where each αi ∈ k, ai, bi ∈ [X∗], [aisibi] =
[ȧisibi], si ∈ S right normed and |[aisibi]| ≤ deg(x ⊣ f). Then, we have the expression

x ⊣ f = [ẋf ] =
∑

I1

αp[ẋpapspbp] +
∑

I2

βq[aqẋqa
′
qsqbq],

where each αp, βq ∈ k, xp, xq ∈ X, ap, aq, a
′
q, bp, bq ∈ X∗, aq 6= 1, sp, sq ∈ S are right

normed. From this it follows that
∑

I2
βq[aqẋqa

′
qsqbp] = 0. Now, the results follow. �

Definition 3.6 Let S ⊂ D(X) be a monic set and the order < as before. We call the
set S a Gröbner-Shirshov set (basis) in D(X) if any composition of polynomials in S is
trivial modulo S (and [w]).

The following two lemmas play key role in the proof of Theorem 3.9.

Lemma 3.7 Let S ⊂ D(X) and [asb] an S-diword. Assume that each composition of
right or left multiplication is trivial modulo S. Then, [asb] has a presentation:

[asb] =
∑

αi[aisibi],

where each αi ∈ k, si ∈ S, ai, bi ∈ [X∗] and each [aisibi] is normal si-diword.

Proof Following Proposition 2.3, we assume that

[asb] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn|xk 7→s.

There are three cases to consider.

Case 1. k = 0. Then [asb] is a normal S-diword.

Case 2. k < 0. Then [asb] = a ⊢ (s ⊢ xk+1) ⊢ b, k < −1 or [asb] = a ⊢ (s ⊢ x0) ⊣ b.
If s is left normed then [asb] is a normal S-diword. If s is not left normed then for the
composition s ⊢ xk+1 (k < 0) of right multiplication, we have

s ⊢ xk+1 =
∑

αi[aisibi],

6



where each αi ∈ k, ai, bi ∈ [X∗], si ∈ S and [aisibi] is left normed si-diword. Then

[asb] =
∑

αi(a ⊢ [aisibi] ⊢ b)

or
[asb] =

∑
αi(a ⊢ [aisibi] ⊣ b)

is a linear combination of normal S-diwords.

Case 3. k > 0 is similar to the Case 2. �

Lemma 3.8 Let S ⊂ D(X) and each composition (f, g)[w] in S of including (intersection)
trivial modulo (S, [w]). Let [a1s1b1] and [a2s2b2] be normal S-diwords such that [w] =
[a1s̄1b1] = [a2s̄2b2]. Then,

[a1s1b1] ≡ [a2s2b2] mod(S, [w]).

Proof Because a1s̄1b1 = a2s̄2b2 as words, there are three cases to consider.

Case 1. Subwords s1, s2 have empty intersection. Assume, for example, that b1 = bs2b2
and a2 = a1s1b. Because any normal S-diword may be bracketing in any way, we have

[a2s2b2]− [a1s1b1] = (a1s1(b(s2 − [s2])b2))− ((a1(s1 − [s1])b)s2b2).

For any t ∈ supp(s2 − s2) (t ∈ supp(s1 − s1)), we prove that (a1s1btb2) ((a1tbs2b2)) is a
normal s1-diword (s2-diword ). There are five cases to consider.

1.1 [w] = [ȧ1s1bs2b2];

1.2 [w] = [a1ṡ1bs2b2];

1.3 [w] = [a1s1ḃs2b2];

1.4 [w] = [a1s1bṡ2b2];

1.5 [w] = [a1s1bs2ḃ2].

For 1.1, since [a1s1b1] and [a2s2b2] are normal S-diwords, both s1 and s2 are right normed
by the definition, in particular, t is right normed. It follows that (a1s1btb2) = [ȧ1s1btb2] is
a normal s1-diword.

For 1.2, it is clear that (a1s1btb2) is a normal s1-diword and t is right normed.

For 1.3, 1.4 and 1.5, since [a1s1b1] is normal s1-diword, s1 is left normed by the definition,
which implies that (a1s1btb2) is a normal s1-diword. Moreover, t is right normed, if 1.3,
and left normed, if 1.5.

Thus, for all cases, we have [a1s1btb2] = [a1s1btb2] < [a1s1bs2b2] = [w].

Similarly, for any t ∈ supp(s1−s1), (a1tbs2b2) is a normal s2-diword and [a1tbs2b2] < [w].

Case 2. Subwords s1 and s2 have non-empty intersection c. Assume, for example, that
b1 = bb2, a2 = a1a, w1 = s1b = as2 = acb.

There are following five cases to consider:

2.1 [w] = [ȧ1s1bb2];

2.2 [w] = [a1s1bḃ2];

2.3 [w] = [a1ȧcbb2];

2.4 [w] = [a1aċbb2];
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2.5 [w] = [a1acḃb2].

Then
[a2s2b2]− [a1s1b1] = (a1([as2]− [s1b])b2) = (a1(s1, s2)[w1]b2),

where [w1] = [acb] is as follows:

2.1 [w1] is right normed;

2.2 [w1] is left normed;

2.3 [w1] = [ȧcb];

2.4 [w1] = [aċb];

2.5 [w1] = [acḃ].

Since S is a Gröbner-Shirshov basis, there exist βj ∈ k, uj, vj ∈ [X∗], sj ∈ S such that
[s1b]− [as2] =

∑
j βj [ujsjvj ], where each [ujsjvj ] is normal S-diword and [ujsjvj ] < [w1] =

[acb]. Therefore,

[a2s2b2]− [a1s1b1] =
∑

j

βj(a1[ujsjvj ]b2).

Now, we prove that each (a1[ujsjvj]b2) is normal sj-diword and (a1[ujsjvj ]b2) < [w] =
[a1s1bb2].

For 2.1, since [ȧ1s1bb2] and [ȧ1as2b2] are normal S-diwords, both [s1b] and [as2] are right
normed S-diwords. Then, by the definition, each [ujsjvj] is right normed S-diword, and
so each (a1[ujsjvj ]b2) = [ȧ1ujsjvjb2] is a normal S-diword.

For 2.2, both [s1b] and [as2] must be left normed S-diwords. Then, by the definition,
each [ujsjvj ] is left normed S-diword, and so each (a1[ujsjvj]b2) = [a1ujsjvj ḃ2] is a normal
S-diword.

For 2.3, 2.4 or 2.5, by noting that (a1[ujsjvj ]b2) = ((a1) ⊢ [ujsjvj ] ⊣ (b2)) and [ujsjvj]
is normal S-diword, (a1[ujsjvj ]b2) is also normal S-diword.

Now, for all cases, we have [a1ujsjvjb2] = [a1ujsjvjb2] < [w] = [a1acbb2].

Case 3. One of the subwords s1 and s2 contains another as a subword. Assume, for
example, that b2 = bb1, a2 = a1a, w1 = s1 = as2b.

Again there are following five cases to consider:

2.1 [w] = [ȧ1as2bb1];

2.2 [w] = [a1as2bḃ1];

2.3 [w] = [a1ȧs2bb1];

2.4 [w] = [a1aṡ2bb1];

2.5 [w] = [a1as2ḃb1].

Then
[a1s1b1]− [a2s2b2] = (a1(s1 − as2b)b1) = (a1(s1, s2)[w1]b1)

It is similar to the proof of the Case 2, that we have [a1s1b1] ≡ [a2s2b2] mod(S, [w]). �

The following theorem is the main result.

Theorem 3.9 (Composition-Diamond Lemma) Let S ⊂ D(X) be a monic set and the
order < as before. Then (i) ⇒ (ii) ⇔ (ii)′ ⇔ (iii) ⇒ (iv), where

8



(i) S is a Gröbner-Shirshov basis.

(ii) For any f ∈ D(X), 0 6= f ∈ Id(S) ⇒ f = [asb] for some s ∈ S, a, b ∈ [X∗] and
[asb] a normal S-diword.

(ii)′ For any f ∈ D(X), if 0 6= f ∈ Id(S), then

f = α1[a1s1b1]+α2[a2s2b2]+· · ·+αn[ansnbn] with [a1s1b1] > [a2s2b2] > · · · > [ansnbn],

where [aisibi] is normal S-diword, i = 1, 2, · · · , n.

(iii) The set

Irr(S) = {u ∈ [X∗]|u 6= [asb], s ∈ S, a, b ∈ [X∗], [asb] is normal S-diword}

is a linear basis of the dialgebra D(X|S).

(iv) For each composition (f, g)[w] of including (intersection), we have

(f, g)[w] =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ [X∗], si ∈ S, [aisibi] normal S-diword and [aisibi] < [w].

Proof (i) ⇒ (ii). Let S be a Gröbner-Shirshov basis and 0 6= f ∈ Id(S). We can
assume, by Lemma 3.7, that

f =
n∑

i=1

αi[aisibi],

where each αi ∈ k, ai, bi ∈ [X∗], si ∈ S and [aisibi] normal S-diword. Let

[wi] = [aisibi], [w1] = [w2] = · · · = [wl] > [wl+1] ≥ · · ·

We will use the induction on l and [w1] to prove that f = [asb], for some s ∈ S and a, b ∈
[X∗]. If l = 1, then f = [a1s1b1] = [a1s1b1] and hence the result holds. Assume that l ≥ 2.
Then, by Lemma 3.8, we have [a1s1b1] ≡ [a2s2b2] mod(S, [w1]).

Thus, if α1+α2 6= 0 or l > 2, then the result holds. For the case α1+α2 = 0 and l = 2,
we use the induction on [w1]. Now, the result follows.

(ii) ⇒ (ii)′. Assume (ii) and f ∈ Id(S). Let f = α1f +
∑

[ui]<f αi[ui]. Then, by (ii),

f = [a1s1b1], where [a1s1b1] is a normal S-diword. Therefore,

f1 = f − α1[a1s1b1], f1 < f, f1 ∈ Id(S).

Now, by using induction on f , we have (ii)′.

(ii)′ ⇒ (ii). This part is clear.

(ii)′ ⇒ (iii). Assume (ii)′. We firstly prove that, for any h ∈ D(X), we have

h =
∑

I1

αi[ui] +
∑

I2

βj[ajsjbj ] (4)

where [ui] ∈ Irr(S), i ∈ I1, [ajsjbj ] normal S-diwords, j ∈ I2.

9



Let h = α1h+ · · · . We use the induction on h.

If h ∈ Irr(S), then take [u1] = h and h1 = h− α1[u1]. Clearly, h1 < h.

If h 6∈ Irr(S), then h = [a1s1b1] with [a1s1b1] a normal S-diword. Let h1 = h−β1[a1s1b1].
Then h1 < h.

Suppose that 0 6=
∑

αi[ui] =
∑

βj[ajsjbj ], where [u1] > [u2] > · · · , [ui] ∈ Irr(S) and
[a1s1b1] > [a2s2b2] > · · · . Then, [u1] = [a1s1b1], a contradiction.

Now, (iii) follows.

(iii) ⇒ (ii) and (iv). Assume (iii). For any 0 6= f ∈ Id(S), f̄ 6∈ Irr(S) implies that
f̄ = [as̄b], where [asb] is a normal S-diword. This shows (ii).

By noting that (f, g)[w] ∈ Id(S) and by using (4) and ELW, we have

(f, g)[w] =
∑

αi[aisibi]

where each αi ∈ k, ai, bi ∈ [X∗], si ∈ S, [aisibi] normal S-diword and [aisibi] < [w]. �

4 Applications

Now, by using Theorem 3.9, we obtain a Gröbner-Shirshov basis for the universal en-
veloping algebra of a Leibniz algebra.

Theorem 4.1 Let L be a Leibniz algebra over a field k with the product {, }. Let L0 be
the subspace of L generated by the set {{a, a}, {a, b} + {b, a} | a, b ∈ L}. Let {xi|i ∈ I0}
be a basis of L0 and X = {xi|i ∈ I} a linearly ordered basis of L such that I0 ⊆ I. Let
D(X|xi ⊣ xj − xj ⊢ xi − {xi, xj}) be the dialgebra and the order < on [X∗] as before.
Then

(i) D〈X|xi ⊣ xj − xj ⊢ xi − {xi, xj}〉 = D(X|S), where S consists of the following
polynomials:

1. fji = xj ⊢ xi − xi ⊣ xj + {xi, xj} (i, j ∈ I)

2. fji⊢t = xj ⊢ xi ⊢ xt − xi ⊢ xj ⊢ xt + {xi, xj} ⊢ xt (i, j, t ∈ I, j > i)

3. hi0⊢t = xi0 ⊢ xt (i0 ∈ I0, t ∈ I)

4. ft⊣ji = xt ⊣ xj ⊣ xi − xt ⊣ xi ⊣ xj + xt ⊣ {xi, xj} (i, j, t ∈ I, j > i)

5. ht⊣i0 = xt ⊣ xi0 (i0 ∈ I0, t ∈ I)

(ii) S is a Gröbner-Shirshov basis.

(iii) The set

{xj ⊣ xi1 ⊣ · · · ⊣ xik | j ∈ I, ip ∈ I − I0, 1 ≤ p ≤ k, i1 ≤ · · · ≤ ik, k ≥ 0}

is a linear basis of the universal enveloping algebra U(L) = D(X|S). In particular,
L can be embedded into U(L).
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Proof (i) By using the following

fji⊢t = fji ⊢ xt and fji ⊢ xt + fij ⊢ xt = ({xi, xj}+ {xj , xi}) ⊢ xt,

we have 2 and 3 are in Id(fji). By symmetry, 4 and 5 are in Id(fji). This shows (i).

(ii) We will prove that all compositions in S are trivial modulo S. We denote by
(i ∧ j) the composition of the polynomials of type i and type j. For convenience, we
extend linearly the functions fji, fji⊢t, ft⊣ji, hi0⊢t and ht⊣i0 to fj{p,q} (f{p,q}i), fji⊢{p,q}
and h{p,q}⊣i0 , etc respectively, where, for example, if {xp, xq} =

∑
αs
pqxs, then

fj{p,q} = xj ⊢ {xp, xq} − {xp, xq} ⊣ xj + {{xp, xq}, xj} =
∑

αs
pqfjs,

fji⊢{p,q} =
∑

αs
pq(xj ⊢ xi ⊢ xs − xi ⊢ xj ⊢ xs + {xi, xj} ⊢ xs) = fji ⊢ {xp, xq},

h{p,q}⊣i0 =
∑

αs
pqhs⊣i0.

By using the Jacobi identity in L, for any a, b, c ∈ L,

{{a, b}, c} = {a, {b, c}}+ {{a, c}, b} (5)

we have

{a, {b, b}} = 0 and {a, {b, c}+ {c, b}} = 0

and in particular, for any i0 ∈ I0, j ∈ I,

{xj , xi0} = 0 (6)

and
{xi0 , xj} ∈ L0 (7)

which implies that L0 is an ideal of L. Clearly, L/L0 is a Lie algebra.

Since {xi0 , xj} = {xi0 , xj}+ {xj , xi0} ∈ L0, the (7) follows.

The formulas (5), (6) and (7) are useful in the sequel.

In S, all the compositions are as follows.

1) Compositions of left or right multiplication.

All possible compositions in S of left multiplication are ones related to 1, 2 and 3.

By noting that for any s, i, j, t ∈ I, we have

xs ⊣ fji = fs⊣ji (j > i),

xs ⊣ fji = −fs⊣ij + xs ⊣ ({xi, xj}+ {xj , xi}) (j < i),

xs ⊣ fii = xs ⊣ {xi, xi},

xs ⊣ fji⊢t = fs⊣ji ⊣ xt (j > i) and

xs ⊣ hi0⊢t = hs⊣i0 ⊣ xt,

it is clear that all cases are trivial modulo S.

By symmetry, all compositions in S of right multiplication are trivial modulo S.

2) Compositions of including or intersection.

All possible compositions of including or intersection are as follows.

11



(1 ∧ 3) w = xi0 ⊢ xi (i0 ∈ I0). We have, by (6),

(fi0i, hi0⊢i)w = −xi ⊣ xi0 + {xi, xi0} = −hi⊣i0 .

(1 ∧ 4) w = xj ⊢ xi ⊣ xq ⊣ xp (q > p). We have

(fji, fi⊣qp)w

= −xi ⊣ xj ⊣ xq ⊣ xp + {xi, xj} ⊣ xq ⊣ xp + xj ⊢ xi ⊣ xp ⊣ xp − xj ⊢ xi ⊣ {xp, xq}

= −xi ⊣ fj⊣qp + f{i,j}⊣qp + fji ⊣ xp ⊣ xq − fji ⊣ {xp, xq}.

(1 ∧ 5) w = xj ⊢ xi ⊣ xi0 (i0 ∈ I0). We have

(fji, hi⊣i0)w = −xi ⊣ xj ⊣ xi0 + {xi, xj} ⊣ xi0 = −xi ⊣ hj⊣i0 + h{i,j}⊣i0.

(2 ∧ 1) There are two cases to consider: w = xj ⊢ xi ⊢ xt and w = xj ⊢ xi ⊢ xt ⊢ xp.

For w = xj ⊢ xi ⊢ xt (j > i), by (5), we have

(fji⊢t, fit)w = −xi ⊢ xj ⊢ xt + {xi, xj} ⊢ xt + xj ⊢ xt ⊣ xi − xj ⊢ {xt, xi}

= −xi ⊢ fjt + f{i,j}t + fjt ⊣ xi − fj{t,i} + fi{t,j} − fit ⊣ xj + ft⊣ji.

For w = xj ⊢ xi ⊢ xt ⊢ xp (j > i), we have

(fji⊢t, ftp)w

= −xi ⊢ xj ⊢ xt ⊢ xp + {xi, xj} ⊢ xt ⊢ xp + xj ⊢ xi ⊢ xp ⊣ xt − xj ⊢ xi ⊢ {xp, xt}

= −xi ⊢ xj ⊢ ftp + {xi, xj} ⊢ ftp + fji⊢p ⊣ xt − fji⊢{p,t}.

(2 ∧ 2) There are two cases to consider: w = xj ⊢ xi ⊢ xt ⊢ xs ⊢ xp and w = xj ⊢ xi ⊢ xt ⊢
xp.

For w = xj ⊢ xi ⊢ xt ⊢ xs ⊢ xp (j > i, t > s), we have

(fji⊢t, fts⊢p)w

= −xi ⊢ xj ⊢ xt ⊢ xs ⊢ xp + {xi, xj} ⊢ xt ⊢ xs ⊢ xp + xj ⊢ xi ⊢ xs ⊢ xt ⊢ xp

−xj ⊢ xi ⊢ {xs, xt} ⊢ xp

= −xi ⊢ xj ⊢ fts⊢p + {xi, xj} ⊢ fts⊢p + fji⊢s ⊢ xt ⊢ xp − fji⊢{s,t} ⊢ xp.

For w = xj ⊢ xi ⊢ xt ⊢ xp (j > i > t), suppose that

{xi, xj} =
∑

m∈I1

αm
ijxm + αt

ijxt +
∑

n∈I2

αn
ijxn (m < t < n).

Denote by

Bt⊢{i,j}⊢p = xt ⊢ {xi, xj} ⊢ xp − {xi, xj} ⊢ xt ⊢ xp − {xt, {xi, xj}} ⊢ xp.

Then
Bt⊢{i,j}⊢p =

∑

m∈I1

αm
ij ftm⊢p −

∑

n∈I2

αn
ijfnt⊢p −

∑

q∈I0

βqhq⊢p
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is a linear combination of normal s-diwords of length 2 or 3, where
∑

q∈I0

βqxq =
∑

m∈I1

αm
ij ({xt, xm}+ {xm, xt}) + αt

ij{xt, xt}.

Now, by (5), we have

(fji⊢t, fit⊢p)w

= −xi ⊢ xj ⊢ xt ⊢ xp + {xi, xj} ⊢ xt ⊢ xp + xj ⊢ xt ⊢ xi ⊢ xp − xj ⊢ {xt, xi} ⊢ xp

= −xi ⊢ fjt⊢p −Bt⊢{i,j}⊢p + fjt⊢i ⊢ xp − Bj⊢{t,i}⊢p +
∑

l∈I0

γlhl⊢p

+Bi⊢{t,j}⊢p − fit⊢j ⊢ xp + xt ⊢ fji⊢p,

where
∑

l∈I0
γlxl = −({xj , {xt, xi}}+{{xt, xi}, xj})+({xi, {xt, xj}}+{{xt, xj}, xi}).

(2 ∧ 3) There are three cases to consider: w = xj ⊢ xi0 ⊢ xt (i0 ∈ I0), w = xj0 ⊢ xi ⊢
xt (j0 ∈ I0) and w = xj ⊢ xi ⊢ xt0 ⊢ xn (t0 ∈ I0).

Case 1. w = xj ⊢ xi0 ⊢ xt (j > i0, i0 ∈ I0). By (7), we can assume that
{xi0 , xj} =

∑
l∈I0

γlxl. Then, we have

(fji0⊢t, hi0⊢t)w = −xi0 ⊢ xj ⊢ xt + {xi0 , xj} ⊢ xt = −hi0⊢j ⊢ xt +
∑

l∈I0

γlhl⊢t.

Case 2. w = xj0 ⊢ xi ⊢ xt (j0 > i, j0 ∈ I0). By (6), we have

(fj0i⊢t, hj0⊢i)w = −xi ⊢ xj0 ⊢ xt + {xi, xj0} ⊢ xt = −xi ⊢ hj0⊢t.

Case 3. w = xj ⊢ xi ⊢ xt0 ⊢ xn (j > i, t0 ∈ I0). We have

(fji⊢t0, ht0⊢n)w = −xi ⊢ xj ⊢ xt0 ⊢ xn + {xi, xj} ⊢ xt0 ⊢ xn

= (−xi ⊢ xj + {xi, xj}) ⊢ ht0⊢n.

(2 ∧ 4) w = xj ⊢ xi ⊢ xt ⊣ xq ⊣ xp (j > i, q > p). We have

(fji⊢t, ft⊣qp)w

= −xi ⊢ xj ⊢ xt ⊣ xq ⊣ xp + {xi, xj} ⊢ xt ⊣ xq ⊣ xp

+xj ⊢ xi ⊢ xt ⊣ xp ⊣ xq − xj ⊢ xi ⊢ xt ⊣ {xp, xq}

= −xi ⊢ xj ⊢ ft⊣qp + {xi, xj} ⊢ ft⊣qp + fji⊢t ⊣ xp ⊣ xq − fji⊢t ⊣ {xp, xq}.

(2 ∧ 5) w = xj ⊢ xi ⊢ xt ⊣ xn0
(j > i, n0 ∈ I0). We have

(fji⊢t, ht⊣n0
)w = −xi ⊢ xj ⊢ xt ⊣ xn0

+ {xi, xj} ⊢ xt ⊣ xn0

= (−xi ⊢ xj + {xi, xj}) ⊢ ht⊣n0
.

(3 ∧ 1) There are two cases to consider: w = xn0
⊢ xt (n0 ∈ I0) and w = xn0

⊢ xt ⊢
xs (n0 ∈ I0).

For w = xn0
⊢ xt (n0 ∈ I0), we have

(hn0⊢t, fn0t)w = xt ⊣ xn0
− {xt, xn0

} = ht⊣n0
.

For w = xn0
⊢ xt ⊢ xs (n0 ∈ I0), we have

(hn0⊢t, fts)w = xn0
⊢ xs ⊣ xt − xn0

⊢ {xs, xt} = hn0⊢s ⊣ xt − hn0⊢{s,t}.
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(3 ∧ 2) w = xn0
⊢ xt ⊢ xs ⊢ xp (t > s, n0 ∈ I0). We have

(hn0⊢t, fts⊢p)w = xn0
⊢ xs ⊢ xt ⊢ xp − xn0

⊢ {xs, xt} ⊢ xp

= hn0⊢s ⊢ xt ⊢ xp − hn0⊢{s,t} ⊢ xp.

(3 ∧ 3) w = xn0
⊢ xt0 ⊢ xr (n0, t0 ∈ I0). We have

(hn0⊢t0 , ht0⊢r)w = 0.

(3 ∧ 4) w = xn0
⊢ xt ⊣ xq ⊣ xp (q > p, n0 ∈ I0). We have

(hn0⊢t, ft⊣qp)w = xn0
⊢ xt ⊣ xp ⊣ xq − xn0

⊢ xt ⊣ {xp, xq}

= hn0⊢t ⊣ (xp ⊣ xq − {xp, xq}).

(3 ∧ 5) w = xn0
⊢ xt ⊣ xs0 (n0, s0 ∈ I0). We have

(hn0⊢t, ht⊣s0)w = 0.

Since (4 ∧ 4), (4 ∧ 5), (5 ∧ 4), (5 ∧ 5) are symmetric with (2 ∧ 2), (2 ∧ 3), (3 ∧ 2),
(3 ∧ 3) respectively, they have the similar representations. We omit the details.

From the above representations, we know that all compositions in S are trivial modulo
S. So, S is a Gröbner-Shirshov basis.

(iii) Clearly, the mentioned set is just the set Irr(S). Now, the results follow from
Theorem 3.9. �

By using the Theorem 4.1, we have the following corollary.

Corollary 4.2 ([1],[8]) Let the notations be as in Theorem 4.1. Then U(L) is isomorphic
to L⊗U(L/L0), where U(L/L0) is the universal enveloping of the Lie algebra L/L0. �
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Abstract: In this paper, we define the Gröbner-Shirshov basis for a dialgebra. The
Composition-Diamond lemma for dialgebras is given then. As results, we give Gröbner-
Shirshov bases for the universal enveloping algebra of a Leibniz algebra, the bar extension
of a dialgebra, the free product of two dialgebras, and Clifford dialgebra. We obtain some
normal forms for algebras mentioned the above.
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1 Introduction

J.-L. Loday (1995, [11]) gave the definition of a new class of algebras, dialgebras, which
is closely connected to his notion of Leibniz algebras (1993, [10]) in the same way as
associative algebras connected to Lie algebras. In the manuscript [12], J.-L. Loday found
a normal form of elements of a free dialgebra. Here we continue to study free dialgebras
and prove the Composition-Diamond lemma for dialgebras. As it is well known, this
kind of lemma is the cornerstone of the theory of Gröbner and Gröbner-Shirshov bases
(see, for example, [6] and cited literature). In commutative-associative case, this lemma
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is equivalent to the Main Buchberger’s Theorem ([7, 8]). For Lie and associative alge-
bras, this is the Shirshov’s lemma [14] (see also L.A. Bokut [3, 4], G. Bergman [2], L.A.
Bokut and Y. Chen [5]). As results, we obtain Gröbner-Shirshov bases for the universal
enveloping algebra of a Leibniz algebra, the bar extension of a dialgebra, the free product
of two dialgebras, and Clifford dialgebra. By using our Composition-Diamond lemma
for dialgebras (Theorem 3.9), we obtain some normal forms for algebras mentioned the
above. Moreover, we get another proof of the M. Aymon, P.-P. Grivel’s result ([1]) on
the Poincare-Birkhoff-Witt theorem for Leibniz algebras (see P. Kolesnikov [9] for other
proof).

2 Preliminaries

Definition 2.1 Let k be a field. A k-linear space D equipped with two bilinear multipli-
cations ⊢ and ⊣ is called a dialgebra, if both ⊢ and ⊣ are associative and

a ⊣ (b ⊢ c) = a ⊣ b ⊣ c

(a ⊣ b) ⊢ c = a ⊢ b ⊢ c

a ⊢ (b ⊣ c) = (a ⊢ b) ⊣ c

for any a, b, c ∈ D.

Definition 2.2 Let D be a dialgebra, B ⊂ D. Let us define diwords of D in the set B by
induction:

(i) b = (b), b ∈ B is a diword in B of length |b| = 1.

(ii) (u) is called a diword in B of length |(u)| = n, if (u) = ((v) ⊣ (w)) or (u) = ((v) ⊢
(w)), where (v), (w) are diwords in B of length k, l respectively and k + l = n.

Proposition 2.3 ([12]) Let D be a dialgebra and B ⊂ D. Any diword of D in the set B
is equal to a diword in B of the form

(u) = b−m ⊢ · · · ⊢ b−1 ⊢ b0 ⊣ b1 ⊣ · · · ⊣ bn (1)

where bi ∈ B, −m ≤ i ≤ n, m ≥ 0, n ≥ 0. Any bracketing of the right side of (1) gives
the same result. �

Definition 2.4 Let X be a set. A free dialgebra D(X) generated by X over k is defined
in a usual way by the following commutative diagram:

✲

❄

�
�

�
��✠

D

D(X)X i

∀ϕ
∃!ϕ∗ (homomorphism)

where D is any dialgebra.
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In [12], a construction of a free dialgebra is given.

Proposition 2.5 ([12]) Let D(X) be a free dialgebra over k generated by X. Any diword
in D(X) is equal to the unique diword of the form

[u] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn , x−m · · ·x−1ẋ0x1 · · ·xn (2)

where xi ∈ X, m ≥ 0, n ≥ 0, and x0 is called the center of the normal diword [u]. We
call [u] a normal diword (in X) with the associative word u, u ∈ X∗. Clearly, if [u] = [v],
then u = v. In (2). Let [u], [v] be two normal diwords. Then [u] ⊢ [v] is the normal
diword [uv] with the center at the center of [v]. Accordingly, [u] ⊣ [v] is the normal diword
[uv] with the center at the center of [u]. �

Example 2.6

(x−1 ⊢ x0 ⊣ x1) ⊢ (y−1 ⊢ y0 ⊣ y1) = x−1 ⊢ x0 ⊢ x1 ⊢ y−1 ⊢ y0 ⊣ y1,

(x−1 ⊢ x0 ⊣ x1) ⊣ (y−1 ⊢ y0 ⊣ y1) = x−1 ⊢ x0 ⊣ x1 ⊣ y−1 ⊣ y0 ⊣ y1. �

3 Composition-Diamond lemma for dialgebras

Let X be a well ordered set, D(X) the free dialgebra over k, X∗ the free monoid generated
by X and [X∗] the set of normal diwords in X . Let us define the deg-lex ordering on [X∗]
in the following way: for any [u], [v] ∈ [X∗],

[u] < [v] ⇐⇒ wt([u]) < wt([v]) lexicographicaly,

where
wt([u]) = (n +m+ 1, m, x−m, · · · , x0, · · · , xn)

if [u] = x−m · · ·x−1ẋ0x1 · · ·xn.

Throughout the paper, we will use this ordering.

It is easy to see that the ordering < is satisfied the following properties:

[u] < [v] =⇒ x ⊢ [u] < x ⊢ [v], [u] ⊣ x < [v] ⊣ x, for any x ∈ X.

Any polynomial f ∈ D(X) has the form

f =
∑

[u]∈[X∗]

f([u])[u] = α[f ] +
∑

αi[ui],

where [f ], [ui] are normal diwords in X , [f ] > [ui], α, αi, f([u]) ∈ k, α 6= 0. We call [f ]
the leading term of f . Denote suppf by the set {[u]|f([u]) 6= 0} and deg(f) by |[f ]|. f is
called monic if α = 1. f is called left (right) normed if f =

∑
αiuiẋi (f =

∑
αiẋiui),

where each αi ∈ k, xi ∈ X and ui ∈ X∗.

If [u], [v] are both left normed or both right normed, then it is clear that for any
[w] ∈ [X∗],

[u] < [v] =⇒ [u] ⊢ [w] < [v] ⊢ [w], [w] ⊢ [u] < [w] ⊢ [v],

[u] ⊣ [w] < [v] ⊣ [w], [w] ⊣ [u] < [w] ⊣ [v].
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Let S ⊂ D(X). By an S-diword g we will mean a diword in {X ∪ S} with only one
occurrence of s ∈ S. If this is the case and g = (asb) for some a, b ∈ X∗, s ∈ S, we also
call g an s-diword.

From Proposition 2.3 it follows that any s-diword is equal to

[asb] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn|xk 7→s (3)

where −m ≤ k ≤ n, s ∈ S, xi ∈ X, −m ≤ i ≤ n. To be more precise, [asb] = [aṡb] if
k = 0; [asb] = [asb1ẋ0b2] if k < 0 and [asb] = [a1ẋ0a2sb] if k > 0. If the center of the
s-diword [asb] is in a, then we denote it by [ȧsb] = [a1ẋ0a2sb]. Similarly, [asḃ] = [asb1ẋ0b2]
(of course, either ai or bi may be empty).

Definition 3.1 The s-diword (3) is called a normal s-diword if one of the following con-
ditions holds:

(i) k = 0,

(ii) k < 0 and s is left normed,

(iii) k > 0 and s is right normed.

We call a normal s-diword [asb] a left (right) normed s-diword if both s and [asb] are
left (right) normed. In particulary, s is a left (right) normed s-diword if s is left (right)
normed polynomial.

The following lemma follows from the above properties of the ordering <.

Lemma 3.2 For a normal s-diword [asb], the leading term of [asb] is equal to [a[s]b], that
is, [asb] = [a[s]b]. More specifically, if

[asb] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn|xk 7→s,

then corresponding to k = 0, k < 0, k > 0, respectively, we have

x−m ⊢ · · · ⊢ x−1 ⊢ s ⊣ x1 ⊣ · · · ⊣ xn = x−m ⊢ · · · ⊢ x−1 ⊢ [s] ⊣ x1 ⊣ · · · ⊣ xn,

x−m ⊢ · · · ⊢ s ⊢ · · · ⊢ x0 ⊣ · · · ⊣ xn = x−m ⊢ · · · ⊢ [s] ⊢ · · · ⊢ x0 ⊣ · · · ⊣ xn,

x−m ⊢ · · · ⊢ x0 ⊣ · · · ⊣ s ⊣ · · · ⊣ xn = x−m ⊢ · · · ⊢ x0 ⊣ · · · ⊣ [s] ⊣ · · · ⊣ xn. �

Now, we define compositions of polynomials in D(X).

Definition 3.3 Let the ordering < be as before and f, g ∈ D(X) with f, g monic.

1) Composition of left (right) multiplication.

Let f be not a right normed polynomial and x ∈ X. Then x ⊣ f is called the
composition of left multiplication. Clearly, x ⊣ f is a right normed polynomial (or
0).

Let f be not a left normed polynomial and x ∈ X. Then f ⊢ x is called the
composition of right multiplication. Clearly, f ⊢ x is a left normed polynomial (or
0).
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2) Composition of inclusion.

Let
[w] = [f ] = [a[g]b],

where [agb] is a normal g-diword. Then

(f, g)[w] = f − [agb]

is called the composition of inclusion. The transformation f 7→ f − [agb] is called
the elimination of leading diword (ELW) of g in f , and [w] is called the ambiguity
of f and g.

3) Composition of intersection.

Let
[w] = [[f ]b] = [a[g]], |f |+ |g| > |w|,

where [fb] is a normal f -diword and [ag] a normal g-diword. Then

(f, g)[w] = [fb]− [ag]

is called the composition of intersection, and [w] is called the ambiguity of f and g.

Remark In the Definition 3.3, for the case of 2) or 3), we have (f, g)[w] < [w]. For the
case of 1), deg(x ⊣ f) ≤ deg(f) + 1 and deg(f ⊢ x) ≤ deg(f) + 1.

Definition 3.4 Let the ordering < be as before, S ⊂ D(X) a monic set and f, g ∈ S.

1) Let x ⊣ f be a composition of left multiplication. Then x ⊣ f is called trivial modulo
S, denoted by x ⊣ f ≡ 0 mod(S), if

x ⊣ f =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, [aisibi] right normed si-diword and
|[ai[si]bi]| ≤ deg(x ⊣ f).

Let f ⊢ x be a composition of right multiplication. Then f ⊢ x is called trivial
modulo S, denoted by f ⊢ x ≡ 0 mod(S), if

f ⊢ x =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, [aisibi] left normed si-diword and |[ai[si]bi]| ≤
deg(f ⊢ x).

2) Composition (f, g)[w] of inclusion (intersection) is called trivial modulo (S, [w]),
denoted by (f, g)[w] ≡ 0 mod(S, [w]), if

(f, g)[w] =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, [aisibi] normal si-diword, [ai[si]bi] < [w]
and each [aisibi] is right (left) normed si-diword whenever either both f and [agb]
or both [fb] and [ag] are right (left) normed S-diwords.
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We call the set S a Gröbner-Shirshov basis in D(X) if any composition of polynomials
in S is trivial modulo S (and [w]).

The following lemmas play key role in the proof of Theorem 3.9.

Lemma 3.5 Let S ⊂ D(X) and [asb] an s-diword, s ∈ S. Assume that each composition
of right and left multiplication is trivial modulo S. Then, [asb] has a presentation:

[asb] =
∑

αi[aisibi],

where each αi ∈ k, si ∈ S, ai, bi ∈ X∗ and each [aisibi] is normal si-diword.

Proof. Following Proposition 2.3, we assume that

[asb] = x−m ⊢ · · · ⊢ x−1 ⊢ x0 ⊣ x1 ⊣ · · · ⊣ xn|xk 7→s.

There are three cases to consider.

Case 1. k = 0. Then [asb] is a normal s-diword.

Case 2. k < 0. Then [asb] = a ⊢ (s ⊢ xk+1) ⊢ b, k < −1 or [asb] = a ⊢ (s ⊢ x0) ⊣ b.
If s is left normed then [asb] is a normal s-diword. If s is not left normed then for the
composition s ⊢ xk+1 (k < 0) of right multiplication, we have

s ⊢ xk+1 =
∑

αi[aisibi],

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S and [aisibi] is left normed si-diword. Then

[asb] =
∑

αi(a ⊢ [aisibi] ⊢ b)

or
[asb] =

∑
αi(a ⊢ [aisibi] ⊣ b)

is a linear combination of normal si-diwords.

Case 3. k > 0 is similar to the Case 2. �

Lemma 3.6 Let S ⊂ D(X) and each composition (f, g)[w] in S of inclusion (intersection)
trivial modulo (S, [w]). Let [a1s1b1] and [a2s2b2] be normal S-diwords such that [w] =
[a1[s̄1]b1] = [a2[s̄2]b2], where s1, s2 ∈ S, a1, a2, b1, b2 ∈ X∗. Then,

[a1s1b1] ≡ [a2s2b2] mod(S, [w]),

i.e., [a1s1b1] − [a2s2b2] =
∑

αi[aisibi], where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, [aisibi]
normal si-diword and [ai[si]bi] < [w].

Proof. In the following, all letters a, b, c with indexis are words and s1, s2, sj ∈ S.

Because a1s̄1b1 = a2s̄2b2 as ordinary words, there are three cases to consider.
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Case 1. Subwords s1, s2 have empty intersection. Assume, for example, that b1 = bs2b2
and a2 = a1s1b. Because any normal S-diword may be bracketing in any way, we have

[a2s2b2]− [a1s1b1] = (a1s1(b(s2 − [s2])b2))− ((a1(s1 − [s1])b)s2b2).

For any [t] ∈ supp(s2 − [s2]), we prove that (a1s1b[t]b2) is a normal s1-diword. There are
five cases to consider.

1.1 [w] = [ȧ1[s1]b[s2]b2];

1.2 [w] = [a1 ˙[s1]b[s2]b2];

1.3 [w] = [a1[s1]ḃ[s2]b2];

1.4 [w] = [a1[s1]b ˙[s2]b2];

1.5 [w] = [a1[s1]b[s2]ḃ2].

For 1.1, since [a1s1b1] and [a2s2b2] are normal S-diwords, both s1 and s2 are right normed
by the definition, in particular, [t] is right normed. It follows that (a1s1b[t]b2) = [ȧ1s1b[t]b2]
is a normal s1-diword.

For 1.2, it is clear that (a1s1b[t]b2) is a normal s1-diword and [t] is right normed.

For 1.3, 1.4 and 1.5, since [a1s1b1] is normal s1-diword, s1 is left normed by the definition,
which implies that (a1s1b[t]b2) is a normal s1-diword. Moreover, [t] is right normed, if 1.3,
and left normed, if 1.5.

Clearly, for all cases, we have [a1s1b[t]b2] = [a1[s1]b[t]b2] < [a1[s1]b[s2]b2] = [w].

Similarly, for any [t] ∈ supp(s1−[s1]), (a1[t]bs2b2) is a normal s2-diword and [a1[t]b[s2]b2] <
[w].

Case 2. Subwords s1 and s2 have non-empty intersection c. Assume, for example, that
b1 = bb2, a2 = a1a, w1 = s1b = as2 = acb.

There are following five cases to consider:

2.1 [w] = [ȧ1[s1]bb2];

2.2 [w] = [a1[s1]bḃ2];

2.3 [w] = [a1ȧcbb2];

2.4 [w] = [a1aċbb2];

2.5 [w] = [a1acḃb2].

Then
[a2s2b2]− [a1s1b1] = (a1([as2]− [s1b])b2) = (a1(s1, s2)[w1]b2),

where [w1] = [acb] = [[s1]b] = [a[s2]] is as follows:

2.1 [w1] is right normed;

2.2 [w1] is left normed;

2.3 [w1] = [ȧcb];

2.4 [w1] = [aċb];

2.5 [w1] = [acḃ].

Since each composition (f, g)[w] in S is trivial modulo (S, [w]), there exist βj ∈ k, uj, vj ∈
X∗, sj ∈ S such that [s1b]− [as2] =

∑
j βj [ujsjvj ], where each [ujsjvj ] is normal S-diword

and [uj [sj]vj ] < [w1] = [acb]. Therefore,

[a2s2b2]− [a1s1b1] =
∑

j

βj(a1[ujsjvj ]b2).
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Now, we prove that each (a1[ujsjvj]b2) is normal sj-diword and (a1[ujsjvj ]b2) < [w] =
[a1[[s1]b]b2].

For 2.1, since [ȧ1s1bb2] and [ȧ1as2b2] are normal S-diwords, both [s1b] and [as2] are right
normed S-diwords. Then, by definition, each [ujsjvj] is right normed S-diword, and so
each (a1[ujsjvj ]b2) = [ȧ1ujsjvjb2] is normal S-diword.

For 2.2, both [s1b] and [as2] must be left normed S-diwords. Then, by definition,
each [ujsjvj] is left normed S-diword, and so each (a1[ujsjvj]b2) = [a1ujsjvj ḃ2] is normal
S-diword.

For 2.3, 2.4 or 2.5, by noting that (a1[ujsjvj ]b2) = ((a1) ⊢ [ujsjvj ] ⊣ (b2)) and [ujsjvj]
is normal S-diword, (a1[ujsjvj ]b2) is also normal S-diword.

Now, for all cases, we have [a1ujsjvjb2] = [a1uj[sj]vjb2] < [w] = [a1[acb]b2].

Case 3. One of the subwords s1 and s2 contains another as a subword. Assume, for
example, that b2 = bb1, a2 = a1a, w1 = s1 = as2b.

Again there are following five cases to consider:

2.1 [w] = [ȧ1a[s2]bb1];

2.2 [w] = [a1a[s2]bḃ1];

2.3 [w] = [a1ȧ[s2]bb1];

2.4 [w] = [a1a ˙[s2]bb1];

2.5 [w] = [a1a[s2]ḃb1].

Then
[a1s1b1]− [a2s2b2] = (a1(s1 − as2b)b1) = (a1(s1, s2)[w1]b1).

It is similar to the proof of the Case 2 that we have [a1s1b1] ≡ [a2s2b2] mod(S, [w]). �

Definition 3.7 Let S ⊂ D(X). Then

Irr(S) , {u ∈ [X∗]|u 6= [a[s]b], s ∈ S, a, b ∈ X∗, [asb] is normal s-diword}.

Lemma 3.8 Let S ⊂ D(X) and h ∈ D(X). Then h has a representation

h =
∑

I1

αi[ui] +
∑

I2

βj[ajsjbj ]

where [ui] ∈ Irr(S), i ∈ I1, [ajsjbj ] normal sj-diwords, sj ∈ S, j ∈ I2 with [a1[s1]b1] >
[a2[s2]b2] > · · · > [an[sn]bn].

Proof. Let h = α1[h] + · · · . We prove the result by induction on [h].

If [h] ∈ Irr(S), then take [u1] = [h] and h1 = h− α1[u1]. Clearly, [h1] < [h] or h1 = 0.

If [h] 6∈ Irr(S), then [h] = [a1[s1]b1] with [a1s1b1] a normal s1-diword. Let h1 =
h− β1[a1s1b1]. Then [h1] < [h] or h1 = 0. �

The following theorem is the main result.
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Theorem 3.9 (Composition-Diamond lemma) Let S ⊂ D(X) be a monic set and the
ordering < as before, Id(S) is the ideal generated by S. Then (i) ⇒ (ii) ⇔ (ii)′ ⇔ (iii),
where

(i) S is a Gröbner-Shirshov basis in D(X).

(ii) f ∈ Id(S) ⇒ [f ] = [a[s]b] for some s ∈ S, a, b ∈ X∗ and [asb] a normal S-diword.

(ii)′ f ∈ Id(S) ⇒ f = α1[a1s1b1] + α2[a2s2b2] + · · · + αn[ansnbn] with [a1[s1]b1] >
[a2[s2]b2] > · · · > [an[sn]bn], where [aisibi] is normal si-diword, i = 1, 2, · · · , n.

(iii) The set Irr(S) is a linear basis of the dialgebra D(X|S) = D(X)/Id(S) generated
by X with defining relations S.

Proof. (i) ⇒ (ii). Let S be a Gröbner-Shirshov basis and 0 6= f ∈ Id(S). We may
assume, by Lemma 3.5, that

f =

n∑

i=1

αi[aisibi],

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S and [aisibi] normal S-diword. Let

[wi] = [ai[si]bi], [w1] = [w2] = · · · = [wl] > [wl+1] ≥ · · · , l ≥ 1.

We will use induction on l and [w1] to prove that [f ] = [a[s]b] for some s ∈ S and a, b ∈ X∗.
If l = 1, then [f ] = [a1s1b1] = [a1[s1]b1] and hence the result holds. Assume that l ≥ 2.
Then, by Lemma 3.6, we have [a1s1b1] ≡ [a2s2b2] mod(S, [w1]).

Thus, if α1 + α2 6= 0 or l > 2, then the result follows from induction on l. For the case
α1 + α2 = 0 and l = 2, we use induction on [w1]. Now, the result follows.

(ii) ⇒ (ii)′. Assume (ii) and 0 6= f ∈ Id(S). Let f = α1[f ] +
∑

[ui]<[f ] αi[ui]. Then, by

(ii), [f ] = [a1[s1]b1], where [a1s1b1] is a normal S-diword. Therefore,

f1 = f − α1[a1s1b1], [f1] < [f ] or f1 = 0, f1 ∈ Id(S).

Now, by using induction on [f ], we have (ii)′.

(ii)′ ⇒ (ii). This part is clear.

(ii) ⇒ (iii). Assume (ii). Then by Lemma 3.8, Irr(S) spans D(X|S) as k-space.

Suppose that 0 6=
∑

αi[ui] ∈ Id(S) where [u1] > [u2] > · · · , [ui] ∈ Irr(S). Then by
(ii), [u1] = [a1[s1]b1] where [a1s1b1] is a normal S-diword, a contradiction.

This shows (iii).

(iii) ⇒ (ii). Assume (iii). Let 0 6= f ∈ Id(S). Since the elements in Irr(S) are linearly
independent in D(X|S), by Lemma 3.8, [f̄ ] = [a[s̄]b], where [asb] is a normal S-diword.
Thus, (ii) follows. �

Remark: In general, (iii) 6⇒ (i). For example, it is noted that

Irr(S) = {xj ⊣ xi1 ⊣ · · · ⊣ xik | j ∈ I, ip ∈ I − I0, 1 ≤ p ≤ k, i1 ≤ · · · ≤ ik, k ≥ 0}

is a linear basis of D(X|S) in Theorem 4.3. Let

S1 = {xj ⊢ xi − xi ⊣ xj + {xi, xj}, xt ⊣ xi0 , i, j, t ∈ I, i0 ∈ I0}.

Then Irr(S1) = Irr(S) is a linear basis of D(X|S). But in the proof of Theorem 4.3, we
know that S1 is not a Gröbner-Shirshov basis of D(X|S).
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4 Applications

In this section, we give Gröbner-Shirshov bases for the universal enveloping dialgebra of
a Leibniz algebra, the bar extension of a dialgebra, the free product of two dialgebras,
and the Clifford dialgebra. By using our Theorem 3.9, we obtain some normal forms for
dialgebras mentioned the above.

Definition 4.1 ([10]) A k-linear space L equipped with bilinear multiplication [, ] is called
a Leibniz algebra if for any a, b, c ∈ L,

[[a, b], c] = [[a, c], b] + [a, [b, c]]

i.e., the Leibniz identity is valid in L.

It is clear that if (D,⊣,⊢) is a dialgebra then D(−) = (D, [, ]) is a Leibniz algebra, where
[a, b] = a ⊣ b− b ⊢ a for any a, b ∈ D.

If f is a Leibniz polynomial in variables X , then by f (−) we mean a dialgebra polynomial
in X obtained from f by transformation [a, b] 7→ a ⊣ b− b ⊢ a.

Definition 4.2 Let L be a Leibniz algebra. A dialgebra U(L) together with a Leibniz
homomorphism ε : L → U(L) is called the universal enveloping dialgebra for L, if the
following diagram commute:

✲

❄

�
�

�
�

�✠
∃!f

D

U(L)L ε

∀δ

where D is a dialgebra, δ is a Leibniz homomorphism and f : U(L) → D is a dialgebra
homomorphism such that fε = δ (i.e., ε : L → U(L) is a universal arrow in the sense of
S. MacLane [13], p55).

An equivalent definition is as follows: Let L = Lei(X|S) is a Leibniz algebra presented
by generators X and definition relations S. Then U(L) = D(X|S(−)) is the dialgebra with
generators X and definition relations S(−) = {s(−)|s ∈ S}.

Theorem 4.3 Let L be a Leibniz algebra over a field k with the product {, }. Let L0 be
the subspace of L generated by the set {{a, a}, {a, b} + {b, a} | a, b ∈ L}. Let {xi|i ∈ I0}
be a basis of L0 and X = {xi|i ∈ I} a well ordered basis of L such that I0 ⊆ I. Let
U(L) = D(X|xi ⊣ xj − xj ⊢ xi − {xi, xj}) be the universal enveloping dialgebra for L and
the ordering < on [X∗] as before. Then

(i) D(X|xi ⊣ xj − xj ⊢ xi − {xi, xj}) = D(X|S), where S consists of the following
polynomials:

(a) fji = xj ⊢ xi − xi ⊣ xj + {xi, xj} (i, j ∈ I)

(b) fji⊢t = xj ⊢ xi ⊢ xt − xi ⊢ xj ⊢ xt + {xi, xj} ⊢ xt (i, j, t ∈ I, j > i)

(c) hi0⊢t = xi0 ⊢ xt (i0 ∈ I0, t ∈ I)

(d) ft⊣ji = xt ⊣ xj ⊣ xi − xt ⊣ xi ⊣ xj + xt ⊣ {xi, xj} (i, j, t ∈ I, j > i)

(e) ht⊣i0 = xt ⊣ xi0 (i0 ∈ I0, t ∈ I)
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(ii) S is a Gröbner-Shirshov basis in D(X).

(iii) The set

{xj ⊣ xi1 ⊣ · · · ⊣ xik | j ∈ I, ip ∈ I − I0, 1 ≤ p ≤ k, i1 ≤ · · · ≤ ik, k ≥ 0}

is a linear basis of the universal enveloping algebra U(L). In particular, L is a
Leibniz subalgebra of U(L).

Proof. (i) By using the following

fji⊢t = fji ⊢ xt and fji ⊢ xt + fij ⊢ xt = ({xi, xj}+ {xj , xi}) ⊢ xt,

we have (b) and (c) are in Id(fji). By symmetry, (d) and (e) are in Id(fji). This shows
(i).

(ii) We will prove that all compositions in S are trivial modulo S (and [w]). For conve-
nience, we extend linearly the functions fji, fji⊢t, ft⊣ji, hi0⊢t and ht⊣i0 to fj{p,q} (f{p,q}i), fji⊢{p,q}
and h{p,q}⊣i0 , etc respectively. For example, if {xp, xq} =

∑
αs
pqxs, then

fj{p,q} = xj ⊢ {xp, xq} − {xp, xq} ⊣ xj + {{xp, xq}, xj} =
∑

αs
pqfjs,

fji⊢{p,q} =
∑

αs
pq(xj ⊢ xi ⊢ xs − xi ⊢ xj ⊢ xs + {xi, xj} ⊢ xs) = fji ⊢ {xp, xq},

h{p,q}⊣i0 =
∑

αs
pqhs⊣i0.

By using the Leibniz identity,

{{a, b}, c} = {a, {b, c}}+ {{a, c}, b}, (4)

we have

{a, {b, b}} = 0 and {a, {b, c}+ {c, b}} = 0

for any a, b, c ∈ L. It means that for any i0 ∈ I0, j ∈ I,

{xj , xi0} = 0 (5)

and by noting that {xi0 , xj} = {xj , xi0}+ {xi0 , xj}, we have

{xi0 , xj} ∈ L0. (6)

This implies that L0 is an ideal of L. Clearly, L/L0 is a Lie algebra.

The formulas (4), (5) and (6) are useful in the sequel.

In S, all the compositions are as follows.

1) Compositions of left or right multiplication.

All possible compositions in S of left multiplication are ones related to (a), (b) and (c).

By noting that for any s, i, j, t ∈ I, we have

xs ⊣ fji = fs⊣ji (j > i),

xs ⊣ fji = −fs⊣ij + xs ⊣ ({xi, xj}+ {xj , xi}) (j < i),

xs ⊣ fii = xs ⊣ {xi, xi},

xs ⊣ fji⊢t = fs⊣ji ⊣ xt (j > i) and

xs ⊣ hi0⊢t = hs⊣i0 ⊣ xt,
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it is clear that all cases are trivial modulo S.

By symmetry, all compositions in S of right multiplication are trivial modulo S.

2) Compositions of inclusion and intersection.

We denote, for example, (a∧b) the composition of the polynomials of type (a) and type
(b). It is noted that since (b) and (c) are both left normed, we have to prove that the
corresponding compositions of the cases of (b ∧ b), (b ∧ c), (c ∧ c) and (c ∧ b) must be a
linear combination of left normed S-diwords in which the leading term of each S-diword
is less than w. Symmetrically, we consider the cases for the right normed (d) and (e).

All possible compositions of inclusion and intersection are as follows.

(a ∧ c) [w] = xi0 ⊢ xi (i0 ∈ I0). We have, by (5),

(fi0i, hi0⊢i)[w] = −xi ⊣ xi0 + {xi, xi0} = −hi⊣i0 ≡ 0 mod(S, [w]).

(a ∧ d) [w] = xj ⊢ xi ⊣ xq ⊣ xp (q > p). We have

(fji, fi⊣qp)[w]

= −xi ⊣ xj ⊣ xq ⊣ xp + {xi, xj} ⊣ xq ⊣ xp + xj ⊢ xi ⊣ xp ⊣ xp − xj ⊢ xi ⊣ {xp, xq}

= −xi ⊣ fj⊣qp + f{i,j}⊣qp + fji ⊣ xp ⊣ xq − fji ⊣ {xp, xq}

≡ 0 mod(S, [w]).

(a ∧ e) [w] = xj ⊢ xi ⊣ xi0 (i0 ∈ I0). We have

(fji, hi⊣i0)[w] = −xi ⊣ xj ⊣ xi0 + {xi, xj} ⊣ xi0 = −xi ⊣ hj⊣i0 + h{i,j}⊣i0 ≡ 0 mod(S, [w]).

(b ∧ a) There are two cases to consider: [w] = xj ⊢ xi ⊢ xt and [w] = xj ⊢ xi ⊢ xt ⊢ xp.

For [w] = xj ⊢ xi ⊢ xt (j > i), by (4), we have

(fji⊢t, fit)[w] = −xi ⊢ xj ⊢ xt + {xi, xj} ⊢ xt + xj ⊢ xt ⊣ xi − xj ⊢ {xt, xi}

= −xi ⊢ fjt + f{i,j}t + fjt ⊣ xi − fj{t,i} + fi{t,j} − fit ⊣ xj + ft⊣ji

≡ 0 mod(S, [w]).

For [w] = xj ⊢ xi ⊢ xt ⊢ xp (j > i), we have

(fji⊢t, ftp)[w]

= −xi ⊢ xj ⊢ xt ⊢ xp + {xi, xj} ⊢ xt ⊢ xp + xj ⊢ xi ⊢ xp ⊣ xt − xj ⊢ xi ⊢ {xp, xt}

= −xi ⊢ xj ⊢ ftp + {xi, xj} ⊢ ftp + fji⊢p ⊣ xt − fji⊢{p,t}

≡ 0 mod(S, [w]).

(b ∧ b) There are two cases to consider: [w] = xj ⊢ xi ⊢ xt ⊢ xs ⊢ xp and [w] = xj ⊢ xi ⊢
xt ⊢ xp.

For [w] = xj ⊢ xi ⊢ xt ⊢ xs ⊢ xp (j > i, t > s), we have

(fji⊢t, fts⊢p)[w]

= −xi ⊢ xj ⊢ xt ⊢ xs ⊢ xp + {xi, xj} ⊢ xt ⊢ xs ⊢ xp + xj ⊢ xi ⊢ xs ⊢ xt ⊢ xp

−xj ⊢ xi ⊢ {xs, xt} ⊢ xp

= −xi ⊢ xj ⊢ fts⊢p + {xi, xj} ⊢ fts⊢p + fji⊢s ⊢ xt ⊢ xp − fji⊢{s,t} ⊢ xp

≡ 0 mod(S, [w])
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since it is a combination of left normed S-diwords in which the leading term of each
S-diword is less than w.

For [w] = xj ⊢ xi ⊢ xt ⊢ xp (j > i > t), suppose that

{xi, xj} =
∑

m∈I1

αm
ijxm + αt

ijxt +
∑

n∈I2

αn
ijxn (m < t < n).

Denote

Bt⊢{i,j}⊢p = xt ⊢ {xi, xj} ⊢ xp − {xi, xj} ⊢ xt ⊢ xp − {xt, {xi, xj}} ⊢ xp.

Then
Bt⊢{i,j}⊢p =

∑

m∈I1

αm
ij ftm⊢p −

∑

n∈I2

αn
ijfnt⊢p −

∑

q∈I0

βqhq⊢p

is a linear combination of left normed S-diwords of length 2 or 3, where
∑

q∈I0

βqxq =
∑

m∈I1

αm
ij ({xt, xm}+ {xm, xt}) + αt

ij{xt, xt}.

Denote
∑

l∈I0

γlxl = −({xj , {xt, xi}}+ {{xt, xi}, xj}) + ({xi, {xt, xj}}+ {{xt, xj}, xi}).

Now, by (4), we have

(fji⊢t, fit⊢p)[w]

= −xi ⊢ xj ⊢ xt ⊢ xp + {xi, xj} ⊢ xt ⊢ xp + xj ⊢ xt ⊢ xi ⊢ xp − xj ⊢ {xt, xi} ⊢ xp

= −xi ⊢ fjt⊢p − Bt⊢{i,j}⊢p + fjt⊢i ⊢ xp − Bj⊢{t,i}⊢p +
∑

l∈I0

γlhl⊢p

+Bi⊢{t,j}⊢p − fit⊢j ⊢ xp + xt ⊢ fji⊢p

≡ 0 mod(S, [w])

since it is a combination of left normed S-diwords in which the leading term of each
S-diword is less than w.

(b ∧ c) There are three cases to consider: [w] = xj ⊢ xi0 ⊢ xt (i0 ∈ I0), [w] = xj0 ⊢ xi ⊢
xt (j0 ∈ I0) and [w] = xj ⊢ xi ⊢ xt0 ⊢ xn (t0 ∈ I0).

Case 1. [w] = xj ⊢ xi0 ⊢ xt (j > i0, i0 ∈ I0). By (6), we can assume that
{xi0 , xj} =

∑
l∈I0

γlxl. Then, we have

(fji0⊢t, hi0⊢t)[w] = −xi0 ⊢ xj ⊢ xt+{xi0 , xj} ⊢ xt = −hi0⊢j ⊢ xt+
∑

l∈I0

γlhl⊢t ≡ 0 mod(S, [w]).

Case 2. [w] = xj0 ⊢ xi ⊢ xt (j0 > i, j0 ∈ I0). By (5), we have

(fj0i⊢t, hj0⊢i)[w] = −xi ⊢ xj0 ⊢ xt + {xi, xj0} ⊢ xt = −xi ⊢ hj0⊢t ≡ 0 mod(S, [w]).

Case 3. [w] = xj ⊢ xi ⊢ xt0 ⊢ xn (j > i, t0 ∈ I0). We have

(fji⊢t0 , ht0⊢n)[w] = −xi ⊢ xj ⊢ xt0 ⊢ xn + {xi, xj} ⊢ xt0 ⊢ xn

= (−xi ⊢ xj + {xi, xj}) ⊢ ht0⊢n

≡ 0 mod(S, [w]).
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(b ∧ d) [w] = xj ⊢ xi ⊢ xt ⊣ xq ⊣ xp (j > i, q > p). We have

(fji⊢t, ft⊣qp)[w]

= −xi ⊢ xj ⊢ xt ⊣ xq ⊣ xp + {xi, xj} ⊢ xt ⊣ xq ⊣ xp

+xj ⊢ xi ⊢ xt ⊣ xp ⊣ xq − xj ⊢ xi ⊢ xt ⊣ {xp, xq}

= −xi ⊢ xj ⊢ ft⊣qp + {xi, xj} ⊢ ft⊣qp + fji⊢t ⊣ xp ⊣ xq − fji⊢t ⊣ {xp, xq}

≡ 0 mod(S, [w]).

(b ∧ e) [w] = xj ⊢ xi ⊢ xt ⊣ xn0
(j > i, n0 ∈ I0). We have

(fji⊢t, ht⊣n0
)[w] = −xi ⊢ xj ⊢ xt ⊣ xn0

+ {xi, xj} ⊢ xt ⊣ xn0

= (−xi ⊢ xj + {xi, xj}) ⊢ ht⊣n0

≡ 0 mod(S, [w]).

(c ∧ a) There are two cases to consider: [w] = xn0
⊢ xt (n0 ∈ I0) and [w] = xn0

⊢ xt ⊢
xs (n0 ∈ I0).

For [w] = xn0
⊢ xt (n0 ∈ I0), we have

(hn0⊢t, fn0t)[w] = xt ⊣ xn0
− {xt, xn0

} = ht⊣n0
≡ 0 mod(S, [w]).

For [w] = xn0
⊢ xt ⊢ xs (n0 ∈ I0), we have

(hn0⊢t, fts)[w] = xn0
⊢ xs ⊣ xt − xn0

⊢ {xs, xt} = hn0⊢s ⊣ xt − hn0⊢{s,t} ≡ 0 mod(S, [w]).

(c ∧ b) [w] = xn0
⊢ xt ⊢ xs ⊢ xp (t > s, n0 ∈ I0). We have

(hn0⊢t, fts⊢p)[w] = xn0
⊢ xs ⊢ xt ⊢ xp − xn0

⊢ {xs, xt} ⊢ xp

= hn0⊢s ⊢ xt ⊢ xp − hn0⊢{s,t} ⊢ xp

≡ 0 mod(S, [w]).

(c ∧ c) [w] = xn0
⊢ xt0 ⊢ xr (n0, t0 ∈ I0). We have

(hn0⊢t0 , ht0⊢r)[w] = 0.

(c ∧ d) [w] = xn0
⊢ xt ⊣ xq ⊣ xp (q > p, n0 ∈ I0). We have

(hn0⊢t, ft⊣qp)[w] = xn0
⊢ xt ⊣ xp ⊣ xq − xn0

⊢ xt ⊣ {xp, xq}

= hn0⊢t ⊣ (xp ⊣ xq − {xp, xq})

≡ 0 mod(S, [w]).

(c ∧ e) [w] = xn0
⊢ xt ⊣ xs0 (n0, s0 ∈ I0). We have

(hn0⊢t, ht⊣s0)[w] = 0.
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Since (d ∧ d), (d ∧ e), (e ∧ d), (e ∧ e) are symmetric with (b ∧ b), (b ∧ c), (c ∧ b), (c ∧ c)
respectively, they have the similar representations. We omit the details.

So, we show that S is a Gröbner-Shirshov basis.

(iii) Clearly, the mentioned set is just the set Irr(S). Now, the results follow from
Theorem 3.9. �

A Gröbner-Shirshov basis S is called reduced if S is a monic set and no monomial in
any element of the basis contains the leading words of the other elements of the basis as
subwords.

Remark: Let the notation be in Theorem 4.3. Let Sred consist of the following polyno-
mials:

(a) fji = xj ⊢ xi − xi ⊣ xj + {xi, xj} (i ∈ I, j ∈ I − I0)

(b) fji⊢t = xj ⊢ xi ⊢ xt − xi ⊢ xj ⊢ xt + {xi, xj} ⊢ xt (i, j ∈ I − I0, j > i, t ∈ I)

(c) hi0⊢t = xi0 ⊢ xt (i0 ∈ I0, t ∈ I)

(d) ft⊣ji = xt ⊣ xj ⊣ xi − xt ⊣ xi ⊣ xj + xt ⊣ {xi, xj} (i, j ∈ I − I0, j > i, t ∈ I)

(e) ht⊣i0 = xt ⊣ xi0 (i0 ∈ I0, t ∈ I)

Then Sred is a reduced Gröbner-Shirshov basis for D(X|S).

We have the following corollary.

Corollary 4.4 ([1]) Let the notation be as in Theorem 4.3. Then as linear spaces, U(L)
is isomorphic to L ⊗ U(L/L0), where U(L/L0) is the universal enveloping of the Lie
algebra L/L0.

Proof. Clearly, {xj | j ∈ I − I0} is a k-basis of the Lie algebra L/L0. It is well known
that the universal enveloping U(L/L0) of the Lie algebra L/L0 has a k-basis

{xi1xi2 . . . xik | i1 ≤ · · · ≤ ik, ip ∈ I − I0, 1 ≤ p ≤ k, k ≥ 0}.

By using (iii) in Theorem 4.3, the result follows. �

Definition 4.5 Let D be a dialgebra. An element e ∈ D is called a bar unit of D if
e ⊢ x = x ⊣ e = x for any x ∈ D.

Theorem 4.6 Each dialgebra has a bar unit extension.

Proof. Let (D,⊢,⊣) be an arbitrary dialgebra over a field k and A the ideal of D
generated by the set {a ⊣ b − a ⊢ b| a, b ∈ D}. Let X0 = {xi0 |i0 ∈ I0} be a k-basis
of A and X = {xi|i ∈ I} a well ordered k-basis of D such that I0 ⊆ I. Then D has
a presentation by the multiplication table D = D(X|S), where S = {xi ⊢ xj − {xi ⊢
xj}, xi ⊣ xj −{xi ⊣ xj}, i, j ∈ I}, where {xi ⊢ xj} and {xi ⊣ xj} are linear combinations
of xt, t ∈ I.

Let D1 = D(X ∪ {e}|S1), where S1 = S ∪ {e ⊢ y − y, y ⊣ e− y, e ⊣ x0, x0 ⊢ e | y ∈
X ∪ {e}, x0 ∈ X0}. Then D1 is a dialgebra with a bar unit e.

15



Denote

1. fi⊢j = xi ⊢ xj − {xi ⊢ xj},

2. fi⊣j = xi ⊣ xj − {xi ⊣ xj},

3. ge⊢y = e ⊢ y − y,

4. gy⊣e = y ⊣ e− y,

5. hxi0
⊢e = xi0 ⊢ e,

6. he⊣xi0
= e ⊣ xi0 ,

where i, j ∈ I, i0 ∈ I0, y ∈ X ∪ {e}.

We show that {xt ⊣ xi0} = 0 and {xi0 ⊢ xt} = 0 for any t ∈ I, i0 ∈ I0.

Since xi0 ∈ A, we have xi0 =
∑

αi(cifidi), where fi = ai ⊣ bi−ai ⊢ bi, αi ∈ k, ai, bi ∈ D
and ci, di ∈ X∗.

Since xt ⊣ (ci(ai ⊣ bi − ai ⊢ bi)di) = 0, we have {xt ⊣ {ci{ai ⊣ bi − ai ⊢ bi}di}} = 0 for
each i. Then {xt ⊣ xi0} = 0.

By symmetry, we have {xi0 ⊢ xt} = 0.

To prove the theorem, by using our Theorem 3.9, it suffices to prove that with the
ordering on [(X ∪ {e})∗] as before, where x < e, x ∈ X , S1 is a Gröbner-Shirshov basis
in D(X ∪ {e}). Now, we show that all compositions in S1 are trivial.

All possible compositions of left and right multiplication are: z ⊣ fi⊢j , z ⊣ ge⊢y, z ⊣
hxi0

⊢e, fi⊣j ⊢ z, gy⊣e ⊢ z, he⊣xi0
⊢ z, z ∈ X ∪ {e}.

For z ⊣ fi⊢j , z = xt ∈ X , since (xt ⊣ xi) ⊣ xj = xt ⊣ (xi ⊢ xj), we have {{xt ⊣ xi} ⊣
xj} = {xt ⊣ {xi ⊢ xj}} and

xt ⊣ fi⊢j

= xt ⊣ xi ⊣ xj − xt ⊣ {xi ⊢ xj}

= ft⊣i ⊣ xj + f{t⊣i}⊣j − ft⊣{i⊢j} + {{xt ⊣ xi} ⊣ xj} − {xt ⊣ {xi ⊢ xj}}

= ft⊣i ⊣ xj + f{t⊣i}⊣j − ft⊣{i⊢j}

≡ 0 mod(S1).

For z ⊣ fi⊢j , z = e, let {xi ⊣ xj} − {xi ⊢ xj} =
∑

αi0xi0 . Then

e ⊣ fi⊢j = e ⊣ xi ⊣ xj − e ⊣ {xi ⊢ xj}

= e ⊣ (xi ⊣ xj − {xi ⊣ xj}) + e ⊣ {xi ⊣ xj} − e ⊣ {xi ⊢ xj}

= e ⊣ fi⊣j +
∑

αi0he⊣xi0

≡ 0 mod(S1).

For z ⊣ ge⊢y, we have

z ⊣ ge⊢y = z ⊣ e ⊣ y − z ⊣ y = (z ⊣ e− z) ⊣ y = gz⊣e ⊣ y ≡ 0 mod(S1).

For z ⊣ hxi0
⊢e, we have

z ⊣ hxi0
⊢e = z ⊣ xi0 ⊣ e = z ⊣ gxi0

⊣e + z ⊣ xi0 .
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It is clear that z ⊣ xi0 = he⊣xi0
if z = e and z ⊣ xi0 = xt ⊣ xi0 − {xt ⊣ xi0} = ft⊣i0 if

z = xt ∈ X , since {xt ⊣ xi0} = 0. This implies that z ⊣ hxi0
⊢e ≡ 0 mod(S1).

Thus we show that all compositions of left multiplication in S1 are trivial modulo S1.
By symmetry, all compositions of right multiplication in S1 are trivial modulo S1.

Now, all possible ambiguities [w] of compositions of intersection in S1 are:

1 ∧ 1, [xixj ẋt]; 1 ∧ 2, [xiẋjxt]; 1 ∧ 4, [xiẋje]; 1 ∧ 5, [xixi0 ė].

2 ∧ 2, [ẋixjxt]; 2 ∧ 4, [ẋixje].

3 ∧ 1, [exiẋj ]; 3 ∧ 2, [eẋixj ]; 3 ∧ 3, [eeẏ]; 3 ∧ 4, [eẏe]; 3 ∧ 5, [exi0 ė]; 3 ∧ 6, [eėxi0 ].

4 ∧ 4, [ẏee]; 4 ∧ 6, [ẏexi0 ].

5 ∧ 3, [xi0eẏ]; 5 ∧ 4, [xi0 ėe]; 5 ∧ 6, [xi0 ėxj0 ].

6 ∧ 2, [ėxi0xj ]; 6 ∧ 4, [ėxi0e].

In the above, all i, j, t ∈ I, i0, j0 ∈ I0 and y ∈ X ∪ {e}.

There is no composition of inclusion in S1.

We will show that all compositions of intersection in S1 are trivial. We check only the
cases of 1 ∧ 2, 1 ∧ 5 and 4 ∧ 6. Others can be similarly proved.

For 1 ∧ 2, [w] = [xiẋjxt], since (xi ⊢ xj) ⊣ xt = xi ⊢ (xj ⊣ xt), we have {{xi ⊢ xj} ⊣
xt} = {xi ⊢ {xj ⊣ xt}} and

(1 ∧ 2)[w] = −{xi ⊢ xj} ⊣ xt + xi ⊢ {xj ⊣ xt}

= −f{i⊢j}⊣t + fi⊢{j⊣t} − {{xi ⊢ xj} ⊣ xt}+ {xi ⊢ {xj ⊣ xt}}

= −f{i⊢j}⊣t + fi⊢{j⊣t}

≡ 0 mod(S1, [w]).

For 1 ∧ 5, [w] = [xixi0 ė], since xi ⊢ xi0 ∈ A, we have {xi ⊢ xi0} =
∑

αj0xj0 and

(1 ∧ 5)[w] = {xi ⊢ xi0} ⊢ e =
∑

αj0hxj0
⊢e ≡ 0 mod(S1, [w]).

For 4 ∧ 6, [w] = [ẏexi0 ], we have (4 ∧ 6)[w] = −he⊣xi0
if y = e and (4 ∧ 6)[w] = −ft⊣i0 if

y = xt ∈ X since {xt ⊣ xi0} = 0. Then (4 ∧ 6)[w] ≡ 0 mod(S1, [w]).

Then all the compositions in S1 are trivial.

The proof is complete. �

Remark: Let the notation be as in the proof of Theorem 4.6. Let D′ = D(X ∪{ej}J |S
′)

be a dialgebra, where S ′ = S∪{ej ⊢ y−y, y ⊣ ej−y, ej ⊣ x0, x0 ⊢ ej | y ∈ X∪{ej}J , x0 ∈
X0, j ∈ J}. Let J be a well ordered set. Then with the ordering on [(X ∪ {ej}J)

∗] as
before, where xi < ej for all i ∈ I, j ∈ J , by a similar proof of Theorem 4.6, S ′ is a
Gröbner-Shirshov basis in D(X ∪ {ej}J). It follows from Theorem 3.9 that D can be
embedded into the dialgebra D′ while D′ has bar units {ej}J .

Definition 4.7 Let D1, D2 be dialgebras over a field k. The dialgebra D1 ∗D2 with two
dialgebra homomorphisms ε1 : D1 → D1 ∗D2, ε2 : D2 → D1 ∗D2 is called the free product
of D1, D2, if the following diagram commute:
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∀δ1 ∀δ2

where D is a dialgebra, δ1, δ2 are dialgebra homomorphisms and f : D1 ∗ D2 → D is
a dialgebra homomorphism such that fε1 = δ1, fε2 = δ2 (i.e., (ε1, ε2) : (D1, D2) →
(D1 ∗D2, D1 ∗D2) is a universal arrow in the sense of S. Maclane [13]).

An equivalent definition is as follows: Let Di = D(Xi|Si) be a presentation by generators
and defining relations with X1 ∩X2 = ∅, i = 1, 2. Then D1 ∗D2 = D(X1 ∪X2|S1 ∪ S2).

Let (D1,⊢,⊣), (D2,⊢,⊣) be two dialgebras over a field k, A1 the ideal of D1 generated
by the set {a ⊣ b − a ⊢ b| a, b ∈ D1} and A2 the ideal of D2 generated by the set
{c ⊣ d − c ⊢ d| c, d ∈ D2}. Let X0 = {xi0 |i0 ∈ I0} be a k-basis of A1 and X = {xi|i ∈ I}
a well ordered k-basis of D1 such that I0 ⊆ I. Let Y0 = {yl0|l0 ∈ J0} be a k-basis of A2

and Y = {yl|l ∈ J} a well ordered k-basis of D2 such that J0 ⊆ J . Then D1 and D2 have
multiplication tables:

D1 = D(X|S1), S1 = {xi ⊢ xj − {xi ⊢ xj}, xi ⊣ xj − {xi ⊣ xj}, i, j ∈ I},

D2 = D(Y |S2), S2 = {yl ⊢ ym − {yl ⊢ ym}, yl ⊣ ym − {yl ⊣ ym}, l, m ∈ J}.

The free product D1 ∗D2 of D1 and D2 is

D1 ∗D2 = D(X ∪ Y |S1 ∪ S2).

We order X ∪ Y by xi < yj for any i ∈ I, j ∈ J . Then we have the following theorem.

Theorem 4.8 (i) S is a Gröbner-Shirshov basis of D1 ∗D2 = D(X ∪ Y |S1 ∪ S2), where
S consists of the following relations:

1. fxi⊢xj
= xi ⊢ xj − {xi ⊢ xj}, i, j ∈ I,

2. fxi⊣xj
= xi ⊣ xj − {xi ⊣ xj}, i, j ∈ I,

3. fyl⊢ym = yl ⊢ ym − {yl ⊢ ym}, l, m ∈ J,

4. fyl⊣ym = yl ⊣ ym − {yl ⊣ ym}, l, m ∈ J,

5. hxi0
⊢yl = xi0 ⊢ yl, i0 ∈ I0, l ∈ J,

6. hyl⊣xi0
= yl ⊣ xi0 , i0 ∈ I0, l ∈ J,

7. hyl0⊢xi
= yl0 ⊢ xi, i ∈ I, l0 ∈ J0,

8. hxi⊣yl0
= xi ⊣ yl0, i ∈ I, l0 ∈ J0.

(ii) Irr(S), which is a k-linear basis of D1∗D2, consists of all elements z−m · · · z−1ż0z1 · · · zn,
where m,n ≥ 0, z0 ∈ X∪Y, zi ∈ (X\X0)∪(Y \Y0),−m ≤ i ≤ n, i 6= 0, neither {zj , zj+1} ⊆
X nor {zj , zj+1} ⊆ Y,−m ≤ j ≤ n− 1.
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Proof. By the proof of Theorem 4.6, we have {xi ⊣ xi0} = 0, {xi0 ⊢ xi} = 0, {yl ⊣
yl0} = 0 and {yl0 ⊢ yl} = 0 for any i ∈ I, i0 ∈ I0, l ∈ J, l0 ∈ J0.

Firstly, we prove that hyl⊣xi0
∈ Id(S1 ∪ S2) for any i0 ∈ I0, l ∈ J .

Since yl ⊣ (ci({ai ⊣ bi} − {ai ⊢ bi})di) = yl ⊣ (ci((ai ⊣ bi − {ai ⊣ bi})− (ai ⊢ bi − {ai ⊢
bi})di) ∈ Id(S1∪S2), we have yl ⊣ {ci{ai ⊣ bi − ai ⊢ bi}di} ∈ Id(S1 ∪S2) for all i, l. Then
hyl⊣xi0

∈ Id(S1 ∪ S2).

Similarly, we have hxi0
⊢yl, hyl0⊢xi

, hxi⊣yl0
∈ Id(S1 ∪ S2) for any i ∈ I, i0 ∈ I0, l ∈

J, l0 ∈ J0.

Secondly, we will show that all compositions in S are trivial.

All possible compositions of left and right multiplication are: z ⊣ fxi⊢xj
, z ⊣ fyl⊢ym , z ⊣

hxi0
⊢yl, z ⊣ hyl0⊢xi

, fxi⊣xj
⊢ z, fyl⊣ym ⊢ z, hyl⊣xi0

⊢ z, hxi⊣yl0
⊢ z, where z ∈ X ∪ Y .

By a similar proof in Theorem 4.6, all compositions of left and right multiplication
mentioned the above are trivial modulo S.

Now, all possible ambiguities [w] of compositions of intersection in S are:

1 ∧ 1, [xixj ẋt]; 1 ∧ 2, [xiẋjxt]; 1 ∧ 5, [xixi0 ẏl]; 1 ∧ 8, [xiẋjyl0 ].

2 ∧ 2, [ẋixjxt]; 2 ∧ 8, [ẋixjyl0].

3 ∧ 3, [ylymẏt]; 3 ∧ 4, [ylẏmyt]; 3 ∧ 6, [ylẏmxi0 ]; 3 ∧ 7, [ymyl0ẋi].

4 ∧ 4, [ẏlymyt]; 4 ∧ 6, [ẏlymxi0 ].

5 ∧ 3, [xi0ylẏt]; 5 ∧ 4, [xi0 ẏlyt]; 5 ∧ 6, [xi0 ẏlxj0 ]; 5 ∧ 7, [xi0yl0ẋt].

6 ∧ 2, [ẏlxi0xt]; 6 ∧ 8, [ẏmxi0yl0].

7 ∧ 1, [yl0xiẋj]; 7 ∧ 2, [yl0ẋixj ]; 7 ∧ 5, [yl0xi0 ẏm]; 7 ∧ 8, [yl0ẋiym0
].

8 ∧ 4, [ẋiyl0yt]; 8 ∧ 6, [ẋiyl0xi0 ].

There is no composition of inclusion in S.

We will show that all compositions of intersection in S are trivial. We check only the
cases of 1 ∧ 5 and 2 ∧ 8. Others can be similarly proved.

For 1 ∧ 5, [w] = [xixi0 ẏl], let {xi ⊢ xi0} =
∑

αt0xt0 . Then

(1 ∧ 5)[w] = −{xi ⊢ xi0} ⊢ yl = −
∑

αt0hxt0
⊢yl ≡ 0 mod(S, [w]).

For 2 ∧ 8, [w] = [ẋixjyl0 ], let {xi ⊣ xj} =
∑

αtxt. Then

(2 ∧ 8)[w] = −{xi ⊣ xj} ⊣ yl0 = −
∑

αthxt⊣yl0
≡ 0 mod(S, [w]).

Then all the compositions in S are trivial. This show (i).

(ii) follows from our Theorem 3.9. �

Definition 4.9 Let X = {x1, . . . , xn} be a set, k a field of characteristic 6= 2 and (aij)n×n

a non-zero symmetric matrix over k. Denote

D(X ∪ {e} | xi ⊢ xj + xj ⊣ xi − 2aije, e ⊢ y − y, y ⊣ e− y, xi, xj ∈ X, y ∈ X ∪ {e})

by C(n, f). Then C(n, f) is called a Clifford dialgebra.
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We order X ∪ {e} by x1 < · · · < xn < e.

Theorem 4.10 Let the notation be as the above. Then

(i) S is a Gröbner-Shirshov basis of Clifford dialgebra C(n, f), where S consists of the
following relations:

1. fxixj
= xi ⊢ xj + xj ⊣ xi − 2aije,

2. ge⊢y = e ⊢ y − y,

3. gy⊣e = y ⊣ e− y,

4. fy⊣xixj
= y ⊣ xi ⊣ xj + y ⊣ xj ⊣ xi − 2aijy, (i > j),

5. fy⊣xixi
= y ⊣ xi ⊣ xi − aiiy,

6. fxixj⊢y = xi ⊢ xj ⊢ y + xj ⊢ xi ⊢ y − 2aijy, (i > j),

7. fxixi⊢y = xi ⊢ xi ⊢ y − aiiy,

8. hxie = xi ⊢ e− e ⊣ xi,

where xi, xj ∈ X, y ∈ X ∪ {e}.

(ii) A k-linear basis of C(n, f) is a set of all elements of the form ẏxi1 · · ·xik, where
y ∈ X ∪ {e}, xij ∈ X and i1 < i2 < · · · < ik (k ≥ 0).

Proof. Let S1 = {fxixj
, ge⊢y, gy⊣e | xi, xj ∈ X, y ∈ X ∪ {e}}.

Firstly, we will show that fy⊣xixj
, fy⊣xixi

, fxixj⊢y, fxixi⊢y, hxie ∈ Id(S1).

In fact, fy⊣xixj
= y ⊣ fxixj

+ 2aijgy⊣e implies fy⊣xixj
, fy⊣xixi

∈ Id(S1). By symmetry,
we have fxixj⊢y, fxixi⊢y ∈ Id(S1).

If there exists t such that ait 6= 0, then

2aithxie = fxixi⊢xt
− xi ⊢ fxi⊢xt

+ fxi⊢xt
⊣ xi − fxt⊣xixi

∈ Id(S1).

Otherwise, ait = 0 for any t. Since (aij) 6= 0, there exists j 6= i such that ajt 6= 0 for some
t. Then

2ajthxie

= fxixj⊢xt
− xi ⊢ fxj⊢xt

− xj ⊢ fxi⊢xt
+ fxi⊢xt

⊣ xj + fxj⊢xt
⊣ xi − fxt⊣xixj

∈ Id(S1).

This shows that hxie ∈ Id(S1).

Secondly, we will show that all compositions in S is trivial.

All possible compositions of left and right multiplication are: z ⊣ fxixj
, z ⊣ ge⊢y, z ⊣

fxixj⊢y, z ⊣ fxixi⊢y, z ⊣ hxie, fxixj
⊢ z, gy⊣e ⊢ z, fy⊣xixj

⊢ z, fy⊣xixi
⊢ z, hxie ⊢ z, where

z ∈ X ∪ {e}. We just check the cases of fy⊣xixj
⊢ z and hxie ⊢ z. Others can be similarly

proved.

For fy⊣xixj
⊢ z, we have

fy⊣xixj
⊢ z = y ⊢ xi ⊢ xj ⊢ z + y ⊢ xj ⊢ xi ⊢ z − 2aijy ⊢ z = y ⊢ fxixj⊢z ≡ 0 mod(S).

For hxie ⊢ z,

hxie ⊢ z = xi ⊢ e ⊢ z − e ⊢ xi ⊢ z = xi ⊢ ge⊢z − ge⊢xi
⊢ z ≡ 0 mod(S).
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Now, all possible ambiguities [w] of compositions of intersection in S are:

1 ∧ 3, [xiẋje]; 1 ∧ 4, [xiẋjxmxn] (m > n); 1 ∧ 5, [xiẋjxnxn].

2 ∧ 1, [exiẋj ]; 2 ∧ 2, [eeẏ]; 2 ∧ 3, [eẏe]; 2 ∧ 4, [eẏxixj ] (i > j);

2 ∧ 5, [eẏxixi]; 2 ∧ 6, [exixj ẏ] (i > j); 2 ∧ 7, [exixiẏ]; 2 ∧ 8, [exiė].

3 ∧ 3, [ẏee]; 3 ∧ 4, [ẏexixj ] (i > j); 3 ∧ 5, [ẏexixi].

4 ∧ 3, [ẏxixje] (i > j); 4 ∧ 4, [ẏxixjxmxn] (i > j,m > n), [ẏxixjxt] (i > j > t);

4 ∧ 5, [ẏxixjxtxt] (i > j), [ẏxixjxj ] (i > j).

5 ∧ 3, [ẏxixie]; 5 ∧ 4, [ẏxixixmxn] (m > n), [ẏxixixj ] (i > j);

5 ∧ 5, [ẏxixixmxm], [ẏxixixi].

6 ∧ 1, [xixjxmẋn] (i > j); 6 ∧ 2, [xixjeẏ] (i > j); 6 ∧ 3, [xixj ẏe] (i > j);

6 ∧ 4, [xixj ẏxmxn] (i > j,m > n); 6 ∧ 5, [xixj ẏxmxm] (i > j);

6 ∧ 6, [xixjxmxnẏ] (i > j,m > n), [xixjxtẏ] (i > j > t);

6 ∧ 7, [xixjxmxmẏ] (i > j), [xixjxj ẏ] (i > j); 6 ∧ 8, [xixjxtė] (i > j).

7 ∧ 1, [xixixmẋn]; 7 ∧ 2, [xixieẏ]; 7 ∧ 3, [xixiẏe]; 7 ∧ 4, [xixiẏxmxn] (m > n);

7 ∧ 5, [xixiẏxmxm]; 7 ∧ 6, [xixixmxnẏ] (m > n), [xixixtẏ] (i > t);

7 ∧ 7, [xixixmxmẏ], [xixixiẏ]; 7 ∧ 8, [xixixj ė].

8 ∧ 3, [xiėe]; 8 ∧ 4, [xiėxmxn] (m > n); 8 ∧ 5, [xiėxmxm].

All possible ambiguities [w] of compositions of inclusion in S are:

6 ∧ 1, [xixj ẋt] (i > j); 6 ∧ 8, [xixj ė] (i > j).

7 ∧ 1, [xixiẋj ]; 7 ∧ 8, [xixiė].

We just check the cases of intersection 1 ∧ 4, 4 ∧ 4, 6 ∧ 4, 6 ∧ 8, 8 ∧ 4 and of inclusion
6 ∧ 1, 6 ∧ 8. Others can be similarly proved.

For 1 ∧ 4, [w] = [xiẋjxmxn] (m > n), we have

(1 ∧ 4)[w]

= xj ⊣ xi ⊣ xm ⊣ xn − 2aije ⊣ xm ⊣ xn − xi ⊢ xj ⊣ xn ⊣ xm + 2amnxi ⊢ xj

= xj ⊣ fxi⊣xmxn
− 2aijfe⊣xmxn

− fxixj
⊣ xn ⊣ xm + 2amnfxixj

≡ 0 mod(S, [w]).

For 4 ∧ 4, there are two cases to consider: [w1] = [ẏxixjxmxn] (i > j,m > n) and
[w2] = [ẏxixjxt] (i > j > t). We have

(4 ∧ 4)[w1]

= y ⊣ xj ⊣ xi ⊣ xm ⊣ xn − 2aijy ⊣ xm ⊣ xn − y ⊣ xi ⊣ xj ⊣ xn ⊣ xm + 2amny ⊣ xi ⊣ xj

= y ⊣ xj ⊣ fxi⊣xmxn
− 2aijfy⊣xmxn

− fy⊣xixj
⊣ xn ⊣ xm + 2amnfy⊣xixj

≡ 0 mod(S, [w1]) and

(4 ∧ 4)[w2]

= y ⊣ xj ⊣ xi ⊣ xt − 2aijy ⊣ xt − y ⊣ xi ⊣ xt ⊣ xj + 2ajty ⊣ xi

= y ⊣ fxj⊣xixt
− fy⊣xjxt

⊣ xi − fy⊣xixt
⊣ xj + y ⊣ fxt⊣xixj

≡ 0 mod(S, [w2]).
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For 6 ∧ 4, [w] = [xixj ẏxmxn] (i > j,m > n), we have

(6 ∧ 4)[w]

= xj ⊢ xi ⊢ y ⊣ xm ⊣ xn − 2aijy ⊣ xm ⊣ xn − xi ⊢ xj ⊢ y ⊣ xn ⊣ xm + 2amnxi ⊢ xj ⊢ y

= xj ⊢ xi ⊢ fy⊣xmxn
− 2aijfy⊣xmxn

− fxixj⊢y ⊣ xn ⊣ xm + 2amnfxixj⊢y

≡ 0 mod(S, [w]).

For 6 ∧ 8, [w] = [xixjxtė] (i > j), we have

(6 ∧ 8)[w] = xj ⊢ xi ⊢ xt ⊢ e− 2aijxt ⊢ e + xi ⊢ xj ⊢ e ⊣ xt

= xj ⊢ xi ⊢ hxte − 2aijhxte + fxixj⊢e ⊣ xt

≡ 0 mod(S, [w]).

For 8 ∧ 4, [w] = [xiėxmxn] (m > n), we have

(8 ∧ 4)[w] = −e ⊣ xi ⊣ xm ⊣ xn − xi ⊢ e ⊣ xn ⊣ xm + 2amnxi ⊢ e

= −e ⊣ fxi⊣xmxn
− hxie ⊣ xn ⊣ xm + 2amnhxie

≡ 0 mod(S, [w]).

Now, we check the compositions of inclusion 6 ∧ 1 and 6 ∧ 8.

For 6 ∧ 1, [w] = [xixjẋt] (i > j), we have

(6 ∧ 1)[w] = xj ⊢ xi ⊢ xt − 2aijxt − xi ⊢ xt ⊣ xj + 2ajtxi ⊢ e

= xj ⊢ fxixt
− fxixt

⊣ xj + 2ajthxie − fxjxt
⊣ xi + fxt⊣xixj

+ 2aithxje

≡ 0 mod(S, [w]).

For 6 ∧ 8, [w] = [xixj ė] (i > j), we have

(6 ∧ 8)[w] = xj ⊢ xi ⊢ e− 2aije + xi ⊢ e ⊣ xj

= xj ⊢ hxie + hxie ⊣ xj + hxje ⊣ xi + fe⊣xixj

≡ 0 mod(S, [w]).

Then all the compositions in S are trivial. We have proved (i).

For (ii), since the mentioned set is just the set Irr(S), by Theorem 3.9 the result holds.

The proof is complete. �

Remark: In the Theorem 4.10, if the matrix (aij)n×n = 0, then Clifford dialgebra C(n, f)
has a Gröbner-Shirshov basis S ′ which consists of the relations 1–7.

Acknowledgement: The authors would like to thank P.S. Kolesnikov who gives some
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