arXiv:0804.0638v4 [math.RA] 16 May 2010

Grobner-Shirshov bases for dialgebras

L. A. Bokut*

School of Mathematical Sciences, South China Normal University
Guangzhou 510631, P. R. China
Sobolev Institute of Mathematics, Russian Academy of Sciences
Siberian Branch, Novosibirsk 630090, Russia

Email: bokut@Qmath.nsc.ru

Yuqun Chen'* and Cihua Liu

School of Mathematical Sciences, South China Normal University
Guangzhou 510631, P. R. China
Email: ygchen@scnu.edu.cn

langhua0lduo@yahoo.com.cn
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1 Introduction

Recently, J.-L. Loday (1995, [10]) gave the definition of a new class of algebras, dialgebras,
which is closely connected to his notion of Leibniz algebras (1993, [9]) and in the same
way as associative algebras are connected to Lie algebras. In the manuscript [11], J.-L.
Loday found a normal form of elements of a free dialgebra. Here we continue to study free
dialgebras and prove the composition-diamond lemma for them. As it is well known, this
kind of lemma is the cornerstone of the theory of Grobner and Grobner-Shirshov bases
(see, for example, [5] and cited literature). In commutative-associative case, this lemma is
equivalent to the Main Buchberger’s Theorem ([6], [7]). For Lie and associative algebras,
this is the Shirshov’s lemma [12] (see also L.A. Bokut [3], [4] and G. Bergman [2]). As
an application, we get another proof of the Poincare-Birkhoff-Witt theorem for Leibniz
algebras, see M. Aymon, P.-P. Grivel [I] and P. Kolesnikov [§].
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2 Preliminaries

Definition 2.1 Let k be a field. A k-linear space D equipped with two bilinear multipli-
cations F and 1 is called a dialgebra, if both = and = are associative and

a-d(bkFec) = adb-ec
(a4b)Fc = akbkc
akF(b-dc) = (akFb)dc

for any a, b, c € D.

Definition 2.2 Let D be a dialgebra, B C D. Let us define diwords (dimonomials) of D
in the set B by induction:

(i) b= (b), b € B is a diword in B of length |b| = 1.

(i) (u) is called a diword in B of length n, if (u) = ((v) 4 (w)) or (u) = ((v) F (w)),
where (v), (w) are diwords in B of length k, [ respectively and k + 1 = n.

Proposition 2.3 ([11]) Let D be a dialgebra and B C D. Any diword of D in the set B
is equal to a diword in B of the form

(u) =b_p bbby Fbg—b b, (1)

where b; € B, —m <i<n, m >0, n > 0. Any bracketing of the right side of {dl) gives
the same result. [

Definition 2.4 Let X be a set. A free dialgebra D(X) generated by X over k is defined
in a usual way by the following commutative diagram:

X—t . p(x)

7 Alp*  (homomorphism)

D

where D is any dialgebra.
In [I1], a construction of a free dialgebra is given.

Proposition 2.5 ([71]) Let D(X) be free dialgebra generated by X over k. Any diword
in X is equal to the unique diword in X of the form

ul=2_,F-Faxgbxgdey 4 Az, =2 - 1%z T, (2)

where z; € X, m >0, n > 0. We call [u] a normal diword (in X ) with the associative
word u,u € X*. Clearly, if [u] = [v], then u = v. In (3), xy is called the center of the
normal diword [u]. Let [u], [v] be two normal diwords, then [u] & [v] is the normal diword
[uv] with the center at the center of [v]. Accordingly, [u] 4 [v] is the normal diword [uv]
with the center at the center of [u]. O



Example 2.6
(IL'_l |_$0_|$1)|_(y—1}_y0_|y1):$—1 I_I‘O}_l‘l l_y_ll_y0_|y1,

(:E_ll—xo—ixl)%(y_ll—yo—iyl):x_ll—x0—|x1—|y_1—|y0—iy1. |:|

Definition 2.7 A k-linear space L equipped with bilinear multiplication [,] is called a
Leibniz algebra if for any a,b,c € L,

[[aa b]> C] = [[a’a C]v b] + [av [bv C]]

i.e., the Jacobi identity is valid in L.

It is clear that if (D, H,F) is a dialgebra then D) = (D, [,]) is a Leibniz algebra, where
[a,b) =a-4b—0bF a for any a,b € D.

3 Composition-Diamond lemma for dialgebras

Let X be a well ordered set, D(X) the free dialgebra over k, X* the free monoid generated
by X and [X*| the set of normal diwords in X. Let us define deg-lex order on [X*] in the
following way: for any [u], [v] € [X"],

[u] < [v] <= wt([u]) < wt([v]) lexicographicaly,

where
wt([u]) = (n+m+ 1amax—m7"' y Lyt axn)

if [u] =x_p, - 2120wy - - - x,. 1t is easy to see that the order < is monomial in the sense:
[u] <) =k [ul <zt v, u] 4z < [v] dz, for any x € X.
Any polynomial f € D(X) has the form

f= > [l =alfl+ ) au],
[ulelx"]

where [f], [u;] are normal diwords in X, [f] > [w], o, as;, f([u]) € k. We call [f] the
leading term of f. Denote by suppf the set {[u]|f([u]) # 0} and deg(f) by |[f]|. f is
called monic if & = 1. f is called left (right) normed if f = > ocu; (f = > audiuy),
where each «; € k, x; € X and u; € X*. The same terminology will be used for normal

diwords.

If [u], [v] are both left normed or both right normed, then it is clear that for any
w € [X7],

[u] <] = [ulFw<plFw wku <wk v, u dw <] dw, w-u <w-].

Let S € D(X). By an S-diword g we will mean g is a diword in {X U S} with only
one occurrence of s € S. If this is the case and g = (asb) for some a,b € X* and s € 5,
we also call g an s-diword.



From Proposition it follows easily that any S-diword is equal to
lasb] =x_p bbb ag Az A A r|ass (3)

where —m < k < n, x, € X, s € S. To be more precise, [asb] = [ash] if k = 0;
[asb] = [asbiZoby] if k < 0 and [asb] = [a1Zpazsh] if k > 0. Note that any bracketing of

[asb] gives the same result, for example, [asb] = [(a1az2)sb] = [a1(azs)b] if a = ajas. If
the center of the s-diword [asb] is in a, then we denote by [asb] = [a17pagsb]. Similarly,
[asb] = [asbiZobs] (of course, some a;, b; may be empty).

Definition 3.1 The S-diword (3) is called a normal S-diword if one of the following
conditions holds:

(i) k=0.
(i) k<0 and s is left normed.
(iii) k>0 and s is right normed.

We call a normal s-diword [asb] a left (right) normed s-diword, if both s and [asb] are
left (right) normed. In particulary, s is a left (right) normed s-diword, if s is left (right)
normed polynomial.

The following lemma follows from the above properties of the order of normal diwords.

Lemma 3.2 For a normal S-diword [asb|, the leading term of [asb] is equal to [a[S]b],
that is, [asb] = [a[s]b]. More specifically, if

lasbl =x_p b FagbFooda A Axy|ouss,

then

I R R T i I B IR [P A R i e T ] e e IR 7

TombF FsFFag A Aap=a_mb - F [ b A,
Tom b Fao A dsdAan=a b bagd-AE A Az, O

For convenience, we denote [a[5]b] by [asb] for a normal S-diword [asb].

Now, we define compositions of dipolynomials in D(X).

Definition 3.3 Let the order < be as before and f,g € D(X) with f,g monic.

1) Composition of left (right) multiplication.

Let f be a not right normed polynomial and v € X. Then x - f is called the
composition of left multiplication. Clearly, x = f is a right normed polynomial (or

0).
Let f be a not left normed polynomial and x € X. Then f F x is called the
composition of right multiplication. Clearly, f + x is a left normed polynomial (or

0).



2)  Composition of including.
Let B
[w] = [f] = [agb],

where [agb| is a normal g-diword. Then
(f, 9w = f — [agh]

is called the composition of including. The transformation f — f — [agb] is called
the elimination of leading diword (ELW) of g in f.

3)  Composition of intersection.

Let _ _
[w] = [fb] = [ag], [f|+[g] > |wl],

where [fb] is a normal f-diword and [ag] a normal g-diword. Then

(fs D) = [fb] — [ag]

15 called the composition of intersection.

Remark In the Definition B3, for the case of 2) or 3), we have (f, ), < [w]. For the
case of 1), deg(x = f) < deg(f)+ 1 and deg(f F x) < deg(f) + 1.

Definition 3.4 Let the order < be as before, S C D(X) a monic set and f,g € S.

1) Letx — f be a composition of left multiplication. Then x = f is called trivial modulo
S, denoted by = = f =0 mod(S), if

T = f = ZOZi[CLZ’Sin’],

where each «; € k, a;,b; € [X*], s; € S, [a;s;b;] right normed s;-diword and
|[aisibi]| < deg(x A f).

Let f = x be a composition of right multiplication. Then f F x is called trivial
modulo S, denoted by fF x =0 mod(S), if

f Fao= Zai[aisibi],

where each o; € k, a;,b; € [X*], s; € S, [a;s;b;] left normed s;-diword and |[a;5:b;]| <
deg(f F x).

2)  Composition (f,g)u of including (intersection) is called trivial modulo (S, [w]),
denoted by (f, g)) =0 mod(S, [w]), if

(f7 9)[w} = Z Qy [aisibi]v

where each «; € k, a;,b; € [X*], s; € S, [a;s;b;] normal s;-diword, [a;s;b;] < [w]
and each [a;s;b;] is right (left) normed s;-diword whenever both f and [agb] ([fb] and
[ag]) are right (left) normed S-diwords.



The following proposition is useful when one checks the compositions of left and right
multiplications.

Proposition 3.5 Let the order < be as before, S C D(X) a monic set and f € S. Let
x A f be a composition of left multiplication. Then x 4 f =0 mod(S) if and only if

T = f = ZOZi[CLZ’Sin’],

where each o; € k, a;,b; € X*, s; € S is right normed, [a;s;b;] = [d;s;b;] and |[a;$;b;]| <
deg(x - f).

Accordingly, for the composition of right multiplication, we have a similar conclusion.

Proof Assume that = 4 f = > o;la;s;b;], where each «; € k, a;,b; € [X7*], [a;s:b;] =
[d;s;b;], s; € S right normed and |[a;5;b;]| < deg(x = f). Then, we have the expression

v f=[af] = Z ap[2papspby] + Zﬁq[aql;qagsqbq]v
I I

where each a,, 8; € k, zp, 2, € X, ap,aq,a;,by,0y € X*, ag # 1, 8,8, € S are right
normed. From this it follows that », f,[a,7,a;s,b,] = 0. Now, the results follow. [

Definition 3.6 Let S C D(X) be a monic set and the order < as before. We call the
set S a Grébner-Shirshov set (basis) in D(X) if any composition of polynomials in S is
trivial modulo S (and [w]).

The following two lemmas play key role in the proof of Theorem 3.9

Lemma 3.7 Let S C D(X) and [asb] an S-diword. Assume that each composition of
right or left multiplication is trivial modulo S. Then, [asb] has a presentation:

[asb] = Z a;la;s;bi,

where each o; € k, s; € S, a;,b; € [X*] and each [a;s;b;] is normal s;-diword.

Proof Following Proposition 2.3l we assume that
lasb] =x_p b oy oo dx A A rylpss

There are three cases to consider.
Case 1. k= 0. Then [asb] is a normal S-diword.

Case 2. k < 0. Then [asb] =at (st xpy1) F bk < =1 or [ash] = a t (s xy) 1 b.
If s is left normed then [asb] is a normal S-diword. If s is not left normed then for the
composition s -z, (k < 0) of right multiplication, we have

sE e = > ajlaisibi,
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where each a; € k, a;,b; € [X*], s; € S and [a;s;b;] is left normed s;-diword. Then
lasb] = Zalal— [a;s;b;] - b)

or
lasb] = Zalal— [a;s;b;] 1 b)
is a linear combination of normal S-diwords.
Case 3. k£ > 0 is similar to the Case 2. O

Lemma 3.8 Let S C D(X) and each composition (f, g)p) in S of including (intersection)
trivial modulo (S, [w]). Let [a181b1] and [agsabs] be normal S-diwords such that [w] =
[als_lbl] = [CLQS_QZ)Q]. Th(f’ﬂ,,

[a151b1] = [agsabs] mod(S, [w]).

Proof Because a;$1b; = as52b9 as words, there are three cases to consider.

Case 1. Subwords 7, 53 have empty intersection. Assume, for example, that b, = bs3by
and as; = a151b. Because any normal S-diword may be bracketing in any way, we have

[a289b2] — [a151b1] = (a151(b(s2 — [52])b2)) — ((a1(s1 — [51])b)s2b2).

For any t € supp(sy —53) (t € supp(s; — 51)), we prove that (a;s1bthy) ((aitbsaby)) is a
normal s;-diword (sg-diword ). There are five cases to consider.

1.1 [w] = [a157b53by);

2 [w] = [a151b53by);
3 [w] = [ay57b53bs];
4 [w] = [a,51b33ba);
1.5 [w] = [a,57b53b).

For 1.1, since [a;s1b1] and [ags2b2] are normal S-diwords, both s; and sy are right normed
by the definition, in particular, ¢ is right normed. It follows that (a;s1btby) = [d1s1btbs] is
a normal s;-diword.

For 1.2, it is clear that (a;s1bthy) is a normal s;-diword and ¢ is right normed.

For 1.3, 1.4 and 1.5, since [a;51b;] is normal s;-diword, s; is left normed by the definition,
which implies that (a;s1bthy) is a normal s;-diword. Moreover, ¢ is right normed, if 1.3,
and left normed, if 1.5.

Thus, for all cases, we have [a1s1bthy| = [a157btbe] < [a157053b] = [w].

Similarly, for any ¢ € supp(s;—37), (a1tbsebsy) is a normal so-diword and [a;tbssbs] < [w].

Case 2. Subwords 57 and S3 have non-empty intersection c¢. Assume, for example, that
b1 = bby, ay = ara, w; = 51b = asy = ach.

There are following five cases to consider:

2.1 [w] = [a151bbs);
2.2 [w] = [a,57bbs);
2.3 [w] = [ayacbbs);
2.4 [w] = [ajacbby];



2.5 [w] = [ayachb,].
Then
[a252ba] — [a15101] = (a1([asa] — [s10])b2) = (a1 (s1, $2)[wn)b2),

where [w;] = [acbh] is as follows:
1 [wy] is right normed;

[
]
2 [w1] is left normed;
I =
]

3 [wy] = [ach;
4 [wq] = [acd];
2.5 [wi] = [ach].

Since S is a Grobner-Shirshov basis, there exist §; € k, u;,v; € [X*], s; € S such that
[s10] —[as2] = >, Bjlu;s;v,], where each [u;s;v;] is normal S-diword and [u;s;v;] < [w:] =
[acb]. Therefore,

[a282b2] a151b1 ZBJ aq u]S]U]]bQ)

Now, we prove that each (aj[u;js;v;]be) is normal s;-diword and (aq[u;s;v;lbe) < [w] =
[a1570bs).

For 2.1, since [d}s1bbs] and [djasebs| are normal S-diwords, both [s1b] and [ass] are right
normed S-diwords. Then, by the definition, each [u;s;v;] is right normed S-diword, and
so each (a1[ujs;v,]be) = [d1u;s,;vjbs] is a normal S-diword.

For 2.2, both [s1b] and [asy] must be left normed S-diwords. Then, by the definition,
each [u;s,v;] is left normed S-diword, and so each (a;[u;s;v;]by) = [a1u;5,;v;by] is a normal
S-diword.

For 2.3, 2.4 or 2.5, by noting that (a1[u;s;v;]b2) = ((a1) F [u;s;v;] = (b)) and [u;s;v;]
is normal S-diword, (a1 [u;s;v;]b2) is also normal S-diword.

Now, for all cases, we have [aiu;s;v;b2] = [a1u;5;v;b2] < [w] = [ayachby].

Case 3. One of the subwords s7 and 33 contains another as a subword. Assume, for
example, that by = bby, as = aia, wy =51 = aszb.

Again there are following five cases to consider:

2.1 [w] = [d1as3bby];
2.2 [w] = [ayaszbby];
2.3 [w] = [a1as3bby];
2.4 [w] = [a,a53bb;];
2.5 [w] = [aya53bby].
Then
[a15101] — [a2s2ba] = (a1(s1 — asab)by) = (a1 (1, 52)pwi)b1)
It is similar to the proof of the Case 2, that we have [a151b1] = [ags2bs] mod(S, [w]). O

The following theorem is the main result.

Theorem 3.9 (Composition-Diamond Lemma) Let S C D(X) be a monic set and the
order < as before. Then (i) = (ii) < (i1)" & (iit) = (iv), where
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(i) S is a Grébner-Shirshov basis.

(ii) For any f € D(X), 0 # f € 1d(S) = f = [a3b] for some s € S, a,b € [X*] and
[asb] a normal S-diword.

(17)" For any f € D(X), if 0# f € 1d(S), then
f = aifarsibi]+asg|assabs]+ - Ay lansnby] with [a151b] > [agszbs] > -+ > [a,S,by),
where [a;s;b;] is normal S-diword, i = 1,2,--- ,n.
(iii) The set
Irr(S) = {u € [X*]||u # [a3Sb], s € S,a,b € [X*], [asb] is normal S-diword}
is a linear basis of the dialgebra D(X|S).

(iv) For each composition (f,g)) of including (intersection), we have

(f, D)) = Z a;la;sibi],

where each o; € k, a;,b; € [X*], s; € S, [a;s;b;] normal S-diword and [a;5:b;] < [w].

Proof (i) = (ii). Let S be a Grobner-Shirshov basis and 0 # f € Id(S). We can
assume, by Lemma [B.7], that

f= Zai[aiSibi]v
i=1
where each o; € k, a;,b; € [X*], s; € S and [a;s;b;] normal S-diword. Let
[wi] = [a;53bi], [wi] = [wo] =+ = [w] > [wiya] = -

We will use the induction on [ and [w;] to prove that f = [asb], for some s € S and a,b €
[X*]. If { = 1, then f = [a151b1] = [a15101] and hence the result holds. Assume that [ > 2.
Then, by Lemma 3.8, we have [a151b1] = [a282bs] mod(S, [w]).

Thus, if ay +as # 0 or [ > 2, then the result holds. For the case a1 +ay =0 and | = 2,
we use the induction on [w;]. Now, the result follows.

(i) = (ii)’. Assume (ii) and f € Id(S). Let f = aif + > u<F Cilwi]. Then, by (ii),

f = [a151b1], where [a;5,by] is a normal S-diword. Therefore,

fi = f—aifars1b1], fi<f, fi€ Id(S).

Now, by using induction on f, we have (ii)’.
(17)" = (ii). This part is clear.
(17)" = (iit). Assume (ii)’. We firstly prove that, for any h € D(X), we have

h=>ailu] + ) Bjlass;bs] (4)
I I
where [u;] € Irr(S), i € I1, [a;s;b;] normal S-diwords, j € I5.

9



Let h = a;h + ---. We use the induction on h.

If h € Irr(S), then take [u;] = h and hy = h — a;[uy]. Clearly, hy < h.

Ifﬁg [7’7“_(5), then h = [a;51b1] with [a;51b;] a normal S-diword. Let hy = h—3[a151b1].
Then h; < h.

Suppose that 0 # > a;[w;] = >° Bjlajs;b;], where [uq] > [ug] > -+, [u;] € Irr(S) and
[a157D1] > [agSaby] > -+ -. Then, [u1] = [a;57b1], a contradiction.

Now, (iii) follows.
(i) = (i1) and (iv). Assume (iii). For any 0 # f € Id(S), f & Irr(S) implies that
f = [asb], where [asb] is a normal S-diword. This shows (ii).

By noting that (f, g)q, € 1d(S) and by using (@) and ELW, we have

(f, 9)[w] = Z oila;s;b;]

where each a; € k, a;,b; € [X*], s; € S, [a;s;b;] normal S-diword and [a;S;b;] < [w]. O

4 Applications

Now, by using Theorem B9 we obtain a Grobner-Shirshov basis for the universal en-
veloping algebra of a Leibniz algebra.

Theorem 4.1 Let L be a Leibniz algebra over a field k with the product {,}. Let Ly be
the subspace of L generated by the set {{a,a},{a,b} + {b,a} | a,b € L}. Let {z;|i € Iy}
be a basis of Lo and X = {x;|i € I} a linearly ordered basis of L such that Iy C I. Let
D(X|z; 4 xj — x; & x; — {4, z;}) be the dialgebra and the order < on [X*| as before.
Then

(i) D(X|z; 4 z; —x; b x; — {x;,2;}) = D(X|S), where S consists of the following

polynomials:

. fi=zjtFx—o Az + {2, 2} (1,7 €1)

2. firme=xj oo —xFoj b+ {x, o} Fay (i,j,t €I, j>1)
3. higt =iy By (19 € Iy, t € 1)
4. fryi=x Aoy Aoy — oy Ao Aoy + 2 4 {2, 25} (i,5,t €1, j>1)
5. iy = @ 1 xy, (g € Iy, tE€T)

(i) S is a Grobner-Shirshov basis.
(iii) The set
{.’L‘j_|32‘i1 _|_|.lelk ‘jEI,ZPEI—[O, 1§p§k, Zlgglk, /{?ZO}

is a linear basis of the universal enveloping algebra U(L) = D(X|S). In particular,
L can be embedded into U(L).
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Proof (i) By using the following

Jiire = [ o and fii b o+ fij b oy = (o, 2} + {2, 2:}) F 2y,
we have 2 and 3 are in Id(fj;). By symmetry, 4 and 5 are in Id(f;;). This shows (i).

(ii)) We will prove that all compositions in S are trivial modulo S. We denote by
(¢ A j) the composition of the polynomials of type i and type j. For convenience, we

extend linearly the functions fji, fiie, fiiji, Rigre and hesiy to fipay (fipayi)s fii-ip.ad
and hyp g1, etc respectively, where, for example, if {z,, x,} = > Qp,Ts, then

Fimay = o5 {zpw} = {apowg) oy + {{zp a0y} = D afyfio,
fiiripat = Za;q(xj Faoibas—xbabas+{w,x} Fas) = fi {24},
hipayic = Y Vpghoio-
By using the Jacobi identity in £, for any a,b,c € L,

{{a, b}, ¢} = {a, {b,c}} + {{a, ¢}, b} (5)
we have
{a,{b,b}} =0 and {a,{b,c}+{c,b}} =0
and in particular, for any iy € Iy, j € I,

{z;,2;,} =0 (6)
and
{xiov x]'} € Lo (7)
which implies that £y is an ideal of L. Clearly, £/L, is a Lie algebra.
Since {z;,, x;} = {ziy, x;} + {xj, 2, } € Lo, the (@) follows.
The formulas (&), (@) and (7)) are useful in the sequel.
In S, all the compositions are as follows.
1) Compositions of left or right multiplication.
All possible compositions in S of left multiplication are ones related to 1, 2 and 3.

By noting that for any s, 1, 7,t € I, we have

Ts A fji = fei (7 >1),
zs A fji = —feuy +2s A (i, 25} + {xg, 2:}) (J <),
ro A fu = w6 {SL’i737z‘}7

Ts A fjie = feji a0 (j>1i) and

T A higre = hgip 24,

it is clear that all cases are trivial modulo S.
By symmetry, all compositions in S of right multiplication are trivial modulo S.
2) Compositions of including or intersection.

All possible compositions of including or intersection are as follows.

11



(L1A3) w=uwx;, Fx; (ig € Iy). We have, by (@),
(fioi> Pigki)w = =i = Tig + {24, Tig } = —hiy -
(IAN4) w=x;Fx; "z, 42, (¢>p). We have
(fjia qup)w

= —xidz;deg Aoy + {2} g Ay + ;o dap, 42, — x5 F oy A {y, 2}
= 2 A firp + e + fii A xp Fwg = fii A {ap, 24

(1AD) w=uwx;Fxz; Az (ic € Ip). We have
(fjis hiviio)w = =i x5 A 23 +{zs, 25} T 239 = =25 = hjaiip + My -

(2A1) There are two cases to consider: w =x; Fz; F 2, and w = z; F 2, F oy F x),.

Forw=x;Fz; Fx (j>1i), by (@), we have

(fiit, fit)w = —mitajba+{o, ot b +o; o Ao — x5 {ay, 24}
= —m b [ fugpe + fe v = iy + figegy — Jae 325 + fra

Forw=x;Fz; F a2, (j>1i), we have
(fiirts fip)w
it bo e, +{e, e b ke, b ba, A — o Boa E{rg, 1)
= —xilFa;F fi,+ {xiaxj} = fip + fiip T2 — fjiF{p,t}'

(2 A 2) There are two cases to consider: w =z, F ;- F o Fxyand w =o; F o By

Tp.

Forw=uz;Fa; ko bagba, (j>i,t>s), we have

(.fjil—ta ftsl—p)w

= —ybtojbtoy ok, +{v, ot ra e b, o ke e Ea b,
—xj b a; F{zs, v} F oy

= - - Z; + ftsl—p + {xiaxj} H ftsl—p + fjil—s + T - Ty — fjil—{s,t} + L.

Forw=ux;Fa;Faz 2, (j>i>1t), suppose that

{@;,2;} = Z O T + o + Z agxy, (m <t <mn).

mel nels

Denote by
By fijyp = 2 F{xi, o5} by — {5 F o b oay — {ag, {xi, 251} F oap.

Then
BtF{i,j}Fp - Z a;?ftml—p - Z O‘:‘Ljfntl—p - Z 6qhq'—p

mel nels qely

12



is a linear combination of normal s-diwords of length 2 or 3, where

Y Berg= Y af{zeom} + {zm x:}) + afy{e, x.).

q€ly mely

Now, by (@), we have

(fjil—ta fitl—p)w
= —ybtajbo o, +{z, sttt b b be, —x - {x, ) F o

= =% & firp — Bufigyp + fimi B Tp — Bjrprayp + Z Yihirp

lely

+BiF{tJ}Fp - fitl—j - Tp + Ty - fjil—pa
where ZZEIO nre = _({xj’ {xt7 $l}}+{{xt7 xi}a l’]})+({$z, {:L‘ty $j}}+{{$t, ZL‘j}, I‘Z})

(2A3) There are three cases to consider: w = z; = ;0 b 2 (ip € Ip), w = zj, - z; -
zy (Jo € o) and w =z, Fx; F ay, F xy, (to € Io).
Case 1. w = z; = zy By (j > do, G0 € Ip). By (), we can assume that
{miy, 75} = D c;, - Then, we have

(fiiorts Pigkt)w = —Tig = @ = 2y +{@ig, 25} B 2 = —higrj b oo + Z'Ylhll—t-

1€y
Case 2. w=xj, - x; F . (jo > 1,0 € Ip). By (@), we have
(Fioirts Pjori)w = =i F xjg b+ {xi, 250} B oe = —2; F hjgre.
Case 3. w=ux; Fx; -y b, (j>i,ty€1lp). We have
(fiirtos Ptorn)w = —xitaj b oy b oy +{a, 2} oy b oy
= (—xitxj+{z;,2;}) F hygrn.
2A4) w=zjFzFa Az, 4z, (j>1i,9>p). We have

(fjihh ft#qp)w
= -z btejFo A, ey, +{z, 2} Fay 2,2,
‘rj ek dx, A2, — 2 b bay A {x,, 1.}
= —zitab fog {25} b frg + fire T 2p 330 — fiire 7 {xp, 24}
2AD) w=xjFaFx Az, (>1i,n0 € ly). We have
(fiirts Pt )w = —TiF b2y Fan, + {25, 25} F 2y
= (—.’L'Z F .’L‘j + {.Ti, SL’]}) + thTLO'
(3A1) There are two cases to consider: w = x,, b z; (ng € Iy) and w = z,,, F 2y F
zs (ng € Ip).

For w = x,, F x; (ng € Iy), we have
(hnol—ta fnot)w = Tt _| xno - {xta xno} - ht—|n0'
For w = x,, F 2, F x5 (ng € Iy), we have

(hnol—ta fts)w = Tny + L = Ty — Ty H {I‘S, xt} - hnol—s - Ty — hnol—{s,t}-
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(BA2) w=xpFabastx, (&> smn9€ ). We have

(hnol—ta ftsl—p)w = In, = T - Ty + Tp — Tny + {xsa xt} - Tp

hnoks + Tt F Tp — hnok{s,t} F Tp.
(BA3) w=wx,, Fay bz, (no,to € Iy). We have
(hnoktm h’tokr)w =0.

BAL) w=xpFa Az, 42, (¢>p,ng € ly). We have

(gt frogp)w = @ng b Ay T2y — 2y - 20 A {2, 2}
= gt 7 (xp A1 — {2, 24 })-

(BAD) w=uwax,, Fay dxs (no,s0 € In). We have

(hnoFtu thso)w =0.

Since (4 A4), (4ADB), (5A4), (5Ab5) are symmetric with (2 A 2), (2A3), (3A2),
(3 A 3) respectively, they have the similar representations. We omit the details.

From the above representations, we know that all compositions in S are trivial modulo
S. So, S is a Grobner-Shirshov basis.

(iii) Clearly, the mentioned set is just the set Irr(S). Now, the results follow from
Theorem 3.9 O

By using the Theorem E.1], we have the following corollary.

Corollary 4.2 ([1,[8]) Let the notations be as in Theorem[{.1. Then U(L) is isomorphic
to L&QU(L/L,), where U(L/L,) is the universal enveloping of the Lie algebra L/L,. [
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Abstract: In this paper, we define the Grobner-Shirshov basis for a dialgebra. The
Composition-Diamond lemma for dialgebras is given then. As results, we give Grobner-
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1 Introduction

J.-L. Loday (1995, [11]) gave the definition of a new class of algebras, dialgebras, which
is closely connected to his notion of Leibniz algebras (1993, [10]) in the same way as
associative algebras connected to Lie algebras. In the manuscript [12], J.-L. Loday found
a normal form of elements of a free dialgebra. Here we continue to study free dialgebras
and prove the Composition-Diamond lemma for dialgebras. As it is well known, this
kind of lemma is the cornerstone of the theory of Grobner and Grobner-Shirshov bases
(see, for example, [6] and cited literature). In commutative-associative case, this lemma
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is equivalent to the Main Buchberger’s Theorem ([7, 8]). For Lie and associative alge-
bras, this is the Shirshov’s lemma [14] (see also L.A. Bokut [3, 4], G. Bergman [2], L.A.
Bokut and Y. Chen [3]). As results, we obtain Grobner-Shirshov bases for the universal
enveloping algebra of a Leibniz algebra, the bar extension of a dialgebra, the free product
of two dialgebras, and Clifford dialgebra. By using our Composition-Diamond lemma
for dialgebras (Theorem [3.9]), we obtain some normal forms for algebras mentioned the
above. Moreover, we get another proof of the M. Aymon, P.-P. Grivel’s result ([1]) on
the Poincare-Birkhoff-Witt theorem for Leibniz algebras (see P. Kolesnikov [9] for other
proof).

2 Preliminaries

Definition 2.1 Let k be a field. A k-linear space D equipped with two bilinear multipli-
cations F and - is called a dialgebra, if both = and = are associative and

a-d(bkFe) = adb-ec
(a=b) ke aFbkc
abF(b-dc) = (akb)Hc

for any a, b, c € D.

Definition 2.2 Let D be a dialgebra, B C D. Let us define diwords of D in the set B by
induction:

(i) b= (b), b€ B is a diword in B of length |b| = 1.

(ii) (u) is called a diword in B of length |(u)| = n, if (u) = ((v) 4 (w)) or (u) = ((v)
(w)), where (v), (w) are diwords in B of length k, | respectively and k + 1 = n.

Proposition 2.3 ([12]) Let D be a dialgebra and B C D. Any diword of D in the set B
is equal to a diword in B of the form

() =b_p bbby Fbg—b b, (1)

where b; € B, —m <i<n, m >0, n > 0. Any bracketing of the right side of {dl) gives
the same result. [

Definition 2.4 Let X be a set. A free dialgebra D(X) generated by X over k is defined
in a usual way by the following commutative diagram:

Xt . p(x)

v
7 Aly*  (homomorphism)

D

where D is any dialgebra.



In [12], a construction of a free dialgebra is given.

Proposition 2.5 ([12]) Let D(X) be a free dialgebra over k generated by X. Any diword
in D(X) is equal to the unique diword of the form

_ A .
— 4—m -1 n — &—m — n
ul=z_,F-Foxgbxgday 4 Hz, =2 1 Zox- T (2)

where x; € X, m >0, n >0, and xq is called the center of the normal diword [u]. We
call [u] a normal diword (in X ) with the associative word u,u € X*. Clearly, if [u] = [v],
then w = v. In (3). Let [u], [v] be two normal diwords. Then [u] & [v] is the normal
diword [uv] with the center at the center of [v]. Accordingly, [u] 4 [v] is the normal diword
[uv] with the center at the center of [u]. O

Example 2.6
(ZL'_lI‘ZL‘Q"I‘l)'_(y_l}_yo_{yl):l‘_lI_I‘O}_l‘ll_y_l'_yo_'yl,
(:E_ll—xo—ixl)%(y_ll—yo—iyl):x_ll—x0—|x1—|y_1—|y0—iy1. |:|

3 Composition-Diamond lemma for dialgebras

Let X be a well ordered set, D(X) the free dialgebra over k, X* the free monoid generated
by X and [X*] the set of normal diwords in X. Let us define the deg-lex ordering on [X™*]
in the following way: for any [u], [v] € [X*],

[u] < [v] <= wt([u]) < wt([v]) lexicographicaly,

where
wt([u]) = (n4+m+1,m,z_p, -+, To, -, Tp)
if [ul =x_p -2 1Z0x1 - Ty
Throughout the paper, we will use this ordering.
It is easy to see that the ordering < is satisfied the following properties:

[u] <] =k ] <zt ], [u] 4z < [v] 4z, for any = € X.

Any polynomial f € D(X) has the form

f= > [l =alfl+ ) alu],
[ulelx]

where [f], [u;] are normal diwords in X, [f] > [u], a, a;, f([u]) € k, a # 0. We call [f]
the leading term of f. Denote suppf by the set {[u]|f([u]) # 0} and deg(f) by |[f]]. f is
called monic if & = 1. f is called left (right) normed if f = > w2 (f = > audiuy),
where each «o; € k, x; € X and u; € X*.

If [u], [v] are both left normed or both right normed, then it is clear that for any
[w] € [X7],

] <] = [l F[w] <ol -], [w] o] <[w]F (0],



Let S € D(X). By an S-diword ¢g we will mean a diword in {X U S} with only one
occurrence of s € S. If this is the case and g = (asb) for some a,b € X*, s € S, we also
call g an s-diword.

From Proposition it follows that any s-diword is equal to
lasb] =x_p bbb ag Az A A r|ass (3)

where —m < k <n, s €S, z; € X, —m < i < n. To be more precise, [asb] = [asb] if
k = 0; [asb] = [asbiZobs] if & < 0 and [asb] = [a1Zpagsh] if k > 0. If the center of the
s-diword [asb] is in a, then we denote it by [asb] = [a1Zgassb]. Similarly, [asb] = [asbiobs]
(of course, either a; or b; may be empty).

Definition 3.1 The s-diword (3) is called a normal s-diword if one of the following con-
ditions holds:

(i) k=0,
(i) k<0 and s is left normed,
(ii)) k>0 and s is right normed.

We call a normal s-diword [asb] a left (right) normed s-diword if both s and [asb] are
left (right) normed. In particulary, s is a left (right) normed s-diword if s is left (right)
normed polynomial.

The following lemma follows from the above properties of the ordering <.

Lemma 3.2 For a normal s-diword [asb], the leading term of [asb] is equal to [a[S]b], that
is, [asb] = [a[s]b]. More specifically, if

lasb] =x_p b oy oo dxy A Axplaos,

then corresponding to k =0, k <0, k> 0, respectively, we have

T bk gbksHdn A A, =2 b ba g B[S Ay A Ay,

TombF - FsF - Fagd-Aap=amb - F [ F-Fagd- A,
Tom b Fao - Asd - Azp=a_mb - Fagd-AFE A Az, O

Now, we define compositions of polynomials in D(X).

Definition 3.3 Let the ordering < be as before and f,g € D(X) with f,g monic.

1) Composition of left (right) multiplication.
Let f be not a right normed polynomial and v € X. Then x = f is called the
composition of left multiplication. Clearly, x = f is a right normed polynomial (or
0).
Let f be not a left normed polynomial and x € X. Then f F x s called the
composition of right multiplication. Clearly, f + x is a left normed polynomial (or

0).



2)  Composition of inclusion.
Let

where [agb| is a normal g-diword. Then

(fs @) = f — lagh]

is called the composition of inclusion. The transformation f — f — [agb] is called
the elimination of leading diword (ELW) of g in f, and [w] is called the ambiguity

of f and g.
3) Composition of intersection.
Let

[w] = [[/16] = [a[g]], |F]+ 7] > |w],
where [fb] is a normal f-diword and [ag] a normal g-diword. Then

(fs D) = [fb] — [ag]

is called the composition of intersection, and [w] is called the ambiguity of f and g.

Remark In the Definition B3, for the case of 2) or 3), we have (f, g)n] < [w]. For the
case of 1), deg(x 4 f) < deg(f)+ 1 and deg(f F x) < deg(f) + 1.

Definition 3.4 Let the ordering < be as before, S C D(X) a monic set and f,g € S.

1) Letz - f be a composition of left multiplication. Then x — f is called trivial modulo
S, denoted by = = f =0 mod(S), if

T = f = ZOZi[CLZ’Sin’],

where each o; € k, a;,b; € X*, s; € S, [a;s;b;] right normed s;-diword and
|as[5]b]| < deg(z — f).

Let f = x be a composition of right multiplication. Then f = x is called trivial
modulo S, denoted by fF x =0 mod(S), if

f Fao= Zai[aisibi],

where each o; € k, a;,b; € X*, s; € S, [a;s:b;] left normed s;-diword and |[a;[5;]b;]| <
deg(f + x).

2)  Composition (f,g)w of inclusion (intersection) is called trivial modulo (S, [w]),
denoted by  (f, 9)pw) = 0 mod(S, [w]), if

(fa g)[w} = Zai[aisibi]a
where each «; € k, a;,b; € X*, s; € S, [a;s;b;] normal s;-diword, [a;[5;)b;] < [w]

and each [a;s;b;| is right (left) normed s;-diword whenever either both f and |[agb]
or both [fb] and [ag] are right (left) normed S-diwords.

bt



We call the set S a Gréobner-Shirshov basis in D(X) if any composition of polynomials
in S is trivial modulo S (and [w]).

The following lemmas play key role in the proof of Theorem B.91

Lemma 3.5 Let S C D(X) and |asb] an s-diword, s € S. Assume that each composition
of right and left multiplication is trivial modulo S. Then, [asb] has a presentation:

[asb] = Zal a;8;b;),

where each o; € k, s; € S, a;,b; € X* and each [a;s;b;] is normal s;-diword.

Proof. Following Proposition 23] we assume that
[asb] :ximl_-~-|_.T,1l_.ro_|x1_|"'_|xn‘xkp_)s-

There are three cases to consider.

Case 1. k = 0. Then [asb] is a normal s-diword.

Case 2. k < 0. Then [asb] = al (st zg1) F bk < =1 or [ash] = a - (s xy) 0.
If s is left normed then [asb] is a normal s-diword. If s is not left normed then for the
composition s F zx11 (k < 0) of right multiplication, we have

S l_ l‘k+1 = Zai[aisibi],
where each a; € k, a;,b; € X*, s; € S and [a;s;b;] is left normed s;-diword. Then
lasb] = Zalal— [a;s;b;] - b)

or

lasb] = Zalal— [a;s;b;] 1 b)
is a linear combination of normal s;-diwords.

Case 3. k > 0 is similar to the Case 2. O

Lemma 3.6 Let S C D(X) and each composition (f, g)u in S of inclusion (intersection)
trivial modulo (S, [w]). Let [a1s1b1] and [azs2bs] be normal S-diwords such that [w] =
[a1[$1]b1] = [aa[$2]ba], where s1,50 € S, ay,as,b1,by € X*. Then,

[a151b1] = [ags2ba] mod(S, [w)),

i.e., la1s1b1] — [agsaba] = > ayla;sibi], where each oy € k, a;,b; € X*, s; € S, [a;8;:b]
normal s;-diword and [a;[S;)b;] < [w].

Proof. In the following, all letters a, b, ¢ with indexis are words and si, s2,s; € S.

Because a;510; = as$209 as ordinary words, there are three cases to consider.



Case 1. Subwords 7, 53 have empty intersection. Assume, for example, that b, = bs3by
and a, = a151b. Because any normal S-diword may be bracketing in any way, we have

[az252ba] — [a15101] = (ar1s1(b(s2 — [$2])b2)) — ((a1(s1 — [51])b)s2b2).

For any [t] € supp(se — [S2]), we prove that (a;s1b[t]be) is a normal s;-diword. There are
ﬁve cases to consider.

1 [w] = [dx[s7]b[52]ba];
2 [w] = [aa[s1)b[s2]bs);
3 [w] = [ [51]b[52]b2];
4 [w] = [ [57b[53]ba):
1-5[ | = [a[51]b[52]02)-

For 1.1, since [a;s1b1] and [ags9bs] are normal S-diwords, both s; and s are right normed
by the definition, in particular, [t] is right normed. It follows that (a;s1b[t]by) = [a151b[t]bs]
is a normal s;-diword.

For 1.2, it is clear that (a;s1b[t]b2) is a normal s;-diword and [¢] is right normed.

For 1.3, 1.4 and 1.5, since [a;51b;] is normal s;-diword, s; is left normed by the definition,
which implies that (a;s1b[t]by) is a normal s;-diword. Moreover, [t] is right normed, if 1.3,
and left normed, if 1.5.

Clearly, for all cases, we have [a1s1b[t]ba] = [a1[S7]b[t]b2] < [a1[51]0[S2]b2] = [w].

Similarly, for any [t] € supp(s1—[s1]), (a1[t]bs2bs) is a normal so-diword and [a; [t]b[52]bs] <
[w].

Case 2. Subwords 57 and $3 have non-empty intersection c¢. Assume, for example, that
b1 = bby, as = aia, w; = 51b = asy = ach.

There are following five cases to consider:

1 [w] = [ [slobol
| = [ax[57]bbo];
w] = [ajacbby];
=1
=1

w

w ajachby;

2
3
4
5 [w] = [ayachby).
Then
[a252ba] — [a15101] = (a1([asa] — [s10])b2) = (a1 (s1, $2)[wnib2),
where [w1] = [acb] = [[51]b] = [a[53]] is as follows:
1 [wy] is right normed;
2 [w1] is left normed;
3 [un] = [acb];
4 [wn] = [acd];
2.5 [wi] = [ach].
Since each composition (f, g)p in S is trivial modulo (S, [w]), there exist 5; € k, u;,v; €
X", sj € S such that [s1b] —[asz] = >, Bj[u;s;v;], where each [u;s;v;] is normal S-diword
and [u;[S;]v;] < [wy] = [ach]. Therefore,

[(lgSQbQ] (1,181()1 ZBJ 0,1 ujsjvj]bz)



Now, we prove that each (aj[u;js;v;]b2) is normal s;-diword and (aq[u;js;v;lbe) < [w] =
[ax [[57]0]bs].

For 2.1, since [d;s1bby] and [djassbs] are normal S-diwords, both [s1b] and [ass] are right
normed S-diwords. Then, by definition, each [u;s;v;] is right normed S-diword, and so
each (aj[ujs;v;]be) = [diu;s;v5bs] is normal S-diword.

For 2.2, both [s1b] and [as;] must be left normed S-diwords. Then, by definition,
each [u;s;v;] is left normed S-diword, and so each (a;[u;s;vj]b2) = [a1u;s;v;b2] is normal
S-diword.

For 2.3, 2.4 or 2.5, by noting that (a1[u;s;v;]b2) = ((a1) F [u;s;v;] = (b)) and [u;s;v;]
is normal S-diword, (a1 [u;s;v;]b2) is also normal S-diword.

Now, for all cases, we have [aiu;s;v;b2] = [a1u;[S5]v;b2] < [w] = [a1[ach]bs].

Case 3. One of the subwords 7 and 33 contains another as a subword. Assume, for
example, that by = bby, as = aia, wy =57 = aszb.

Again there are following five cases to consider:

2.1 [w] = [d1a[s2]bb];
2.2 [w] = [aya[53])bby];
2.3 [w] = [a1a[s3]bby];
2.4 [w] = [a1a[53]bby]:
2.5 [w] = [a1a[53]bby].
Then
[a15101] — [a2s2ba] = (a1(s1 — asab)by) = (a1 (s1, 52)wi)b1)-
It is similar to the proof of the Case 2 that we have [a15101] = [a2s202] mod(S, [w]). O

Definition 3.7 Let S C D(X). Then

Irr(S) £ {u € [X*]|u # [a[3]b], s € S,a,b € X*, [asb] is normal s-diword}.

Lemma 3.8 Let S C D(X) and h € D(X). Then h has a representation

where [w;] € Irr(S), i € Iy, [a;s;b;] normal s;-diwords, s; € S, j € Iy with [ai[51]b1] >
[a2[S2)ba] > -+ > [an[Sn]bn].

Proof. Let h = a;i[h] +---. We prove the result by induction on [h].
If [n] € Irr(S), then take [u1] = [h] and hy = h — aq[uy]. Clearly, [h] < [h] or hy = 0.
If [n] & Irr(S), then [h] = [ai[s1]by] with [a1s1b1] a normal s;-diword. Let by =

h— 61[&181[)1]. Then [hl] < [ ] or hl =0. 0O

The following theorem is the main result.



Theorem 3.9 (Composition-Diamond lemma) Let S C D(X) be a monic set and the
ordering < as before, 1d(S) is the ideal generated by S. Then (i) = (ii) < (i1) < (iii),
where

(i) S is a Gréobner-Shirshov basis in D(X).

(1) f € 1d(S)=[f] = [a[s]b] for some s € S, a,b € X* and [asb] a normal S-diword.

(2) f € 1d(S) = [ = aqlarsibi] + aglagsebs] + -+ + aya,s,b,] with [aq1[51]b1] >
[as[52]ba] > -+ > [an[Sn]bn], where [a;s;b;] is normal s;-diword, 1 = 1,2,--- | n.

(i) The set Irr(S) is a linear basis of the dialgebra D(X|S) = D(X)/1d(S) generated
by X with defining relations S.

Proof. (i) = (i7). Let S be a Grobner-Shirshov basis and 0 # f € Id(S). We may
assume, by Lemma [3.5] that

f= iai[aisibi]v
i=1

where each o; € k, a;,b; € X*, s; € S and [a;8;b;] normal S-diword. Let

[wi] = [a;[si]bi], [un] = [we] = -+ = [w] > [wia] > -+, 1> 1.

We will use induction on [ and [w;] to prove that [f] = [a[5]b] for some s € S and a,b € X*.
If | = 1, then [f] = [a151b1] = [a1[37]b1] and hence the result holds. Assume that [ > 2.
Then, by Lemma [3.6] we have [a1$1b1] = [a282bs] mod(S, [w]).

Thus, if a1 + as # 0 or [ > 2, then the result follows from induction on [. For the case
a3 + az = 0 and [ = 2, we use induction on [w;]. Now, the result follows.

(m)_:> (12)'. Assume (ii) and 0 # f € Id(S). Let f = au[f]+ 32}, <[ @slwi]. Then, by
(ii), [f] = [a1[51]b1], where [a1$1D1] is a normal S-diword. Therefore,

fi=[f—aiasibi], [fi] <[flor fi=0, fi € 1d(S).

Now, by using induction on [f], we have (i7)’.

(77)" = (¢i). This part is clear.

(17) = (i4i). Assume (i7). Then by Lemma B.8 Irr(S) spans D(X|S) as k-space.

Suppose that 0 # > a;[w;] € 1d(S) where [u1] > [ug] > -+, [w;] € Irr(S). Then by
(17), [u1] = [a1[S1]b1] where [a;$1b1] is a normal S-diword, a contradiction.

This shows (iii).

(73i) = (43). Assume (iii). Let 0 # f € Id(S). Since the elements in Ir7(S) are linearly

independent in D(X|S), by Lemma B.8| [f] = [a[5]b], where [asb] is a normal S-diword.
Thus, (ii) follows. O

Remark: In general, (i7i) # (i). For example, it is noted that
Irr(S) ={z; day, 4 Aoy, | jelipel -1y, 1<p<k, iz <---<iy, k>0}
is a linear basis of D(X|S) in Theorem Let
Sy =A{zj b o, —x; Ax; +{w, 25}, 2wy, i, 4.t € 1dg € Ip}.

Then Irr(Sy) = Irr(S) is a linear basis of D(X|S). But in the proof of Theorem [£3] we
know that S is not a Grébner-Shirshov basis of D(X|S5).
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4 Applications

In this section, we give Grobner-Shirshov bases for the universal enveloping dialgebra of
a Leibniz algebra, the bar extension of a dialgebra, the free product of two dialgebras,
and the Clifford dialgebra. By using our Theorem [3.9, we obtain some normal forms for
dialgebras mentioned the above.

Definition 4.1 ([10)]) A k-linear space L equipped with bilinear multiplication |, ] is called
a Leibniz algebra if for any a,b,c € L,

[[a, 0], c] = [la, c], b] + [a, [, c]]
i.e., the Leibniz identity 1s valid in L.

It is clear that if (D, H,F) is a dialgebra then D) = (D, [,]) is a Leibniz algebra, where
[a,b) = a4 b—0bF a for any a,b € D.

If f is a Leibniz polynomial in variables X, then by f(~) we mean a dialgebra polynomial
in X obtained from f by transformation [a,b] — a 4b—bF a.

Definition 4.2 Let L be a Leibniz algebra. A dialgebra U(L) together with a Leibniz
homomorphism € : L — U(L) is called the universal enveloping dialgebra for L, if the
following diagram commute:

Yo

where D is a dialgebra, 0 is a Leibniz homomorphism and f : U(L) — D is a dialgebra
homomorphism such that fe =6 (i.e., e : L — U(L) is a universal arrow in the sense of
S. MacLane [15], p55).

An equivalent definition is as follows: Let L = Lei(X|S) is a Leibniz algebra presented
by generators X and definition relations S. Then U(L) = D(X|S7)) is the dialgebra with
generators X and definition relations S = {s(7)|s € S}.

Theorem 4.3 Let L be a Leibniz algebra over a field k with the product {,}. Let Ly be
the subspace of L generated by the set {{a,a},{a,b} + {b,a} | a,b € L}. Let {x;]i € Iy}
be a basis of Lo and X = {x;|i € I} a well ordered basis of L such that Iy C I. Let
U(L)=D(X|x; 4z; —x; b x; — {x;, x;}) be the universal enveloping dialgebra for L and
the ordering < on [X*| as before. Then

(i) D(X|z; 4x; —x; b x; — {x;,2;}) = D(X|S), where S consists of the following
polynomials:

—~

a) fji:xj}_l‘i_xi_{xj‘k{xial‘j} (l,]e])

(b) firme=xjFaita —a b o boy+ {x, 2} F oy (i,5,t €1, j>1)
() higre =iy - 1 (ip € Iy, t € 1)
(d) fryi=x Aoy Aoy — o Aoy Ay + 2 4 {xy, x5} (i,j,t €1, j>1)
(€)  Myip = 2 iy (ip € Iy, t € 1)
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(ii) S is a Grébner-Shirshov basis in D(X).
(iii) The set
{.’L‘j_|32‘i1 _|_|.lelk ‘jEI,ZPEI—[O, 1§p§k, Zlgglk, /{?ZO}

is a linear basis of the universal enveloping algebra U(L). In particular, L is a
Leibniz subalgebra of U(L).

Proof. (i) By using the following

szH = sz’ oz, and sz’ o+ fij o= ({xz‘,l’j} + {1’]',56’@'}) F oy,
we have (b) and (c) are in Id(f;;). By symmetry, (d) and (e) are in Id(fj;). This shows
(i).
(il) We will prove that all compositions in S are trivial modulo S (and [w]). For conve-
nience, we extend linearly the functions fj;, fiit, fijis Piore and hyig t0 figp.qy (fimati)s Jiirip.a}
and Ay g1+, ete respectively. For example, if {x,, z,} = > a3 v, then

fitmay = i {xp, vg} —{xp, 2g} A 25 + {{zp, 24}, 75} = Zaf,qus,
fiiripgt = Za;q(xj Faoibay—xbaj b as+{w,x} Fas) = fi b {24},
h’{p,q}4i0 = Z Oé;qhs%()-
By using the Leibniz identity,

{{a, b}, ¢} = {a,{b,c}} + {{a, ¢}, b}, (4)

we have
{0, {b,}} =0 and {a,{b,c} + {e,b}} =0
for any a,b,c € L. It means that for any iy € Iy, j € I,

{'r% xio} =0 <5)
and by noting that {x;,,z;} = {z;, 2, } + {24, x;}, we have
{xiov SL’]'} € Lo. (6)

This implies that Ly is an ideal of L. Clearly, £/L, is a Lie algebra.
The formulas (), (B) and (@) are useful in the sequel.
In S, all the compositions are as follows.
1) Compositions of left or right multiplication.
All possible compositions in S of left multiplication are ones related to (a), (b) and (c).
By noting that for any s,i,j,t € I, we have

Ts A fji = fei (j > 1),
v fii = —feiy oo A {25} + {25, 2:}) (7 <),
T . fm = Ts = {xi7xi}7

s 3 fioe = feujidae (j>1i) and

Tg _| hiol—t - hs—|i0 _| T,
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it is clear that all cases are trivial modulo S.
By symmetry, all compositions in S of right multiplication are trivial modulo S.
2) Compositions of inclusion and intersection.

We denote, for example, (a Ab) the composition of the polynomials of type (a) and type
(b). It is noted that since (b) and (c) are both left normed, we have to prove that the
corresponding compositions of the cases of (b A D), (bAc¢), (¢Ac)and (¢ Ab) must be a
linear combination of left normed S-diwords in which the leading term of each S-diword
is less than w. Symmetrically, we consider the cases for the right normed (d) and (e).

All possible compositions of inclusion and intersection are as follows.
(anc) [w] =,z (ig € ly). We have, by (3,
(figis Pigki) ) = —xi T @iy + {24, 3o } = —hiiy =0 mod(S, [w]).
(and) [wl=xjFz; Az, 4z, (¢>p). We have

(fjia qup)[w]
= —x;dx; Az, Az +{z, v} g dxp + ;b Hday, 42, — x5 F oy A {), 2}
= =% A firap + Fagyiap + Fii Fxp Fxg = fr A wp, 70}
= 0 mod(S,[w]).
(ane) [w]=uz;tx; Hx; (ip € Iy). We have
(fjia hi—iio)[w] = —T; _| ZL‘j _| IL‘Z‘O + {l‘i, ZL‘j} _{ IL‘Z‘O = —T; _| hj—|io + h{i,j}4’i0 = 0 mod(S, [U}])
(bAa) There are two cases to consider: [w] =xz; F x; F 2y and [w] = z; F ;- 2 F x.

For [w]| =x; F x; Fx; (j > 1), by ), we have

(fiirts fi)) = —mibajbay+{v, 2} Fay + o2 Ao — 25 B {xy, 23}
= —xib fu+ fuge + fe dvi = [y + figegy — Jae 325 + e
= 0 mod(S,[w]).

For (w|=z;Fo; F oy bz, (j> 1), we have
(fiiets fip)w)
= —ytejbFobto,+{z, e} by, bbb, Ay —a b o B {2}
= —x;ba;b fo 4+ {x, b fip + fiiep 30— fiirpa
= 0 mod(S,[w]).
(b AD) There are two cases to consider: [w] = z; - z; -2 F 2, - 2, and [w] = z; F x; -
Tt H Tp.
For w|=z;Fa;FaoyFasFa, (j>1,t>s), we have
(fjikb ftst)[w}
= —gFajbFoybos e, {e, et Fa koo, b b oo b
—xjFx F{xs, v} b,
= —xiba; b firp @25 E frsrp + fiirs F o E 2y — fiirgeny F 2y
= 0 mod(S, [w])
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since it is a combination of left normed S-diwords in which the leading term of each
S-diword is less than w.

For [w| =z Fa; Fx -z, (j>i>t), suppose that
{z;,2;} = Z O L + v + Z i, (m <t <n).
mel nels

Denote
Byijyp = xe - {xs, 25} F oy — {25} F o b, — {og, {25} ) F oy,

Then
Btl—{i,j}l—p = Z a?;.ftml—p - Z O[;Ljfntl—p - Z ﬁqhq'—p

mel nels q€ly

is a linear combination of left normed S-diwords of length 2 or 3, where

D Byrg =Y ol ({we, wm} + {@m, 2e}) + al{w, 2}

Denote
> ==y, {zn ety + o e, 251) + (o {253} + {{o 25}, ).

Now, by ), we have
(fjits fitrp)w)
= —ykxjbobtr,+{r, e, Er, — o {, b b,
= —; & fiwrp — Bafijyp + [iri & Tp — Bjrgriyep + Z Yihirp

lely
+Bir(t,jpp — Jitrg T Tp + T fjirp
= 0 mod(S, [w])
since it is a combination of left normed S-diwords in which the leading term of each
S-diword is less than w.
(bAc) There are three cases to consider: [w] = z; = 2y F a2 (i € Lp), [w] = xj, F 2
z (Jo € Ip) and [w] = ;b a; b ayy 2y (B0 € Ip).
Case 1. [w] = xj by o (j > G0, G0 € Ip). By (@), we can assume that
{miy, 75} = D 1c;, - Then, we have

(fiiorts Pigkt) ) = =g F 2y F w - {@ig, 25} F oy = —higr; $t+z Yl = 0 mod(S, [w]).

1€y
Case 2. [w] = zj, Fx; Fa (Jo > 14,70 € Lp). By (@), we have
(fhoirts Pjori)jw) = =i F x5y b ay + {5, 20} F oy = =2 = hjore =0 mod (S, [w]).
Case 3. [w] =z; Fa; Fxy F oz, (§ > 0,80 € Iy). We have

(fjﬂ—to, htol—n)[w] = —XI; F X F N H Ty + {l‘i, l‘j} H Lt F Ty
- (_"L‘Z l_ $] + {xia :L‘]}) I_ htol—n
= 0 mod(S,[w]).
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(bAd) [wl=zjFx;Fa Az, 4z, (j>1i,q9>p). We have

(fires ft—'qp)[w}
= —pitFajba A, e, + {2, 25}y Az, H 2,
‘oo dx, A2, — 2 b b oy A {,, 2,}
= -z bz b fog H{zn i} b frg + fiiee A2 330 — fiire 3 {zp, 74}
= 0 mod(S, [w]).

(bAe) [w]=zjFaiba,da,, (J>i,n0 € Iy). We have

(fiirts b)) = —xi b oy b oy A ap, + {25, 2} oy A 2,
= (—I‘Z l_ l‘j + {l‘i,l‘j}) }_ ht_mo
= 0 mod(S, [w]).

(¢ ANa) There are two cases to consider: [w] = x,, F z; (ng € Iy) and [w] = x,, F z; F
zs (ng € Iop).

For [w] = zp, bz (ng € Iy), we have
(Pngits Frot)fw] = Tt T Tng — {Tt, Tng } = heng =0 mod(S, [w]).
For [w] = zp, b 2y F 25 (ng € 1y), we have
(Pgrts fis)w) = Tng F s 20 — g F {xs, 2} = Bngrs 20 — g,y =0 mod(S, [w]).
(cAD) [w]=axp Farbastx, (t>s,mn9€ ). We have

(hnol—ta ftsl—p)[w} = Tpg - T - Ty + Tp — Ty - {xsa xt} - Tp
Pngrs ¢ B 2 — hipgrgsy
0 mod(S, [w]).

(che) [w]=xn, Fay F . (ng,to € Iy). We have
(hnol—t07 htol‘?")[w] - 0

(end) [w]=xp F x4z, 2, (¢>p,no € ly). We have

(hnol—ta ft%qp)[w] = Tpy H Ty = Ty - Tg — Ty - Ty - {xpa ZL'q}
gt A (2 F g — {2, 24})
= 0 mod(S,[w]).

(ene) [w] =z x Ay (o, S0 € Iy). We have

(hnol—ta ht—bo)[w] == 0
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Since (d A d), (dNe), (e Nd), (e Ae) are symmetric with (b A b), (bAc), (¢ AD), (cAc)
respectively, they have the similar representations. We omit the details.

So, we show that S is a Grébner-Shirshov basis.

(iii) Clearly, the mentioned set is just the set Irr(S). Now, the results follow from
Theorem 3.9 [

A Grobner-Shirshov basis S is called reduced if S is a monic set and no monomial in
any element of the basis contains the leading words of the other elements of the basis as
subwords.

Remark: Let the notation be in Theorem 3l Let S™? consist of the following polyno-
mials:

(@)  fii=xjb o —a dz;+ {x;, 1} (iel,jel—1I)

(b) fim=zjFaobo—ao ko boy+{z, 2} Fay (i,jel—1y, j>i,tel)
(¢)  higt = w3y b 2y (1o € Iy, t € 1)

(d) frji=xe oy do, —ap oy Ay + o A {2, 25} (i,jel—1y, j>i,tel)
(e)  hpmi = xp 1 5 (ig € Ly, t€)

Then 57 is a reduced Grobner-Shirshov basis for D(X]|S).
We have the following corollary.

Corollary 4.4 ([1]) Let the notation be as in Theorem[{.3 Then as linear spaces, U(L)
is isomorphic to L @ U(L/L,), where U(L/L,) is the universal enveloping of the Lie
algebra L/L,.

Proof. Clearly, {x; | j € I — Iy} is a k-basis of the Lie algebra £/L,. It is well known
that the universal enveloping U(L/L,) of the Lie algebra £/L, has a k-basis

{ZL‘“ZL'Z2ZL'%|21§§’L]§, 'ipej—jo, 1§p§k’, kJZO}

By using (iii) in Theorem A3}, the result follows. [

Definition 4.5 Let D be a dialgebra. An element e € D is called a bar unit of D if
eFrx=x-de=x foranyx € D.

Theorem 4.6 Fach dialgebra has a bar unit extension.

Proof. Let (D,F,-) be an arbitrary dialgebra over a field & and A the ideal of D
generated by the set {a 4 b —a t b a,b € D}. Let Xog = {x;,|ip € Iy} be a k-basis
of Aand X = {z;|i € I} a well ordered k-basis of D such that [, C I. Then D has
a presentation by the multiplication table D = D(X]|S), where S = {z; - z; — {z; F
z;}, v; Ay —{x; dx;}, i,j € I}, where {x; - z;} and {z; 4 z;} are linear combinations
of x4, t € I.

Let Dy = D(X U{e}|S1), where Sy = SU{ety—y, yde—y, edxy, obe|ye
X U{e}, xg € Xo}. Then D, is a dialgebra with a bar unit e.
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Denote

firj =xi b oy —{x; b x;},
fig =z Ay —{x; H a5},
Gery =€Fy—y,
Gyre =y Te—y,
hyigie = Tig €,

AR AN

he—ia:io =e Lig s

where i,7 € I, ig € Iy, y € X U{e}.

We show that {z; 4 z;,} =0 and {z;, - z;} =0 for any t € I, ig € I.

Since x;, € A, we have z;, = Y a;(c; fid;), where f; =a; 4b;—a; b b;, a; € k, a;,b; € D
and ¢;,d; € X*.

Since z; 4 (¢;(a; 4 b; — a; F b;)d;) = 0, we have {x; 4 {c;{a; 4b; —a; - b;}d;}} = 0 for
each i. Then {z; 4 2;,} =0.

By symmetry, we have {z;, - z;} = 0.

To prove the theorem, by using our Theorem B.9] it suffices to prove that with the

ordering on [(X U {e})*] as before, where z < e, z € X, S is a Grébner-Shirshov basis
in D(X U {e}). Now, we show that all compositions in S; are trivial.

All possible compositions of left and right multiplication are: z < fi;, 2 o gery, 2
haiier fiti ™ 25 Gyme 7 25 Beaay, 2, 2 € X U {e}.

For z + firj, 2 =2, € X, since (z; 42;) 4 2; = 2 4 (2; - z;), we have {{z; 4 x;} -
zj} ={z; 4 {x; F z,;}} and

xy fil—j
= pdx; Aoy —x A {x; - x5}
= i 125+ frainy — fegegy U A} Ao} —{oy A {z b oay}
= Jfruw x5+ fpay — fogesn
0 mod(Sh).

For z - firj,z =e, let {o; 42;} —{x; F2;} = > a;,x;,. Then
edfi; = edax;dz;—ed{x; Fa;}
= e (v, do; —{v; dz;}) +ed{z; d2;} —e 4 {x; F z;}

= e fig; + Z QigPetzy,
0 mod(Sh).

For z - gery, we have
244Gy =2z"dedy—zdy=(24e—2) 4y = gs0e 1y =0 mod(S1).
For z h%ke, we have
z%hmioke:z%xio—le:z—igwi0_|e+z—|xi0.
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It is clear that 2 4 @i, = hevy, if 2 = e and 2z 4 2 = 2 H 25, — {zy 4 x5} = frag if
z =z € X, since {x; 4 x;,} = 0. This implies that z - hay ke = 0 mod(Sy).

Thus we show that all compositions of left multiplication in S; are trivial modulo S;.
By symmetry, all compositions of right multiplication in S; are trivial modulo .S;.

Now, all possible ambiguities [w] of compositions of intersection in S are:
LAL [zxjdy]; LA 2, [m22e]; LA4, [idje]; LA D, [x24,€].

2N 2, [Biwme]; 2 N4, [Tx5e].

3NAL, [ex;x;]; 3N2, [edix;]; 3N 3, [eey]; 34, [eye]; 3D, [ex;,€é]; 3N 6, [eéx;,].
4 N4, [yee]; 4 N6, [yex;,].

5N 3, [Tipeyl; 5 A4, [z ée]; 5 A6, [z éxj,].

6 A2, [éx;,z;]; 6 A4, [éx;el.

In the above, all i, j,t € I, ig, jo € Iy and y € X U {e}.

There is no composition of inclusion in 5;.

We will show that all compositions of intersection in S; are trivial. We check only the
cases of 1 A2, 1 A5 and 4 A 6. Others can be similarly proved.

For 1 A 2, [w] = [x;4;x], since (z; - xj) 42 = x; & (x; 4 24), we have {{z; F x;}
z} = {x; - {z; 42, }} and

= —furjyue + firgay — Lo by Aa} +{o = {z; Ao}
= —furjyi + firgn
= 0 mod(Sy, [w]).

For 1 A5, [w] = [z;x;,€], since z; & z;, € A, we have {z; F z;,} = > aj,z;, and
(LAD)w ={zi 23} Fe= Zajoh%ke = 0 mod(Sy, [w]).

For 4 \ 6, [w] = [gex;y], we have (4 A 6)) = —hes,, if y=e and (4 A6)w) = — fiy, if
y =z, € X since {xy 42, } = 0. Then (4 A 6),) = 0 mod(S, [w]).
Then all the compositions in S; are trivial.

The proof is complete. [

Remark: Let the notation be as in the proof of Theorem 4.6l Let D' = D(X U {e;},|5")
be a dialgebra, where S" = SU{e; Fy—y,y de;—y, e; Txo, 20 ¢; |y € XU{ej}s, 20 €
Xo, j € J}. Let J be a well ordered set. Then with the ordering on [(X U {e;},)*] as
before, where x; < e; for all i € I, j € J, by a similar proof of Theorem .6, S’ is a
Grobner-Shirshov basis in D(X U {e;};). It follows from Theorem that D can be
embedded into the dialgebra D" while D" has bar units {e;} ;.

Definition 4.7 Let Dy, Dy be dialgebras over a field k. The dialgebra Dy x Do with two
dialgebra homomorphisms €1 : D1 — Dy % Do, €9 : Dy — D1 % Dy is called the free product
of D1, Dy, if the following diagram commute:
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D1 1 D1 * D2 €2 D2

alf
Vo, Yoy
D
where D is a dialgebra, 61,05 are dialgebra homomorphisms and f : Dy x Dy — D is
a dialgebra homomorphism such that fe; = 61, fea = 09 (i.e., (e1,82) : (D1, D) —
(D % Dy, Dy % Ds) is a universal arrow in the sense of S. Maclane [13]).

An equivalent definition is as follows: Let D; = D(X;|S;) be a presentation by generators
and defining relations with X1 N Xo = @, i = 1,2. Then Dy x Dy = D(X; U X5|S; U Ss).

Let (Dq,F,4), (Do, =, ) be two dialgebras over a field k, A; the ideal of D; generated
by the set {a 4 b—a F b a,b € Dy} and A, the ideal of D, generated by the set
{c4d—cFd| c,d e Dy}. Let Xo = {x;,|ip € Ip} be a k-basis of A; and X = {x;]i € I}
a well ordered k-basis of D; such that Iy C I. Let Yy = {y;,|lo € Jo} be a k-basis of A,

and Y = {y|l € J} a well ordered k-basis of D such that Jy C J. Then D; and D, have
multiplication tables:

D1 = D(X|Sl), Sl = {ZL‘Z l_ ZL‘j — {I‘Z }_ l‘j}, €X; _| l‘j — {ZL‘Z _| ZL‘j}, Z,] € I},
Dy =D(Y[S3), Se=Aut ym—Awtymts vt Aym —{m Fyn}, L m e J}.

The free product D; *x Dy of Dy and D, is
D1 * D2 = D(X U Y|Sl U SQ)
We order X UY by x; < y; for any i € I, j € J. Then we have the following theorem.

Theorem 4.8 (i) S is a Grébner-Shirshov basis of Dy x Dy = D(X UY|S; U Ssy), where
S consists of the following relations:

L fore, =vi b oy —{os Fay}y, i,j €,
2. ferte, =i dxy —{xidx;}, 4,5 €,
3. furum =UFym —{uFuyn}, LmelJ,
4. Jortym =0 A Ym —{y Aym}, LmeJ
5. huy by = Ti E oy, io € Io, L € J,

6. hye,, =y T Tig, io € Iy, 1 € J,

T hya =Y B iellye Jy,

8. huy, = Ti Yt iel,ly e Jy.

(ii) Irr(S), which is a k-linear basis of D1x Dy, consists of all elements z_,, - -+ z_1Z021 -
where m,n > 0,z € XUY, 2z, € (X\Xo)U(Y'\Yy), —m < i < n,i# 0, neither {z;, zj11} C
X nor{zj,zj:1} CY,—m <j<n-—1

18
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Proof. By the proof of Theorem A6, we have {z; 4 x;,} = 0, {z;, F 2;} = 0, {y;
ot =0and {y, -y} =0forany i eI, ig €Iy, L € J, Iy € Jp.

Firstly, we prove that hy,4,, € Id(S; U Sy) for any ig € Iy, | € J.

Since y; 4 (¢;({a; 4 b} — {a; F b })dy) =y - (ci((a; 4 b; — {a; 4b;}) — (a; = b; — {a; F
b;})d;) € Id(S,USy), we have y; 4 {¢;{a; 4b; —a; F b;}d;} € 1d(S;US,) for all 4,1. Then
hy e, € 1d(S1 U Sa).

Similarly, we have hy, -y, hylo'_l"i’ hwr'yzo € Id(S;USy) for any i € I, iy € Iy, | €
J, ly € Jp.

Secondly, we will show that all compositions in .S are trivial.

All possible compositions of left and right multiplication are: z 4 fire;, 2 = fyiy,, 2
Py 2 3 hyybas Joita; 5 20 fuym & 20 My 25 iy, - 2, where z € X UY.

By a similar proof in Theorem .6, all compositions of left and right multiplication
mentioned the above are trivial modulo S.

Now, all possible ambiguities [w] of compositions of intersection in S are:

LAL [xjde); LA 2, (@], LAD, [z, il LA 8, (28,5,
2N 2, [Tmjxe]; 2 A8, [Ty,

33, [yymel; 3 A4 [yl 3N 6, [Yihmiol; 3 AT, [ymyio ]
AN [90ymye); AN 6, [91ym i)

5N 3, (i) 5 A4 [Tiouyel; 5 A 6, [ig o |s 5 AT, [Tig Yo ).

6 A 2, [01Tio ;6 A8, [UmTig Y] -

TAL (Yo T A2, [Yig @iz T A D, [YigTio Ul T A 8, [Yio Tilimy -
8 A4, [Ty1,ye]; 8 A 6, [Ty, -

There is no composition of inclusion in S.

We will show that all compositions of intersection in S are trivial. We check only the
cases of 1 A5 and 2 A 8. Others can be similarly proved.

For 1 A5, [w] =[xz, 0], let {x; b x5} = > oy, Then

(LAD)w = {xiF o} Fyr = Zatoh%,_yl =0 mod(S,[w]).
For 2 A8, [w] = [&;x;y5,], let {z; 4z;} = > ayxy. Then

2A8) ) = —{x; Fx;} Huypp = Zathxﬁylo =0 mod(S, [w]).

Then all the compositions in S are trivial. This show (i).
(ii) follows from our Theorem 3.9 [

Definition 4.9 Let X = {z1,...,2,} be a set, k a field of characteristic # 2 and (aij)nxn
a non-zero symmetric matriz over k. Denote

DX U{e} | i Faj+x; Ao, —2a5e, eFy—y, yde—y, z,,2; € X, ye X U{e})

by C(n, f). Then C(n, f) is called a Clifford dialgebra.
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We order X U{e} by 21 < --- <z, <e.

Theorem 4.10 Let the notation be as the above. Then

(i) S is a Grébner-Shirshov basis of Clifford dialgebra C(n, f), where S consists of the

following relations:

Jeiz; = Ti b 1y + x5 A1 — 2a4€,

Jery =€y —y,

Jyte =y de—y,

fyziz, =y Awi Ay +y Ay Az = 2a55y, (i > j),
fywixi =y x; 12 — ayy,

fewjry =i F a0y by + a5 w by = 205y, (i> ),
Jewiry = T =2 by — agy,

hye =2 Fe—e-a,

O N ot W=

where x;,x; € X,y € X U{e}.

(ii) A k-linear basis of C(n, f) is a set of all elements of the form yx;, - - - x;, where
ye XU{el, zye X and iy <ip <--- <1y (k>0).

Proof. Let S1 = {fu.2;, Gery, Gyte | Tir 75 € X,y € X U{e}}.
Firstly, we will show that f,-v.0;, fytewis fewrys feairy> Pae € 1d(S1).

In faCt7 fy41'i1'j = y _| f!L’Z’IL'j + 2aijgy4e lmphes fy41'i:vj7 fy41'i1'i e [d(Sl) By Symmetr%
we have fizry, friwiry € 1d(S1).

If there exists ¢ such that a; # 0, then
2aithx¢e = fmimikxt — Ty - fxikmt + fmihvt . XTq — f:rt4:v¢:v¢ S [d<Sl>

Otherwise, a; = 0 for any ¢. Since (a;;) # 0, there exists j # ¢ such that a;; # 0 for some
t. Then

2ajthmie

fa:iarjl—azt - - ijl—azt —Zj - fa:il—xt + fa:il—xt - T + ijl—azt _{ x; — fa:t—iazixj € Id(Sl)

This shows that h,,. € Id(S)).
Secondly, we will show that all compositions in S is trivial.
All possible compositions of left and right multiplication are: z 4 fi.0., 2 = gety, 2

fxile—ya z fxiari'—ya z hxiea f$i$]‘ - Z, Gy-e - Z, fy_|7)i$j - Z, fy—!xixi + 2, hmie - 2, where
z € X U{e}. We just check the cases of Jyziz; 2 and hge b 2. Others can be similarly
proved.

For fy+z,e; - 2, we have
frive, F2=yFoiFoFetyaFa bz =205y 2=y bF foer. =0 mod(S).
For hy,. F z,

hpebFz=xFebFz—eba,Fz=2;F gz — Gera, F 2 =0 mod(S5).
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Now, all possible ambiguities [w] of compositions of intersection in S are:

LA 3, [wigje]; LAA, (2@ xmx,] (m>n); LAD, [28,2,2,].
2N 1, [exia;];2 N2, [eey]; 2 A 3, [ege]; 2 A4, [eyz;x;] (i > j);
2N5, [egxiz); 2 N6, [ex;z;y] (0> 5): 2 AT, [ex;zy]; 2 A 8, [exél.
3 A3, [yee]; 3 A4, [yex;x;] (i > 7);3 A D, [yer;z;].
4N 3, [yzizie] (i > 5);4 N4, [9xixjTmay) (0> J,m > n), [yxzje] (@ > j > 1);
AND, [yrizjawe] (0> ), [gaijag] (0> ).
5N 3, [yzixie]; 5 A4, [yxizixmx,] (m > n), [yrzx;] (0> 7);
5N 5, [2i2Xmxm], [yrizx;).
6 AL [rizjem@,] (1> )6 A2, [xzjey] (i > 5);6 A3, [xx;ge] (1> j);
6 A4, [1,29TmTy,) (1> F,m >n);6 A5, [2:2;9TmTn] (i > j);
6 A6, [r;xjxmz,y] (1> J,m >n), [rxjry] (i > 5 >1);
6 AT, [zixjxmTny] (1> 7), [vizxg] (0 > j);6 A8, [xizjzé] (i > 7).
TAL [wxiem@n); T A 2, [xxiey]; T A 3, [zixge]; T A 4, [xizyemx,] (m > n);
TAS, [2x9Tmxm]; T A6, [2x2m2,9] (m > n), [xxzg] (i > 1);
TAT, [2xixmTny], [Tixizy); TA 8, [xx;€].
8 A3, [xice]; 8 A4, [wiéxpmxy,] (M > n); 8 AL, [Xi€X T

All possible ambiguities [w] of compositions of inclusion in S are:

6 AL, [zxd] (0> 7); 6 A8, [zxié] (i > 7).

We just check the cases of intersection 1 A4,4 AN4,6 AN4,6 A 8,8 A4 and of inclusion
6 A 1,6 A8. Others can be similarly proved.

For 1 A4, [w] = [z;&jxmT,] (M > n), we have
(1 A 4)[10}
= z; Az, Aoy A2 — 20e A2, A2 — 23 2 F 2 F 20 + 20007 F 25
= xj _| fzi4xmzn - 20Jijfe4:rm:vn - fxixj _| Tp _| Tm + 20Jmnfziz]~
= 0 mod(S, [w]).
For 4 A 4, there are two cases to consider: [wi] = [yz;x;xmz,] (i > j,m > n) and
[we] = [yz;z;2¢] (0 > j >t). We have
(4 A 4)[101}
= ydx; dx; Axy A2, — 2055y Ay A2 —y o J2; F2, A2, + 200,y F 2 25
= y _| x] _| fxi4xmxn - 2aijfy4:rm:vn - fy4:1:¢:1:j _| .Tn _1 xm _'_ 2amnfy41‘ixj
= 0mod(S,[wy]) and
(4 A 4)ws)
= yAx; dx; Axy — 205y vy —y A, Ay Ay + 205y 1
=y _| f:q#:th - fy#zj:vt o €Ti— fy#zixt o Zj + Yy o fzt4xixj
= 0 mod(S, [wy)]).
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For 6 A4, [w] = [z;x;9Tmzy,] (i > j,m > n), we have

(6 A4
= vty Fyde, Az, —2a5y 12y A2, —oF by Ao, A2 + 200,20 F 25y
X - Ty = fy#zmxn - 2aijfy4:vmzn - fzi:vjky N Tn = Ty + 2amnfmizjky
= 0 mod(S, [w]).

For 6 A8, [w]| = [z;x;x€é] (i > j), we have

(6A8)w = zjFaFaoybe—2an et Fajbedn
= :L’j F ZT; F h:vte — QCL@'jhzte —+ f:vizvjke — Ty
= 0 mod(S, [w]).

For 8 A 4, [w] = [z;éxpmx,] (M > n), we have

BN = —edz; Az, o, —aiFeda, 2, + 202 e
= —e- fa:i—mmarn - ha:ie = T, = Tm + Qamnhmie
= 0 mod(S, [w]).

Now, we check the compositions of inclusion 6 A 1 and 6 A 8.

For 6 A 1, [w] = [x;z;2¢] (i > j), we have

(6AD@ = zjF 2 Fay— 2050 — 2 b oy F a5 + 2052 e
ZL’]' l_ fzizt - fxizt _| 'rj + 2ajthzie - fzj:vt _| X + f:vt4:viz]~ + 2aith:rje
= 0 mod(S, [w]).

For 6 A8, [w] = [z;x;€] (i > j), we have

(6A8)w = zjFabFe—2a5e+xFeda;
ZL’]' l_ h:vie + hzie _| xj + hzje _| Z; + fe4:v¢:vj
= 0 mod(S, [w]).

Then all the compositions in S are trivial. We have proved (i).
For (ii), since the mentioned set is just the set Irr(S), by Theorem B9 the result holds.

The proof is complete. [

Remark: In the Theorem 10 if the matrix (a;;)nxn = 0, then Clifford dialgebra C(n, f)
has a Grobner-Shirshov basis S’ which consists of the relations 1-7.

Acknowledgement: The authors would like to thank P.S. Kolesnikov who gives some
valuable remarks for this paper.
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