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Abstract

Certain subquotients of group algebras are determined as a basis for sub-
sequent computations of relative Fox and dimension subgroups. More pre-
cisely, for a group G and N-series G of G let InR,G(G), n ≥ 0, denote
the filtration of the group algebra R(G) induced by G , and IR(G) its
augmentation ideal. For subgroups H of G, left ideals J of R(H) and
right H -submodules M of IZZ(G) the quotients IR(G)J/MJ are studied
by homological methods, notably for M = IR(G)IR(H), IR(H)IR(G) +
I([H,G])R(G) and R(G)IR(N) + InR,G(G) for a normal subgroup N in G;
in the latter case the module IR(G)J/MJ is completely determined for
n = 2. The groups In−1

ZZ,G (G)IZZ(H)/InZZ,G(G)IZZ(H) are studied and explic-
itly computed for n ≤ 3 in terms of enveloping rings of certain graded Lie
rings and of torsion products of abelian groups.

Keywords : group algebra, augmentation quotient, Fox subgroup, N-series, en-
veloping algebra.

Introduction

Let G be a group, R(G) be the group algebra of G with coefficients in a
commutative ring R , and let InR,G(G), n ≥ 0, denote the filtration of R(G) induced
by a given N-series G of G, see [21] or section 2 below. In particular, I0R,G(G) =
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R(G), I1R,G(G) is the augmentation ideal IR(G) of R(G), and if G is the lower
central series γ of G, then InR,γ(G) is the n-th power InR(G) of IR(G). As usual,
we skip the sub- or superscript R,G when R = ZZ or G = γ , resp.

Now let H be a subgroup of G and J be a left ideal of R(H). Then it is a
classical problem to study the n-th generalized Fox quotient In−1

R,G (G)J/InR,G(G)J
for n ≥ 1 (usually one considers R = ZZ , G = γ and J = I(H)). The
first Fox quotient was determined a long time ago [27], and the related quotient
I(G)I(H)n−1/I(G)I(H)n was computed by Karan and Vermani [13]. But only
partial results are known on the second Fox quotient (and some higher ones), for
R = ZZ and always under some splitting condition, e.g. supposing H to be a
semi-direct factor of G, see the work of Khambadkone and of Karan and Vermani
in [16], [17], [18], [14], [15]. As a striking fact, in all known cases a reduction of
the quotient in question was obtained to sums and tensor products among certain
subquotients of the group rings of G and H (or of a semidirect complement of
H in G): examples of this phenomenon are given by Proposition 3.4 and by the
isomorphisms (1) and (2) below.

In this paper we introduce a homological approach to the study of the quotient
IR(G)J/MJ for arbitrary G, H , R , J and right H -submodules M of I(G), in
the same spirit: in certain cases we still find a sum-tensor-decomposition, such as
the isomorphisms

IR(G)J
IR(G)IR(H)J

∼= I(H)J
I2(H)J

⊕
(

I(G)
ZZ(G)I(H)

)

⊗
(

J
I(H)J

)

(1)

in Theorem 1.5 and

IR(G)J
IR(H)IR(G)J+IR([H,G])R(G)J

∼=
(

H
[H,G]

⊗ J
I(H)J

)

⊕
(

I(G/H) ⊗ J
I(H)J

)

(2)

in Theorem 1.10, the latter for normal subgroups H . But for general submodules
M , the group IR(G)J/MRJ can only be embedded into a natural exact sequence

TorH1 (
I(G)

I(H)+M
, J)

σ−→ I(H)J
(I(H)∩M)J

j−→ IR(G)J

MRJ
−→ I(G)

I(H)+M
⊗H J −→ 0 (3)

thus describing the kernel and cokernel of the canonical map j in terms of a tensor
and a torsion product over H , see Proposition 1.6. Moreover, the class of the
resulting extension 0→ Coker(σ) → IR(G)J/MRJ → (I(G)/I(H)+M) ⊗H J →
0 is also described, in terms of another, more accessible extension.

If R = ZZ and J = I(H) sequence (3) admits a long exact extension, thus
describing Ker(j) in terms of homology groups of H (Theorem 1.7). This also pro-
vides a reduction of Fox subgroups of G to induced subgroups of H , see Corollary
1.8; for example if H is free then

G ∩ (1 +MI(H)) = H ∩ (1 + (M ∩ I(H))I(H)) . (4)

A case of particular interest is the quotient IR(G)J/(R(G)IR(N)J + InR,G(G)J)
for a normal subgroup N of G; when J = IR(H) we call it the Fox polynomial
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group relative to N and G since it generalizes the polynomial group Pn,R(G) =
IR(G)/I

n+1
R (G) introduced by Passi in [20], and its relative version Pn,R(G,N) =

IR(G)/(IR(N)IR(G) + In+1
R (G)) used in various contexts, cf. section 2.

Just as polynomial groups serve to analyze augmentation quotients and, dually,
dimension subgroups, we here show how the study of Fox polynomial groups leads
to a computation of certain Fox quotients and Fox subgroups. The descriptions
obtained formally generalize known results in the case where H = G, see Theorems
3.6 and 6.6; they reveal a striking duality between (generalized) Fox polynomial
groups and (generalized) Fox subgroups, which comes from the symmetry of push-
outs. Fox subgroups are further studied in subsequent work, e.g. in [8]; in this
paper we focus on Fox polynomial groups and Fox quotients which we compute
in the following cases: If the group H is abelian, we determine the relative Fox
polynomial group I(G)I(H)/(ZZ(G)I(N)I(H)+ In(G)I(H)) for all n and normal
subgroups N of G, in Corollary 2.4. The first generalized Fox quotient is given by

R(G)J
IR(G)J

∼= J
I(H)J

see Proposition 3.1 which generalizes a well-known result of Whitcomb for J =
I(H). The second generalized Fox quotient is determined in Theorem 3.3, by
means of a natural exact sequence, for any subgroup K of G:

TorZZ1 ( G
HKG(2)

, J
I(H)J )

↓
IR(H)J

IR(H∩KG(2))J+I
2
R
(H)J

j−→ IR(G)J
IR(K)J+I2

R,G
(G)J

−→
(

G
HKG(2)

)

⊗
(

J
I(H)J

)

−→ 0

A case where the bottom sequence is split short exact is given in Corollary 3.4; this
in particular covers the special cases treated in the literature. The above sequence
also allows to explicitly compute the intersection IR(H)J ∩ (IR(K)J + I2R(G)J),
see Corollary 3.5.

As to the higher Fox quotients QG
n,R(G,H) = In−1

R,G (G)IR(H)/InR,G(G)IR(H),
Proposition 2.1 provides a natural isomorphism

QG
n,R(G,H) ∼= QG

n,R(G, 11) ⊗ Hab (5)

if H is a free group; if only its n− 1-step nilpotent quotient is free nilpotent then
the right-hand term in (5) must be replaced by a natural quotient, see Theorem
4.1. The resulting description of Qn(G,H) in this case strongly resembles the
description of Q2(G,H) for arbitrary subgroups H given in Theorem 3.6.

In order to study the higher Fox quotients QG
n(G,H) for arbitrary subgroups

H , we combine our homological methods with a suitable generalization of Quillen’s
approximation of augmentation quotients [22]. Recall from [21] that for any N-
series G of G there is a surjective morphism of graded rings

θG : ULG(G) −→→ GrG(ZZ(G)) =
∑

n≥0 I
n
G (G)/I

n+1
G (G)
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where ULG(G) is the enveloping algebra of the graded Lie ring LG(G) formed by
the successive quotients of G . As a key fact, Quillen showes in [22] that rationally
θγ is an isomorphism, i.e. Ker(θγ) is torsion; this is in fact still true for any N-series
as follows from fundamental work of Hartley [11], see also [21]. We here extend
this construction to Fox quotients by introducing a surjective graded bimodule
map

θGH : ULG(G)⊗UL(H) ŪL(H) −→→
∑

n≥1 I
n−1
G (G)I(H)/InG (G)I(H)

which coincides with θG if H = G and G = γ . It turns out that just like θG

[4], θGH is an isomorphism in degrees 1 and 2 (Proposition 5.3) but not in higher
degrees, in general. We exhibit canonical elements in its kernel (Proposition 5.5);
this leads to the problem of whether they generate Ker(θGH) modulo torsion, in
extension of Quillen’s theorem. In degree 3 this is shown to hold, based on the
natural exact sequence

TorZZ1 (G
AB, Hab) ⊕

(

Ker(lGH2 ) ∩Ker(cH2 )
)

(δ1,δ2)−→ UG
3 (G,H)

θGH
3−→ QG

3 (G,H) → 0

established in Theorem 6.1. This amounts to a complete description of the struc-
ture of I2G(G)I(H)/I3G(G)I(H), both in a functorial way and in terms of a cyclic
decomposition of Hab if H is finitely generated. The result obtained resembles
our description of Ker(θG3 ) in [4]; the situation here, however, is more intricate
as it involves a secondary operator (namely δ2 which is an additive relation with
indetermancy Im(δ1)), a phenomenon which does not occur in the computation of
Ker(θG3 ).

The resulting, in fact less complicated description of the group QG
3 (G,G) in

Theorem 6.3 and Corollary 6.5 also amounts to a functorial computation of the
group

I3(H)⊕ I([H,K])I(H)

I4(H) + I(H)I([H,K])I(H) + I([H,K,H ])I(H) + I([H,K,K])I(H)

taking H = G and a specific N-series G ; this group appears in Khambadkone’s
analysis of Fox quotients of semidirect products [16], but seems not to have been
computed yet, not even in special cases.

Finally, we point out that the description of Ker(θGG3 ) above also allows to
determine the fourth relative dimension subgroup G∩ (1+ I(N)I(G)+ I4(G)) for
arbitrary normal subgroups N of G (work in progress).

Conventions. In this paper, the terms of the lower central series of G are de-
noted by Gi = [Gi−1, G], with G1 = G and [a, b] = aba−1b−1 for a, b ∈ G.
We write Gab = G/G2 . Maps denoted by i or j (possibly indexed) are always
induced by the inclusion H →֒ G or I(H) →֒ I(G), and q (possibly indexed)
always denotes a canonical quotient map. Moreover, maps denoted by µG, µ

′
G or
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µH , µ
′
H are always induced by multiplication in ZZ(G) or ZZ(H), respectively,

while ǫ : R(G)→ R denotes the augmentation map. Maps denoted by f̄ defined
on some quotient A/B are induced by a homomorphism f on A. Tensor products
over the ring ZZ(H) are denoted by ⊗H and over ZZ by ⊗.
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1 Exact sequences for Fox quotients

In this section we provide the key tools (the “pushout lemma” 1.2 and the generic
exact sequences 1.4 and 1.6) of our study of the Fox problem in various general-
ized forms. In particular it allows to deal with Fox quotients and Fox subgroups
simultaneously and in a strictly dual way, cf. Theorems 3.6 and 6.6. For general
properties of pushouts see [26].

Recall the notation from the introduction. We point out that we throughout
use the plain facts that InR(G)J = In(G)J for n ≥ 0, and that IR(G) ∼= I(G)⊗R ,
whence for any subgroup M of I(G),

I(G)

M
⊗ J ∼= I(G)⊗ J

Im(M ⊗ J)
∼= IR(G)⊗R J

Im(MR ⊗R J)
∼= IR(G)

MR

⊗R J

where MR is the R-submodule of IR(G) generated by M . This also implies that
I(G)
M
⊗H J ∼= IR(G)

MR
⊗R(H) J .

We start with the following elementary

Lemma 1.1 The canonical map

µJ : ZZ(G)⊗H J →→ ZZ(G)J = R(G)J

is an isomorphism.
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Proof : Using the injections η : J →֒ R(H)
∼=→ ZZ(H) ⊗ R and η′ : R(G)J →֒

R(G) we have the following commutative square

ZZ(G)⊗H J
µJ−→→ ZZ(G)J







y

id⊗η







y

η′

ZZ(G)⊗H ZZ(H)⊗ R ∼= R(G)

But id⊗ η is injective since ZZ(G) is a free H -module, so also µJ is injective. �

In order to describe our key lemma, let U ⊂M ⊂ I(G) be right H -submodules
and V ⊂ N ⊂ J be left R(H)-submodules such that U ⊂ I(H). Consider the
following commutative square.

I(H)⊗H J
Im(U ⊗H V )

i⊗id−→ I(G)⊗H J
Im(M ⊗H N)







y

µ̄H↓







y

µ̄G↓
I(H)J
UV

j−→ I(G)J
MN

(6)

Lemma 1.2 Diagram (6) is a pushout square of R-modules, or equivalently,
Ker(µ̄G) = (i⊗ id)Ker(µ̄H) . This implies that also Ker(j) = µ̄HKer(i⊗ id) .
Moreover, if J = IR(H) then Ker(µ̄H) = πHIm(λ : H2(H,R)→ I(H)⊗H IR(H))
where πH is the canonical projection and λ is defined in the proof below.

Proof of Lemma 1.2 and Proposition 3.1 below : Consider the following
commutative diagram whose middle and bottom row (omitting the right hand
bottom corner) are part of the long exact sequences obtained from tensoring with

J the short exact sequences I(K)
νK→֒ ZZ(K)

ǫK−→→ ZZ , for K = G resp. H .

I(G)J →֒ ZZ(G)J −→→ ZZ(G)J
I(G)J

x







µG

x







∼=

x







µJ

x







µ̄J

TorH1 (ZZ, J)
τG−→ I(G)⊗H J νG⊗id−→ ZZ(G)⊗H J ǫG⊗id−→→ ZZ ⊗H J

‖
x







i⊗id

x







i⊗id

TorH1 (ZZ, J)
τH−→ I(H)⊗H J νH⊗id−→ ZZ(H)⊗H J

µ′
H∼= J

6



Now µJ is isomorphic by Lemma 1.1 and µG is surjective, so the induced map µ̄J
is an isomorphism, too. But ZZ ⊗H J ∼= J/I(H)J , which proves Proposition 3.1.
Furthermore,

Ker(µG) = Ker(ν ⊗ id) = Im(τG) = (i⊗ id)Im(τH) = (i⊗ id)Ker(µ′
H(ν ⊗ id))

= (i⊗ id)Ker(µH : I(H)⊗H J → I(H)J) . (7)

Noting πG : I(G) ⊗H J ։ (I(G) ⊗H J)/Im(M ⊗H N) the canonical projection
we obtain identities

Ker(µ̄G) = πG(Ker(µG))

= πG(i⊗ id)(Ker(µH))

= (i⊗ id)πH(Ker(µH))

= (i⊗ id)Ker(µ̄H) .

The identity Ker(j) = µ̄HKer(i⊗ id) now follows by an easy diagram chase using
the surjectivity of µ̄H , or more abstractly, by symmetry of pushouts. Now consider
the case J = IR(H). First note that for i ≥ 1, TorHi (ZZ,R(H)) = 0 since
any resolution P of ZZ by projective ZZ(H)-modules is ZZ -split exact, whence
P ⊗HR(H) ∼= P ⊗H ZZ(H)⊗R ∼= P ⊗R is R-split exact. Then dimension shifting
along the short exact sequence IR(H) →֒ R(H)

ǫ−→→ R of H -modules provides
a connecting isomorphism τ : H2(H,R) = TorH2 (ZZ,R)

∼=−→TorH1 (ZZ, IR(H)), so
putting λ = τHτ also the last part of the assertion is proved. �

We first consider an easy but useful case which includes the classical case where
G is free.

Corollary 1.3 Suppose that H is a free group with basis X . Then for any
right H -submodule M of I(G) there is an isomorphism

IR(G)IR(H)/MRIR(H) ∼= (IR(G)/MR)⊗Hab

such that for x ∈ X and y ∈ IR(G) the element (y+MR)⊗ (xH2) corresponds to
y(x− 1) +MRIR(H).

Proof : Let U = 0 and J = V = N = IR(H) in 1.2. As H is free, H2(H,R) = 0
so µ̄G is an isomorphism. On the other hand, IR(H) is a free R(H)-module
with basis x − 1, x ∈ X , see [12]. This provides a (non natural) isomorphism
of left H -modules IR(H) ∼= ZZ(H) ⊗ Hab ⊗ R . Thus we have isomorphisms
I(G)IR(H)/MIR(H) ∼= I(G)⊗H IR(H)/Im(M ⊗H IR(H)) ∼= (I(G)/M)⊗H IR(H)
∼= (I(G)/M)⊗Hab ⊗ R ∼= (IR(G)/MR)⊗Hab . �

Using right-exactness of the tensor product Lemma 1.2 implies the following
generic fact which is the basis of all that follows.
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Corollary 1.4 Under the hypothesis of Lemma 1.2 there is a commutative dia-
gram with exact rows where M ′ =M + I(H)/I(H) and K = Ker(i⊗ id) .

K
ι→֒ I(H)⊗H J

Im(U ⊗H V )
i⊗id−→ I(G)⊗H J

Im(M ⊗H N)
q⊗id−→ (I(G)/I(H))⊗H J

Im(M ′ ⊗H N)
→ 0

‖






y

µ̄H↓







y

µ̄G↓ ‖

K
µ̄H ι−→ I(H)J

UV
j−→ I(G)J

MN
q⊗id−→ (I(G)/I(H))⊗H J

Im(M ′ ⊗H N)
→ 0

(8)
Consequently, the bottom sequence is induced by the top one, i.e., the abelian group
extensions obtained by dividing out the image of K from the left hand terms are
such that the top one induces the bottom one via the map induced by µ̄H . �

Note that the unhandy terms of the top row of diagram (8) reduce to tensor
products when either U = I(H) and M = I(G) or V = N = J . We are mainly
concerned with the second case in the rest of the paper, but the first one is also of
interest: it allows to recover a result of Karan and Vermani [13] from our viewpoint,
in a slightly more general form (arbitrary R and J instead of ZZ and In−1(H)).

Theorem 1.5 There is a (non-canonical) isomorphism of R-modules

IR(G)J
IR(G)IR(H)J

∼= I(H)J
I2(H)J

⊕
(

I(G)
ZZ(G)I(H)

)

⊗
(

J
I(H)J

)

.

Proof : Take U = I(H), M = I(G), V = N = I(H)J in Corollary 1.4. Then
we have isomorphisms

I(H)⊗H J

Im(I(H) ⊗H I(H)J)
∼= I(H) ⊗H

J

I(H)J
∼= I(H)

I2(H)
⊗H

J

I(H)J
∼= I(H)

I2(H)
⊗ J

I(H)J

where the first two follow from right-exactness of the tensor product and the latter
is due to the fact that both I(H)/I2(H) and J/I(H)J are trivial H -modules.
Similarly,

I(G)⊗H J
Im(I(G)⊗H I(H)J)

∼= I(G)

I(G)I(H)
⊗ J

I(H)J
.

Next we recall that the sequence

0→ I(H)

I2(H)

i1−→ I(G)

I(G)I(H)

q1−→ I(G)

ZZ(G)I(H)
→ 0 (9)

8



of abelian groups is exact by the classical Fox theorem (i.e. Proposition 3.1 with
J = I(H)). Using this and the above isomorphisms diagram (8) (without the
terms K ) identifies with the following diagram where in turn the bottom row is
exact and induced by the top row.

I(H)
I2(H)

⊗ J
I(H)J

i1⊗id−→ I(G)
I(G)I(H)

⊗ J
I(H)J

q1⊗id−→→ I(G)
ZZ(G)I(H)

⊗ J
I(H)J







y

h↓







y

g↓ ‖

I(H)J
I2(H)J

j1−→ I(G)J
I(G)I(H)J

q1⊗id−→→ I(G)
ZZ(G)I(H)

⊗ J
I(H)J

But sequence (9) is split for I(G)/ZZ(G)I(H) is a subgroup of ZZ(G)/ZZ(G)I(H)
∼= ZZ(G) ⊗H ZZ which is a free abelian group since ZZ(G) is a free H -module.
Thus the top sequence in the above diagram is R-split short exact, whence so is
the bottom sequence, as was to be shown. �

In the sequel we study cases of Corollary 1.4 where V = N = J . Taking
U = I(H) ∩M it amounts to the following description of I(G)J/MJ as a group
extension.

Proposition 1.6 Let M be a right H -submodule of I(G). Then there is a natural
commutative diagram of R-modules with exact rows where T = TorH1 (I(G)/(I(H)+
M) , J) and where the top row is part of the corresponding long exact sequence.

T
τ−→ I(H)

I(H) ∩M
⊗H J

i⊗id−→ I(G)
M

⊗H J
q⊗id−→ I(G)

I(H) +M
⊗H J → 0

‖






y

µH↓







y

µG↓ ‖

T
µHτ−→ I(H)J

(I(H) ∩M)J
j−→ IR(G)J

MRJ
q⊗id−→ I(G)

I(H) +M
⊗H J → 0

(10)

Consequently, the bottom sequence is induced by the top one. �

For R = ZZ and J = I(H) we can improve Proposition 1.6 as follows.

Theorem 1.7 Let M ⊂ I(G) be a right H -submodule. Then there is a natural
long exact sequence

9



I2(H)
(I(H) ∩M)I(H)

j−→ I(G)I(H)
MI(H)

q̃−→
(

I(G)
I(H) +M

)

⊗H I(H) → 0

x







µHτ1τ2

H2(H,
I(G)

I(H) +M
)

δ←− H1(H,M)
ι∗←− H1(H, I(H) ∩M) ←− . . .

where q̃(xy) = x̄⊗ ȳ for x ∈ I(G), y ∈ I(H), and where the dots “ . . .” stand for
extension by the long exact homology sequence induced by the short exact sequence

I(H) ∩M ι
>−→ M ։M/I(H) ∩M of right H -modules. The other operators are

defined in the proof below.

Note that the homology of H here refers to right coefficient modules, i.e.
Hi(H,A) = TorHi (A,ZZ) which coincides with usual homology of the opposite
module: TorHi (A,ZZ) = TorHi (ZZ,A

∗) where A∗ is A as an abelian group endowed
with the left H -action h · a = ah−1 , h ∈ H , a ∈ A.

We point out that the description of the cokernel of j given by the theorem
can be used to study Fox quotients while the description of the kernel of j can be
used to study Fox subgroups , as follows.

Corollary 1.8 Let M ⊂ I(G) be a right H -submodule. Then

G ∩ (1 +MI(H)) = H ∩
(

1 + π−1 Im(µHτ1τ2)
)

where π : I2(H)→→I2(H)/(I(H) ∩M)I(H) is the canonical projection.

This means that the study of generalized Fox subgroups G ∩ (1 +MI(H)) is
reduced to homology and induced subgroups of H , the latter with respect to right
ideals in I(H) instead of I(G). In particular we derive the following remarkable
fact.

Corollary 1.9 Let H be a free subgroup of G and M ⊂ I(G) be a right H -
submodule. Then

G ∩ (1 +MI(H)) = H ∩ (1 + (I(H) ∩M)I(H)) .

This is immediate from Corollary 1.8 noting that free groups are of cohomo-
logical dimension 1. For specific M , in particular for M = In(G), this situation
will be further analyzed in subsequent work.

Proof of Theorem 1.7 : In Proposition 1.6 take R = ZZ and J = I(H),
and write τ = τ1 . Now consider the following anticommutative square consisting
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of connecting homomorphisms, where the vertical ones are induced by the short

exact sequence I(H)
ν→֒ ZZ(H)

ǫ−→→ ZZ and the bottom one by the sequence
I(H)/I(H) ∩M →֒ I(G)/M ։ I(G)/I(H) +M .

TorH1 (I(G)/(I(H) +M) , I(H))
τ1−→ (I(H)/I(H) ∩M)⊗H I(H)

∼=
x







τ2

x







τ ′2

TorH2 (I(G)/(I(H) +M) , ZZ)
τ ′1−→ TorH1 (I(H)/I(H) ∩M,ZZ)

Here τ2 is an isomorphism since TorHi (−, ZZ(H)) = 0 for i ≥ 1 as ZZ(H) is a free
H -module. Hence Ker(j) = Im(µHτ1τ2) = Im(µHτ

′
2τ

′
1) . So it remains to exhibit

Ker(µHτ
′
2τ

′
1) . Consider the following commutative diagram of right H -modules

where U = I(H) ∩M and ǫ′(x̄) = x− ǫ(x) for x ∈ ZZ(G) (ǫ′ is H -linear as for
h ∈ H , xh− ǫ(xh) = (x− ǫ(x))h + ǫ(x)(h− 1) ≡ (x− ǫ(x))h mod I(H)).

ZZ(H)/U
i′

>−→ ZZ(G)/M
ǫ′−→→ I(G)/(I(H) +M)

x







ν̄

x







ν̄ ‖

I(H)/U
i

>−→ I(G)/M
q−→→ I(G)/(I(H) +M)

The rows are short exact, so applying the functor TorH1 (−, ZZ) provides the first
two commutative squares of the following diagram with exactness in the second
term from the left.

TorH2 (
ZZ(G)
M ,ZZ)

ǫ′∗−→ TorH2 (
I(G)

I(H) +M
,ZZ)

τ3−→ TorH1 (
ZZ(H)
U ,ZZ)

τ4
>−→

(

ZZ(H)
U

)

⊗H I(H)
x







ν̄∗ ‖
x







ν̄∗

x







ν̄⊗id

TorH2 (
I(G)
M ,ZZ)

q∗−→ TorH2 (
I(G)

I(H) +M
,ZZ)

τ ′1−→ TorH1 (
I(H)
U ,ZZ)

τ ′2−→
(

I(H)
U

)

⊗H I(H)

The operators τ ′2 and τ4 are injective as they are part of the corresponding long

exact sequences induced by the short exact sequence I(H)
ν

>−→ ZZ(H)
ǫ−→→ ZZ ,

and as TorH1 (−, ZZ(H)) = 0. Now under the isomorphisms (ZZ(H)/U)⊗H I(H) ∼=
ZZ(H)⊗H I(H)/Im(U ⊗H I(H)) ∼= I(H)/UI(H) the map (ν̄⊗id) corresponds to
µH , so that Ker(µHτ

′
2τ

′
1) = Ker((ν̄ ⊗ id)τ ′2τ ′1) = Ker(τ4τ3) = Ker(τ3) = Im(ǫ′∗) .

To compute Ker(ǫ′) we consider the canonical extension to the left of the top row
of the foreging diagram, and we use the connecting homomorphisms induced by the
short exact sequences U →֒ ZZ(H) ։ ZZ(H)/U and M →֒ ZZ(G) ։ ZZ(G)/M

11



which are isomorphisms as ZZ(H) and ZZ(G) are free H -modules.

TorH1 (U,ZZ)
ι∗−→ TorH1 (M,ZZ)

∼=

x







τ5 ∼=

x







τ6

TorH2 (
ZZ(H)
U ,ZZ)

i′∗−→ TorH2 (
ZZ(G)
M ,ZZ)

ǫ′∗−→ TorH2 (
I(G)

I(H) +M
,ZZ) .

So putting δ = ǫ′∗τ
−1
6 the theorem is proved. �

We still give another application of Proposition 1.6 which is motivated by the

computation of the induced subgroup G ∩
(

1 + I(H)I(G)I(H) + I([H,G])I(H)
)

by Tahara, Vermani and Razdan in [25]; we show that their result can be recovered
and generalized to arbitrary R by the computation of a related quotient of IR(G),
as follows.

Theorem 1.10 Suppose that H is normal in G. Then there is a non-natural
isomorphism of R-modules

IR(G)J

IR(H)IR(G)J + IR([H,G])R(G)J
∼=

( H

[H,G]
⊗ J

I(H)J

)

⊕
(

I(G/H)⊗ J

I(H)J

)

as well as identities

G ∩
(

1 + IR(H)IR(G)IR(H) + IR([H,G])IR(H)
)

= G ∩
(

1 + IR(H)IR(G)IR(H) + IR([H,G])R(G)IR(H)
)

= H ∩
(

1 + IR([H,G])IR(H) + I3R(H)
)

.

We point out that the latter term can be easily made explicit by using our
formula in [8] for the second relative dimension subgroup G ∩ (1 + IR(K)IR(G) +
I3R(G)) for all K ≤ G and R (reproved differently for R = ZZ in [25]); as the
result is rather involved for arbitrary R we refrain from stating it here.

Proof : In Proposition 1.6, take M = I(H)I(G)+I([H,G])ZZ(G) and V = N =
J . Let N a normal subgroup of G. Then there is a canonical isomorphism of right
G-modules

ΨN : I(G)/I(N)ZZ(G) → I(G/N) , a− 1 7→ aN − 1 . (11)

In particular, the map Ψ[H,G] induces another isomorphism of right G-modules

γ : I(G)/M
∼=−→ I(G/[H,G])/I(H/[H,G])I(G/[H,G]). Furthermore, N gives
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rise to the following exact sequence of left G/N -modules where D(ā) = a− 1 for
a ∈ H , see Theorem VI.6.3 in [12].

0 → Nab D−→ I(G)

I(N)I(G)

I(q′)−→ I(G/N) → 0 . (12)

In particular, taking N = G one gets the wellknown isomorphism of groups

φG : G/G2
∼= I(G)/I2(G) , φG(aG2) = a− 1 + I2(G) for a ∈ G. (13)

Taking N = [H,G] we obtain the following commutative diagram with exact rows
where U = I(H) ∩M .

0 → I(H)
U

i−→ I(G)
M

q−→ I(G)
I(H) +M

→ 0







y

γ̃ ∼=







y

γ ∼=







y

ΨH

1 → H/[H,G]
D−→ I(G/[H,G])

I(H/[H,G])I(G/[H,G])

I(q′)−→ I(G/H) → 0

Here γ̃ is induced by γ and hence is an isomorphism, too. The bottom se-
quence is ZZ -split as I(G/H) is a free ZZ -module; hence so is the top sequence.
Moreover, the right H -action on each of its terms is trivial; for I(H)/U and
I(G)/M + I(H) this follows from the inclusions I2(H) ⊂ U and ZZ(G)I(H) =
I(H)ZZ(G) ⊂ M + I(H), resp., and for I(G)/M by right G-linearity of γ and
the fact that H/[H,G] is central in G/[H,G], whence I(H/[H,G])I(G/[H,G]) =
I(G/[H,G])I(H/[H,G]). Using these facts diagram (10) (without the terms T )
identifies with the following diagram.

0 → I(H)

U
⊗ J

I(H)J

i⊗id−→ I(G)

M
⊗ J

I(H)J

q⊗id−→ I(G/H) ⊗ J
I(H)J

→ 0







y

µ̄H↓







y

µ̄G↓ ‖

0 → I(H)J

I([H,G])J + I2(H)J

j−→ I(G)J

I(H)I(G)J + I([H,G])ZZ(G)J

q⊗id−→ I(G/H) ⊗ J
I(H)J

→ 0

By the foregoing the top row is R-split exact, whence so is the bottom row by
Proposition 1.6 which implies the desired isomorphism. Now take J = IR(H). We
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claim that the following relations hold.

G ∩
(

1 + IR(H)IR(G)IR(H) + IR([H,G])IR(H)
)

⊂ G ∩
(

1 + IR(H)IR(G)IR(H) + IR([H,G])R(G)IR(H)
)

(14)

= H ∩
(

1 + IR(H)IR(G)IR(H) + IR([H,G])R(G)IR(H)
)

(15)

= H ∩
(

1 + IR([H,G])IR(H) + I3R(H)
)

(16)

Indeed, (14) being plain, (15) follows from the relation G ∩ (1 + IR(G)IR(H))
= H ∩ (1+ I2R(H)) (cf. Corollary 3.2 below), which also implies (16) by injectivity
of the map j in the above diagram. As the last term is contained in the first the
identities of induced subgroups given in the assertion are proved. �

2 Fox polynomial groups

Polynomial groups Pn,R(G) = IR(G)/I
n+1
R (G) were introduced by Passi in [20]

(see also [21]), along with a notion of polynomial maps from groups to R-modules
such that the map pn,R : G → Pn,R(G), pn,R(a) = a − 1 + In+1

R (G) is uni-
versal polynomial of degree ≤ n. Relative polynomial groups Pn,R(G,N) =
IR(G)/(IR(N)IR(G) + In+1

R (G)) for normal subgroups N were formally intro-
duced in [5] but had been implicitely studied in the literature before. Indeed,
these constructions proved to be very useful in the study of dimension subgroups
Dn,R(G) : = G ∩ (1 + InR(G)) = Ker(pn−1,R) as well as of augmentation quo-
tients Qn,R(G) : = InR(G)/I

n+1
R (G) = Im((Gab)⊗n ⊗R→ Pn,R(G)) , see [21] and

[4]; moreover, they are used in [5] to study extensions of torsionfree nilpotent
groups and in [6] to determine the Schur multiplier of 2-step nilpotent groups.
We here extend the approach of augmentation quotients via polynomial groups
to Fox quotients Qn,R(G,H) = In−1

R (G)IR(H)/InR(G)IR(H): first consider relative
Fox polynomial groups

Pn,R(G,N ;H) = R(G)IR(H)
/(

R(G)IR(N)IR(H) + InR(G)IR(H)
)

,

P̄n,R(G,N ;H) = IR(G)IR(H)
/(

R(G)IR(N)IR(H) + InR(G)IR(H)
)

;

note that Pn,R(G,N) = Pn,R(G,N ;G) and Pn,R(G,N)2 = P̄n,R(G,N ;G). In a
second step determine Qn,R(G,H) as a subgroup of P̄n,R(G, 11;H). We here carry
out this program for n = 2 and all R and for n = 3 and R = ZZ .

Actually we consider a more general version of P̄n,R(G,K;H), replacing IR(H)
by J and the augmantation powers InR(G) by the filtration terms InR,G(G) induced
by an N-series G of G. This degree of generality is necessary in many contexts,
such as polynomial cohomology [5] or (ordinary) augmentation and Fox quotients
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and subgroups of semidirect products [24], [16], and even of arbitrary groups: we
show in subsequent work that under suitable conditions the classical Fox subgroup
G ∩

(

1 + In(G)I(H)
)

equals H ∩
(

1 + InZZ,H(H)I(H)
)

for an appropriate N-series
H of H .

Let us recall the necessary definitions. An N-series G of G is a descending
chain of subgroups

G = G(1) ⊃ G(2) ⊃ G(3) ⊃ . . .

such that [G(i), G(j)] ⊂ G(i+j) for i, j ≥ 1. A given N-series G induces a descending
chain of two-sided ideals of R(G)

R(G) = I0R,G(G) ⊃ I1R,G(G) ⊃ I2R,G(G) ⊃ . . .

by defining InR,G(G) (for n ≥ 1) to be the R-submodule of R(G) generated by the
elements

(a1 − 1) · · · (ar − 1) , r ≥ 1, ai ∈ Nki , such that k1 + . . .+ kr ≥ n.

For example, the following N-series frequently appear in the literature:

• the lower central series, denoted by γ = γG , where I
n
R,γ(G) = InR(G);

• the series
√
γ defined by G(i) =

√
Gi , the isolator of Gi ; here I

n
ZZ,

√
γ(G) is

the isolator of In(G), see [5];

• if G itself is a subgroup of a group Γ, the N-series defined by G(i) = G ∩ Γi
or G(i) = [G(i−1),Γ] if G is normal in Γ, see [3], [24].

In the sequel we add a supercript G to the terms defined above (writing
P G
n,R(G), P

G
n,R(G,N ;H) etc.) when we replace IkR(G), k = n − 1, n, n + 1, by

IkR,G(G) in their definition; and the super- or subscripts R,G are frequently sup-
pressed from the notation when R = ZZ or G = γ , resp.

Actually the pushout lemma and its corollary in section 1 provide the key
tools for studying these notions: it turns out that the isomorphism QG

2 (G) =
P G
2 (G)

2 + p2(G(2)) ∼= U2L
G(G) and its analogon for P G

3 (G)
2 + p2(G(3)) in [4]

formally generalize to the Fox case once written in form of a pushout, see Theorems
3.6 and 6.6 below. At the same time the method provides a strictly dual approach
to Fox subgroups which is pursued in [8] to determine the second relative Fox
subgroup over any ring of coefficients.

We start by an easy case, noting that there is a canonical approximation of
the Fox quotient QG

n(G,H) = In−1
G (G)I(H)/InG(G)I(H), namely by means of the

natural surjective homomorphism

ζGn : QG
n−1(G)⊗Hab →→ QG

n(G,H) (17)
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where ζn((x + InG (G))⊗ hH2) = x(h − 1) + InG (G)I(H) for x ∈ In−1
G (G), h ∈ H .

This map rarely is an isomorphism, but it is at least in the following case.
Let Ḡ be the N-series of G/N given by the image of G under the canonical

projection.

Proposition 2.1 If H is a free group then there are isomorphisms

P̄ G
n,R(G,N ;H) ∼= P Ḡ

n−1,R(G/N)⊗Hab

QG
n,R(G,H) ∼= QG

n−1,R(G)⊗Hab

the first of which is non natural while the second one is given by ζGn .

Proof : The first isomorphism is immediate from Corollary 1.3 by taking M =
ZZ(G)I(N) + In(G) and using the isomorphism ΨN in (11). Then the composite

map QG
n−1,R(G) ⊗ Hab ζGn−→→ QG

n(G,H) →֒ P̄ G
n,R(G, {1};H) ∼= P G

n−1,R(G) ⊗ Hab

equals i⊗ id with i : QG
n−1,R(G) →֒ P G

n−1,R(G). But i⊗ id is injective as Hab is a

free ZZ -module, hence so is ζGn . �

For a refinement of this fact for free nilpotent groups H see section 4 below.

To study the structure of IR(G)J/(R(G)IR(N)J+InR,G(G)J) for arbitrary H we
use Lemma 1.2 for M = I(N)ZZ(G)+InG (G) and U being some right H -submodule
of I(H) and M containing In(H); one may take U equal to In(H), cf. the proofs
of corollaries 2.4, 3.6 and Theorem 6.6, or equal to I(H∩N)ZZ(H)+In(H) where
I(H)/U ∼= Pn−1(HN/N), or equal to I(H)∩M , cf. Proposition 2.3. Now consider
the following commutative square.

(

I(H)
U

)

⊗H
(

J
In−1(H)J

)

i⊗id−→ P Ḡ
n−1(G/N)⊗H

(

J
In−1(H)J

)







y

µH↓







y

µG↓

IR(H)J
URJ

j−→ IR(G)J
R(G)IR(N)J + InR,G(G)J

(18)

Proposition 2.2 Diagram (18) is a pushout square of abelian groups; in other
words, the map µG induces a natural isomorphism

IR(G)J

R(G)IR(N)J + InR,G(G)J
∼= P Ḡ

n−1(G/N)⊗H
(

J

In−1(H)J

)/

(i⊗ id)Ker(µH) .

This also implies the relation

Ker(j) = µH Ker(i⊗ id) .
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Proof : This is a special case of Lemma 1.2: Take V = N = J in (6). Then
right-exactness of the tensor product provides isomorphisms

I(G)⊗H J
Im(M ⊗H J)

∼=
(

I(G)

M

)

⊗H J ∼=
(

I(G)

M

)

⊗H
(

J

In−1(H)J

)

, (19)

similarly for G being replaced by H . Using this it is easy to identify diagram (18)
with diagram (6), so Lemma 1.2 gives the result. �

Proposition 1.6 here takes the following form.

Corollary 2.3 For M = I(N)ZZ(G) + InG (G) there is a natural commutative
diagram with exact rows where we abbreviate U = I(H)∩M , Jn−1 = J/In−1(H)J ,
T = TorH1 (I(G)/(I(H) +M) , Jn−1), H̄ = HN/N and where the top row is part
of the corresponding long exact sequence.

T
τ−→ I(H)

U ⊗H Jn−1
i⊗id−→ P Ḡ

n−1(G/N) ⊗H Jn−1
q⊗id−→ P Ḡ

n−1(G/N)

〈pn−1(H̄)〉 ⊗H Jn−1 → 0

‖






y

µH↓







y

µG↓ ‖

T
µHτ−→ I(H)J

(I(H) ∩M)J
j−→ IR(G)J

R(G)IR(N)J + InR,G(G)J
q⊗id−→ P Ḡ

n−1(G/N)

〈pn−1(H̄)〉 ⊗H Jn−1 → 0

Consequently, the bottom sequence is induced by the top one. �

Corollary 2.4 (i) There is a natural exact sequence

H2(H,R)
λ̃−→ P Ḡ

n−1(G/N)⊗H Pn−1,R(H)
µG−→ P̄ G

n,R(G,N ;H)→ 0 . (20)

(ii) If H is abelian and R = ZZ , sequence (20) becomes

H ∧H λ′−→ P Ḡ
n−1(G/N)⊗H Pn−1(H)

µG−→ P̄n(G,N ;H)→ 0

where H ∧H = H ⊗H/〈{h⊗ h | h ∈ H}〉 and λ′(h ∧ h′) = pn−1(h) ⊗ pn−1(h
′)−

pn−1(h
′)⊗ pn−1(h).

(iii) Let H = 〈t〉 be cyclic of order m. Recall the norm element N(t) = 1 + t +
. . .+ tm−1 and let N̄(t) be its image in ZZ(G/N). Then there is an isomorphism

γ : P̄n(G,N ;H) ∼= P Ḡ
n−1(G/N)

/

P Ḡ
n−1(G/N)N̄(t)

which sends the coset of xy , x ∈ I(G) and y ∈ I(H), to the coset of xy′ where
y′ ∈ ZZ(H) such that y = y′(t− 1).
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Proof : Defining λ̃ = (i⊗ id)λ assertion (i) follows from Lemma 1.2. Then part
(ii) is an immediate consequence of the wellknown computation H2(H) ∼= H ∧H
for abelian groups H . Now let H = 〈t〉 be of order m. Then there is an H -linear

isomorphism ZZ(H)/ZZ(H)N(t)
∼=−→ I(H) sending x̄ to x(t− 1) for x ∈ ZZ(H).

As here H ∧H = 0 one gets isomorphisms

P̄n(G,N ;H) ∼= P Ḡ
n−1(G/N)⊗H Pn−1(H)

∼= P Ḡ
n−1(G/N)⊗H I(H)

∼= P Ḡ
n−1(G/N)⊗H

(

ZZ(H)/ZZ(H)N(t)
)

∼=
(

P Ḡ
n−1(G/N)/P Ḡ

n−1(G/N) · ZZ(H)N(t)
)

⊗H ZZ(H)

∼= P Ḡ
n−1(G/N)

/

P Ḡ
n−1(G/N)N̄(t)

where the dot · denotes the canonical right H -module structure of P Ḡ
n−1(G/N).

�

We remark that parts (ii) and (iii) of the preceding corollary can easily be
generalized to arbitrary coefficient rings R by using part (i) and the universal
coefficient sequence, along with the explicit generators of TorZZ1 (Hab, R) provided
in [19] V.6. We leave it to the interested reader to write out the details.

3 The first two generalized Fox quotients

We first quote the following elementary fact which was first proved by Whitcomb
for J = I(H) in [27].

Proposition 3.1 The first generalized Fox quotient is reduced to the coinvari-
ants of J by the natural isomorphism

R(G)J
IR(G)J

∼= J
I(H)J

. �

This may be well-known but was reproved anyway together with Lemma 1.2.

Corollary 3.2 If J ⊂ IR(H) one has the relation

G ∩ (1 + IR(G)J) = H ∩ (1 + IR(H)J) .

This was proved for R = ZZ in [13].

Proof : We know from [7] that

G ∩ (1 + IR(G)J) = H ∩ (1 + IR(H)J) . (21)
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Now let T be a left transversal for H in G containing 1. Then R(G) =
⊕

t∈T t.R(H)
and R(G)J =

⊕

t∈T t.J ⊂
⊕

t∈T t.R(H). As IR(H) lies in the summand 1.R(H)
we see that IR(H) ∩ R(G)J = J , whence

H ∩ (1 +R(G)J) = H ∩ (1 + J) . (22)

The assertion now follows combining (21), (22) and Proposition 3.1. �

Now we turn to the second generalized Fox quotient. Let K be some subgroup
of G. Take n = 2 and N = KG(2) in Corollary 2.3, noting that then M =
ZZ(G)I(KG(2))+ I2G(G) = I(K)+ I2G(G) = I(KG(2))+ I2(G). All tensor products
over H reduce to tensor products over the integers as all terms involved are trivial
H -modules. Another reduction comes from the natural isomorphism φG (cf. (13))

which induces a canonical isomorphism P Ḡ
1 (G/N) = I(G)/(I(KG(2)) + I2(G)) ∼=

G/KG(2) ; it implies that I(H) ∩M = I(H ∩KG(2)) + I2(H) since

I(H) ∩ (I(KG(2)) + I2(G))

I2(H)
= Ker

(

I(H)/I2(H)
ī−→ I(G)/I(KG(2)) + I2(G)

)

= φHKer(H/H2 → G/KG(2)) .

Hence I(H)/I(H)∩M ∼= HKG(2)/KG(2) . Under these identifications the diagram
in Corollary 2.3 (except from the Tor-terms) looks as follows where JH = J/I(H)J ,
T ′ = TorZZ1 (G/HKG(2) , JH) and where the top row is part of the corresponding 6-
term exact sequence with ι being induced by the inclusion H →֒ G and π being the
canonical quotient map. Moreover, µ′

H(h̄⊗x̄) = (h− 1)x and µ′
G(ḡ⊗x̄) = (g − 1)x

for h ∈ H , g ∈ G and x ∈ J .

T ′ τ−→
(HKG(2)

KG(2)

)

⊗ JH
ι⊗id−→

(

G
KG(2)

)

⊗ JH
π⊗id−→→

(

G
HKG(2)

)

⊗ JH

‖






y

µ′H↓







y

µ′G↓ ‖

T ′ µ′
H
τ−→ IR(H)J

IR(H ∩KG(2))J + I2R(H)J

j−→ IR(G)J

IR(K)J + I2R,G(G)J

π⊗id−→→
(

G
HKG(2)

)

⊗ JH

(23)

In view of the above remarks Corollary 2.3 amounts to the following functorial
description of the R-module IR(G)J/(IR(K)J + I2R,G(G)J).

Theorem 3.3 The middle square of diagram (23) is a pushout of R-modules;
in particular, Ker(µ′

G) = (ι ⊗ id)Ker(µ′
H) . Moreover, the rows of the diagram

above are exact; in particular, Ker(j) is generated by the cosets (h− 1)x where
h ∈ H , x ∈ J such that there is some k ∈ ZZ for which h ∈ KG(2)G

k and
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kx ∈ I(H)J . Furthermore, omitting the terms T ′ , the bottom sequence is induced
by the top sequence via the map µ′

H . �

The description of Ker(j) given in the theorem is obtained by using the canon-
ical generators of the torsion product, see [19] V.6.

Corollary 3.4 If the sequence

1→ HKG(2)/KG(2) → G/KG(2) → G/HKG(2) → 1

of abelian groups splits then there is an isomorphism of R-modules

IR(G)J
IR(K)J + I2R,G(G)J

∼= IR(H)J
IR(H ∩KG(2))J + I2R(H)J

⊕
(

G
HKG(2)

)

⊗
(

J
I(H)J

)

.

In fact, here the top sequence in diagram (23) is split short exact whence so is
the bottom sequence (omitting the terms T ′ ). �

This last result in particular applies when K is normal, G = γ and HK/K is
a semidirect factor of G/K (normal or not). Thus we recover the corresponding
results of Khambadkone and Karan-Vermani for J = I(H) in [17], [15] and for
J = Im(H) in [18], [14].

Another application of Theorem 3.3 is the following intersection theorem.

Corollary 3.5 For any subgroup K of G one has the identity

IR(H)J ∩
(

IR(K)J + I2R,G(G)J
)

= IR(H ∩KG(2))J + I2R(H)J + U

where the subgroup U of IR(H)J is generated by the elements (h−1)x where h ∈
H , x ∈ J for which there exists k ∈ ZZ such that h ∈ KG(2)G

k and kx ∈ I(H)J .
�

In particular, the groups In(H) ∩
(

I(K)In−1(H) + I2(G)In−1(H)
)

can be

considered as being known for n ≤ 4, using the computation of I2(H)/I3(H) in
[2] or [4] and of I3(H)/I4(H) in [4].

In the case R = ZZ and J = I(H) we can improve Theorem 3.3, as follows.
For a group K with N-series K there is a canonical homomorphism

cK,K2 : (K/K(2)) ∧ (K/K(2))→ K(2)/K(3) , cK,K2 ((aK(2)) ∧ (bK(2))) = [a, b]K(3)

for a, b ∈ K . We note cG,G2 = cG2 and cH,γ2 = cH2 . Furthermore, for any abelian
group there is a canonical homomorphism

l2(A) : A ∧ A→ A⊗A , l2(A)(x ∧ y) = x⊗ y − y ⊗ x
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for x, y ∈ A. We note l2(G/G(2)) = lG2 , l2(H/H2) = lH2 and lGH2 = (ι ⊗ id)lH2
with ι : H/H2 → G/KG(2) induced by H →֒ G. Now consider the commutative
square

Hab ∧Hab
lGH
2−→ (G/KG(2))⊗ (H/H2)







y

cH2↓







y

µGH
2↓

H2/H3

dGH
2−→ I(G)I(H)

/(

I(K)I(H) + I2G(G)I(H)
)

(24)

where for g ∈ G, h ∈ H and x ∈ H2

µGH
2 ((gG(2))⊗ (hH2)) = (g − 1)(h− 1) , dGH2 (xH3) = x− 1 .

This diagram provides a simultaneous functorial description of both the second
Fox quotient and the second Fox subgroup, in a completely symmetric way, as
follows.

Theorem 3.6 Diagram (24) is a pushout square of abelian groups; in particular

I(G)I(H)
/(

I(K)I(H) + I2G(G)I(H)
)

∼= (G/KG(2))⊗ (H/H2)
/

lGH2 Ker(cH2 )

(

G ∩
(

1 + I(K)I(H) + I2G(G)I(H)
))/

H3 = Ker(dGH2 ) = cH2 Ker(lGH2 ) .

An analogous result holds for the third Fox quotient and subgroup, see Theorem
6.6 below.

Proof : In Proposition 2.2 take n = 2, J = IR(H) and U = I2(H). Then using
the isomorphisms φH and φG we see that the following diagram is a pushout
square, with H = γH .

Hab ⊗Hab ⊗R ι⊗id⊗id−→ (G/KG(2))⊗Hab ⊗ R






y

µHH
2 ⊗id↓







y

µGH
2 ⊗id↓

I2R(H)/I3R(H)
j−→ IR(G)IR(H)

/(

IR(K)IR(H) + I2R,G(G)IR(H)
)

(25)

So Ker(µGH
2 ⊗ id) = (ι ⊗ id ⊗ id)Ker(µHH

2 ⊗ id) . But for R = ZZ , Ker(µHH
2 ) =

lH2 Ker(cH2 ) by the isomorphism I2(H)/I3(H) ∼= U2L(H) obtained in [2]. Hence
diagram (24) is a pushout, too (abstractly, this follows from the gluing lemma
for pushouts in any category as the cited isomorphism means that diagram (24)
for K = {1} , G = H and G = γ is a pushout square). To deduce from this
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fact the second identity in the assertion, we first use Corollary 3.2 to observe that
G ∩ (1 + I(G)I(H)) = H ∩ (1 + I(H)2) = H2 . �

We remark that in [8] we deduce a more explicit description of the induced
subgroup G∩ (1 + IR(K)IR(H) + I2R(G)IR(H)) from the pushout square (25), for
arbitrary subgroups K,H of G and coefficient rings R .

A nice generalization of Corollary 3.6 also holds for higher Fox quotients in the
case where H/Hn is free nilpotent which morally means that H does not have any
relations in lower commutator filtration. This is the matter of the next section.

4 Fox quotients with respect to free nilpotent

subgroups

In Proposition 2.1 we saw that the map ζGn is an isomorphism if H is free. In this
section we compute its kernel for G = γ if only H/Hn is free nilpotent of class
n− 1.

Let L(Hab) and T (Hab) = ZZ ⊕
⊕

n>0(H
ab)⊗n be the free Lie ring and the

tensor ring over Hab , respectively. Let L(H) be the graded Lie ring defined by the
successive lower central quotients of H and Gr(ZZ(H)) be the associated graded
ring of ZZ(H) with respect to the filtration Ik(H), k ≥ 0. Then we have natural
homomorphisms of graded abelian groups (actually, of graded rings in the case of
q and of graded Lie rings in the case of l and c)

Gr(ZZ(H))
q←−←− T (Hab)

l←− L(Hab)
c−→→ L(H)

provided by the identifications q1 = l1 = c1 = idHab and the universal properties
of T (Hab) and L(Hab). If H is free then c is well-known to be an isomorphism.
So for every n ≥ 2 we obtain natural homomorphisms

Qn−1(G)⊗Hab Qn−1(i)qn−1⊗id←− (Hab)⊗n
ln←− Ln(Hab)

cHn−→→ Ln(H)

The maps ln and cn may be viewed as sending a “formal” n-fold commuta-
tor in Ln(Hab) to the corresponding tensor commutator and to the coset of the
corresponding group commutator, respectively. With these notations, we get the
following

Theorem 4.1 Let n ≥ 2 and suppose that H/Hn is a free nilpotent group of
class n − 1, i.e. H/Hn

∼= F/Fn for some free group F . Then the map ζn above
induces a natural isomorphism

In−1(G)I(H)/In(G)I(H) ∼= Qn−1(G)⊗Hab/(Qn−1(i)qn−1 ⊗ id)lnKer(cHn ) .

In particular, if H/Hn+1 is free nilpotent of class n, then

In−1(G)I(H)/In(G)I(H) ∼= Qn−1(G)⊗Hab .
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We remark that the proof below shows that the group (Qn−1(i)qn−1⊗id)lnKer(cn)
is contained in the kernel of ζn for arbitary subgroups H ; it actually equals Ker(ζn)
for n = 2, by Theorem 3.6. In the remaining sections we study a refinement of the
approximation of the n-th Fox quotient by ζn which takes this fact into account
(among other phenomena).

Proof : We wish to apply Proposition 2.2 with U = In(H). By assumption on
H there is a free presentation R →֒ F

π−→→ H such that R ⊂ Fn . It induces a
ring isomorphism ZZ(F )/Ik(F ) ∼= ZZ(H)/Ik(H) for all k ≤ n. Choose a basis
(fi)i∈I of F . Since I(F ) is a free F -module with basis (fi − 1)i∈I , it follows that
I(H)/In(H) is a free ZZ(H)/In−1(H)-module with basis (π(fi) − 1)i∈I . Whence
in diagram (18) (with J = I(H)) we obtain an isomorphism

ξ : Pn−1(G)⊗Hab
∼=→ Pn−1(G)⊗H Pn−1(H) (26)

defined by ξ(x⊗ π(fi)H ′) = x⊗ (π(fi)− 1+ In(H)). Since Hab is free abelian we
get an isomorphism

ξ(ι⊗ id) : Qn−1(G)⊗Hab ∼= Im((Qn−1(G)⊗H Pn−1(H)) (27)

with the inclusion ι : Qn−1(G) →֒ Pn−1(G). In order to compute Ker(µH) in (18)
write T = T (Hab) and let T̄ be its augmentation ideal. It is well known that there
is a ring isomorphism χ : T/T̄ k ∼= ZZ(F )/Ik(F ) for all k ≥ 1, defined by sending
a generator fiF2 to fi − 1 + Ik(F ). Thus we get a commutative square

Pn−1(H)⊗H Pn−1(H)
∼=←−
χ⊗χ

(T̄ /T̄ n)⊗T (T̄ /T̄ n)
∼=−→
ν

T̄ 2/T̄ n+1







y

µH







y↓
I2(H)
In+1(H)

∼= I2(F ) + I(R)ZZ(F )
In+1(F ) + I(R)ZZ(F )

∼= T̄ 2/(T̄ n+1 + pnKer(πn))

where ν is induced by multiplication in T and where the maps pn, πn are part
of the following commutative diagram and are induced by sending a ∈ Fn to
χ−1(a − 1 + In+1(F )) and to π(a)Hn+1 , respectively. The isomorphisms in the
bottom row above are then deduced from the relations I(R) ⊂ I(Fn) ⊂ In(F ).

(T̄ /T̄ n)⊗T (T̄ /T̄ n)
∼=←−
ν

T̄ 2/T̄ n+1 pn←− Fn/Fn+1
πn−→→ Hn/Hn+1

∼=







y

χ⊗χ

x







ω ∼=
x







cFn

x







cHn

Pn−1(H)⊗H Pn−1(H) (Hab)⊗n
lnLn(πab)←− Ln(F ab)

∼=−→
Ln(πab)

Ln(Hab)






y

i⊗id







y

(Qn−1(i)qn−1⊗id)

Pn−1(G) ⊗H Pn−1(H)
ξ(ι⊗id)←− Qn−1(G)⊗Hab
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Here ω is the canonical injection. From the first of these two diagrams it fol-
lows that Ker(µH) = (χ ⊗ χ)ν−1pnKer(πn) , so by 2.2 and the second diagram
Ker(µG) = (i ⊗ id)(χ ⊗ χ)ν−1pnKer(πn) = (i ⊗ id)(χ ⊗ χ)ν−1ωlnKer(cHn ) =
ξ(ι⊗ id)(Qn−1(i)qn−1 ⊗ id)lnKer(cHn ) . By the equality µGξ(ι⊗Hab) = ζn and by
(27) this implies the assertion. �

5 Canonical approximation of Fox quotients

In the preceding sections we computed the generalized Fox quotients QG
n(G,H)

in some special cases by using the somewhat “naive” approximation ζGn ; we here
study the deeper structure of the groups QG

n(G,H) by introducing a much closer
approximation in terms of enveloping algebras which generalizes Quillen’s approx-
imation of augmentation quotients, i.e. the case G = γ and H = G. We start by
recalling the latter construction.

The abelian group LG(G) =
∑

n≥1G(n)/G(n+1) is a graded Lie ring whose
bracket is induced by the commutator pairing of G. So its enveloping algebra
ULG(G) over the integers is defined. On the other hand, the filtration quotients
QG
n(G) = InG (G)/I

n+1
G (G) form the graded ring GrG(ZZ(G)) = ⊕n≥0Q

G
n(G); note

that one has Gr(ZZ(G)) : = Grγ(ZZ(G)) =
⊕

n≥0 I
n(G)/In+1(G).

Now the map LG(G)→ GrG(ZZ(G)), aG(n+1) 7→ a−1+ In+1
G (G) for a ∈ G(n) ,

is a homomorphism of graded Lie rings and hence extends to a map of graded rings
θG : ULG(G) → GrG(ZZ(G)). This map is clearly surjective but rarely globally
injective; for instance, θγ is injective if G has torsionfree lower central quotients
Gn/Gn+1 or is cyclic, but θγ is non injective for all non cyclic finite abelian groups
[1]. At least, the kernel of θG is torsion as θG ⊗ Q is an isomorphism; this was
proved by Quillen for G = γ and follows from work of Hartley [11] in the general
case, see also [9]. Moreover, Ker(θG) is trivial in degree 1 and 2 (by [2] for N = γ )
and is explicitely known in degree 3, see [4].

To generalize the foregoing concept to Fox quotients consider the filtration

F1 = ZZ(G)I(H) ⊃ F2 = I(G)I(H) ⊃ . . . ⊃ Fn = In−1
G (G)I(H) ⊃ . . .

of ZZ(G)I(H). The associated graded group GrGγ(ZZ(G)I(H)) =
⊕

n≥1Q
G
n(G,H)

is a graded GrG(ZZ(G))–Gr(ZZ(H))–bimodule in the canonical way, and hence a
ULG(G)−UL(H)-bimodule via the maps θG and θγH . Now let H = (H(n))n≥1 be
the N-series of H defined by H(n) = H ∩G(n) . The injection I(H) →֒ ZZ(G)I(H)
is a map of ZZ(H)-bimodules taking In(H) and In−1

H (H)I(H) into Fn ; it thus
induces homomorphisms Gr(I(H)) −→ GrGγ(ZZ(G)I(H)) ←− GrHγ(I(H)) of
graded Gr(ZZ(H))-bimodules and GrH(ZZ(H))–Gr(ZZ(H))–bimodules, resp. So
by extension of scalars along the graded ring homomorphisms Gr(ZZ(H)) →
GrG(ZZ(G)) and GrH(ZZ(H)) → GrG(ZZ(G)) induced by the injection H →֒ G
we get natural surjective maps of graded GrG(ZZ(G))–Gr(ZZ(H))–bimodules

ξGHGγ : GrG(ZZ(G))⊗
Gr(ZZ(H))

Gr(I(H)) −→ GrGγ(ZZ(G)I(H)) ,
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ξGHGH : GrG(ZZ(G))⊗
GrH(ZZ(H))

GrHγ(I(H)) −→ GrGγ(ZZ(G)I(H)) .

It is convenient to combine ξGHGγ with Quillen’s approximation to obtain an epi-
morphism of graded ULG(G)− UL(H)-bimodules

θGH = ξGHGγ (θG⊗θγH ) : UG(G,H) : = ULG(G)⊗
UL(H)

ŪL(H) −→ GrGγ(ZZ(G)I(H))

where ŪL(H) denotes the augmentation ideal of UL(H).

Remark 5.1 The approximation of GrGγ(ZZ(G)I(H)) by ξGHGH is a priori “closer”
than the one by ξGHGγ as is seen from the following commutative diagram

GrG(ZZ(G)) ⊗
Gr(ZZ(H))

Gr(I(H))
∼=−→
m

GrG(ZZ(G)) ⊗
GrH(ZZ(H))

(

GrH(ZZ(H))⊗
Gr(ZZ(H))

Gr(I(H))
)







y

ξGH
Gγ







y

id⊗ξHH
Hγ

GrGγ(ZZ(G)I(H))
ξGH
GH←− GrG(ZZ(G)) ⊗

GrH(ZZ(H))
GrHγ(I(H))

where m is the canonical isomorphism. But as our goal is to approximate the
group GrGγ(ZZ(G)I(H)) in terms of enveloping algebras we do not to care about
this difference.

For i ≥ 0 and j ≥ 1 let

νij : UiL
G(G)⊗ UjL(H)→ UG

i+j(G,H)

be the canonical map. Note that for any group K the ring UL(K) is generated by
U1L(K) = L1(K) ∼= Kab . This implies that ν(n−1)1 is surjective, and also implies
exactness of the following sequence of graded ULG(G)−UL(H)-bimodules

ULG(G)⊗U1L(H)⊗ ŪL(H)
ψ−→ ULG(G)⊗ ŪL(H)

q−→ UG(G,H) → 0

where ψ(x ⊗ y ⊗ z) = xy ⊗ z − x ⊗ yz . It is now easy to compute UG
n(G,H) for

n ≤ 3, also using the identity Ker(µH2 ) = lH2 Ker(cH2 ) , cf. the proof of Theorem
3.6.

From now on we abbreviate GAB = G/G(2) .

Proposition 5.2 There are canonical isomorphisms

UG
1 (G,H) ∼= U1L(H) ∼= Hab

UG
2 (G,H) ∼= GAB ⊗Hab

lGH2 Ker(cH2 )
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UG
3 (G,H) ∼= coker

(

ǫ =

(

cG2 ⊗ id 0 0
− lG2 ⊗ id iGHH iHHH

)

)

,

((GAB ∧GAB)⊗Hab) ⊕ (GAB ⊗ lH2 Ker(cH2 )) ⊕ lH33Ker(cH33)






y

ǫ

((G(2)/G(3))⊗Hab) ⊕ (GAB ⊗GAB ⊗Hab)

where the homomorphisms L3(H)
cH33←− (Hab)⊗3 lH33−→ (Hab)⊗3 are defined such that

for x, y, z ∈ Hab , cH33(x ⊗ y ⊗ z) is the triple Lie bracket [x, [y, z]] in the Lie
algebra L(H) and lH33(x ⊗ y ⊗ z) is the triple Lie bracket [x, [y, z]] in the tensor
algebra T (Hab). Furthermore, we note iGHH = id ⊗ ι⊗ id : GAB ⊗Hab ⊗Hab →
GAB⊗GAB ⊗Hab and iHHH = ι⊗ ι⊗ id : Hab⊗Hab⊗Hab → GAB⊗GAB⊗Hab .

As an immediate consequence of this computation and of Proposition 3.1 and
Theorem 3.6 we get

Proposition 5.3 For all groups G and subgroups H of G the maps ξGHn and θGHn
are isomorphisms for n = 1, 2.

One may also ask when θGH is globally an isomorphism. We have a positive
answer in at least one case.

Corollary 5.4 If G has torsionfree factors and H is a free group then θGH is an
isomorphism.

Proof : We have the following commutative diagram

Un−1L
G(G)⊗Hab

θGn−1⊗id−→ QG
n−1(G)⊗Hab







y

ν(n−1)1↓ ∼=







y

ζGn

UG
n(G,H)

θGH
n−→→ GrGγn (ZZ(G)I(H))

where ζGn is an isomorphism by Proposition 2.1. Moreover, θG here is an iso-
morphism since G has torsionfree factors [9], whence ν(n−1)1 and θGHn are isomor-
phisms, too. �

We now exhibit a canonical part of the kernel of θGH (other than Ker(θG ⊗ θγH ))
in comparing G to the lower central series of H , as follows.
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For elements x1, . . . , xm of any ring define the iterated commutator [x1, . . . , xm]
to be x1 if m = 1 and to be [x1, [x2, . . . , [xm−1, xm] . . .] if m ≥ 2. In the latter
case one has the formula

[x1, . . . , xm] =

m−1
∑

s=0

(−1)m−s+1
∑

J

xi1 · · ·xisxmxj1 · · ·xjm−1−s
(28)

where J = {(i1, . . . , is, j1, . . . , jm−1−s) ‖ 1 ≤ i1 < . . . < is ≤ m − 1 ≥ j1 > . . . >
jm−1−s ≥ 1 such that{i1, . . . , is, j1, . . . , jm−1−s} = {1, . . . , m − 1} } . We say that
an m-tuple h = (h1, . . . , hm) of elements of H is of height ≥ n if hj ∈ Hkj ∩G(lj)

such that l1 + . . . + lm − lj + kj = n for 1 ≤ j ≤ m. For such an m-tuple h let
r1(h) = h1 if m = 1 and if m ≥ 2,

r1(h) = [h1, [h2, . . . , [hm−1, hm] . . .] ∈ H

r2(h) =

m−1
∑

s=0

(−1)m−s+1
∑

J

(hi1G(li1+1)) . . . (hisG(lis+1)).(hmG(lm+1)).(hj1G(lj1+1)) . . .

(hjm−2−s
G(ljm−2−s

+1))⊗(hjm−1−s
Hkjm−1−s

+1) ∈
(

ULG(G)⊗UL(H)ŪL(H)
)

n

Here, and throughout the rest of this paper, we consider the cosets hjHkj+1 ∈
Lkj (H) and hjG(lj+1) ∈ LG

lj
(G) as elements of UkjL(H) and UljL

G(G), resp.,

suppressing the canonical map LK(K) → ULK(K) from the notation. Moreover,
all products denoted by . are taken in the respective enveloping algebras.

For n ≥ 2 let RGH
n be the subgroup of ULG(G) ⊗UL(H) ŪL(H) generated by

the elements

Rn(h1, . . . , hp) = 1ULG(G) ⊗ (r1(h1) · · · r1(hp)Hn+1)−
p

∑

q=1

r2(hq) ∈ UG
n(G,H)

where p ≥ 1 and each hq is an mq -tuple, mq ≥ 2, of height ≥ n such that

r1(h1) · · · r1(hp) ∈ Hn . The term RGH
3 will be considered in Corollary 6.7 below.

Proposition 5.5 One has identities θGH(RGH
n ) = 0 and RGH

n ŪL(H) = 0.
Moreover, in the definition of RGH

n it suffices to take only those tupels hq =
(hq1, . . . , hqmq

) for which lqj ≥ kqj for 1 ≤ j ≤ mq .

Proof : Let h = (h1, . . . , hm) ∈ Hm be of height ≥ n. We contend that in
ZZ(G), r1(h)− 1 ∈ Fn and if m ≥ 2,

r1(h)− 1 ≡ [h1 − 1, [. . . , [hm−1 − 1, hm − 1] . . .] mod Fn+1 . (29)
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We proceed by induction on m. The case m = 1 being obvious let m ≥ 2.
Note that h′ = (h2, . . . , hm) is of height ≥ n− l1 ; hence by induction hypothesis,
r1(h

′) − 1 ∈ Fn−l1 and x = r1(h
′) − 1 − [h2 − 1, [. . . , [hm−1 − 1, hm − 1] . . .] ∈

Fn−l1+1 . On the other hand, r1(h
′) − 1 ∈ θG(Gl2+...+lm) ⊂ I l2+...+lmG (G) and that

x ∈ I l2+...+lm+1
G (G) since θG is a graded Lie map. Now

r1(h)− 1 =
(

(h1 − 1)(r1(h
′)− 1)− (r1(h

′)− 1)(h1 − 1)
)

h−1
1 r1(h

′)−1 .

By the above remarks, (h1 − 1)(r1(h
′)− 1)− (r1(h

′)− 1)(h1 − 1) ∈ I l1G (G)Fn−l1 +
I l2+...+lmG (G)Ik1(H) ⊂ Fn by the immediate relation I lG(G)F eIk(H) ⊂ F l+e+k for
l, e, k ≥ 0. Thus also r1(h)− 1 ∈ Fn . Writing h−1

1 r1(h
′)−1 = 1+ (h−1

1 r1(h
′)−1− 1)

we get

r1(h)− 1 ≡ (h1 − 1)(r1(h
′)− 1)− (r1(h

′)− 1)(h1 − 1) mod Fn+1

= [h1 − 1 , x+ [h2 − 1, [. . . , [hm−1 − 1, hm − 1] . . .]]

≡ [h1 − 1 , [h2 − 1, [. . . , [hm−1 − 1, hm − 1] . . .]] mod Fn+1

since (h1−1)x−x(h1−1) ∈ I l1G (G)Fn−l1+1+I l2+...+lm+1
G (G)Ik1(H) ⊂ Fn+1 . Hence

(29) is proved. Using the identity ab − 1 = (a− 1) + (b − 1) + (a− 1)(b − 1) we
obtain

θGH(1ULG(G) ⊗ r1(h1) . . . r1(hp)Hn+1) = r1(h1) . . . r1(hp)− 1 + Fn+1

=

p
∑

q=1

r1(hq)− 1 + Fn+1

=

p
∑

q=1

θGH(r2(hq)) + Fn+1

where the last identity is due to relations (29) and (28). Hence θGH(RGH
n ) = 0.

Next we prove the last part of the assertion. First note that for h as above

l1 + . . .+ lm = n+ lj − kj (30)

for 1 ≤ j ≤ m. Now suppose that for some q , lq1 + . . .+ lqmq
< n which by (30)

means that lqj < kqj for all j from 1 to mq . For clarity we suppress the index q
from the notation. We have hj ∈ Hkj ⊂ G(kj) ⊂ G(lj+1) , so r2(hq) = 0 since all
terms to the left of ⊗ are trivial. On the other hand,

k1 + . . .+ km = n− (l2 + . . .+ lm) + k2 + . . .+ km

= n+ (k2 − l2) + . . .+ (km − lm)
≥ n+m− 1

≥ n+ 1 ,
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so r1(hq) ∈ Hk1+...+km ⊂ Hn+1 . Hence Rn(h1, . . . , hp) = Rn(h1, . . . , ĥq, . . . , hp)

where (h1, . . . , ĥq, . . . , hp) is (h1, . . . , hp) with hq omitted. Thus we may suppose
that in the definition of RGH

n , for all q from 1 to p, one has lq1 + . . .+ lqmq
≥ n,

i.e., lqj ≥ kqj for 1 ≤ j ≤ mq by (30). Under this hypothesis let v ∈ ŪL(H) and
let us show that Rn(h1, . . . , hp) · v = 0. We have

Rn(h1, . . . , hp) · v = (r1(h1) · · · r1(hp)G(n+1))⊗ v −
p

∑

q=1

rG2 (hq)⊗ v

where

rG2 (h) =

m−1
∑

s=0

(−1)m−s+1
∑

J

(hi1G(li1+1)) . . . (hisG(lis+1)).(hmG(lm+1)).(hj1G(lj1+1)) . . .

(hjm−2−s
G(ljm−2−s

+1)).(hjm−1−s
G(kjm−1−s

+1))

Suppose that for some q , lq1 + . . . + lqmq
> n, i.e., lqj > kqj for 1 ≤ j ≤ mq .

Then hqjG(kqj+1) = 0 as hqj ∈ G(lqj) ⊂ G(kqj+1) , so rG2 (hq) = 0 since all the
last factors in the sum defining it are trivial. On the other hand, r1(hq) ∈
G(lq1+...+lqmq ) ⊂ G(n+1) , so Rn(h1, . . . , hp) · v = Rn(h1, . . . , ĥq, . . . , hp) · v . Thus
we can finally assume that for all q from 1 to p, lq1 + . . . + lqmq

= n, i.e.,
lqj = kqj for 1 ≤ j ≤ mq by (30). Here rG2 (hq) = [hq1G(lq1+1), . . . , hqmq

G(lqmq+1)] =
[hq1, [. . . , [hq(mq−1), hqmq

] . . .]G(lq1+...+lqmq+1) = r1(hq)G(n+1) by definition of the Lie

ring LG(G). On the other hand, r1(h1) · · · r1(hp)G(n+1) =
∑p

q=1 r1(hq)G(n+1) since
r1(hq) ∈ G(lq1+...+lqmq ) = G(n) for each q . So Rn(h1, . . . , hp) · v = 0, as desired. �

Proposition 5.5 implies that the quotient group

ŪG(G,H)
def
= UG(G,H)

/

∑

n≥2

ULG(G)RGH
n

is a graded ULG(G)–UL(H)-bimodule, and that θGH induces a surjective homo-
morphism of graded ULG(G)–UL(H)–bimodules

θ̄GH : ŪG(G,H) →→ GrGγ(ZZ(G)I(H)) .

Note that Ūγ(G,G) = Uγ(G,G) ∼= ŪL(G) and that θ̄γG = θγG coincides in
positive degrees with the map θγ constructed by Quillen. By analogy with the
fact that θG ⊗Q is always an isomorphism we pose the following

Problem 5.6 Is it true that the epimorphism

θ̄GHn ⊗Q : ŪG
n(G,H)⊗Q→→QG

n(G,H)⊗Q
is an isomorphism for all groups G, subgroups H and n ≥ 1? In other words, is
Ker(θGH) a torsion group?
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The answer is affirmative in degree n ≤ 2 by Proposition 5.3 and also in degree
3 by Corollary 6.2 below.

6 The third Fox quotient

In this section all proofs are postponed to the end.
The structure of QG

3 (G,H) is completely determined by Proposition 5.2 and
the following result.

Theorem 6.1 For all groups G and subgroups H there is a natural exact se-
quence

TorZZ1 (G
AB, Hab) ⊕

(

Ker(lGH2 ) ∩ Ker(cH2 )
)

(δ1,δ2)−→ UG
3 (G,H)

θGH
3−→ QG

3 (G,H) → 0

Here δ1 is a homomorphism while δ2 is a secondary operator which is a welldefined
homomorphism only modulo Im(δ1), i.e. an additive relation with indeterminacy
Im(δ1). The construction of δ1 and δ2 is given in (36) and (53) below in a
functorial manner and in (37) and (38) in an explicit form.

Corollary 6.2 Problem 5.6 has an affirmative answer for n = 3.

Let us discuss Theorem 6.1 in a number of special cases. First suppose that
H = G.

If G = γ the map lGG2 is injective; hence the theorem formally generalizes the
description of Ker(θG3 ) in [4] (in the case G = γ ). If G 6= γ the result is still of
interest as groups of the type QG

n(G,G) occur in the study of Fox quotients of
semidirect products, see [16]. In particular, if G is the semidirect product of a
normal subgroup H and a subgroup K the quotient

X =
I3(H)⊕ I([H,K])I(H)

I4(H) + I(H)I([H,K])I(H) + I([H,K,H ])I(H) + I([H,K,K])I(H)

is proved to be a direct summand of Q3(G,H) but is not computed in [16]; we
here fill this gap noting that X = QH

3 (H,H) where the N-series H = (H(n))n≥1

is given by H(n+1) = [H(n), G], see also [9]. Indeed, the structure of QG
3 (G,G) is

determined by the following two corollaries, first from a functorial point of view
further developed in remark 6.4, then by means of an explicit formula.
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Corollary 6.3 The group QG
3 (G,G) is determined by the following tower of suc-

cessive natural quotients

TorZZ1 (GAB, Gab)
δ1−→ UG

3 (G,G)






y

q1↓

Ker
(

c̃G2 : (G(2)/G2) ∧ (G(2)/G2)→ G2/G3

)

δ21−→ Coker(δ1)






y

q21↓

Ker
(

[ , ]τ1 : TorZZ1 (GAB, GAB)→ G2/[G(2) , G(2)]G3

)

δ22−→ Coker(δ21)






y

q22↓

Coker(δ22)

∼=







y

θ̃GG
3

QG
3 (G,G)

where c̃G2 is given by restriction of cG2 , θ̃
GG
3 is induced by θGG3 , τ1 appears in the

following part of a 6-term-exact sequence

TorZZ1 (GAB, GAB)
τ1−→ GAB⊗(G(2)/G2)

id⊗i−→ GAB⊗Gab id⊗π−→ GAB⊗GAB → 0,

[ , ] : GAB⊗ (G(2)/G2) → G2/[G(2) , G(2)]G3 is induced by the commutator pairing
of G, and δ21, δ22 are induced by δ2 , cf. the proof at the end of the section.

It actually follows from Lemma 6.7 below that Im(δ21) = q1(RGG
3 ). So if

we replace UG
3 (G,G) by ŪG

3 (G,G) the above tower reduces to just the two steps
involving δ1 and δ22 .

Remark 6.4 A similar description can be given in the general case (H 6= G)
by adding one additional step at the bottom of the tower. Indeed, there is an
isomorphism θ̃GH3 : Coker(δ23) → QG

3 (G,H) where the construction of δ21, δ22
resembles the one in Corollary 6.3 and where δ23 looks at follows:

Ker

(

Ker
(

TorZZ1 (G/HG(2) , H
ab)

σ1−→ SP2(HG(2)/G(2))
)

σ2−→ Coker([ , ]τ1)

)







y

δ23

Coker(δ22)
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for suitable natural maps σ1, σ2, δ23 and where SP2 denotes the second symmetric
tensor power. We renounce to give the precise definitions and the proof as this
description may be of no practical use, but we mention it in order to illustrate our
guiding philosophy: any natural construction of an abelian group associated with
a nilpotent group (all kinds of augmentation and dimension quotients, homology
etc.) should be functorially expressable in terms of (generally higher order) oper-
ators between suitable polynomial endofunctors of Ab and their derived functors,
applied to appropriate abelian subquotients of the nilpotent group in question
(here Ab denotes the category of abelian groups). For more examples of this
structural phenomenon see also [4], [6], [8], [9], [10].

Corollary 6.5 There is a natural isomorphism QG
3 (G,G)

∼= UG
3 (G,G)/(U1+U2)

induced by θGG3 where

• U1 is the subgroup of UG
3 (G,G) generated by the elements

(aG(2))⊗ (bkH3)− (akG(3))⊗ (bG2) +

(

k

2

)

(

(aG(2))
2 ⊗ (bG2)− (aG(2))⊗ (bG2)

2
)

where a, b ∈ G, k ∈ ZZ such that ak ∈ G(2) and bk ∈ G2 , and as usual,(aG(2))
2 =

(aG(2)).(aG(2)), same for (bG(2))
2 ;

• U2 is the set of elements

p
∑

q=1

(aqG(3))⊗(bqG2)−(bqG(3))⊗(aqG2)+

s
∑

r=1

(ckrr G(3))⊗(drG2)−(dkrr G(3))⊗(crG2)

+
s

∑

r=1

(

kr
2

)

(

(crG(2)).
(

(drG(2))− (crG(2))
)

⊗ (drG2)
)

− 1⊗ (gG4) (31)

where aq, bq ∈ G(2) , cr, dr ∈ G, kr ∈ ZZ such that ckrr , d
kr
r ∈ G(2) for 1 ≤ r ≤ s

and g =
∏p

q=1[aq, bq]
∏s

r=1[cr, d
kr
r ] ∈ G3 .

The proof below shows that U1 + U2 is indeed a subgroup of UG
3 (G,G).

Construction of δ1 . For a group K and N-series K of K the isomorphisms

θK,Kn : UnL
K(K)

∼=−→ QK
2 (K), n = 1, 2, provide natural exact sequences

0→ U2L
G(G)

µG2−→ P G
2 (G)

ρG−→ GAB → 0 (32)

0→ U2L(H)
µH2−→ P2(H)

ρH−→ Hab → 0 (33)
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Tensoring sequence (32) by Hab = U1L(H) and sequence (33) by GAB = U1L
G(G)

gives rise to natural exact sequences

TorZZ1 (G
AB, Hab)

τG−→ U2L
G(G)⊗U1L(H)

µG2⊗id−→ P G
2 (G)⊗Hab ρG⊗id−→ GAB⊗Hab → 0

(34)

TorZZ1 (G
AB, Hab)

τH−→ U1L
G(G)⊗U2L(H)

id⊗µH2−→ GAB⊗P2(H)
id⊗ρH−→ GAB⊗Hab → 0

(35)
Then define

δ1 = ν12τH − ν21τG : TorZZ1 (G
AB, Hab) −→ UG

3 (G,H) . (36)

Note that δ1 essentially is the difference between a left and a right connecting
homomorphism, kind of asymmetry phenomenon which also induces the non-trivial
torsion relations in the non-abelian tensor square and the second homology of 2-
step nilpotent groups, cf. [6].
To describe δ1 more explicitly let 〈ḡ, k, h̄〉 be a typical generator of TorZZ1 (GAB, Hab),
i.e. a symbol where k ∈ ZZ , ḡ = gG(2) ∈ U1L

G(G), h̄ = hH2 ∈ U1L(H) for g ∈ G,
h ∈ H such that gk ∈ G(2) and hk ∈ H2 , cf. [19] V.6. Then

δ1〈ḡ, k, h̄〉 = (ḡ ⊗ (hkH3)− (gkG(3))⊗ h̄+
(

k

2

)

(ḡ2 ⊗ h̄− ḡ ⊗ h̄2) . (37)

where ḡ2 = ḡ.ḡ and h̄2 = h̄.h̄.

Explicit formula for δ2 (the functorial construction is given in (53) below).
Suppose that Hab is finitely generated (the general case can be deduced from
Lemmas 3.5 and 3.6 in [8] exactly in the same way as what follows). Then there
exists a decomposition Hab =

⊕r

k=1ZZ/dkZZ · (hkH2) with hk ∈ H , dk ∈ IN .
Let x ∈ Hab ∧ Hab . Then x =

∑

1≤i<j≤r aij(hiH2) ∧ (hjH2) with aij ∈ ZZ . By

Lemmas 3.5 and 3.6 in [8] one has x ∈ Ker(lGH2 ) if and only if for all 1 ≤ k ≤ r ,
∏

1≤i<k h
aik
i

∏

k<j≤n h
−akj
j ∈ G(2)G

dk , with Gd = {gd | g ∈ G} . Now suppose that

x ∈ Ker(lGH2 ) ∩ Ker(cH2 ) . Then γ : =
∏

1≤i<j≤r[hi, hj]
aij ∈ H3 , and for all

1 ≤ k ≤ r there are g′k ∈ G(2) and gk ∈ G such that
∏r

l=1 h
αkl

l = g′kg
dk
k where

αkl = alk if l < k , αkl = 0 if l = k , and αkl = −akl if l > k . Then

δ2(x) =
r

∑

k=1

(

(g′kG(3))⊗ (hkH2) + (gkG(2))⊗ (hdkk H3) +

(

dk
2

)

(gkG(2)).
(

(gkG(2))

− (hkG(2))
)

⊗ (hkH2) − 1⊗
(

(γH4) +

r
∑

l=1

(

αkl
2

)

(hlH2)
2.(hkH2)

+
∑

1≤p<q≤r
αkpαkq(hpH2).(hqH2).(hkH2)

)

)

+ Im(δ1) (38)
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with (hlH2)
2 = (hlH2).(hlH2).

The starting point of the proof of Theorem 6.1 is the following description
of the third relative Fox polynomial group which is completely analogous to our
description of the second one in Theorem 3.6.

Let N be a normal subgroup of G and consider the following diagram.

P2(H) ∧ P2(H)
lGH
3−→ P Ḡ

2 (G/N)⊗H P2(H)






y

cH3↓







y

µGH
3↓

H2/H4

dGH
3−→ I(G)I(H)

/

(ZZ(G)I(N)I(H) + I3G(G)I(H))

(39)

where for a, b, h ∈ H , g ∈ G and x ∈ H2

lGH3 (p2(a)∧ p2(b)) = p2(a)⊗ p2(b)− p2(b)⊗ p2(a)− [p2(a) , p2(b)]⊗ (p2(a) + p2(b)) ,

cH3 ((aH2)∧ (bH2)) = [a, b]H4 , d
GH
3 (xH4) = x− 1 +ZZ(G)I(N)I(H) + I3G(G)I(H) ,

and µGH
3 ((p2(g)⊗ (p2(h))) = (g − 1)(h− 1) + ZZ(G)I(N)I(H) + I3G(G)I(H) .

This diagram provides a simultaneous functorial description of both the third
relative Fox polynomial group and the third relative Fox subgroup, in exactly the
same way as the second Fox quotient and the second Fox subgroup are determined
in Theorem 3.6, as follows.

Theorem 6.6 Diagram (39) is a pushout square of abelian groups; in particular

I(G)I(H)/(ZZ(G)I(N)I(H)+I3G(G)I(H)) ∼= (P Ḡ
2 (G/N)⊗HP2(H))

/

lGH3 (Ker(cH3 ))

(

G ∩ (1 + ZZ(G)I(N)I(H) + I3G(G)I(H))
)/

H4 = Ker(dGH3 ) = cH3 (Ker(lGH3 )) .

The second equality should allow to explicitly compute the third relative Fox
subgroup, in a similar way as we deduce in [8] the second relative Fox-subgroup
from Theorem 3.6.

Proof : Same principle as in the proof of 3.6: diagram (39) is a pushout as it is
obtained by gluing the following two pushouts where H = γH :

P2(H) ∧ P2(H)
lHH
3−→ P2(H)⊗H P2(H)

i⊗id−→ P Ḡ
2 (G/N)⊗H P2(H)







y

cH3↓







y

µHH
3 =µH↓







y

µGH
3 =µG↓

H2/H4
dHH
3−→ I2(H)/I4(H)

j−→ I(G)I(H)
ZZ(G)I(N)I(H) + I3G(G)I(H)

(40)
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In fact, the left hand square is a pushout by Theorem 3.5 in [4] and the right hand
square by Proposition 2.3. �

Proof of Theorem 6.1. First note that by (32), (33) homomorphisms

U2L
G(G)⊗Hab αG−→ P G

2 (G)⊗ P2(H)

Im(QG
2 (G)⊗ P2(H)2)

αH←− GAB ⊗U2L(H)

are welldefined as being factorizations of the maps

U2L
G(G)⊗ P2(H)

q(µG2 ⊗id)−→ P G
2 (G)⊗ P2(H)

Im(QG
2 (G)⊗ P2(H)2)

q(id⊗µH2 )←− P G
2 (G)⊗ U2L(H)

through id⊗ ρH and ρG ⊗ id , resp., where q : P G
2 (G)⊗ P2(H)→ PG

2 (G)⊗P2(H)

Im(QG
2 (G)⊗P2(H)2)

is the canonical projection. Consider the following commutative diagram where

βG = q⊗αG with q⊗ :
PG
2 (G)⊗P2(H)

Im(QG
2 (G)⊗P2(H)2)

→ P G
2 (G) ⊗H P2(H) being the canonical

surjection.

P2(H) ∧ P2(H)
lGH
3−→ P G

2 (G)⊗H P2(H)
βG←− U2L

G(G)⊗Hab = U2L
G(G)⊗ U1L(H)







y

cH3↓







y

µGH
3↓







y

ν21↓

H2/H4

dGH
3−→ I(G)I(H)

I3G(G)I(H)
←֓ QG

3 (G,H)
θGH
3←−←− UG

3 (G,H)

As Ker(µGH
3 ) = lGH3 Ker(cH3 ) by Theorem 6.6 we have

Ker(θGH3 ) = ν21 β
−1
G lGH3 Ker(cH3 ) . (41)

Thus the proof naturally divides in three steps:

Step 1: proving the identity

ν21Ker(βG) = Im(δ1) ; (42)

Step 2: giving a natural construction of δ2 and showing that

ν21 β
−1
G lGH3 Ker(cH3 ) ≡ Im(δ2) mod Im(δ1) . (43)

Step 3: verifying the explicit formula for δ2 given by (38).

Step 1. Let mG
2 : G

AB ⊗ GAB → U2L
G(G) be the map given by multiplication

in the ring U2L
G(G), and let mH

2 = mγH
2 . By definition of the tensor product over

H there is an exact sequence

GAB ⊗Hab ⊗Hab ψ−→ P G
2 (G)⊗ P2(H)

Im(QG
2 (G)⊗ P2(H)2)

q⊗−→ P G
2 (G)⊗H P2(H) → 0
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with ψ = αG(m
G
2 ⊗ id)iGHH − αH(id⊗mH

2 ). Consider the following commutative
diagram with exact rows and columns by (32), (33).

GAB ⊗Ker(cH2 )
id⊗lH2−→ GAB ⊗Hab ⊗Hab

id⊗mH
2−→→ GAB ⊗ U2L(H)







y

(mG
2 ⊗id)iGHH (id⊗lH2 )







y

ψ







y

−id⊗µH2

U2L
G(G)⊗Hab αG−→ P G

2 (G)⊗ P2(H)
Im(QG

2 (G)⊗ P2(H)2)

ρG⊗id−→→ GAB ⊗ P2(H)






y

qGH↓ ցβG







y

q⊗↓







y

id⊗ρH↓

X
ᾱG−→ P G

2 (G)⊗H P2(H)
ρG⊗ρH−→→ GAB ⊗Hab

where
X = Coker

(

(mG
2 ⊗ id)iGHH(id⊗ lH2 )

)

and where qGH is the canonical projection. Then by the snake lemma there is a
canonical connecting homomorphism

ω : Ker(id ⊗ µH2 ) = Im(τH) → X/qGHKer(αG) , (44)

ω = qXqGHα
−1
G ψ(id ⊗ mH

2 )
−1 with qX : X ։ X/qGHKer(αG) , satisfying the

relation
qXKer(ᾱG) = Im(ω) . (45)

In order to compute Im(ω) we consider the two summands of ψ separately. As to
the first one, we have

qXqGHα
−1
G αG(m

G
2 ⊗ id)iGHH(id⊗mH

2 )
−1τH = qX iGHHτH (46)

where iGHH fits into the commutative diagram

GAB ⊗Hab ⊗Hab iGHH

−→ GAB ⊗GAB ⊗Hab







y

id⊗mH
2↓







y

qGH(mG
2 ⊗id)

GAB ⊗ U2L(H)
iGHH

−→ X

As to the second summand of ψ , let 〈gG(2), k, hH2〉 be a typical generator of
TorZZ1 (G

AB, Hab) with g ∈ G, h ∈ H , k ∈ ZZ such that gk ∈ G(2) and hk ∈ H2 .
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Then

αH(id⊗mH
2 )(id⊗mH

2 )
−1τH 〈gG(2), k, hH2〉 = αH

(

(gG(2))⊗ (µH2 )
−1(kp2(h))

)

= q(id⊗ µH2 )
(

p2(g)⊗ (µH2 )
−1(kp2(h))

)

= q(p2(g)⊗ kp2(h))
= q(kp2(g)⊗ p2(h))
= q(µG

2 ⊗ id)
(

(µG
2 )

−1(kp2(g))⊗ p2(h)
)

= αG

(

(µG
2 )

−1(kp2(g))⊗ (hH2)
)

= αGτG 〈gG(2), k, hH2〉 (47)

From (46) and (47) we obtain the relations

ωτH = qX

(

iGHHτH − qGHτG
)

,

whence by (45)

Ker(ᾱG) = Im(iGHHτH − qGHτG) + qGHKer(αG) . (48)

Next we compute Ker(αG). Consider the following commutative diagram whose
top row is part of the six-term exact sequence obtained by tensoring sequence (32)
with P2(H).

TorZZ1 (G
AB, P2(H))

τ−→ U2L
G(G)⊗ P2(H)

µG2⊗id−→ P G
2 (G)⊗ P2(H)







y

TorZZ1 (id,ρH )







y

id⊗ρH↓







y

q↓

TorZZ1 (G
AB, Hab)

τG−→ U2L
G(G)⊗Hab αG−→ P G

2 (G)⊗ P2(H)
Im(QG

2 (G)⊗ P2(H)2)

The left hand square commutes by naturality of the connecting homomorphism
and the right hand square by definition of αG . As Ker(q) = (µG

2⊗id)Ker(id ⊗ ρH)
we have

qGHKer(αG) = Im(qGH τGTor
ZZ
1 (id, ρ

H))

= Im
(

(iGHHτH − qGHτG) ◦TorZZ1 (id, ρ
H)

)

(49)

since τH ◦TorZZ1 (id, ρ
H) = 0 as these are consecutive maps in the six term exact

sequence part of which is displayed in (35). Thus by (48),

Ker(ᾱG) = Im(iGHHτH − qGHτG) . (50)
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Now we are ready to compute ν21Ker(βG) . First of all we note that

ν21(m
G
2 ⊗ id)iGHH(GAB ⊗ lH2 Ker(cH2 )) = 0

since
ν21(m

G
2 ⊗ id)iGHH = ν12(id⊗mH

2 ) (51)

by middle associativity of the tensor product over UL(H) used to define UG(G,H).

Hence ν21 factors as U2L
G(G) ⊗ Hab qGH−→→ X

ν̄21−→ UG
3 (G,H), and ν21Ker(βG) =

ν̄21Ker(ᾱG) . But ν̄21iGHH = ν12 since

ν̄21iGHH(id⊗mH
2 ) = ν̄21qGH(m

G
2 ⊗ id)iGHH

= ν21(m
G
2 ⊗ id)iGHH

= ν12(id⊗mH
2 )

again by (51). Hence

ν21Ker(βG) = Im(ν12τH − ν21τG) = Im(δ1) ,

as desired.

Step 2. Consider the following diagram.

U2L
G(G)⊗U1L(H) = U2L

G(G)⊗Hab βG−→ P G
2 (G)⊗H P2(H)

ρG⊗ρH−→→ GAB ⊗Hab







y

ν21

x







l ′3

x







lGH
3

x







lGH
2

UG
3 (G,H) Hab ⊗Hab ⊗ P2(H)

λ−→ P2(H) ∧ P2(H)
ρH ∧ ρH−→→ Hab ∧Hab

x







ν03







y

c ′3↓







y

cH3↓







y

cH2↓

1ULG(G) ⊗U3L(H)
i3←− H3/H4

j3→֒ H2/H4 −→→ H2/H3

(52)

Here l′3 = (mG
2 ⊗ id)iHHH lH33(id⊗ id⊗ρH), c′3 = cH33(id⊗ id⊗ρH), λ = q ∧ (µ

H
2 m

H
2 ⊗

id) with q ∧ : P2(H) ⊗ P2(H) ։ P2(H) ∧ P2(H), and i3 : H3/H4 = L3(H) →
U3L(H)→ 1ULG(G) ⊗ U3L(H) is the composite of the canonical maps.

Diagram (52) commutes; this is clear from the definitions for the two rightmost
squares and was essentially proved in [4, Lemma 4.3] for the two middle squares.
For the left hand rectangle this is due to middle associativity of the tensor product
over UL(H) used to define UG(G,H). Moreover, omitting the left hand rectangle,
the rows of the diagram are exact by (32), (33). Now define the additive relation
δ2 : Ker(cH2 ) ∩ Ker(lGH2 ) → UG

3 (G,H) by

δ2 = (ν21β
−1
G lGH3 − ν03i3j−1

3 cH3 )(ρ
H ∧ ρH)−1 . (53)
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The indeterminacy of the first factor from the left is ν21Ker(βG) = Im(δ1) by
(42), and the indeterminacy of the second factor is annihilated by the first modulo
Im(δ1) by commutativity of diagram (52) and exactness of its middle row. Whence
δ2 is a welldefined homomorphism modulo Im(δ1).

Let q3 : UG
3 (G,H)→→UG

3 (G,H)/Im(δ1) and define the homomorphism

δ′2 : Ker(cH3 ) ∩ (lGH3 )−1 Im(βG) −→ UG
3 (G,H)/Im(δ1) , δ′2 = q3ν21β

−1
G lGH3 .

By (41) one has q3Ker(θGH3 ) = Im(δ′2) . Now by the snake lemma, diagram (52)
induces an exact sequence

Ker(c′3) −→ Ker(cH3 ) −→ Ker(cH2 ) −→ Coker(c′3) = 0

which implies another exact sequence

Ker(c′3)
λ′−→ Ker(cH3 ) ∩ (lGH3 )−1 Im(βG)

ρ ′

−→ Ker(cH2 ) ∩ Ker(lGH2 ) → 0 (54)

where λ′ and ρ′ are the restrictions of λ and ρH ∧ρH , resp. Now δ′2λ
′ = q3ν21l

′
3 =

q3ν03i3c
′
3 = 0, so δ′2 factors as

Ker(cH3 ) ∩ (lGH3 )−1 Im(βG)
ρ′−→→ Ker(cH2 ) ∩ Ker(lGH2 )

δ̄′2−→ UG
3 (G,H)/Im(δ1) .

Let x ∈ Ker(cH2 ) ∩ Ker(lGH2 ) . By (54) there is x′ ∈ Ker(cH3 ) ∩ (lGH3 )−1 Im(βG)
such that ρ′(x′) = x. Then δ̄′2(x) = δ′2(x

′) = q3(ν21β
−1
G lGH3 − ν03i3j

−1
3 cH3 )(x

′) =
q3δ2(x). Thus δ̄′2 = q3δ2 and q3Ker(θGH3 ) = Im(δ′2) = Im(δ̄′2) = q3 Im(δ2) which
proves relation (43).

Step 3. The explicit formula for δ2 in (38) is obtained by a straightforward
calculation, taking

∑

1≤i<j≤r aijp2(hi) ∧ p2(hj) as a representative element of the

coset (ρH∧ρH)−1(x), and using the following device: for a, b ∈ G, p2(ab) = p2(a)+
p2(b) + p2(a)p2(b); in particular, if a or b is in G(2) , p2(ab) = p2(a) + p2(b). More
generally, for x1, . . . , xn ∈ G, p2(

∏n

i=1 xi) =
∑n

i=1 p2(xi) +
∑

1≤i<j≤n p2(xi)p2(xj).

In particular, p2(x
n) = np2(x) +

(

n

2

)

p2(x)
2 which is also true for negative n. This

implies the equation

dkp2(gk)⊗ p2(hk) = p2(gk)⊗
(

p2(h
dk
k )−

(

dk
2

)

pk(hk)
2

)

.

Finally, for g ∈ G and h′ ∈ H2 ,

ν21β
−1
G (p2(g)⊗ p2(h′)) = ν12((gG(2))⊗ (h′H3)) + Im(δ1)

which is deduced from the following relations for h1, h2 ∈ H , h′i ∈ H2 :

p2(
∏

ih
′
i) =

∑

ip2(h
′
i)

p2([h1, h2]) = [p2(h1), p2(h2)]

ν21β
−1
G (p2(g)⊗ p2(h1)p2(h2)) = ν21β

−1
G (p2(g)p2(h1)⊗ p2(h2))

= (gG(2)).(h1G(2))⊗ (h2H2) + Im(δ1)

= (gG(2))⊗ (h1H2).(h2H2) + Im(δ1)

= ν12((gG(2))⊗ (h1H2).(h2H2)) + Im(δ1)
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We now establish the link between the description of Ker(θGH3 ) given by Theorem
6.1 and the subgroup RGH

3 of Ker(θGH3 ) constructed in section 5. First note that
Ker(lGH2 ) contains the canonical subgroup

Γ = Im
(

(

(H ∩G(2))/H2

)

∧
(

(H ∩G(2))/H2

)

→ (H/H2) ∧ (H/H2)
)

.

Lemma 6.7 One has δ2(Γ ∩Ker(c2)) ≡ RGH
3 mod Im(δ1).

Proof : Let x ∈ Γ ∩ Ker(c2) . Then x =
∑p

q=1(hqH2) ∧ (h′qH2) with hq, h
′
q ∈

H ∩ G(2) , q = 1, . . . , p, such that h : =
∏p

q=1[hq, h
′
q] ∈ H3 . First of all, note

that x′ =
∑p

q=1 p2(hq) ∧ p2(h′q) ∈ (ρH ∧ ρH)−1(x). Then using the fact that

[p2(hq) , p2(h
′
q)] = 0 in P G

2 (G) since p2(hq) ∈ p2(G(2)) ⊂ QG
2 (G) we get

lGH3 (x′) =

p
∑

q=1

(

p2(hq)⊗ p2(h′q)− p2(h′q)⊗ p2(hq)
)

= βG

( p
∑

q=1

(hqG(3))⊗ (h′qH2)− (h′qG(3))⊗ (hqH2)

)

.

On the other hand,

ν03i3j
−1
3 cH3 (ρ

H ∧ ρH)−1(x) ≡ ν03i3j
−1
3

( p
∏

q=1

[hq, h
′
q]H4

)

= ν03i3(hH4) = 1⊗ (hH4) .

Therefore

δ2(x) =

p
∑

q=1

(

(hqG(3))⊗ (h′qH2)− (h′qG(3))⊗ (hqH2)

)

− 1⊗ (hH4) + Im(δ1)

= −R3(h1, . . . , hp) + Im(δ1)

where each hq = (hq, h
′
q) is of height ≥ n = 3, with k = 1 and l = 2 for hq and

for h′q . The rest should now be clear. �

Proof of Corollary 6.2: By Theorem 6.1, Ker(θ̄G,H3 ) = q Im(δ1, δ2) where
q : UG

3 (G,H) ։ Ū3(G,H) is the canonical projection. By Lemma 6.7, δ2 induces

a homomorphism δ̄2 :
Ker(lGH

2 )∩Ker(cH2 )

Γ∩Ker(cH2 )
−→ Ū3(G,H)

qIm(δ1)
and we have an exact sequence

0 → q Im(δ1) → q Im(δ1, δ2) → Im(δ̄2) → 0. But the quotient Ker(lGH2 )/Γ

is torsion by [8, Lemma 2.7]. Hence its subgroup
Ker(lGH

2 )∩Ker(cH2 )

Γ∩Ker(cH2 )
is torsion, too.

Thus being an extension of torsion groups, Ker(θ̄GH3 ) is torsion which implies the
assertion. �
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Proof of corollaries 6.3 and 6.5 : One has the following sequence of homo-
morphisms

TorZZ1 (GAB , GAB)
τ1−→ GAB ⊗ (G(2)/G2)

ν̄−→ Gab ∧Gab

Im((G(2)/G2) ∧ (G(2)/G2))

lGG
2−→ GAB ⊗Gab

where ν̄(gG(2) ⊗ g′G2) = gG2 ∧ g′G2 , g, g
′ ∈ G. Now consider the following

commutative diagram where ĉG2 , č
G
2 are given by restriction of cG2 .

Ker(c̃G2 )
δ21−→ UG

3 (G,G)/Im(δ1)
q21−→→ Coker(δ21)

‖
x







q1δ2

x







q1δ2

Ker(ĉG2 ) →֒ Ker(cG2 ) ∩Ker(lGG2 ) −→ Ker(čG2 )






y







y







y

(G(2)/G2) ∧ (G(2)/G2)
i−→ Ker(lGG2 ) −→→ Ker(lGG2 )







y

ĉG2↓







y

čG2







y

čG2

[G(2) , G(2)]G3

/

G3 →֒ G2/G3 −→→ G2

/

[G(2) , G(2)]G3

The columns and the two bottom rows are exact, so by the snake lemma the
second row is short exact as ĉG2 is surjective. Now by Lemma 2.7 in [8] one has

Ker(lGG2 ) = Im(ν̄τ1) , so Ker(čG2 ) = ν̄τ1Ker(čG2 ν̄τ1) = ν̄τ1Ker([ , ]τ1) . So letting
δ22 be the restriction of q1δ2ν̄τ1 to Ker([ , ]τ1) we have Im(δ22) = Im(q1δ2) =
q21 Im(q1δ2) = q21q1Ker(θGG3 ) by Theorem 6.1, whence Corollary 6.3 is proved. As
to Corollary 6.5 first note that by (37), U1 = Im(δ1) . Now let x ∈ Ker(lGG2 ) .

By the identity Ker(lGG2 ) = Im(ν̄τ1) above there is y ∈ TorZZ1 (GAB, GAB) such
that x̄ = ν̄τ1(y) in Gab ∧ Gab/Im((G(2)/G2) ∧ (G(2)/G2)) . By [19] V.6, y =
∑s

r=1〈crG(2), kr, drG(2)〉 with s ≥ 1, cr, dr ∈ G, kr ∈ ZZ such that ckrr , d
kr
r ∈

G(2) , and ν̄τ1(y) =
∑s

r=1 (crG2) ∧ (dkrr G2). Thus x =
∑p

q=1(aqG2) ∧ (bqG2) +
∑s

r=1(crG2)∧(dkrr G2) with q ≥ 1 and aq, bq ∈ G(2) . Now suppose that x ∈ Ker(cG2 )
which means that g =

∏p

q=1[aq, bq]
∏s

r=1[cr, d
kr
r ] ∈ G3 . To compute δ2(x) first note

that putting x1 =
∑p

q=1 p2(aq) ∧ p2(bq) and x2 =
∑s

r=1 p2(cr) ∧ p2(dkrr ) one has

x1 + x2 ∈ (ρG ∧ ρG)−1(x). By the calculation in the proof of Lemma 6.7,

lGG3 (x1) = βG

( p
∑

q=1

(aqG(3))⊗ (bqG2)− (bqG(3))⊗ (aqG2)

)

. (55)

Now note that [p2(cr), p2(d
kr
r )] = p2([cr, d

kr
r ]) = 0 in P G

2 (G) since [cr, d
kr
r ] ∈ G(3) .

This justifies the first of the following identities.
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lGG3 (x2) =

s
∑

r=1

(

p2(cr)⊗ p2(dkrr )− p2(dkrr )⊗ p2(cr)
)

=

s
∑

r=1

(

p2(cr)⊗
(

krp2(dr) +

(

kr
2

)

p2(dr)
2
)

− p2(dkrr )⊗ p2(cr)
)

=

s
∑

r=1

(

krp2(cr)⊗ p2(dr) +
(

kr
2

)

p2(cr)⊗ p2(dr)2 − p2(dkrr )⊗ p2(cr)
)

=
s

∑

r=1

((

p2(c
kr
r )−

(

kr
2

)

p2(cr)
2
)

⊗ p2(dr) +
(

kr
2

)

p2(cr)p2(dr)⊗ p2(dr)

−p2(dkrr )⊗ p2(cr)
)

=

s
∑

r=1

(

p2(c
kr
r )⊗ p2(dr)− p2(dkrr )⊗ p2(cr)

+

(

kr
2

)

p2(cr)
(

p2(dr)− p2(cr)
)

⊗ p2(dr)
)

= βG

( s
∑

r=1

(

(ckrr G(3))⊗ (drG2)− (dkrr G(3))⊗ (crG2)

+

(

kr
2

)

(

(crG(2))
(

(drG(2))− (crG(2))
)

⊗ (drG2)
))

)

(56)

It now follows from (55) and (56) that δ2(x) is represented modulo Im(δ1) by the
element given in (31) which achieves the proof. �
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