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ABSTRACT. The theory of standard bases in polynomial rings with coefficients
in a ring R with respect to local orderings is developed. R is a commutative
Noetherian ring with 1 and we assume that linear equations are solvable in R.

1. INTRODUCTION

The aim of this paper is to develop the theory of standard bases especially for
non-global orderings for polynomial rings with coefficients in a ring. We generalize
the concept of Adams and Loustaunau ([1]) and Greuel and Pfister ([2]). In the
book of Adams and Loustaunau the concept of Grébner bases over polynomial rings
with coefficients in a ring is developed, i.e, they consider standard bases with respect
to global orderings. In the book of Greuel and Pfister the concept of standard bases
over polynomial rings with coefficients in a field is developed, i.e, they consider also
non-global orderings. We will generalize both concepts to a uniform theory.

Note that the theory of standard bases for ideals developed in this paper can also
be also developed for modules without changing the proofs.

First of all we will prove that in the general case the computation of a standard
basis with respect to a non-global ordering can be reduced using homogenization to
the computation of a Grobner basis with respect to a suitable global ordering. This
is also here a very expensive way to compute a standard basis. Therefore later a
more efficient algorithm similar to [2] is presented.

Standard basis computations over the rings Z and Z/<m > can be performed using
the computer algebra system SINGULAR (cf. [4]).

Standard bases are useful in computing elimination of variables, intersection of
ideals, quotient of ideals, kernel of the ring map.

This can be done using the method described in [2], all the results remain the same
in our case.

2. BASIC DEFINITIONS

Let R be a Noetherian commutative ring with 1 and R[zy,...,z,] the polynomial
ring in n variables with coefficients in R. Assume that linear equations are solvable
in R.
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Definition 2.1. Linear equations are solvable in R if the following conditions are
satisfied for any a,aq,...,a,, € R:
(1) there is an algorithm to compute generators for the R-module

syzr(ay, ..., am) = {(b1,...,by) € R™ | a1by + ... + apby, = 0},

(2) there is an algorithm to determine if a € (ay, ..., an),
(3) there is an algorithm to compute by, ..., b, € R such that a = bya; + ...+ bypan,

if a € {ay,...,am).

We will use the notations from [1] and [2] and repeat them here for the convenience
of the reader.

Definition 2.2. A monomial ordering > is a total ordering on the set of monomials
Mon, ={z*=2{" - ... 2% |a = (a1, ...,a,) € N} in n variables satisfying

2 > 2P = 272" > 272

for all o, B,y € N*. We also say, > is a monomial ordering on Rlxy, ... x|, if >
15 a monomial ordering on Mon,,.

Example 2.3. The local lexicographical ordering >;s on Mon, is defined as follows,
> = 3J1<i<n, a1=0,...,0i-1 = Bi1, a; < Bi.

Example 2.4. Let M be an invertible (n x n)-matriz with real coefficients and
My,..., M, the rows of M. The matrix M defines an ordering > on Mon,, as
follows:

% > 8 — J1<i< n, Mo = Mlﬁ, .. .,Mi_lOé = Mi—lﬁa Mo > Mlﬁ
Every ordering can be defined by a matriz (cf.[2]).

Definition 2.5. Let > be a fized monomial ordering. Writing f € Rlxy,...,T,),
f #0, in a unique way as a sum of non-zero terms

f =00, 2" + a0, + ... + Qg 2, x> > 00> %

and Qg Qoys - - -5 0o, € R. We call:

LM(f) := x*, the leading monomial of f,

LE(f) := oy, the leading exponent of f,

LT(f) := ao,x™, the leading term of f,

LC(f) := aq,, the leading coef ficient of f,

ecart(f) = deg(f) — deg(LM(f)).

We define the leading monomial and the leading term of 0 to be 0, and 0 to be
smaller than any monomial.

Definition 2.6. Let > be a monomial ordering on Mon,,, > is a called global (resp.
local) ordering if x® > 1 (resp. z® < 1) for all o # (0,...,0).
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Definition 2.7. For any monomial ordering > on Mon,,,
Ss :={u € Rlzy,...,x,]\{0} LT (u) =1}
15 a multiplicatively closed set,
Rlxy, ..., 2,)s = ST R[xy, ..., 2,] = {§|f,g € Rlxy,...,x,Jand g € S-}
is the localisation of R[x1, ..., x,] with respect to S~ and we call R[xy, ..., xz,]s the
ring associated to R[zy,...,x,] and >.

Definition 2.8. Let > be any monomial ordering.
For f € R[xy,...,x,]s, choose uw € R[zy,...,x,) such that LT (u) = 1 and uf €
Rlx1,...,x,]. Then

LM(f) := LM (uf),
LC(f) = LC(uf),
LT(f) = LT (uf),
LE(f) := LE(uf).
Definition 2.9. Let > be any monomial ordering then, for each G C Rlxq, ..., T,]>

1s called the leading ideal of G.

Definition 2.10. Let I < R[zy,...,z,].

(1). A finite set G C Rlxy,...,x,]s is called a standard basis of I with respect to >
if G C I, and L(I) = L(G).

(2). G is called a strong standard basidl, of I with respect to >, if G C I and for
any f € IN{0} there exists i € {1,...,t} such that LT(g;) divides LT(f).

(8). If > is global, a standard basis is also called a Grébner basis.

3. COMPUTING STANDARD BASES By USING HOMOGENIZATION

Theorem 3.1. Let f1, ..., fmn € Rlx1, ..., 2, generating the ideal I < Rxq, ..., T,]s,
where > is a monomial ordering given by a matriz M. Let Fy := fl' € R[t,x1,...,x,]

be the homogenization of f; and >, be the monomial ordering given by the matrix
11 ... 1

0
: M

0

Let {G1,...,Gs} be a Grobner basis, respectively strong Grobner basis of

1Str0ng standard bases do not exist in general. They exist always if R is a principal ideal
domain, (cf. theorem 6.4). A strong standard basis is a standard basis.
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J=(Fy,..., Fy) with respect to >p,. If we denote g; = G;|i=1 then, {q1,...,9s} is a
standard basis, respectively strong standard basis of the ideal I with respect to >.

Proof. Assume that {G1,...,Gs} is a Grobner basis with respect to >y.
Let f € INR[xy,...,x,]. Then there exists u € Ss and n; € R[zy, ..., x,] such that

u'fzzni'fi-
i=1

Then there exists p, p; € Z, p, p; > 0 such that

m m

ol fP=N gt [ =Y el B

i=1 i=1
As {G,...,G,} is a Grobner basis J so there exist & € R[zq, ..., x,] such that

LT(t - u" - f*) = &+ LT(Gy)
i=1
putting t = 1 we obtain the result.
Now assume that {G1,...,Gs} C J is a strong Grobner basis with respect to > and

let felInR[xy,...,x,]. We want to show there exists ¢ such that LT (g;)|LT(f)
and that ¢1,...,9s € IR[x1,...,2,]>.

As{Gh,...,G)CJ
Gi=) &;-F
j=1

with &,j S R[t, L1y oy S(Zn]
Put t =1, we get

9i = ng\t:l ’ fj
j=1

this implies g1,...,9s € IR[z1, ..., x,]>.
Now for f there exists w € S~ such that

wi=Yn g,
j=1
for suitable n; € R[x,...,z,]. Then there exists p, p; € Z, p, p; > 0 such that
tp-wh-fh:thi -n?-f]h:Zt“ 771hF]
j=1

As {Gy,...,Gs} is a strong Grobner basis of J there exists ¢ such that
LT(G)|LT(tP - w" - fM). This implies LT (g;)|LT(f). O
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4. NORMAL FORM

The concept of a normal form with respect to a given system of polynomials is
the basis of the theory of standard bases. Normal forms for non-global orderings
are different and more complicated than normal forms for global orderings. This is
already the case for polynomial rings over a field.

Definition 4.1. Let G denote the set of all finite lists G C Rxq, ..., T,]>,
NF : R[xy,...,xs)s X G — Rlxy,...,2,)s, (f,G) — NF(f|G),

is called a normal form on R[xy,...,x,]s if for all G C G and for all

f 6 R[xl, oo ,xn]>,

(1). NF(0|G) =0,

(2). NF(f|G) # 0 = LT(NF(f|G)) ¢ L(G).

(3). If G ={g1,...,9s}, then there exists u € Ss such that r :== uf — NF(f|G)
has a standardrepresentation with respect to G, that is,

r= Z i+ gi
i=1
for suitable & € R[xy,...,x,] and LM (r) = maxi_{LM(&)LM/ (g;)}.
To prove the existence of a normal form we give an algorithm to compute it.

Definition 4.2. Let h € R[xy,...,z,)|, T C R[z1,...,x,] be finite. If h = 0, let
S(T,h)=0. If h #£ 0, let

S(T,h) == {> jerco - gl LT (Y jercg 2% -g) = LT(h), ¢y € R and 2% - LM (c, -
g) = LM(h) if ¢y £ 0}.

Remark 4.3. The set S(T,h) can be infinite. Algorithm 1 requires to choose an
element of S(T,h) which is of minimal ecart. This is achieved by computing a gen-
erating system of S(T, h), which is a kind of a syzygy module, so by the assumption
on R this can be done.

Algorithm 1. NF(f|G)
Let > be any monomial ordering.
Input: f € Rlxy,...,2z,), G = {g1,...,9s} C Rlzxy,...,x,] with g; # 0 Vi =
1,...,s.
Output: h € Rlxy,...,x,] a normal form of f with respect to G.
o h:=f;
o 1 :=G;
e while(S(T,h) # 0)
choose k € S(T,h) such that ecart(k) is minimal;
if(ecart(k) > ecart(h))
T :=TU{h};
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h:=h—k;
e return h;

Proposition 4.4. The algorithm terminates and defines a normal form.

Proof. Termination is proved by using homogenization with respect to ¢:
We start with b := f* and T" := {g"|g € G}.
The while loop looks as follows
e while(S(T",t*h) # 0 for some «)

choose k € S(T",t*h) such that o > 0 is minimal;

if(a > 0)

Th .= Tru {h};

h:=1t*h — k;

hi= (hli=1)";
Since R[x1,...,2,]s is Noetherian, there exists some positive integer N such that
L(T") becomes stable for v > N, where T denotes the set T" after the v-th turn
of the while loop. The next h, therefore, satisfies LT'(h) € L(T%) = L(T"), whence,
LT(deTh ngagg)
= LT(h) for some > _rucyz®7g and o = 0. That is, T" itself becomes stable for
v > N and the algorithm continues with fixed T’ h_ Then it terminates, since > is
a well ordering on Rl[t,z1,...,x,]. For the correctness consider the v-th while loop
of Algorithm 1. There we create (with hgy := f)

hy = hy_1 — Z cgr™g

geT
for some . cyx®7g such that LT(3_ px%7g) = LT(h,—1) and 2% LM (c,9) =
LM (hy_y) if ¢, # 0, from the construction of T" we have

where

- a; g =G;
ozg_{ﬁj = h;

s v—2
ho = hooy — (O cia®gi+ > djaihy).
i=1 §=0

Especially for v > 2 we have LM (f) > LM(h,—1) = LM(x%c¢;g;) if ¢; # 0 and
LM(f) > LM (hy-1)

which implies



STANDARD BASES OVER RINGS 7

= LM (x%d;h;) if d; # 0. This implies especially =% < 1.
Suppose by induction, that in the first v — 1 steps (v > 1) we have constructed
standard representations

ujf = Za gi+h;, u; €85, a ER[Il,... T,
i=1
with LM(qu h;) = maxle{LM(an))LM(gi)} for 0 < j < w—1, starting with
Ug = 1 CL =0.
Conmder thls standard representation for j = v — 1
We replace h,—1 by h, + (3 _; cix®g; + ZU 2 d;xP7h;), hence we obtain

s v—2
Up—1f = Z agv_l)gi + hy, + (Z cixg; + Z d;z% hj)
i=1 i=1 =0

where each h; has a standard representation as above

Up—1 | = 28: aE”_”gi + hy, + (i ™ g + Z d;z" (u Z a(] gi))
i=1 1=1
v—2 s s — s
(s = Y diaug) f = (3 al Mg+ Y ciaig - Z dia™ Y ag0) + h.
=0 i=1 i=1 =0 i—1
S v—2
= Z(aﬁ”‘” + cx™ — Z djxﬁj a,(-j))gz' + hy,.

=0
Let u, == (uy—1 — D= 2 d;aPiug) and a @ = ) 4 — Z;_gd 2Pia?. We
have to prove that u, € S~ and

wf =Y agi+h,
=1

is a standard representation, i.e,

LM(f) = LM (uyf — hy) = maxt_, {LM(a\” ) LM (g;)}. Since 2% < 1 in case d; # 0
it follows u, € S-.

Since LM (f) > LM (x“ cxgy) if ¢, # 0 and LM (f) > LM(ak gr), 2% < 1, it follows
LM(a,(:)gk) < LM(f). If LM(agv_l)gi) = LM(f) then with the same argument we
obtain LM (a\" g;) = LM (a\""Vg;) = LM(f). O
Example 4.5. We consider R = 7 and use the local lexicographical ordering ls with
x>y in Zz,y]. Let f = zy* — 122* then ecart(f) = 0 and let G = {f1, f2, f3}

where
fl = =3z + 2y, f2 = y2 - 2$2ya f3 = 62° — $3y2
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then ecart(f1) = 1, ecart(fy) = 1, ecart(fs) = 3.
In step 1:
ho = xy* — 1222, T := G and

S(T, ho) = {ky*f1 + (3k + Day?fo, k € Z}.

All elements in S(T, ho) have ecart 1 and we choose xy* — xy® + 423y> € S(T, hy).
Since ecart(hy) < ecart(zy* — xy® + 4x3y3) we have to enlarge T':

T=TU {f4 = ho} and

hy = oyt — 1222 — (zy* — 2P + 423y3) = ay® — 1222 — 42393,

In step 2:

hy = zy® — 1222 — 423y with ecart(h;) = 0,

S(T,hy) = {ky® fy + lxy® fo + (1 + 3k — Dy fs, k, | € Z}.

We choose xy® — 122%y € S(T, hy) with minimal ecart 0 and obtain
hy = xy® — 1222 — 42393 — (2 — 122%y) = —122% + 1222y — 4233,
In step 3:

hy = —122% + 122%y — 423y with ecart(hy) = 4,

We choose —12x* + 4x*y € S(T, hy) with minimal ecart 1 and obtain
hy = —122% + 1222y — 423y — (—1222 + 42?y) = 82y — 4a3y3.

In step 4:

hs = 8x%y — 423y® and LT (h3) ¢ L(T), thus NF(f|G) = 8z%y — 4x3y3.

Remark 4.6. Assume R has the following property: ¢ = a1x1+. ..+ asxs is solvable
in R if and only if there exists j and x € R such that ¢ = a;x.

Then normal form algorithm is similar to the corresponding normal form algorithm
for a polynomial ring over a field, i.e, S(T,h) can be replaced by S(T,h) = {g €
T| LT(g)|LT(h)}. In this case each standard basis is a strong standard basis. If
R is a discrete valuation ring or R = Z/{p"™), p a prime number, then R has the
property above.

5. COMPUTING STANDARD BASES

Theorem 5.1. Let I < R[xy,...,2,)s and let G ={g1,...,9:} be a set of non-zero

polynomials in I. Then the following are equivalent.

(1). L(G) = L(I).

(2). For any polynomial f € R[xq,...,2T,]s, we have f € I if and only if
NF(f|G)=0.

(3). Forall f € I, uf =>.'_, higi for some polynomials u, hy, ..., h; € Rz, ... 1,
such that LT (u) =1 and
LM(f) = maz!_, {LM(hi) LM (g;)}.
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Proof. (1) = (2). We know that if NF(f|G) = 0, then f € I. Conversely assume
that f € I. Let r = NF(f|G) and assume r # 0. Since G C I we have r € I. This
implies LT'(r) € L(I) = L(G). This is a contradiction to Definition 9.

(2) = (3). This is obvious from the Definition of normal form.

(3) = (1). For f € I we need to show that LT(f) € L(G). We have that
uf = >.'_ higi such that LM(f) = maxl_,{LM(h;)LM(g;)}. Tt is easily seen
that LT(f) = > LT(h;)LT(g;) where the sum is over all i satisfying LM (f) =
LM (h;)LM/(g;). Thus LT(f) € L(G), as desired. O

Corollary 5.2. If G is a standard basis of I then I is generated by G.

Proof. Clearly (g1,...,q;) C I, since each g; is in I. For the other inclusion, let
f € 1. By Theorem 5.1, NF(f|G) = 0 and hence uf € (g1,-..,0)R[z1,....z,) fOT 2
suitable u € Ss.

.....

Remark 5.3. Let K be a field and R = Kly, ..., ym) be the polynomial ring with
variables Yy, . .., Ym. Let > be a product ordering on K[y1,. .., Ym,T1,...,Ts] Such
that the xy,...,x, dominate y,...,ym and the restriction of > to R is global. Let
I <Ky, ,Ym, T1,- ., p]s an ideal and G = {f1,..., fs} a standard basis of I.
Let >q be the ordering on R[xq,...,x,] considered as polynomial ring with coeffi-
cients in R induced by >. Then G is a standard basis of I with respect to >1.

Proof. Let f € I then NFL(f|G) = 0 (N Fx the normal form with respect to >). An-
alyzing the algorithm for NF. we obtain ay,...,as € Rsuch that >, a; LT, (f;) =

LT, (f). Here LT-, is the leading term with respect to the ordering >;. O
We use the following Definition from [1].

Definition 5.4. Given monomials x®*,...,z% and non-zero elements cy,...,cs in

R set L = (c1z®,...,csx®). Then for a given monomial x, we call a syzygy

h = (hi,...,hs) € syz(L) C (R[z1,...,x,])° homogeneous of degree x* provided
that each h; is a term and x® LM (h;) = x* for all i such that h; # 0.

Theorem 5.5. Let G = {g1, ..., g:} be a set of non-zero polynomials in R[xy, . .., T,).
Let B be a homogeneous generating set for syz(LT(g1),...,LT(g:)). Then G is a
standard basis for the ideal (g1, ..., g)Rlx1, ..., x,]s if and only if for all
(hi,...,h) € B, we have
t
NF(Z higi|G) = 0.
i=1
Proof. If G is a standard basis, then by Theorem 5.1,

t
NF()_ higilG) = 0.
=1
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Conversely, let g € (g1,...,g1)R[x1, ..., 2,]>, then there exists u € S5 and u; €
Rlzy, ..., x,] such that
t
ug = Z Ui Gi-
i=1

Choose a representation as in above equation with z® = max!_, (LM (u;)LM(g;))
minimal. Since by Theorem 5.1, we need to show that LM (g) = z*. We assume
LM(g) < x* and show that we can obtain an equation for ¢ with a smaller value
for x*. Let S ={i e {1,...,t}|LM(u;) LM (g;) = x*}. Then

> LT(u;)LT(g;) = 0.

ies
Let h = ), ¢ LT(u;)e; (where ey = (1,...,0),...,e, = (0,...,1) is a generating
set for R[x1,...,2,]"). Then h € syz(LT(g1),...,LT(g;)) and h is homogeneous of
degree 2. Now let B = {hy,... . I}, with h; = (hy;,... hy;) then h = Y""_ a;h;.
Since h is a homogeneous syzygy, we may assume that the a; are terms such that
LM(a;)LM (h; ;)LM(g;) = x* for all 4, j such that a;h;; # 0. By hypothesis, for
each j, NF(3.!_, hi;gi|G) = 0. Thus by Theorem 5.1, for each j = 1,...,I there

exist w; € Ss and v;; € R[xy, ..., x,] such that
t
Wy Z hij9i = Z'Ui,jgia
ics i=1
and

t
maaf:lLM(v,-Jg,-) = LM(Z h%]gz) < maxleLM(hl,])LM(g,)
i=1
The latter strict inequality is because Y_r_, h; ;LT (g;) = 0.

We may assume w = w; for all j.
Thus,

t
wug = wig;
i=1

= Z wLT (u;)g; + Z(wuZ —wLT(u;))g; + Z WU;G;
€S €S ¢S
!
= Z Z wajh; jg; + termslower than x®

j=1 i€s
It
= E E a;v;;9; + termslower than x.

j=1 i=1
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We have max; ;LM (a;) LM (v; ;) LM (g;) < max; ;LM (a;)LM (h; ;) LM (g;) = x*. We
have a representation of g as a linear combination of the g; such that the maximum
of the leading monomials of any summand is less than x®. Thus the theorem is
proved. U

As a consequence of Theorem 5.5, we obtain that the following algorithm computes
a standard basis for a given ideal [ in R[zq,...,z,]s.

Algorithm 2. Standardbasis(G)
Input: F={f1,...,fr} C R[xy1,...,x,) with f; #0 (1 <i <),
Output: G a Standard basis for (f1,..., [r)R[x1,. .., Zs]>.
o G :=F;
e P:= a finite homogeneous generating set (considered as ordered set) for
syz({LT(f;) hr<i<r);
o while(P # ()
Let G ={fi,..., [}
choose (s1,...,s;) € P
P:=P\{(s1,...,s6)};
hi=NF(Xr s:.filG);
ifth #0);
Jer1:=h;
G = {fl, ey fk+1},'
H:= a finite homogeneous generating set for syz({LT(fi) }1<i<k+1);
P:=(Px{0})U{h=(h1,...,hgs1) € H|hgi1 # 0};
o return G;

Using ideas of M.Moller ([3]) Adams and Loustaunau propose a more efficient
algorithm for computing Grobner bases. This applies also in our situation with the
same proof.

We use the following Definition and Theorem from [1].

Definition 5.6. Let x®,...,x% be a set of monomials. For any subset J C
{1,...,s}, set 277 = lem(z™|j € J). We say that J is saturated with respect to
x ... x® provided that for all j € {1,...,s} if x% divides 277, then j € J. For
any subset J € {1,...,s} we call the saturation of J the set Jy consisting of all
je{l,...,s} such that z% divides 27/. (Note that 77 = z71.)

Theorem 5.7. (cf. [1], page 214) Given monomials ...,z and non-zero ele-
ments ¢y, ...,cs in R. For each set J C {1,...,s},which is saturated with respect
to ™, ..., x%, let By = {b1y,...,b,, s} be a set of generators of the R-module of
syzygies syzgr(cj|j € J). (Note that each of the vectors b, ; is in the R-module R,
where |J| denotes the cardinality of J). For each such b, j, denote its jth coordinate,
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forj e J, by b, and 77 = lem(z™|j € J). Set

x’YJ
Sy, J = E bj'/"]l»aj €;

jed
( Note that each of the vectors s,y is in R[xy,...,x,|° ). Then the vectors s, ;, for
J running over all such saturated subsets of {1,...,s}, and, 1 < v < vy, forms a
homogeneous generating set for the syzygy module syz(cix™, ..., csz™).

Example 5.8. We consider R = 7 and let c;x® = 3xy?, cox™ = Taxyz, 3% =
2y?2%. The saturated subsets of {1,2,3} are {1},{2}, {3}, {1,2} and {1,2,3}. Since
Z is an integral domain, the singletons {1}, {2}, {3} do not give rise to any non-zero
SY2Ygy.

For J = {1,2} we need to solve in R = Z the equation 3by + 7by = 0. The module of
all solutions is generated by (7,—3). Since 77 = xy*z, the corresponding syzygy is

Syg = 7?;; 61—|—3fcyy2zz eo=(—7z2,3y).
Now for J = {1,2,3} we need to solve 3b; + Tby + 2bs = 0. The module of all
solutions is generated by (—4,2,—1) and (=7,3,0). Then with 77 = xy*2* we

obtain the syzygies are

2,2 2,2 2,2
_ zy*z zy*z Y’z _ 2
Sv,J = —4 Y2 e +2 Tyz € — y222 €3= (_42 ,2y2, —ZL')
2,2 2,2
— Ty~ z Y~z — 2
Sv,J = — o2 e + 3 Tyz €y = (—72 ,3y2,0).

So we obtain that
SyZ(Bl'y2, 71’y2, 2y222) = <(_7Z> 3ya 0)7 (_4Z2a 2'3/2«’, —l’), (_7227 3yZ, 0))
The theorem is the basis of the following modified standard basis algorithm.

Algorithm 3. Standardbasis(G)
Input: F={f1,...,fs} C R[xq,...,x,] with f; #0 (1 <1 <s),
Output: G a standard basis for (fi,..., fs)Rx1, ..., Tn]>.

o G :=F;
o0 =1;
e m:=35;

e while(c < m)
Compute S = { subsets of {1,...,0}, saturated with respect to
LM(f1),...,LM(fs), which contain o };
for(J €8S)
x7 = lem(LM(f;)|j € J);
Compute a generating set {b; j,i=1,..., s}
for (LC(E) € 4, § £ 0)n  {LCh )b
for(i:=1,... ;)
Compute b € R,j€ J,j# 0
such that >’ b;LC(f;) + b, sLC(f,) =0

jedj#o
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T":NF(ZJEJJ;éU JLM fa+bZJLM(f fo|G);

if(r #0)
fm1 =1
G:=GU {fm-i-l};
m:=m+1;
oc:=0+1;
o return G;

Example 5.9. We consider R = Q[x, y] with the local lexicographical ordering ls in
R[z]. Let G = {f1, fo} and I = (G) where

fi=y—a*22 and fo = 2y — 2

Then ecart(f1) = 2 and ecart(fs) =1
In step 1 (0 =1):
S = {{1}} = saturated subsets of {1} containing 1.
Since R 1s a domain and fy, fo are irreducible we have no non trivial syzygy.
In step 2 (0 =2):
S ={{1,2}} = saturated subsets of {1,2} containing 2.
J=A{1,2}.

7 =lem(1,1) =1

A generating set for (y) : (x%y) is {1}.

The solution of yb; + 2%y = 0 is by = —22.
h=—2%(y — 232%) + 1(2%y — 2) = —2 + 2522
which is reduced with respect to G = { f1, f2}.
fs=h,
and G = {fla f2> f3}

In step 3 (0 =3):
S ={{1,2,3}} = saturated subsets of {1,2,3} containing 3.
J={1,2,3}.
7 =lem(1,1,2) = 2.
A generating set for (y, :c2y) : <—1> is {y}.

The solution of yb; + x?yby + 2 y =01ub =1,by =0.
h=z(y—232%) + y(—2z + 2°2?) = 25yz? — 2323,
NF(h|G) = 0.

So G ={f1, f2, f3} is a standard basis.

Remark 5.10. Let R be a local ring of the type Kyi, ..., Ym|wi, .ym)/L, where
I < Klz1,...,Z0)(zy,..on)- Then we can compute Hilbert-Samuel function of ideals
in R[xy,...,x,)s by using the same method described in [2]. Carlo Traverso [5],
used the Hilbert-Samuel function to speed up the Buchberger Algorithm. The same
method can be applied in our case too.
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6. STANDARD BASES OVER PRINCIPAL IDEAL DOMAINS

If R is a principal ideal domain (for short PID) then there is a standard basis
algorithm similar to the corresponding algorithm for a polynomial ring over a field
(cf. [2], page 54) with the following notion of the s-polynomial.

Definition 6.1. Let f,g € R[xy,...,z,)\{0}.
lem(LT(f),LT(g)) ,  lem(LT(f), LT(g))
LT(f) LT(g)

This is a consequence of [1], Proposition 4.5.3 and Theorem 5.5.

spoly(f, g) =

Example 6.2. We consider R = Z with the local lexicographical ordering ls with
x>y inZlx,yl.

Let T = (f1, fo) where fi = =3y + zy and fo = y? — 2x.

Initialization: G = {fh fg}, g = {{fl, fg}}

In step 1:

LT(f) = =3y, LT(f2) = v*,

c=lem(cy, o) = lem(3,1) = 3, 27 = lem(LM(f1), LM(fy)) = lem(y,y?) = y*

2 2
h := spoly(fi, f2) =

3y 3y
—3y + zy) — = (y? — 22) = 62 — xy?
3y( y +xy) )2 5 (y° — 21) y
which 1s reduced with respect to G.

So GU{fs:=h} and G = {{f1, 3}, {f2, f3} }.

In step 2:

LT(f1) = =3y, LT(fs) = Gz,
c=lem(cy,cs) =lem(3,6) = 6 ¥ =lem(LM(f1), LM(f3)) = lem(y,z) = zy

6xy
spoly( 1. f2) = o (=3y -+ o) = G2 (6r = 2y?) = 4" = 2%y = ay-

NF(zy? — 22%y|G) = 0.
In step 3:

LT(f2) = y* LT(f3) = 6z,
c =lem(ca, c3) = lem(1,6) = 6, 7 = lem(LM(fa), LM(f3)) = lem(y?, ) = zy?

621> 621>

spoly(fa. J3) = =5y = 20) =~ (62 — ay?) =y — 12°
NF(xy* —122%|G) = 0. Since xy* — 122% = xy? fo — 1222 + 22%y? = 2% fo + 22 f3.
So G =A{f1, f2, f3} is a standard basis.
Example 6.3. We consider R = 7Z with the local degree lexicographical ordering ds
(cf.[2]) with x >y > z in Z[z,y, 2].
Let I = {f1, fo, f3, f4) where fi = 1522 + 28225 and fo = 322y + Tyz° f3 = day? —
S5x210, fy = —28y + 35yz't.
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Similar to Fxample 6.2 we have to compute the normal form of the spoly’s of all
pairs (fi, f;)-

N f(spoly(f1, f2)|G) = 35y2° — 28y°2° =: f5, G = G U {fs}

N f(spoly(fa, f3)|G) = 28y2?2° + 152221 =: fs, G = GU {fs}

N f(spoly(fo. f)|G) = 35225 =: fr, G = GU{f}.

The normal form of all the other spoly’s is zero.

The standard basis is G = {f1, f2, f3, f1, [5, f6, f7}. G is a standard basis of I in
Z[SL’, Y, Z] (,y,z)

Note that f, — zfs = 152% — 152%yz'% = 152%(1 — y2'°). Therefore 152% € I.
Similarly one can see that 2813, 28y%2%,35y2° and 35xz'® € I. This implies that
{1522, 3%y + Ty2®, dwy? — 52210, 28y3, 28225, 35y2°, 35225} is a standard basis of
I.

Theorem 6.4. (c¢f. [1] Theorem 4.5.9 page 251 ) Let R be a PID, and I be an
ideal of R[xq,...,x,)s. Assume that {fi,..., fn} is a standard basis for I. Let
LT(f;) = ciz™, for a saturated subset J of {1,...,s}, let c; = ged(cilj € J) and
write c; = )¢ ya;c; (any such representation will do). Also, let 2%/ = lem(z*|j €
J). Then the set

x*’
{fr = Z aj— f;lJ is a saturated subset of {1,...,s}}
r%
jeJ
is a strong standard basis for I. In particular, every non-zero ideal in Rz, ..., ZTy]>
has a strong standard basis.

7. STANDARD BASES IN THE FORMAL POWER SERIES RINGS

Finally we want to apply our results to compute standard bases in the formal

power series ring R|[[x1, . .., x,|] with coefficients in a ring R. Let > be a local degree
ordering, i.e, > is a local ordering and z® > z” implies deg(z®) < deg(x”?). A non-
zero element f € R[[z1,...,,]] can be written as Y a,z*, a, € R, ag # 0 and

x® >z for all v. As in Definition 2.5, we define LM (f), LE(f), LT(f), LC(f)
and tail(f). As in Definition 2.11, we define a standard basis (respectively a strong
standard basis) of an ideal I C R|[xy, ..., z,]].

Proposition 7.1. Let I < R[zy,...,x,] and G is a standard basis (respectively a
strong standard basis) of I with respect to >, where > is a local degree orderig. Then
G is a standard basis (respectively a strong standard basis) of IR[[x1, ..., z,]].

Proof. Let {g1,...,gs} be astandard basisof I and g = ) ;_, @Gig; € IR[[z1, ..., x,]],
g # 0. Let ¢ be an integer such that LM(g) ¢ (x1,...,x,)¢. Choose a; €
R[zy,...,x,) such that @ — a; € (z1,...,2,)°. Let g = >°7 a;g;. Then g € I
and g — g € (x1,...,x,)° This implies LT(g) = LT (g). If G is a strong standard
basis for I then there exists ¢ such that LT(g;)|LT(g) = LT(g), i.e, G is also a
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strong standard basis of I R[[z1,...,z,]|. Similarly it follows that a standard basis
of I is a standard basis of I R[[x1,...,x,]]. O

8. PROCEDURES

Let I < R[zy,...,x,) be an ideal and G = {g1,...,gm} be a standard basis of I.
Then we can compute a strong standard basis of I using the SINGULAR-procedures
below.

LIB"poly.1lib";

proc powerSet(int n) //computes the set of all subsets of {1,...,n}
{
list L,K,S;
int 1;
if (n==0)
{
L[1]=L;
return(L);

if (n==1)
{
L[1]=L;
L[2]=1list(1);
return(L) ;
}
S=powerSet (n-1) ;
int r=size(S);
Slr+1]=list(n);
for(i=2;i<=r;i++)
{
K=S[i];
Klsize(K)+1]=n;
S[size(S)+1]=K;

}

return(S);
}
proc satt(ideal I) //computes the saturated subsets of {1,..., size(I)}
{ [/wrt {LM(f)|f eI}

int j;
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list K,J;

I=lead(I);

J=powerSet (size(I));
for(j=2; j<=size(J);j++)

{ if (saturat(I,J[j]1))
{ Klsize(K)+1]1=J[j];
}
}
return(X) ;
}
proc specialGCD2(int a, int n)
{
int x=a mod n;
if (x==0)return(1list(0,1,n));
list L=specialGCD2(n,x);
return(1list(L[2],L[1]-(a-x)*L[2]/n,L[3]));
}
proc specialGCD(list L) //computes the ged over Z
{

int 1i;
for(i=1;i<=size(L);i++)L[i]l=int(L[i]);
if (size(L)==1)return(L);

if (size(L)==2)return(specialGCD2(L[1],L[2]));

bigint p=L[size(L)];
L=delete(L,size(L));

list T=specialGCD(L);

list S=specialGCD2(T[size(T)],p);
for(i=1;i<=size(T)-1;i++)

{

T[i]=T[i]*S[1];

p=Tlsize(T)];
T[size(T)1=S[2];
T(size(T)+1]1=S[3];
return(T) ;

17
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proc coeffJ(list C,list J) // computes the coefficients a; such that
{ /] ged(cili € J) =3 e, aj¢

if (size(J)==1)return(list(1));

int n=size(J);

int 1i;

list L,M;

for(i=1;i<=n;i++)

Llsize(L)+1]1=C[J[i]];

}

L=specialGCD(L);
L=delete(L,size(L));

return(L);
t
proc lcmJ(ideal X,list J) // computes lem(f;| f; € X, j € J)
{
poly p=X[J[1]];
int 1i;
for(i=2;i<=size(J) ;i++)
{
p=lcmS(p,X[J[1]11);
}
return(p);
}
proc maxZ(intvec a,intvec b) // computes the maximum of two
{ //integer vectors
int i,j;
intvec c;
for(i=1;i<=size(a) ;i++)
{
if (a[i]l>=b[il)
{
cl[il=alil;
}
else

c[il=b[i];
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}
}
return(c);

}

proc lcmS(poly p,poly q) // computes the LCM of two monomials
intvec a=leadexp(p);
intvec b=leadexp(q);
intvec c=maxZ(a,b);
int i,3;
poly s=1;
for(i=1;i<=nvars(basering) ;i++)

{
}

s=s*var (i) c[il;

return(s) ;
}
proc leadTerm(ideal I) // give a list containing two lists, first
{ //contains leading coefficients and second contains
int i; //leading monomials
list L;
ideal J;
I=lead(I);

for(i=1;i<=size(I);i++)

{
L[size(L)+1]=leadcoef (I[i]);
J[lsize(J)+1]=1leadmonom(I[i]);

}

return(list(L,J));
}
proc clean(ideal G) // delete from an ideal f; such that
{ // there exists f; € I with LM (f;) divides LM (f;)
int i,j;

while(i<=size(G)-1)

{

i++;
J=1;
while(j < size(G))
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{
jtts
if ((G[i]1'=0)&&(G[j]1!=0))
{
if (lead(G[jl)/lead(G[i])!=0)
{
G[j1=0;
G=simplify(G,2);
3=
}
if(G[j]'=0)
{
if (lead(G[i])/lead(G[j1)!=0)
{
G[i]=0;
G=simplify(G,2);
i--;
break;
}
}
}
}
}
return(simplify(G,2));
}
proc strongSB(ideal I) // computes a strong standard basis
{ // for an ideal if standard basis is given

def R=basering;
list rl=ringlist(R);
r1[1]=0;

def S=ring(rl);
setring S;

ideal I=imap(R,I);
list L=leadTerm(I);
list C=L[1];

ideal X=L[2];

list J=satt(X);

int i,j;

ideal G;
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list P;
poly f,q;
for(i=1;i<=size(J) ;i++)
{
P=coeffJ(C,J[i]);
g=lemJ(X,J[i]);
£=0;
for(j=1;j<=size(J[i]);j++)
{
f=f+q/X[J[i] [j1I*I[J[i]1 [j1]1*P[j];

G[size(G)+1]=f;
}
setring R;
ideal G=imap(S,G);
return(clean(G));

}

Example 8.1. Consider FExample 6.3, we now compute strong standard basis for
I = {1522, 322y + Tyz°, day® — bx2'0, 28y3, 28y22°, 35y2°, 35x2'°}.

> ring R = integer, (z,y, z), ds;

> ideal I = 1522, 322y + Tyzb, dxy2 — 52210, 28y3, 28y225, 35y 25, 35x215;

> strongSB(I);
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