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STANDARD BASES OVER RINGS

AFSHAN SADIQ∗

Dedicated to my Fiancé Muhammad Atiq Jamil

Abstract. The theory of standard bases in polynomial rings with coefficients
in a ring R with respect to local orderings is developed. R is a commutative
Noetherian ring with 1 and we assume that linear equations are solvable in R.

1. Introduction

The aim of this paper is to develop the theory of standard bases especially for
non-global orderings for polynomial rings with coefficients in a ring. We generalize
the concept of Adams and Loustaunau ([1]) and Greuel and Pfister ([2]). In the
book of Adams and Loustaunau the concept of Gröbner bases over polynomial rings
with coefficients in a ring is developed, i.e, they consider standard bases with respect
to global orderings. In the book of Greuel and Pfister the concept of standard bases
over polynomial rings with coefficients in a field is developed, i.e, they consider also
non-global orderings. We will generalize both concepts to a uniform theory.
Note that the theory of standard bases for ideals developed in this paper can also
be also developed for modules without changing the proofs.
First of all we will prove that in the general case the computation of a standard
basis with respect to a non-global ordering can be reduced using homogenization to
the computation of a Gröbner basis with respect to a suitable global ordering. This
is also here a very expensive way to compute a standard basis. Therefore later a
more efficient algorithm similar to [2] is presented.
Standard basis computations over the rings Z and Z/<m> can be performed using
the computer algebra system SINGULAR (cf. [4]).
Standard bases are useful in computing elimination of variables, intersection of
ideals, quotient of ideals, kernel of the ring map.
This can be done using the method described in [2], all the results remain the same
in our case.

2. Basic Definitions

Let R be a Noetherian commutative ring with 1 and R[x1, . . . , xn] the polynomial
ring in n variables with coefficients in R. Assume that linear equations are solvable
in R.
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Definition 2.1. Linear equations are solvable in R if the following conditions are
satisfied for any a, a1, . . . , am ∈ R:
(1) there is an algorithm to compute generators for the R-module

syzR(a1, . . . , am) = {(b1, . . . , bm) ∈ Rm | a1b1 + . . .+ ambm = 0},

(2) there is an algorithm to determine if a ∈ 〈a1, . . . , am〉,
(3) there is an algorithm to compute b1, . . . , bm ∈ R such that a = b1a1 + . . .+ bmam
if a ∈ 〈a1, . . . , am〉.

We will use the notations from [1] and [2] and repeat them here for the convenience
of the reader.

Definition 2.2. A monomial ordering > is a total ordering on the set of monomials
Monn={xα= xα1

1 · . . . · xαn
n |α = (α1, . . . , αn) ∈ Nn} in n variables satisfying

xα > xβ =⇒ xγxα > xγxβ

for all α, β, γ ∈ Nn. We also say, > is a monomial ordering on R[x1, . . . , xn], if >
is a monomial ordering on Monn.

Example 2.3. The local lexicographical ordering >ls on Monn is defined as follows,
xα > xβ ⇐⇒ ∃ 1 ≤ i ≤ n, α1 = β1, . . . , αi−1 = βi−1, αi < βi.

Example 2.4. Let M be an invertible (n × n)-matrix with real coefficients and
M1, . . . ,Mn the rows of M . The matrix M defines an ordering > on Monn as
follows:

xα > xβ ⇐⇒ ∃ 1 ≤ i ≤ n, M1α = M1β, . . . ,Mi−1α = Mi−1β, Miα > Miβ.
Every ordering can be defined by a matrix (cf. [2]).

Definition 2.5. Let > be a fixed monomial ordering. Writing f ∈ R[x1, . . . , xn],
f 6= 0, in a unique way as a sum of non-zero terms

f = aα1
xα1 + aα2

xα2 + . . .+ aαs
xαs , xα1 > xα2 > . . . > xαs ,

and aα1
, aα2

, . . . , aαs
∈ R. We call:

LM(f) := xα1 , the leading monomial of f ,
LE(f) := α1, the leading exponent of f ,
LT (f) := aα1

xα1 , the leading term of f ,
LC(f) := aα1

, the leading coefficient of f ,
ecart(f) := deg(f)− deg(LM(f)).
We define the leading monomial and the leading term of 0 to be 0, and 0 to be
smaller than any monomial.

Definition 2.6. Let > be a monomial ordering on Monn, > is a called global (resp.
local) ordering if xα > 1 (resp. xα < 1) for all α 6= (0, . . . , 0).
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Definition 2.7. For any monomial ordering > on Monn,

S> := {u ∈ R[x1, . . . , xn]\{0}|LT (u) = 1}

is a multiplicatively closed set,

R[x1, . . . , xn]> := S−1
> R[x1, . . . , xn] = {

f

g
|f, g ∈ R[x1, . . . , xn] and g ∈ S>}

is the localisation of R[x1, . . . , xn] with respect to S> and we call R[x1, . . . , xn]> the
ring associated to R[x1, . . . , xn] and >.

Definition 2.8. Let > be any monomial ordering.
For f ∈ R[x1, . . . , xn]>, choose u ∈ R[x1, . . . , xn] such that LT (u) = 1 and uf ∈
R[x1, . . . , xn]. Then

LM(f) := LM(uf),

LC(f) := LC(uf),

LT (f) := LT (uf),

LE(f) := LE(uf).

Definition 2.9. Let > be any monomial ordering then, for each G ⊂ R[x1, . . . , xn]>

L(G) = 〈{LT (g) | g ∈ G}〉R[x1,...,xn]

is called the leading ideal of G.

Definition 2.10. Let I < R[x1, . . . , xn]>.
(1). A finite set G ⊂ R[x1, . . . , xn]> is called a standard basis of I with respect to >
if G ⊂ I, and L(I) = L(G).
(2). G is called a strong standard basis1, of I with respect to >, if G ⊂ I and for
any f ∈ I\{0} there exists i ∈ {1, . . . , t} such that LT (gi) divides LT (f).
(3). If > is global, a standard basis is also called a Gröbner basis.

3. Computing Standard Bases By Using Homogenization

Theorem 3.1. Let f1, . . . , fm ∈ R[x1, . . . , xn] generating the ideal I < R[x1, . . . , xn]>,
where > is a monomial ordering given by a matrix M . Let Fi := fh

i ∈ R[t, x1, . . . , xn]
be the homogenization of fi and >h be the monomial ordering given by the matrix






1 1 · · · 1
0
... M
0






.

Let {G1, . . . , Gs} be a Gröbner basis, respectively strong Gröbner basis of

1Strong standard bases do not exist in general. They exist always if R is a principal ideal
domain, (cf. theorem 6.4). A strong standard basis is a standard basis.
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J= 〈F1, . . . , Fm〉 with respect to >h. If we denote gi = Gi|t=1 then, {g1, . . . , gs} is a
standard basis, respectively strong standard basis of the ideal I with respect to >.

Proof. Assume that {G1, . . . , Gs} is a Gröbner basis with respect to >h.
Let f ∈ I ∩R[x1, . . . , xn]. Then there exists u ∈ S> and ηi ∈ R[x1, . . . , xn] such that

u · f =

m
∑

i=1

ηi · fi.

Then there exists ρ, ρi ∈ Z, ρ, ρi ≥ 0 such that

tρ · uh · fh =

m
∑

i=1

tρi · ηhi · fh
i =

m
∑

i=1

tρi · ηhi · Fi.

As {G1, . . . , Gs} is a Gröbner basis J so there exist ξi ∈ R[x1, . . . , xn] such that

LT (tρ · uh · fh) =

s
∑

i=1

ξi · LT (Gi)

putting t = 1 we obtain the result.
Now assume that {G1, . . . , Gs} ⊆ J is a strong Gröbner basis with respect to > and
let f ∈ I ∩ R[x1, . . . , xn]. We want to show there exists i such that LT (gi)|LT (f)
and that g1, . . . , gs ∈ IR[x1, . . . , xn]>.
As {G1, . . . , Gs} ⊆ J

Gi =

m
∑

j=1

ξi,j · Fj

with ξi,j ∈ R[t, x1, . . . , xn].
Put t = 1, we get

gi =

m
∑

j=1

ξi,j|t=1
· fj

this implies g1, . . . , gs ∈ IR[x1, . . . , xn]>.
Now for f there exists w ∈ S> such that

w · f =
m
∑

j=1

ηj · fj

for suitable ηj ∈ R[x1, . . . , xn]. Then there exists ρ, ρi ∈ Z, ρ, ρi ≥ 0 such that

tρ · wh · fh =
∑

tρi · ηhi · fh
j =

m
∑

j=1

tρi · ηhi · Fj .

As {G1, . . . , Gs} is a strong Gröbner basis of J there exists i such that
LT (Gi)|LT (t

ρ · wh · fh). This implies LT (gi)|LT (f). �
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4. Normal Form

The concept of a normal form with respect to a given system of polynomials is
the basis of the theory of standard bases. Normal forms for non-global orderings
are different and more complicated than normal forms for global orderings. This is
already the case for polynomial rings over a field.

Definition 4.1. Let G denote the set of all finite lists G ⊂ R[x1, . . . , xn]>,

NF : R[x1, . . . , xn]> × G −→ R[x1, . . . , xn]>, (f,G) 7−→ NF (f |G),

is called a normal form on R[x1, . . . , xn]> if for all G ⊂ G and for all
f ∈ R[x1, . . . , xn]>,
(1). NF (0|G) = 0,
(2). NF (f |G) 6= 0 =⇒ LT (NF (f |G)) /∈ L(G).
(3). If G = {g1, . . . , gs}, then there exists u ∈ S> such that r := uf −NF (f |G)
has a standard representation with respect to G, that is,

r =
s

∑

i=1

ξi · gi

for suitable ξi ∈ R[x1, . . . , xn] and LM(r) = maxs
i=1{LM(ξi)LM(gi)}.

To prove the existence of a normal form we give an algorithm to compute it.

Definition 4.2. Let h ∈ R[x1, . . . , xn], T ⊆ R[x1, . . . , xn] be finite. If h = 0, let
S(T, h) = ∅. If h 6= 0, let
S(T, h) := {

∑

g∈T cg ·x
αg ·g| LT (

∑

g∈T cg ·x
αg ·g) = LT (h), cg ∈ R and xαg ·LM(cg ·

g) = LM(h) if cg 6= 0}.

Remark 4.3. The set S(T, h) can be infinite. Algorithm 1 requires to choose an
element of S(T, h) which is of minimal ecart. This is achieved by computing a gen-
erating system of S(T, h), which is a kind of a syzygy module, so by the assumption
on R this can be done.

Algorithm 1. NF (f |G)
Let > be any monomial ordering.
Input: f ∈ R[x1, . . . , xn], G = {g1, . . . , gs} ⊂ R[x1, . . . , xn] with gi 6= 0 ∀ i =
1, . . . , s.
Output: h ∈ R[x1, . . . , xn] a normal form of f with respect to G.
• h := f ;
• T := G;
• while(S(T, h) 6= ∅)

choose k ∈ S(T, h) such that ecart(k) is minimal;
if(ecart(k) > ecart(h))

T := T ∪ {h};
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h := h− k;
• return h;

Proposition 4.4. The algorithm terminates and defines a normal form.

Proof. Termination is proved by using homogenization with respect to t:
We start with h := fh and T h := {gh|g ∈ G}.
The while loop looks as follows
• while(S(T h, tαh) 6= ∅ for some α)

choose k ∈ S(T h, tαh) such that α ≥ 0 is minimal;
if(α > 0)
T h := T h ∪ {h};

h := tαh− k;
h := (h|t=1)

h;
Since R[x1, . . . , xn]> is Noetherian, there exists some positive integer N such that
L(T h

v ) becomes stable for v ≥ N , where T h
v denotes the set T h after the v-th turn

of the while loop. The next h, therefore, satisfies LT (h) ∈ L(T h
N ) = L(T h), whence,

LT (
∑

g∈Th cgx
αgg)

= LT (h) for some
∑

g∈Th cgx
αgg and α = 0. That is, T h

v itself becomes stable for

v ≥ N and the algorithm continues with fixed T h. Then it terminates, since >h is
a well ordering on R[t, x1, . . . , xn]. For the correctness consider the v-th while loop
of Algorithm 1. There we create (with h0 := f)

hv = hv−1 −
∑

g∈T

cgx
αgg

for some
∑

g∈T cgx
αgg such that LT (

∑

g∈T xαgg) = LT (hv−1) and xαgLM(cgg) =

LM(hv−1) if cg 6= 0, from the construction of T h we have

∑

g∈T

cgx
αgg =

s
∑

i=1

cix
αigi +

v−2
∑

j=0

djx
βjhj

where

cg =

{

ci g = gi
dj g = hj

αg =

{

αi g = gi
βj g = hj

which implies

hv = hv−1 − (
s

∑

i=1

cix
αigi +

v−2
∑

j=0

djx
βjhj).

Especially for v ≥ 2 we have LM(f) > LM(hv−1) = LM(xαicigi) if ci 6= 0 and
LM(f) > LM(hv−1)
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= LM(xβjdjhj) if dj 6= 0. This implies especially xβj < 1.
Suppose by induction, that in the first v − 1 steps (v ≥ 1) we have constructed
standard representations

ujf =

s
∑

i=1

a
(j)
i gi + hj , uj ∈ S>, a

(j)
i ∈ R[x1, . . . , xn],

with LM(ujf − hj) = maxs
i=1{LM(a

(j)
i )LM(gi)} for 0 ≤ j ≤ v − 1, starting with

u0 = 1, a
(0)
i = 0.

Consider this standard representation for j = v − 1.
We replace hv−1 by hv + (

∑s
i=1 cix

αigi +
∑v−2

j=0 djx
βjhj), hence we obtain

uv−1f =

s
∑

i=1

a
(v−1)
i gi + hv + (

s
∑

i=1

cix
αigi +

v−2
∑

j=0

djx
βjhj),

where each hj has a standard representation as above

uv−1f =
s

∑

i=1

a
(v−1)
i gi + hv + (

s
∑

i=1

cix
αigi +

v−2
∑

j=0

djx
βj(ujf −

s
∑

i=1

a
(j)
i gi))

(uv−1 −
v−2
∑

j=0

djx
βjuj)f = (

s
∑

i=1

a
(v−1)
i gi +

s
∑

i=1

cix
αigi −

v−2
∑

j=0

djx
βj

s
∑

i=1

a
(j)
i gi) + hv.

=

s
∑

i=1

(a
(v−1)
i + cix

αi −
v−2
∑

j=0

djx
βja

(j)
i )gi + hv.

Let uv := (uv−1 −
∑v−2

j=0 djx
βjuj) and a

(v)
i := a

(v−1)
i + cix

αi −
∑v−2

j=0 djx
βja

(j)
i . We

have to prove that uv ∈ S> and

uvf =
s

∑

i=1

a
(v)
i gi + hv

is a standard representation, i.e,

LM(f) = LM(uvf − hv) = maxsi=1{LM(a
(v)
i )LM(gi)}. Since x

βj < 1 in case dj 6= 0
it follows uv ∈ S>.

Since LM(f) > LM(xαkckgk) if ck 6= 0 and LM(f) ≥ LM(a
(j)
k gk), x

βj < 1, it follows

LM(a
(v)
k gk) ≤ LM(f). If LM(a

(v−1)
i gi) = LM(f) then with the same argument we

obtain LM(a
(v)
i gi) = LM(a

(v−1)
i gi) = LM(f). �

Example 4.5. We consider R = Z and use the local lexicographical ordering ls with
x > y in Z[x, y]. Let f = xy4 − 12x2 then ecart(f) = 0 and let G = {f1, f2, f3}
where

f1 = −3x+ xy, f2 = y2 − 2x2y, f3 = 6x2 − x3y2
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then ecart(f1) = 1, ecart(f2) = 1, ecart(f3) = 3.
In step 1:
h0 = xy4 − 12x2, T := G and

S(T, h0) = {ky4f1 + (3k + 1)xy2f2, k ∈ Z}.

All elements in S(T, h0) have ecart 1 and we choose xy4 − xy5 + 4x3y3 ∈ S(T, h0).
Since ecart(h0) < ecart(xy4 − xy5 + 4x3y3) we have to enlarge T :
T = T ∪ {f4 := h0} and
h1 = xy4 − 12x2 − (xy4 − xy5 + 4x3y3) = xy5 − 12x2 − 4x3y3.
In step 2:
h1 = xy5 − 12x2 − 4x3y3 with ecart(h1) = 0,

S(T, h1) = {ky5f1 + lxy3f2 + (1 + 3k − l)yf4, k, l ∈ Z}.

We choose xy5 − 12x2y ∈ S(T, h1) with minimal ecart 0 and obtain
h2 = xy5 − 12x2 − 4x3y3 − (xy5 − 12x2y) = −12x2 + 12x2y − 4x3y3.
In step 3:
h2 = −12x2 + 12x2y − 4x3y3 with ecart(h2) = 4,

S(T, h2) = {(2k + 4)xf1 + kf2, k ∈ Z}.

We choose −12x2 + 4x2y ∈ S(T, h2) with minimal ecart 1 and obtain
h3 = −12x2 + 12x2y − 4x3y3 − (−12x2 + 4x2y) = 8x2y − 4x3y3.
In step 4:
h3 = 8x2y − 4x3y3 and LT (h3) /∈ L(T ), thus NF (f |G) = 8x2y − 4x3y3.

Remark 4.6. Assume R has the following property: c = a1x1+ . . .+asxs is solvable
in R if and only if there exists j and x ∈ R such that c = ajx.
Then normal form algorithm is similar to the corresponding normal form algorithm
for a polynomial ring over a field, i.e, S(T, h) can be replaced by S(T, h) = {g ∈
T | LT (g)|LT (h)}. In this case each standard basis is a strong standard basis. If
R is a discrete valuation ring or R = Z/〈pn〉, p a prime number, then R has the
property above.

5. Computing Standard Bases

Theorem 5.1. Let I < R[x1, . . . , xn]> and let G = {g1, . . . , gt} be a set of non-zero
polynomials in I. Then the following are equivalent.
(1). L(G) = L(I).
(2). For any polynomial f ∈ R[x1, . . . , xn]>, we have f ∈ I if and only if

NF (f |G)=0.
(3). For all f ∈ I, uf =

∑t
i=1 higi for some polynomials u, h1, . . . , ht ∈ R[x1, . . . , xn]

such that LT (u) = 1 and
LM(f) = maxt

i=1{LM(hi)LM(gi)}.
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Proof. (1) =⇒ (2). We know that if NF (f |G) = 0, then f ∈ I. Conversely assume
that f ∈ I. Let r = NF (f |G) and assume r 6= 0. Since G ⊂ I we have r ∈ I. This
implies LT (r) ∈ L(I) = L(G). This is a contradiction to Definition 9.
(2) =⇒ (3). This is obvious from the Definition of normal form.
(3) =⇒ (1). For f ∈ I we need to show that LT (f) ∈ L(G). We have that
uf =

∑t
i=1 higi such that LM(f) = maxt

i=1{LM(hi)LM(gi)}. It is easily seen
that LT (f) =

∑

LT (hi)LT (gi) where the sum is over all i satisfying LM(f) =
LM(hi)LM(gi). Thus LT (f) ∈ L(G), as desired. �

Corollary 5.2. If G is a standard basis of I then I is generated by G.

Proof. Clearly 〈g1, . . . , gt〉 ⊂ I, since each gi is in I. For the other inclusion, let
f ∈ I. By Theorem 5.1, NF (f |G) = 0 and hence uf ∈ 〈g1, . . . , gt〉R[x1,...,xn] for a
suitable u ∈ S>. �

Remark 5.3. Let K be a field and R = K[y1, . . . , ym] be the polynomial ring with
variables y1, . . . , ym. Let > be a product ordering on K[y1, . . . , ym, x1, . . . , xn] such
that the x1, . . . , xn dominate y1, . . . , ym and the restriction of > to R is global. Let
I < K[y1, . . . , ym, x1, . . . , xn]> an ideal and G = {f1, . . . , fs} a standard basis of I.
Let >1 be the ordering on R[x1, . . . , xn] considered as polynomial ring with coeffi-
cients in R induced by >. Then G is a standard basis of I with respect to >1.

Proof. Let f ∈ I then NF>(f |G) = 0 (NF> the normal form with respect to>). An-
alyzing the algorithm forNF> we obtain a1, . . . , as ∈ R such that

∑s
i=1 aiLT>1

(fi) =
LT>1

(f). Here LT>1
is the leading term with respect to the ordering >1. �

We use the following Definition from [1].

Definition 5.4. Given monomials xα1 , . . . , xαs and non-zero elements c1, . . . , cs in
R set L = (c1x

α1 , . . . , csx
αs). Then for a given monomial xα, we call a syzygy

h = (h1, . . . , hs) ∈ syz(L) ⊂ (R[x1, . . . , xn])
s homogeneous of degree xα provided

that each hi is a term and xαiLM(hi) = xα for all i such that hi 6= 0.

Theorem 5.5. Let G = {g1, . . . , gt} be a set of non-zero polynomials in R[x1, . . . , xn].
Let B be a homogeneous generating set for syz(LT (g1), . . . , LT (gt)). Then G is a
standard basis for the ideal 〈g1, . . . , gt〉R[x1, . . . , xn]> if and only if for all
(h1, . . . , ht) ∈ B, we have

NF (

t
∑

i=1

higi|G) = 0.

Proof. If G is a standard basis, then by Theorem 5.1,

NF (

t
∑

i=1

higi|G) = 0.
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Conversely, let g ∈ 〈g1, . . . , gt〉R[x1, . . . , xn]>, then there exists u ∈ S> and ui ∈
R[x1, . . . , xn] such that

ug =

t
∑

i=1

uigi.

Choose a representation as in above equation with xα = maxt
i=1(LM(ui)LM(gi))

minimal. Since by Theorem 5.1, we need to show that LM(g) = xα. We assume
LM(g) < xα and show that we can obtain an equation for g with a smaller value
for xα. Let S = {i ∈ {1, . . . , t}|LM(ui)LM(gi) = xα}. Then

∑

i∈S

LT (ui)LT (gi) = 0.

Let h =
∑

i∈S LT (ui)ei (where e1 = (1, . . . , 0), . . . , et = (0, . . . , 1) is a generating
set for R[x1, . . . , xn]

t). Then h ∈ syz(LT (g1), . . . , LT (gt)) and h is homogeneous of

degree xα. Now let B = {h1, . . . ,hl}, with hj = (h1,j , . . . , ht,j) then h =
∑l

j=1 ajhj .
Since h is a homogeneous syzygy, we may assume that the aj are terms such that
LM(aj)LM(hi,j)LM(gi) = xα for all i, j such that ajhi,j 6= 0. By hypothesis, for

each j, NF (
∑t

i=1 hi,jgi|G) = 0. Thus by Theorem 5.1, for each j = 1, . . . , l there
exist wj ∈ S> and vi,j ∈ R[x1, . . . , xn] such that

wj

∑

i∈S

hi,jgi =
t

∑

i=1

vi,jgi,

and

maxt
i=1LM(vi,jgi) = LM(

t
∑

i=1

hi,jgi) < maxt
i=1LM(hi,j)LM(gi).

The latter strict inequality is because
∑t

i=1 hi,jLT (gi) = 0.
We may assume w = wj for all j.
Thus,

wug =

t
∑

i=1

wuigi

=
∑

i∈S

wLT (ui)gi +
∑

i∈S

(wui − wLT (ui))gi +
∑

i/∈S

wuigi

=

l
∑

j=1

∑

i∈S

wajhi,jgi + terms lower than xα

=

l
∑

j=1

t
∑

i=1

ajvi,jgi + terms lower than xα.
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We havemaxi,jLM(aj)LM(vi,j)LM(gi) < maxi,jLM(aj)LM(hi,j)LM(gi) = xα.We
have a representation of g as a linear combination of the gi such that the maximum
of the leading monomials of any summand is less than xα. Thus the theorem is
proved. �

As a consequence of Theorem 5.5, we obtain that the following algorithm computes
a standard basis for a given ideal I in R[x1, . . . , xn]>.

Algorithm 2. Standardbasis(G)
Input: F = {f1, . . . , fr} ⊂ R[x1, . . . , xn] with fi 6= 0 (1 ≤ i ≤ r),
Output: G a Standard basis for 〈f1, . . . , fr〉R[x1, . . . , xn]>.
• G := F ;
• P := a finite homogeneous generating set (considered as ordered set) for

syz({LT (fi)}1≤i≤r);
• while(P 6= ∅)

Let G = {f1, . . . , fk}
choose (s1, . . . , sk) ∈ P
P := P\{(s1, . . . , sk)};

h := NF (
∑k

i=1 sifi|G);
if(h 6= 0);

fk+1 := h;
G := {f1, . . . , fk+1};
H:= a finite homogeneous generating set for syz({LT (fi)}1≤i≤k+1);
P := (P × {0}) ∪ {h = (h1, . . . , hk+1) ∈ H|hk+1 6= 0};

• return G;

Using ideas of M.Möller ([3]) Adams and Loustaunau propose a more efficient
algorithm for computing Gröbner bases. This applies also in our situation with the
same proof.
We use the following Definition and Theorem from [1].

Definition 5.6. Let xα1 , . . . , xαs be a set of monomials. For any subset J ⊆
{1, . . . , s}, set xγJ = lcm(xαj |j ∈ J). We say that J is saturated with respect to
xα1 , . . . , xαs provided that for all j ∈ {1, . . . , s} if xαj divides xγJ , then j ∈ J . For
any subset J ∈ {1, . . . , s} we call the saturation of J the set J1 consisting of all
j ∈ {1, . . . , s} such that xαj divides xγJ . (Note that xγJ = xγJ1 .)

Theorem 5.7. (cf. [1], page 214) Given monomials xα1 , . . . , xαs and non-zero ele-
ments c1, . . . , cs in R. For each set J ⊆ {1, . . . , s},which is saturated with respect
to xα1 , . . . , xαs, let BJ = {b1,J , . . . , bνJ ,J} be a set of generators of the R-module of
syzygies syzR(cj |j ∈ J). (Note that each of the vectors bµ,J is in the R-module R|J |,
where |J | denotes the cardinality of J). For each such bν,J , denote its jth coordinate,
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for j ∈ J , by bjν,J and xγJ = lcm(xαj |j ∈ J). Set

sν,J =
∑

j∈J

bjν,J
xγJ

xαj
ej

( Note that each of the vectors sν,J is in R[x1, . . . , xn]
s ). Then the vectors sν,J , for

J running over all such saturated subsets of {1, . . . , s}, and, 1 ≤ ν ≤ νJ , forms a
homogeneous generating set for the syzygy module syz(c1x

α1 , . . . , csx
αs).

Example 5.8. We consider R = Z and let c1x
α1 = 3xy2, c2x

α2 = 7xyz, c3x
α3 =

2y2z2. The saturated subsets of {1, 2, 3} are {1}, {2}, {3}, {1, 2} and {1, 2, 3}. Since
Z is an integral domain, the singletons {1}, {2}, {3} do not give rise to any non-zero
syzygy.
For J = {1, 2} we need to solve in R = Z the equation 3b1+7b2 = 0. The module of
all solutions is generated by (7,−3). Since xγJ = xy2z, the corresponding syzygy is

sν,J = 7xy2z
xy2

e1+3xy2z
xyz

e2= (−7z, 3y).

Now for J = {1, 2, 3} we need to solve 3b1 + 7b2 + 2b3 = 0. The module of all
solutions is generated by (−4, 2,−1) and (−7, 3, 0). Then with xγJ = xy2z2 we
obtain the syzygies are

sν,J = −4xy2z2

xy2
e1+2xy2z2

xyz
e2 −xy2z2

y2z2
e3= (−4z2, 2yz,−x).

sν,J = −7xy2z2

xy2
e1 + 3xy2z2

xyz
e2 = (−7z2, 3yz, 0).

So we obtain that

syz(3xy2, 7xyz, 2y2z2) = 〈(−7z, 3y, 0), (−4z2, 2yz,−x), (−7z2, 3yz, 0)〉.

The theorem is the basis of the following modified standard basis algorithm.

Algorithm 3. Standardbasis(G)
Input: F = {f1, . . . , fs} ⊆ R[x1, . . . , xn] with fi 6= 0 (1 ≤ i ≤ s),
Output: G a standard basis for 〈f1, . . . , fs〉R[x1, . . . , xn]>.
• G := F ;
• σ := 1;
• m := s;
• while(σ ≤ m)

Compute S = { subsets of {1, . . . , σ}, saturated with respect to
LM(f1), . . . , LM(fs), which contain σ };

for(J ∈ S)
xγ := lcm(LM(fj)|j ∈ J);
Compute a generating set {bi,J , i = 1, . . . , µJ}

for 〈LC(fj)|j ∈ J, j 6= σ〉R : 〈LC(fσ)〉R
for(i := 1, . . . , µJ)

Compute bj ∈ R, j ∈ J, j 6= σ
such that

∑

j∈J,j 6=σ bjLC(fj) + bi,JLC(fσ) = 0
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r:=NF(
∑

j∈J,j 6=σ bj
xγ

LM(fj)
fj + bi,J

xγ

LM(fσ)
fσ|G);

if(r 6= 0)
fm+1 := r;
G := G ∪ {fm+1};
m := m+ 1;

σ := σ + 1;
• return G;

Example 5.9. We consider R = Q[x, y] with the local lexicographical ordering ls in
R[z]. Let G = {f1, f2} and I = 〈G〉 where

f1 = y − x3z2 and f2 = x2y − z

Then ecart(f1) = 2 and ecart(f2) = 1.
In step 1 (σ = 1) :
S = {{1}} = saturated subsets of {1} containing 1.
Since R is a domain and f1, f2 are irreducible we have no non trivial syzygy.
In step 2 (σ = 2) :
S = {{1, 2}} = saturated subsets of {1, 2} containing 2.

J = {1, 2}.
xγ = lcm(1, 1) = 1
A generating set for 〈y〉 : 〈x2y〉 is {1}.

The solution of yb1 + x2y = 0 is b1 = −x2.
h = −x2(y − x3z2) + 1(x2y − z) = −z + x5z2

which is reduced with respect to G = {f1, f2}.
f3 := h,
and G = {f1, f2, f3}.
In step 3 (σ = 3) :
S = {{1, 2, 3}} = saturated subsets of {1, 2, 3} containing 3.

J = {1, 2, 3}.
xγ = lcm(1, 1, z) = z.
A generating set for 〈y, x2y〉 : 〈−1〉 is {y}.

The solution of yb1 + x2yb2 + x2y = 0 is b1 = 1, b2 = 0.
h = z(y − x3z2) + y(−z + x5z2) = x5yz2 − x3z3.
NF (h|G) = 0.
So G = {f1, f2, f3} is a standard basis.

Remark 5.10. Let R be a local ring of the type K[y1, . . . , ym]〈y1,...,ym〉/I, where
I < K[x1, . . . , xn]〈x1,...,xn〉. Then we can compute Hilbert-Samuel function of ideals
in R[x1, . . . , xn]> by using the same method described in [2]. Carlo Traverso [5],
used the Hilbert-Samuel function to speed up the Buchberger Algorithm. The same
method can be applied in our case too.
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6. Standard Bases Over Principal Ideal Domains

If R is a principal ideal domain (for short PID) then there is a standard basis
algorithm similar to the corresponding algorithm for a polynomial ring over a field
(cf. [2], page 54) with the following notion of the s-polynomial.

Definition 6.1. Let f, g ∈ R[x1, . . . , xn]\{0}.

spoly(f, g) :=
lcm(LT (f), LT (g))

LT (f)
f −

lcm(LT (f), LT (g))

LT (g)
g.

This is a consequence of [1], Proposition 4.5.3 and Theorem 5.5.

Example 6.2. We consider R = Z with the local lexicographical ordering ls with
x > y in Z[x, y].
Let I = 〈f1, f2〉 where f1 = −3y + xy and f2 = y2 − 2x.
Initialization: G = {f1, f2}, G = {{f1, f2}}.
In step 1:
LT (f1) = −3y, LT (f2) = y2,
c = lcm(c1, c2) = lcm(3, 1) = 3, xγ = lcm(LM(f1), LM(f2)) = lcm(y, y2) = y2

h := spoly(f1, f2) =
3y2

−3y
(−3y + xy)−

3y2

y2
(y2 − 2x) = 6x− xy2

which is reduced with respect to G.
So G ∪ {f3 := h} and G = {{f1, f3}, {f2, f3}}.
In step 2:
LT (f1) = −3y, LT (f3) = 6x,
c = lcm(c1, c3) = lcm(3, 6) = 6, xγ = lcm(LM(f1), LM(f3)) = lcm(y, x) = xy

spoly(f1, f3) =
6xy

−3y
(−3y + xy)−

6xy

6x
(6x− xy2) = xy3 − 2x2y = xy · f2

NF (xy3 − 2x2y|G) = 0.
In step 3:
LT (f2) = y2, LT (f3) = 6x,
c = lcm(c2, c3) = lcm(1, 6) = 6, xγ = lcm(LM(f2), LM(f3)) = lcm(y2, x) = xy2

spoly(f2, f3) =
6xy2

y2
(y2 − 2x)−

6xy2

6x
(6x− xy2) = xy4 − 12x2

NF (xy4 − 12x2|G) = 0. Since xy4 − 12x2 = xy2f2 − 12x2 + 2x2y2 = xy2f2 + 2xf3.
So G = {f1, f2, f3} is a standard basis.

Example 6.3. We consider R = Z with the local degree lexicographical ordering ds
(cf.[2]) with x > y > z in Z[x, y, z].
Let I = 〈f1, f2, f3, f4〉 where f1 = 15x2 + 28y2z6 and f2 = 3x2y + 7yz5 f3 = 4xy2 −
5xz10, f4 = −28y3 + 35yz11.
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Similar to Example 6.2 we have to compute the normal form of the spoly’s of all
pairs (fi, fj).
Nf(spoly(f1, f2)|G) = 35yz5 − 28y3z6 =: f5, G = G ∪ {f5}
Nf(spoly(f2, f3)|G) = 28y2z5 + 15x2z10 =: f6, G = G ∪ {f6}
Nf(spoly(f3, f5)|G) = 35xz15 =: f7, G = G ∪ {f7}.
The normal form of all the other spoly’s is zero.
The standard basis is G = {f1, f2, f3, f4, f5, f6, f7}. G is a standard basis of I in
Z[x, y, z]〈x,y,z〉.
Note that f1 − zf5 = 15x2 − 15x2yz10 = 15x2(1 − yz10). Therefore 15x2 ∈ I.
Similarly one can see that 28y3, 28y2z5, 35yz5 and 35xz15 ∈ I. This implies that
{15x2, 3x2y + 7yz5, 4xy2 − 5xz10, 28y3, 28y2z5, 35yz5, 35xz15} is a standard basis of
I.

Theorem 6.4. (cf. [1] Theorem 4.5.9 page 251 ) Let R be a PID, and I be an
ideal of R[x1, . . . , xn]>. Assume that {f1, . . . , fn} is a standard basis for I. Let
LT (fi) = cix

αi, for a saturated subset J of {1, . . . , s}, let cJ = gcd(cj|j ∈ J) and
write cJ =

∑

j∈J ajcj (any such representation will do). Also, let xαJ = lcm(xαj |j ∈
J). Then the set

{fJ =
∑

j∈J

aj
xαJ

xαj
fj |J is a saturated subset of {1, . . . , s}}

is a strong standard basis for I. In particular, every non-zero ideal in R[x1, . . . , xn]>
has a strong standard basis.

7. Standard Bases In The Formal Power Series Rings

Finally we want to apply our results to compute standard bases in the formal
power series ring R[[x1, . . . , xn]] with coefficients in a ring R. Let > be a local degree
ordering, i.e, > is a local ordering and xα > xβ implies deg(xα) ≤ deg(xβ). A non-
zero element f ∈ R[[x1, . . . , xn]] can be written as

∑∞
v=0 avx

αv , av ∈ R, a0 6= 0 and
xαv > xαv+1 for all v. As in Definition 2.5, we define LM(f), LE(f), LT (f), LC(f)
and tail(f). As in Definition 2.11, we define a standard basis (respectively a strong
standard basis) of an ideal I ⊆ R[[x1, . . . , xn]].

Proposition 7.1. Let I < R[x1, . . . , xn] and G is a standard basis (respectively a
strong standard basis) of I with respect to >, where > is a local degree orderig. Then
G is a standard basis (respectively a strong standard basis) of IR[[x1, . . . , xn]].

Proof. Let {g1, . . . , gs} be a standard basis of I and g =
∑s

i=1 aigi ∈ IR[[x1, . . . , xn]],
g 6= 0. Let c be an integer such that LM(g) /∈ 〈x1, . . . , xn〉

c. Choose ai ∈
R[x1, . . . , xn] such that ai − ai ∈ 〈x1, . . . , xn〉

c. Let g =
∑s

i=1 aigi. Then g ∈ I
and g − g ∈ 〈x1, . . . , xn〉

c. This implies LT (g) = LT (g). If G is a strong standard
basis for I then there exists i such that LT (gi)|LT (g) = LT (g), i.e, G is also a
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strong standard basis of IR[[x1, . . . , xn]]. Similarly it follows that a standard basis
of I is a standard basis of IR[[x1, . . . , xn]]. �

8. Procedures

Let I < R[x1, . . . , xn] be an ideal and G = {g1, . . . , gm} be a standard basis of I.
Then we can compute a strong standard basis of I using the SINGULAR-procedures
below.

LIB"poly.lib";

proc powerSet(int n) //computes the set of all subsets of {1, . . . , n}
{

list L,K,S;

int i;

if(n==0)

{
L[1]=L;

return(L);

}
if(n==1)

{
L[1]=L;

L[2]=list(1);

return(L);

}
S=powerSet(n-1);

int r=size(S);

S[r+1]=list(n);

for(i=2;i<=r;i++)

{
K=S[i];

K[size(K)+1]=n;

S[size(S)+1]=K;

}
return(S);

}

proc satt(ideal I) //computes the saturated subsets of {1, . . . , size(I)}
{ //w.r.t {LM(f) | f ∈ I}

int j;
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list K,J;

I=lead(I);

J=powerSet(size(I));

for(j=2;j<=size(J);j++)

{
if(saturat(I,J[j]))

{
K[size(K)+1]=J[j];

}
}
return(K);

}

proc specialGCD2(int a, int n)

{
int x=a mod n;

if(x==0)return(list(0,1,n));

list L=specialGCD2(n,x);

return(list(L[2],L[1]-(a-x)*L[2]/n,L[3]));

}

proc specialGCD(list L) //computes the gcd over Z
{

int i;

for(i=1;i<=size(L);i++)L[i]=int(L[i]);

if(size(L)==1)return(L);

if(size(L)==2)return(specialGCD2(L[1],L[2]));

bigint p=L[size(L)];

L=delete(L,size(L));

list T=specialGCD(L);

list S=specialGCD2(T[size(T)],p);

for(i=1;i<=size(T)-1;i++)

{
T[i]=T[i]*S[1];

}
p=T[size(T)];

T[size(T)]=S[2];

T[size(T)+1]=S[3];

return(T);

}
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proc coeffJ(list C,list J) // computes the coefficients aj such that
{ // gcd(cj|j ∈ J) =

∑

j∈J ajcj
if(size(J)==1)return(list(1));

int n=size(J);

int i;

list L,M;

for(i=1;i<=n;i++)

{
L[size(L)+1]=C[J[i]];

}
L=specialGCD(L);

L=delete(L,size(L));

return(L);

}

proc lcmJ(ideal X,list J) // computes lcm(fj | fj ∈ X, j ∈ J)
{

poly p=X[J[1]];

int i;

for(i=2;i<=size(J);i++)

{
p=lcmS(p,X[J[i]]);

}
return(p);

}

proc maxZ(intvec a,intvec b) // computes the maximum of two
{ //integer vectors

int i,j;

intvec c;

for(i=1;i<=size(a);i++)

{
if(a[i]>=b[i])

{
c[i]=a[i];

}
else

{
c[i]=b[i];
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}
}
return(c);

}

proc lcmS(poly p,poly q) // computes the LCM of two monomials
intvec a=leadexp(p);

intvec b=leadexp(q);

intvec c=maxZ(a,b);

int i,j;

poly s=1;

for(i=1;i<=nvars(basering);i++)

{
s=s*var(i)^c[i];

}
return(s);

}

proc leadTerm(ideal I) // give a list containing two lists, first
{ //contains leading coefficients and second contains

int i; //leading monomials
list L;

ideal J;

I=lead(I);

for(i=1;i<=size(I);i++)

{
L[size(L)+1]=leadcoef(I[i]);

J[size(J)+1]=leadmonom(I[i]);

}
return(list(L,J));

}

proc clean(ideal G) // delete from an ideal fi such that
{ // there exists fj ∈ I with LM(fj) divides LM(fi)

int i,j;

while(i<=size(G)-1)

{
i++;

j=i;

while(j < size(G))
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{
j++;

if((G[i]!=0)&&(G[j]!=0))

{
if (lead(G[j])/lead(G[i])!=0)

{
G[j]=0;

G=simplify(G,2);

j--;

}
if(G[j]!=0)

{
if (lead(G[i])/lead(G[j])!=0)

{
G[i]=0;

G=simplify(G,2);

i--;

break;

}
}

}
}

}
return(simplify(G,2));

}

proc strongSB(ideal I) // computes a strong standard basis
{ // for an ideal if standard basis is given

def R=basering;

list rl=ringlist(R);

rl[1]=0;

def S=ring(rl);

setring S;

ideal I=imap(R,I);

list L=leadTerm(I);

list C=L[1];

ideal X=L[2];

list J=satt(X);

int i,j;

ideal G;
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list P;

poly f,q;

for(i=1;i<=size(J);i++)

{
P=coeffJ(C,J[i]);

q=lcmJ(X,J[i]);

f=0;

for(j=1;j<=size(J[i]);j++)

{
f=f+q/X[J[i][j]]*I[J[i][j]]*P[j];

}
G[size(G)+1]=f;

}
setring R;

ideal G=imap(S,G);

return(clean(G));

}

Example 8.1. Consider Example 6.3, we now compute strong standard basis for
I = {15x2, 3x2y + 7yz5, 4xy2 − 5xz10, 28y3, 28y2z5, 35yz5, 35xz15}.
> ring R = integer, (x, y, z), ds;
> ideal I = 15x2, 3x2y + 7yz5, 4xy2− 5xz10, 28y3, 28y2z5, 35yz5, 35xz15;
> strongSB(I);
[1] = 15x2
[2] = 3x2y + 7yz5
[3] = 4xy2− 5xz10
[4] = x2y2− 7y2z5− 5x2z10
[5] = 28y3
[6] = 35yz5
[7] = x2yz5 + 84yz10
[8] = 7y2z5
[9] = 35xz15
[10] = 5x2z15
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[3] H.M.Möller: On the construction of Gröbner bases using syzygies. J.Symb.Comp. 6 (1988),
345-359.



22 AFSHAN SADIQ∗

[4] G.M. Greuel, G.Pfister and H.Schönemann: SINGULAR - A Computer Algebra System for
Polynomial Computations. Free software under GNU General Public Licence (1990-to date).

[5] Carlo Traverso: Hilbert Function and the Buchberger Algorithm. J.Symb.Comp. 22 (1996),
355-376.

*Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pak-

istan

E-mail address : afshanatiq@gmail.com


	1. Introduction
	2. Basic Definitions
	3. Computing Standard Bases By Using Homogenization
	4. Normal Form
	5. Computing Standard Bases
	6. Standard Bases Over Principal Ideal Domains
	7. Standard Bases In The Formal Power Series Rings
	8. Procedures
	References

