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Abstract: In this paper, we improve the bound of complexity of the algorithms on poly-
nomial ideals having complexities polynomial in d" where d is the maximal degree of input
polynomials and n the number of variables.

Instead of this bound, we present the more accurate bound max{S, D"} where S is the
size of the input polynomials in dense representation, and D is the arithmetic mean value
of the degrees of input polynomials.
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Une meilleure borne de complexité pour les bases de
Grobner des idéaux zéro—dimensionnels et la résolution
des systémes polynomiaux
Résumé : Dans cet article, nous améliorons la borne de complexité des algorithmes concer-
nant les idéaux polynomiaux et connus pour étre polynomiaux en d" o d est le degré

maximal des polyndmes d’entrée et n le nombre des variables.

Nous remplagons d" par max{S, D"}, ou S est la taille de ’entrée pour la représentation
dense des polynémes et D la moyenne arithmétique des degrés des polynémes d’entrée.

Mots-clés : Base de Grobner, complexité, résolution des systémes polynomiaux
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1 Introduction

In the literature, there are several algorithms on polynomial ideals which have a good com-
plexity, i.e. which are polynomial in d" where d is the maximal degree of input polynomials
and n the number of variables. Some of these algorithms deal with polynomial system solv-
ing, for example [Laz&1] which shows that one can solve the projectively zero—dimensional
systems within this complexity. Also it was shown in [Lak90| and [LLI1] that any zero—
dimensional system can be solved within this complexity. Other good algorithms deal with
the computation of Grobner bases: Lazard [Laz83] has proved that the reduced Grébner
basis with respect to the degree reverse lexicographic ordering of either a projectively zero—
dimensional ideal, or an ideal generated by a homogeneous regular sequence in generic
coordinates, can be computed within this complexity. For these algorithms, the complexity
which is polynomial in d"™ is the bit complexity as well as the complexity in the number
of field operations. Also, Lakshman [Lak91] has shown that any reduced Grobner basis of
a zero—dimensional ideal may be computed within this complexity in the number of field
operations. For this, he uses a variant of [FGLM93] where an algorithm for transforming a
Grobner basis of a zero-dimensional ideal with respect to any ordering into a Grobner basis
with respect to another ordering is given, which has a similar complexity.

The aim of this paper is to show that in all these algorithms, we may replace d" by
max{S, D"} < nh(eD)"™ where S is the size of the input polynomials in dense representation
(defined below), h is the maximal size of the coefficients of the input polynomials, D is the
arithmetic mean value of the degrees of input polynomials and e = 2.71828 - - - is the usual
Euler constant.

The best which may be hoped for the complexity of an algorithm on polynomials ideals, is
to be polynomial in the maximum of the sizes of the input and of the output. It is well known
that Bézout’s bound (the product of the degrees of the input polynomials) is generically a
good measure of the size of the output. Therefore, the best which may be hoped is to be
polynomial in max{S, G"} where G is the geometric mean value of the degrees. Thus, our
bound differs from the optimum as far as the arithmetic mean differs from the geometric
mean.

Our bound is exponentially better than the previous ones: if the degree are not all equals,
it is clear that D™ <« d". Moreover, if most of polynomials are linear, D may be as close
from 1 as one will; D™ may even be constant in n if the number of non linear polynomials
remains constant when n increases. On the other hand, we have S < nh(d+1)" = O(nhd"™),
but S is usually much lower. Especially, if d ~ n we have S = O(nh2") < nhd".

Now, we give the structure of this paper. In Section B, we give the general notations and
the model of complexity which is used. In Section B, we prove the combinatorial lemmas
which are used in the next sections. Section Hlis devoted to the elimination of the linear
polynomials from the input system and its complexity. In Section [, we show that each step
of the above algorithms has a complexity bounded by max{S, D"}. Finally, in Section @l we
show that both quantities S and D™ which appear in our bound of complexity are necessary,
as each one may be the dominant one.
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2 General notations and model of complexity

In this section, we precise the general notations and the model of complexity used through
this paper.

We work with polynomials over a computable field K on which the linear algebra over K
has a polynomial complexity. This is especially the case if K is finite or is the field of the
rational numbers.

In all this paper, we will consider k polynomials f1,..., fx € Klz1,...,2,] or k ho-
mogeneous polynomials Fy,..., Fy € Klxo,...,x,]. We denote by d,...,d; their total
degrees, and if there are ¢ non linear polynomials, we suppose without lost of generality that
do>-->dyg>dy >2>dpy1=--=dp=1. If k <n, weset dp41 =---=d, = 1. Let

D= (dy+---+d,)/n and h be the maximal size of the coefficients of the f; or of the F;.

For bounding the complexity of the algorithms under consideration, we need to precise
our measure of complexity.

We define the size of a polynomial f; or F; as its size in the dense representationi.e. in the
representation where all the monomials of degree at most d; (resp. d;) in non-homogeneous
case (resp. homogeneous case) are written, even if they have a zero coefficient, (see [vzGGO3|
p. 467 for example). Thus, the size of f; or F; is nc("T%) where c is the average size of
the coefficients (the factor n comes from the representation of the vector of the exponents
of the variables), and the size of the input S is the sum of the sizes of the f; or of the F;.

It is worthwhile to remark that the number k of input polynomials as well as the maxi-
mum size of their coefficients h are bounded by S and therefore need not to appear explicitly
in the bounds of complexity.

Note also that, except for [Lak91] algorithm, we consider only the bit complezity which
takes into account the size of the coefficients. The arithmetic complexity may easily be
deduced by putting to 1 the size of the coefficients.

3 Combinatorial lemmas

In this section, we prove the combinatorial lemmas, which will be used in the next sections.
We use the well-known fact that the geometric mean is less than the arithmetic mean,
i.e.

which implies that
Lemma 3.1 d;---d, < D".
The following lemma is the basis of the occurrence of D™ in our complexity bounds.

Lemma 3.2 The number of monomials of degree at most 6 = n(D — 1) + 1 in n variables
and the number of monomials of degree § in n+ 1 variables are bounded above by (eD)™ for
D andn > 1.

INRIA
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Proof The number of monomials of degree J in n + 1 variables as well as the number of
monomials of degree < § in n variables are equal to ("1°) (see [CLO98| p. 106 for example).
By definition of the binomial coeflicients, we have

n+é nD +1 D" +2—i
= = — n .
n n n! P} D
Asn+ 25t <nfori>2and (n— %) (n+ ) < n? we have for n > 2
<n+6> <Zpm,
n n!

which implies that ( < (eD)™ by Stirling’s formula. For n < 2 the result is easily proved
directly. O

")

The following lemma is the key for eliminating the linear polynomials and keeping D"
in our bounds where D ~ 1.

Lemma 3.3 With the notations of Sectiond, suppose that m <n anddpy1 =--- =d, = 1.
Let E= (d1+ -+ dp)/m. We have m(E —1) =n(D — 1) and

E™ < D",

Proof The first assertion is immediate. The second follows from the following lemma. O

Lemma 3.4 Let m,n, E and D be four positive real numbers such that 1 < E <D, m <n
and m(E —1) =n(D —1). Then
E™ < D",

Proof Let T =m(E —1) =n(D —1), and f be the function
f(t) =tlog (#) .

Then, E™ = ¢/(™) and D" = /(™). We claim that the function f is increasing for ¢ > 0:
T2

The second derivative — T of f is negative for ¢ > 0. Thus, the first derivative f’ of
f is decreasing. We have also that lim; ... f/(t) = limy_ oo (log(#) - HLT) = 0. Thus,

f'(t) > 0 for ¢ > 0, which implies that f is an increasing function for ¢ > 0. Therefore,

E™ = f(m) < el — pn.

RR n° 5491
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4 Eliminating the linear polynomials

We will see that the complexity of the algorithms that we consider is polynomial in the
quantity (eD)™ introduced in Lemma If D > 2 this is also polynomial in D™, as
eD < D?*? but this is not true if D is close to 1. If D < 2 we are sure that some
polynomials are linear. Using them to eliminate some variables decreases the complexity
(by Lemma B3)), but we have to take into account the complexity of this elimination.

Proposition 4.1 Let I = {(f1,...,fr) be an ideal in the ring K[z1,...,z,] and < be a
monomial ordering. Suppose that foi1,..., fr are linear polynomials for some ¢ < n. Let G4
be the reduced Grébner basis of (foi1,..., fx) and fi = normal form(f;,G1) fori=1,...,¢
(cf. [CLOZE]). Let Gy be the reduced Grébner basis of (f1,. .., f).

The leading terms in G are single variables. Denote them by {Y41,...,Yn} C{x1,...,
Zn}, and let Y1,...,Y,, be the remaining variables. We have:

(1) fi,..., f¢ depend only on Y1,...,Ypm;
(2) G1U Gy is the reduced Grobner basis of I with respect to <;

(3) any common zero yi,...,yn of the fi’s is deduced from a common zero yi,...,ym of
f1,--, fe by expressing ym+1,-- ., Yn as linear functions of y1, ..., Ym, using G1.

Proof It is well known [Laz83] that for linear polynomials, Grobner basis computation is
equivalent with Gaussian reduction, and that in this case the normal form computation is
equivalent with the linear elimination of the leading variables.

To prove the second assertion, it suffices to prove that any f € I reduces to 0 by G1 UGs.
Reducing f by G, we get f which belongs to fi,..., fr and thus reduces to 0 by Gs.

The third assertion comes from the facts that G2 depends only on Y7, ..., Y, (by the first
item), and that Y;,+1,...,Y, are the linear functions of Y3,...,Y,, (because Y, 41,...,Ys
are the leading terms of G). O

Proposition 4.2 In the preceding proposition:

(1) the complexity of the computation of Gy is polynomial in cn where c is the mazimal
size of the coefficients of for1,---, [k;

(2) the complexity of the computation of f; for i = 1,...,¢ is polynomial in c (above
coefficient size) and the size of f;;

(3) for each solution, the complexity of the computation of Ym+1,-..,Yn s polynomial in
n, ¢ and the size of (y1,.-.,Ym)-

Proof Assertion (1) follows from the equivalence between the computation of Gy and
Gaussian elimination.

To prove the second assertion, let I' be a matrix whose rows are indexed by the monomials
of degree d; and whose columns are the representation of f; and of all products of the elements

INRIA
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of (G; by the monomials of degree d; — 1. Then, a Gaussian elimination on the columns of
I' eliminates Y;,41,...,Y, from f;, and gives the coefficients of f;. The number of columns
of I' is bounded by 1 + n("+‘fj_1) < ("J{Ldi), the number of rows of I". Also, the coefficients
of GG; have a size which is polynomial in c¢n. Thus, the size of T" is bounded by cn times the
square of the size of f; which shows the assertion (2).

Assertion (3) follows also from the complexity of the linear algebra. O

5 Arithmetic mean versus maximum of the degrees

In this section, we state precisely the complexity bound resulting of the previous results.

5.1 Bézout bounded complexities

Most algorithms dealing with zero—dimensional ideals split in several steps. Some of them
have their complexity bounded in term of the degree of the ideal, i.e. the dimension of the
vector space of the quotient of the ring by the ideal. In fact, these steps consist mainly
in linear algebra in this vector space. This is the case of the algorithm of [FGLM93| for
changing of monomial ordering and of the reconstruction of the Grébner basis of the ideal
from those of its associated prime ideals in [Lak91] (note that this algorithm is a variant of
[FGLMO93]).

As Bézout’s theorem asserts that the degree of the ideal is bounded by d; - - - d,,, Lemma
Bl and the bounds of complexity given in [FGLM93] and [Lak91] imply immediately the
following. For this, let h be the maximal size of the coefficients of the input polynomials of
the algorithm of [EGLMO93]| or of [Lak91].

Theorem 5.1 With the notations of Section[d, the complezity of the algorithm of [EGLMI3]
for transforming a Grébner basis of a zero—dimensional ideal with respect to an ordering into
a Grobner basis with respect to another ordering, and of [Lak91] for computing a Grébner
basis of a zero—dimensional ideal from Grébner bases of its associated prime ideals is poly-
nomial in nhD™.

5.2 Macaulay bounded complexities

In the algorithms under consideration, the critical step consists in linear algebra on polyno-
mials having the Macaulay’s bound > ; (d; — 1) +1 as degree. Since the paper [Laz&1] the
size of the matrices, which are involved, is usually bounded by d"™ where d = d5 is the max-
imum of the degrees of the input polynomials. The results of Section Bl show immediately
that (eD)" is a sharper bound.

If D > 2 we have e < D'®, which induce a complexity which is polynomial in D".
However, if D is close to 1 the factor e” may not be included in D". Fortunately, if D < 2
some of the input polynomials are linear and we may use them to reduce the number of
variables. The results of Section Bl show immediately that the complexity of the elimination
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is polynomial in the size of the input polynomials, S while the linear algebra after elimination
has a complexity which is polynomial in D™ by Lemma and
More precisely, we have:

Theorem 5.2 With the notations of Section 3, the bit complezities of the following algo-
rithms are polynomial in
max{S, D"}.

(1) Algorithms of [Laz&1l] for solving a zero—dimensional homogeneous system and of
[Laz83)] for computing the reduced Grobner basis of a zero—dimensional homogeneous
ideal or of an homogeneous ideal generated by a regular sequence in generic coordinates.

(2) Algorithm of [LLI1] for solving a non—homogeneous zero—dimensional system, and
for computing the reduced Grobner bases of the associated prime ideals of a zero—
dimensional ideal.

Similarly the algorithm of [Lak91)], for computing any reduced Grébner basis of a zero-
dimensional ideal, needs a number of fields operations which is bounded above by max{S, D"}.

Proof These algorithms split in different steps. We estimate first the complexity of the
steps which are common to all of them before considering each algorithm separately.

The first step consists in eliminating the linear polynomial by Proposition EZ1l This
step has a complexity polynomial in S and produces polynomials whose coefficients size
is polynomial in nh < S (see Proposition EZ). Especially, for polynomials with integers
coefficients this size is bounded by n(h + 1/2logn) by Hadamard inequality.

With the notations of Proposition B} let f1,..., fx (resp. Fi,..., Fx in homogeneous
case) be the input polynomials, let Y7,...,Y,, be the variables which remain after the
elimination, and let fy,..., f¢ (resp. F1, ..., F;) be the normal forms of the non linear input
polynomials with respect to the reduced Grébner basis of the linear input polynomials. By
item (2) of Proposition the complexity of the computation of these normal forms is
polynomial in S and the size of the resulting coefficients is also polynomial in S.

By Proposition Bl solving the initial problem (Grobner basis computation or solving
the system) is reduced to a similar problem on fi, ..., f; (resp. Fi,..., F; in homogeneous
case), where the size of the coefficients is polynomial in S.

As all of the algorithms under consideration use the Sylvester matrix of a homogeneous
ideal in m variables in degree > | (d; — 1) + 1, we recall its definition here. This is a matrix
whose rows are indexed by the monomials of this degree in m variables and whose columns
are the representation of the generators of the ideal. If £ > 2 is the arithmetic mean of
di,...,d, then the size of the Sylvester matrix is bounded by (eE)™ < E?:5™ < D25 by
Lemmas and B3

In the second step of the algorithm of [Laz&1], the author has considered the Sylvester
matrix in the variables Y1, ...,Y,, in degree > i, (d; — 1) + 1 for the ideal (Fi,...,F;, L)
in which L = U1Y; + --- 4+ U,,Y,, where the U;’s are new indeterminates.

As it was shown in [Laz&1], a Gaussian elimination on this matrix allows to solve the
system. The size of this matrix is polynomial in D™ by Lemma B2 and its coefficients size

INRIA
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is polynomial in S. Therefore, this Gaussian elimination as well as the whole algorithm
have a bit complexity polynomial in max{S, D"} and the resulting coefficients are similarly
bounded.

For computing the reduced Grébner basis of (Fy,. .., Fy) for the degree reverse lexico-
graphic ordering by the algorithm of [Laz83], the second step consists in a Gaussian elimina-
tion on the Sylvester matrix in degree Y ;" ; (d; — 1) + 1 of this ideal. Thus the complexity
of this step as well as the coefficients size of the result are polynomial in max{S, D"}. For
the other monomial orderings (zero—dimensional case) this step is followed by the algorithm
of [EGLM93| which is again a linear algebra computation on matrices of a similar size.

Now, consider the algorithm of [LLA1] for solving the system f; = --- = f, = 0. Fol-
lowing its first step, we may suppose that fi,..., f, is a regular sequence. The second
step consists in homogenizing and deforming these polynomials. More precisely, the authors
consider G; = F} + szfi where F/ is the homogenization of f; with respect to zg, and s is
a new indeterminate. The third step consists in applying [Laz&1] algorithm over K (s) for
computing matrices My, ..., M,, with coefficients in K(s). This step and the output size
are also bounded by max{S, D"}. The fourth step consists in a linear change of variables
which amounts to replace the M; by linear combination of them. The next step consists in
computing the characteristic polynomials of 2n quotients of these matrices, followed by ged
computations on these polynomials in order to provide the solutions as polynomial function
of the roots of a univariate polynomial (RUR or shape lemma representation). If there were
more than n input polynomials, the remaining ones would be introduced at this step in a
way similar to [FGLM93].

Thus, the factorization of the univariate polynomials and [EGLM93| algorithm allow to
compute the Grobner bases of the radical as well as of the associated primes. All these
steps involve linear algebra, gcd computation or factorization of univariate polynomials over
data whose size is polynomial in max{S, D"}. It follows that the whole algorithm has the
asserted complexity.

Consider finally the algorithm of [Lak91] for computing the reduced Grobner basis of
the zero-dimensional ideal I = (fy,..., f;) C K[Y1,...,Y;,]. Tt works in two steps. In the
first step, the output of [LLII] algorithm is used for computing the Grobner bases of the
primary components of I. In the second step, they are put together to obtain the reduced
Grobner basis of I. It was shown in this paper that the number of field operations for the
first step is polynomial in S and md; where ¢; is the degree of the primary component under
consideration. As > ¢; is the degree of the ideal, it is lower than the Bézout bound. Thus,
the complexity of this step is bounded, as before. The same is true for the last step, because
it is a variant of [FGLM93]. O

Remark 1 It could be astonishing that the best known bound of binary complexity is not
the same to solve a zero—dimensional system and to compute the corresponding Grébner
basis. We are able to solve this problem by producing an algorithm for computing the
Grdébner basis of a non-homogeneous zero—dimensional system with a bit complexity which
is polynomial in max{S, D™}. This is the object of another paper, in preparation.
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6 Discussion

In this section, we show both quantities which appear in our bound of complexity may be
the dominant one.

Recalling that our bound of complexity is polynomial in max{.S, D"}, we have to compare
these two quantities. For this purpose, it is worthwhile to suppose that the size of coeflicients
is small and therefore to set h = 1.

The dominant factor of this complexity bound may be either S or D™, even if usually
the latter is much larger than the former, especially when D > 2.

In fact, if D > 2, we have d; < nD —n + 1 for any 4, then S < n("+"Dn_"+1) which is
less than n(eD)" by Lemma 2 But the latter is less than D3" because we have e < D45
and

n < 9055 ~ )0.55n

for any positive integer n. This shows that in this case, D™ is the dominant factor.

If moreover, the d; are all equal to n, then %n > #"en increases more than exponentially
with n, and S <« D" in this case.

Finally, let us consider a family indexed by n of systems of ¢ polynomials of degree d
in n variables and n — c linear polynomials. We have D" < (1 + cd/n)" < e which is

independent from n while S increases exponentially with n. Thus D™ < S in this case.
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