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TROPICAL POLYHEDRA ARE EQUIVALENT TO MEAN PAYOFF GAMES

MARIANNE AKIAN, STÉPHANE GAUBERT, AND ALEXANDER GUTERMAN

Abstract. We show that several decision problems originating from max-plus or tropical convexity are
equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the
external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra
correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions
can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical
proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which
the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or
columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques
from non-linear Perron-Frobenius theory.

1. Introduction

1.1. Statement of the problems and main results. The three following problems are basic in max-plus
or tropical algebra.

Problem 1.1 (Is a tropical polyhedral cone non-trivial?). Given m× n matrices A = (Aij) and B = (Bij)
with entries in R ∪ {−∞}, does there exist a vector x ∈ (R ∪ {−∞})n non-identically −∞ such that the
inequality “Ax 6 Bx” holds in the tropical sense, i.e.,

max
j∈[n]

(

Aij + xj

)

6 max
j∈[n]

(

Bij + xj

)

, ∀i ∈ [m] ?(1)

Here and in the sequel, we use the notation [n] := {1, . . . , n}.

Problem 1.2 (Is a tropical polyhedron empty?). Given m × n matrices A = (Aij) and B = (Bij) with
entries in R ∪ {−∞}, and two vectors c, d of dimension m with entries in R ∪ {−∞}, does there exist a
vector x ∈ (R ∪ {−∞})n such that the inequality “Ax+ c 6 Bx+ d” holds in the tropical sense, i.e.,

max
(

max
j∈[n]

(Aij + xj), ci
)

6 max
(

max
j∈[n]

(Bij + xj), di
)

, ∀i ∈ [m] ?(2)

Problem 1.3 (Is a family of vectors tropically dependent?). Given m > n and an m× n matrix A = (Aij)
with entries in R ∪ {−∞}, are the columns of A tropically linearly dependent? I.e., can we find scalars
x1, . . . , xn ∈ R ∪ {−∞}, not all equal to −∞, such that the equation “Ax = 0” holds in the tropical sense,
meaning that for every value of i ∈ [m], when evaluating the expression

max
j∈[n]

(Aij + xj)

the maximum is attained by at least two values of j?

The representation of a tropical polyhedral cone by inequalities turns out to be equivalent to the de-
scription of a mean payoff game by a bipartite directed graph in which the weights indicate the payments
(the weighted graph is coded by the matrices A and B). More generally, we consider an infinite system of
inequalities, the set [m] being replaced by an infinite set in (1). The set P of solutions of this system is now a

Date: December 4, 2009; Revised: April 25, 2011; June 9, 2011.
2010 Mathematics Subject Classification. Primary 14T05; Secondary 91A50.
The two first authors were partially supported by the joint RFBR-CNRS grant 05-01-02807, by a MSRI Research membership

for the Fall 2009 Semester on Tropical Geometry, and by a grant from LEA (Laboratoire Européen Associé) MathMode. The
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tropical convex cone (not necessarily polyhedral), and we associate to it a mean payoff game with an infinite
set of actions, corresponding to defining half-spaces. We shall see that such infinite systems of inequalities
represent in particular stochastic mean payoff (zero-sum) games.

Our main results set up a correspondence between the external representation (by inequalities) of a tropical
convex cone P , and mean payoff games with infinite action spaces on one side, in which

∃u ∈ P, u 6≡ −∞ ⇔ there is at least one winning initial state.

Moreover, when P is polyhedral, the actions spaces becomes finite, and

∃u ∈ P, ui 6= −∞ ⇔ i is a winning initial state,

see Theorems 3.1 and 3.2. This shows that Problem 1.1 and its affine version, Problem 1.2, are (polynomial-
time) equivalent to mean payoff game problems. We show by the same techniques that Problem 1.3 reduces
to a mean payoff game problem, and derive theoretical results concerning tropical linear dependence by game
techniques.

Before discussing further these results, we give more background. Note that some of the present results
were announced in the conference paper [AGG10a], without proofs.

1.2. Motivation. The first two problems concern max-plus or tropical convex sets. The latter are subsets
C of (R ∪ {−∞})n such that

u, v ∈ C, λ, µ ∈ R ∪ {−∞}, max(λ, µ) = 0 =⇒ (λ+ u) ∨ (µ+ v) ∈ C

where “∨” is the supremum operator for the partial order of R∪{−∞}, that is the “max” applied entrywise,
and where λ+ u denotes the vector obtained by adding the scalar λ to every entry of u.

Max-plus or tropical convexity has been developed by several researchers under different names. It goes
back at least to the work of Zimmermann [Zim77]. It was studied by Litvinov, Maslov, and Shpiz [LMS01],
in relation to problems of calculus of variations, and by Cohen, Gaubert, and Quadrat [CGQ01, CGQ04],
motivated by discrete event system problems [CGQ99]. Max-plus polyhedra have appeared in tropical
geometry after the work of Develin and Sturmfels [DS04], followed by several works including the ones of
Joswig and Yu, see [Jos05, JSY07]. Recent works on the subject include [BH04, BY06, GK07, BSS07, NS07,
Jos09, GK09, GM10, AGK11a].

As it is shown in [GK11] (see also [GP97, GK09]) max-plus polyhedra can be defined equivalently in terms
of generators (extreme points and rays) or relations (linear or affine inequalities). In particular, a max-plus
polyhedral cone can be defined by systems of the form “Ax 6 Bx”, whereas max-plus polyhedra can be
defined by their affine analogues, “Ax + c 6 Bx + d”. Max-plus polyhedra have been used in particular
in [Kat07, LGKL10] to solve controllability and observability problems for discrete event systems, and they
have been used in [AGG08] as a new domain in static analysis by abstract interpretation, allowing one to
express disjunctive constraints. The question of solving “Ax 6 Bx” over (finite) relative integers has also
been considered in [BNgC08b, BNgC10] with motivations from SMT (SAT-modulo theory) solving.

In many applications, it is necessary to pass from the description by inequalities “Ax 6 Bx” to the
description by extreme generators. Although a reasonably efficient hypergraph based algorithm has been
developed [AGG10b], its applicability is limited by the exponential blowup of the number of extreme gener-
ators, in the worst case [AGK11a]. The alternative approach of tropical geometry [DS04, Jos09], in which a
tropical polyhedron is represented by a classical polyhedral complex, is subject to a more severe exponential
blowup (the number of cells of the complex exceeds the one of tropical extreme generators). However, in
several applications, including the final control synthesis or observer synthesis step in [Kat07, LGKL10], one
only needs to find a single solution or to decide that there is none. This subproblem, which is expected to
be much simpler, is the object of Problems 1.1 and 1.2, the latter being the affine analogue of the former.

The third problem, concerning linear dependence, is motivated by tropical geometry. In this setting, the
tropical hyperplane [RGST05] determined by a vector u ∈ (R ∪ {−∞})n, non identically −∞, is defined as
the set of points x ∈ (R ∪ {−∞})n such that the maximum in the expression

max
i∈[n]

(ui + xi)

is attained at least twice, which may be written as “u · x = 0”, tropically. This arises naturally when
considering amoebas, which are the images of algebraic varieties over a valued field by the map which takes
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the valuation entrywise. We refer the reader to the survey by Itenberg, Mikhalkin and Shustin [IMS07] for
more background. In particular, one may consider the field K := C{{t}} of formal Puiseux series over C in
an indeterminate t, equipped with the non-archimedean valuation v which associates to a series the opposite
of the smallest exponent of the monomials appearing in the series. Then, tropical hyperplanes can be seen
to be amoebas of hyperplanes over K (this is a special case of a general result of Kapranov characterizing
the non-archimedean amoebas of hypersurfaces, see [EKL06]). Moreover, if the columns of a matrix with
entries in K are linearly dependent over K, their images by the map which does the valuation entrywise can
be seen to be linear dependent in the tropical sense, i.e., in the sense used in Problem 1.3, see [RGST05],
and so, deciding the linear dependence turns out to be a basic issue in tropical linear algebra.

1.3. Discussion of the result. One interest of the transformation to mean payoff games that we describe
here is of an algorithmic nature. Mean payoff games have been well studied since the work of Gurvich,
Karzanov, and Khachiyan [GKK88], who developed the first combinatorial algorithm to solve them. Since
that time, the existence of a polynomial time algorithm has been an open question. Recall in this respect
that decision problems concerning the value of mean payoff games are known to be in NP ∩ co-NP, see
Condon [Con92] and Zwick and Paterson [ZP96] for more information.

Pseudo-polynomial algorithms of value iteration type are known [ZP96], and other types algorithms have
been developed [CTGG99, DG06, BV07, JPZ08]. These include policy iteration algorithms, which are
experimentally fast on typical inputs, although Friedmann showed recently [Fri09] that a commonly used class
of policy improvement rules leads to a worst case exponential execution time. The present transformations
allow one to apply any mean payoff game algorithm to solve Problems 1.1–1.3.

The problem of finding one solution of the system “Ax 6 Bx” was previously considered without the
connection with games by Butkovič and Zimmerman, who developed a combinatorial algorithm [BZ06].
The latter turns out to be only pseudo-polynomial, as shown by Bezem, Nieuwenhuis and Rodŕıguez-
Carbonell [BNgC08a]. It is conceivable to extend the method of [BZ06] to solve the affine case (Problem 1.2)
in pseudo-polynomial time. We are not aware of methods preexisting to the present work allowing one to
solve Problem 1.3 in pseudo-polynomial time.

If one requires the vector x to be finite, Problem 1.1 becomes simpler. In this special case, a reduc-
tion which inspired the present one was made by Dhingra and Gaubert, who showed in [DG06, § IV,C]
(Corollary 3.4 below) that “Ax 6 Bx” has a finite solution if and only if all the initial states of an as-
sociated mean payoff game are winning. A related result was established previously by Mohring, Skutella
and Stork [MSS04], who studied a scheduling problem with and/or precedence constraints, leading to a
feasibility problem which is equivalent to finding a finite vector in a tropical polyhedron. They showed that
the latter problem is polynomial time equivalent to deciding whether a mean payoff game has a winning
state. In [MSS04] as well as in [DG06] and the present work, a mean payoff game is canonically associated
(by a syntaxic construction) to the feasibility problem. Then, the approach of [MSS04] requires an addi-
tional transformation, adding some auxiliary states, with special weights (determined by a value iteration
argument).

The present work relies on a different approach, based on non-linear Perron-Frobenius theory. This allows
us to deal at the same time with infinite coordinates (i.e., tropically zero coordinates, this is an essential
matter, both in applications and for theoretical reasons) and with infinite systems of inequalities, i.e., with
tropical convex sets instead of tropical polyhedra, the former representing games with infinite action spaces
on one side, including stochastic games. Even in the case of finite coordinates and finite systems, this
approach leads to simpler results, since there is no need to transform the game as in [MSS04]. In particular,
our first result shows that the system “Ax 6 Bx” has a tropically nonzero solution (possibly with infinite
entries) if and only if the associated game has at least one winning initial state. In the case of Problem 1.1,
a key ingredient of the proof is a non-linear extension due to Nussbaum [Nus86] of the Collatz-Wielandt
characterization of the spectral radius of a matrix with nonnegative entries. Our approach to Problem 1.2
relies on Kohlberg’s theorem and is therefore in the more special setting of polyhedra.

Thus, the results of the present paper allow one to apply game theory algorithms to solve problems of
tropical algebra, but conversely, they also allow one to transfer results from tropical algebra to game theory.
In particular, the set of elements of a max-plus (or min-plus) polyhedron coincides with the set of “bias” or
“potential” vectors which are used classically to certify that the value of a mean payoff game is nonnegative

3



(or nonpositive). Precise structural results on tropical polyhedra are available (including a description by
extreme points and rays, see [AGK11b, AGK11a] and the references therein), and so, our results yield an
explicit representation of the set of potentials.

A related reduction, albeit of a different nature, was recently pointed out by Schewe [Sch09], who showed
that solving a mean payoff game reduces to a feasibility problem in linear programming but with exponentially
large coefficients. The latter reduction appears to be related to the “dequantization” method in tropical
geometry (see in particular the proof of Theorem 1 in [AGK11a]).

Finally, we note that after the submission of this paper, the present results and ideas have been applied in
two further works: in [AGK11b], it is shown that the tropical analogue of Farkas lemma, i.e., checking whether
a tropical linear inequality can be logically deduced from a finite family of tropical linear inequalities, is also
equivalent to a mean payoff game problem, whereas in [GKS10], a reduction of tropical linear programming
to parametric mean payoff games is presented.

1.4. A theorem concerning the tropical rank. It is natural to look for characterizations of tropical
linear independence in terms of determinants. The tropical analogue of the determinant of an n× n matrix
B (with entries in R ∪ {−∞}) is the value of the optimal assignment problem

max
σ





∑

i∈[n]

Biσ(i)



(3)

where the maximum is taken over all the permutations σ of the set [n]. Following Develin, Santos, and
Sturmfels [DSS05], we say that a matrix B with entries in R is tropically singular if the above maximum is
attained by at least two permutations. The same notion was first considered by Butkovič in [But94, But03]
(tropically nonsingular matrices being qualified there of strong regular matrices). We shall indeed use the
following extension of the above definition to the case of matrices B with entries in R∪{−∞}: B is tropically
singular if the above maximum is either attained by at least two permutations, or equal to −∞. As a corollary
of our game reduction of Problem 1.3, we obtain the following result (see Theorem 4.12).

Theorem 1.4. Let A be an m× n matrix with entries in R ∪ {−∞}, with m > n. Then, the columns of A
are tropically linearly independent if and only if A has a tropically non-singular n× n submatrix.

This was first stated by Izhakian, and proved in the square case, in [Izh08]. The proof of the rectangular
case given in the present paper, relying on mean payoff games, was announced in [AGG09]. Meanwhile,
Izhakian and Rowen completed the proof in the rectangular case [IR09b], using a different approach. In fact,
as shown in [AGG09], the “if” part of the result can be deduced from the max-plus Cramer theory [Plu90]
(see also [RGST05, AGG09]), and the square case is related to a result of Gondran and Minoux [GM78].
It should also be noted that the special case of Theorem 1.4 in which the entries of the matrix A are finite
can be derived alternatively from a result of Develin, Santos, and Sturmfels [DSS05, Theorem 5.5], showing
that the Kapranov rank of a matrix is maximal if and only if its tropical rank is maximal. However, the
present game approach (Theorem 4.9 below) yields a pseudo-polynomial algorithm and implies that the
corresponding decision problem (checking whether the tropical rank is maximal) is in NP ∩ co-NP.

What is surprising is that Theorem 1.4 still holds in the rectangular case, since the analogue of this result
in the “signed” case, in which tropical hyperplanes are replaced by sets of the form

H = {x ∈ (R ∪ {−∞})n | max
i∈I

(ui + xi) = max
i∈J

(ui + xi)}

where I and J are disjoint non-empty subsets of [n], and the definition of tropical singularity is modified
accordingly, turns out to be non valid in the rectangular case, as shown by the counter example of [AGG09].
This shows that some tropical linear algebra issues are better behaved when thinking of max-plus numbers
as images by the valuation of complex Puiseux series rather than real ones.

It is instructive to compare the different proofs of Theorem 1.4 in the special case of matrices with finite
entries: the one of [DSS05] relies on a mixed subdivision technique (the “Cayley trick”) combined with
Sperner’s coloring lemma; the one of Izhakian and Rowen [IR09b], uses a reduction to the square case by
a direct inductive argument; the “game” proof that we present here relies on some fixed point type results
(Kohlberg’s theorem or Nussbaum’s Collatz-Wielandt property). There turns out to be a fourth proof which
we include in the final section of this paper, in which the rectangular case is reduced to the square case by a
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direct application of the tropical Helly theorem. Whereas the arguments in [Plu90, Izh08] made in the case
of square matrices can be interpreted in terms of network flows, it should be noted that a general result of
Sturmfels and Zelevinsky [SZ93] showing that the Newton polytope of the product of maximal minors of the
general m× n matrix is not a transportation polytope, unless |m− n| 6 1, indicates that the direct network
flow approach is unlikely to carry over to the rectangular case.

Finally, let us point out that Kim and Rousch [KR05] showed that computing the tropical rank is an
NP-hard problem, whereas our results suggest that the subproblem of checking whether a matrix is of
maximal tropical rank might be easier, because it belongs to NP ∩ co-NP. In addition, it can be solved in
pseudo-polynomial time. More generally, our result implies that for a fixed k, checking whether an m × n
matrix has tropical rank at least n− k reduces to solving a polynomial number (namely

(

n
k

)

) of mean payoff
game problems (Corollary 4.17). Since checking whether the tropical rank is at most k is a polynomial time
problem (Remark 4.18), this suggests that the difficulty of the problem of computing the tropical rank may
be concentrated in instances in which the tropical rank k is such that 1 ≪ k ≪ min(m,n).

2. Preliminary results

2.1. Mean payoff games arising from tropical cones. We first recall some basic definitions concerning
mean payoff games and associate a mean payoff game to a tropical cone. The state space of the game will
turn out to be finite precisely when the cone is polyhedral.

The max-plus semiring Rmax is the set of real numbers, completed by −∞, equipped with the addition
(a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a + b. The name “tropical” will be used in the sequel as
a synonym of “max-plus”.

The reader is referred to [CGQ04, DS04] for more background on max-plus or tropical convexity, and in
particular to [CGQS05, GK11] for the results on external representation.

A tropical closed convex cone can be defined externally by a system of linear tropical inequalities of the
form

max
j∈[n]

(Aij + xj) 6 max
j∈[n]

(Bij + xj), i ∈ I(4)

Here, I is a possibly infinite set, recall that [n] := {1, . . . , n}, and Aij , Bij belong to Rmax. When the
previous system consists of finitely many inequalities, i.e., when I = [m] for some integer m, we obtain a
tropical polyhedral cone. Then, A and B will be thought of as m× n matrices with entries in Rmax. In the
sequel, we shall denote by Mm,n(Rmax) the set of these matrices.

We look for a non-trivial element of the cone, i.e., for a solution x = (xj) ∈ Rn
max of the above system, not

identically −∞. From the algorithmic point of view, the polyhedral case is of primary interest. However,
some of our results will turn out to hold as well in the case of infinite systems of inequalities, and their
relation with non-linear Perron-Frobenius theory will be more apparent in this wider setting.

To study this satisfiability problem, we define the following zero-sum game, in which there are two players,
“Max” and “Min” (the maximizer and the minimizer). The state space consists of the disjoint union of the
set I and the set [n]. The two players alternate their moves. When the current position is i ∈ I, Player
Max must choose the next state j ∈ [n] in such a way that Bij is finite, and receives Bij from Player Min.
If Player Max does not have any available action, i.e., if Bij = −∞ holds for all j ∈ [n], then Player Max
pays an infinite amount to player Min and the game terminates. Similarly, when the current state is j ∈ [n],
Player Min must choose the next state i ∈ I in such a way that Aij is finite, and receives Aij from Player
Max. If Aij = −∞ holds for all i ∈ I, then, player Min pays an infinite amount to player Max and the game
terminates.

When I = [m], the game may be represented by a bipartite (di)graph, with two classes of nodes, [m] and
[n]. The players move alternatively a token on the graph, following the arcs of the graph, which represent
the possible moves. The weight of an arc represent the associated payment, see Example 2.3 below.

We shall often need the following assumptions, which require every player to have at least one available
action in every state.

Assumption 2.1. For all j ∈ [n], there exists i ∈ I such that Aij 6= −∞.

Assumption 2.2. For all i ∈ I, there exists j ∈ [n] such that Bij 6= −∞.
5



Systems of the form (4) can always be transformed to enforce these assumptions. First, the trivial
inequalities xj > xj , for j ∈ [n], can always be added to the original system, which makes sure that
Assumption 2.1 holds. Then, if Bij = −∞ holds for some i ∈ I and for all j ∈ [n], the right hand side of (4)
is identically −∞, and so every variable xj such that Aij 6= −∞ must be equal to −∞. By eliminating the
inequality corresponding to i, we obtain a new system in the remaining variables which is equivalent to the
original one. We also eliminate all the inequalities in which the left-hand side is identically −∞ (which are
trivially satisfied). By performing this elimination step a finite number of times, we eventually arrive at an
equivalent system involving a subset of variables, and satisfying Assumption 2.2.

Given an initial state i and a horizon (number of turns) N , we define vNi to be the value of the corre-
sponding finite horizon game for player Max. The existence of the value is immediate when the horizon is
finite (but the value may be infinite if the set I is infinite, or if Assumption 2.1 or Assumption 2.2 does not
hold).

When both Assumptions 2.1 and 2.2 are fulfilled, we shall also consider the “mean payoff” game, in
which the payoff of an infinite trajectory is defined as the average payment per turn received by player Max.
Formally, we define this average payment as the limsup as the number N of turns goes to infinity of the
payments received plus the opposite of the payments made by Player Max up to turn N divided by N . (When
Assumptions 2.1 or 2.2 do not hold, the payments must be counted up to the termination time if the latter
occurs before time N .) The value of such games was shown to exist by Ehrenfeucht and Mycielski [EM79],
assuming that the state space is finite. This can also be deduced from a theorem of Kohlberg (Theorem 2.4
below), which implies in addition that the value vector of this game coincides with χ(f).

Example 2.3. The matrices

A =





2 −∞
8 −∞

−∞ 0



 B =





1 −∞
−3 −12
−9 5





arising from the system

2 + x1 6 1 + x1

8 + x1 6 max(−3 + x1,−12 + x2)
x2 6 max(−9 + x1, 5 + x2)

(5)

yield the game

2

1

8
−3

−12

0

53

2

1

1

2

−9

in which the rows (states in which Max plays) are denoted by squares and the columns (states in which Min
plays) are denoted by circles. For instance, when in circle state 1, Player Min may move the token to square
state 1, receiving a payment of 2, and then, Player Max has no choice but putting the token on column node
1, getting back a payment of 1 from Player Min. Hence, the mean payoff per turn for Player Max will be
−2 + 1 = −1 if the initial state is the circle node 1, and if Player Min chooses this strategy. However, if
Player Min moves (greedily) the token to square node 2, receiving 8, Player Max may move the token to
circle node 2, paying 12 to Player Min, but then, Player Min can be forced to follow the circuit between
circle node 2 and square node 3, which ensures a mean payoff of 5 per turn unit to Player Max. Using these
observations, one can check that the value of this mean payoff game is −1 if the initial state is circle node 1,
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whereas the value is 5 if the initial state is circle node 2. We will explain below, in Example 3.11, how this
game can be solved analytically.

2.2. Properties of order preserving and additively homogeneous maps. We now recall some basic
properties of the dynamic programming operators arising from the previous games.

We shall think of the collection of rewards (Bij)i∈I, j∈[n] as a kernel, to which we associate the max-plus

linear operator B : (R ∪ {−∞})n → (R ∪ {−∞})I ,

(Bx)i := max
j∈[n]

(Bij + xj), ∀i ∈ I .

When I = [m], (Bij)i∈[m],j∈[n] will be thought of as a matrix in Mm,n(Rmax), and Bx is the product in the
tropical sense of the matrix B and the vector x.

When Assumption 2.2 holds, this operator sends Rn to RI . We define the operator A in the same way.
The residuated operator A♯ from (R ∪ {±∞})I to (R ∪ {±∞})n is defined by

(A♯y)j = inf
i∈I

(−Aij + yi) ,(6)

with the convention (+∞) + (−∞) = +∞. This operator sends (R ∪ {−∞})I to (R ∪ {−∞})n whenever
Assumption 2.1 holds, it sends RI to Rn when in addition I is finite.

The term residuated refers to the property

Ax 6 y ⇐⇒ x 6 A♯y ,(7)

where 6 is the partial order of (R ∪ {±∞})I or (R ∪ {±∞})n. Hence, System (4), which can be rewritten
as Ax 6 Bx, is equivalent to x 6 f(x) where f : (R ∪ {−∞})n → (R ∪ {±∞})n is defined by

f(x) := A♯Bx ,

denoting by concatenation the composition of operators. The map f sends (R ∪ {−∞})n to itself whenever
Assumption 2.1 holds. It sends Rn to Rn when in addition Assumption 2.2 holds and I is finite.

The map f is the dynamic programming operator of the previous game, meaning that the vector vN :=
(vNj )j∈[n] of values of the game in finite horizon can be computed recursively as follows

vN = f(vN−1), v0 = 0 .

More generally, setting v0 := x for some x ∈ Rn determines the value function of a variant of the game, in
which after the last step, Player Min pays to Player Max a final amount xj depending on the final state j.

We shall call min-max functions the self-maps of (R ∪ {−∞})n that are of the form A♯B, when A,B ∈
Mm,n(Rmax). This terminology goes back to Olsder [Ols91] and Gunawardena [Gun94]. However, unlike in
the latter reference, we do not require a min-max function to send Rn to Rn. This generality will be needed
in Section 4.2, in which the games arising from the tropical linear independence problem will turn out to
have occasionally empty sets of actions for Player Max.

Any min-max function f from (R ∪ {−∞})n to itself satisfies the following properties:

f is order-preserving: x 6 y ⇒ f(x) 6 f(y) ∀x, y ∈ (R ∪ {−∞})n ,(8a)

f is additively homogeneous : f(λ+ x) = λ+ f(x) ∀λ ∈ R ∪ {−∞}, x ∈ (R ∪ {−∞})n ,(8b)

f is continuous.(8c)

Here, R∪{−∞} is equipped with the usual topology, defined for instance by the distance (x, y) 7→ | exp(x)−
exp(y)|, and (R ∪ {−∞})n is equipped with the product topology.

When an order-preserving and additively homogeneous map f preserves Rn, it is easily seen to be sup-
norm nonexpansive, meaning that

‖f(x)− f(y)‖ 6 ‖x− y‖, ∀x, y ∈ R
n ,

where ‖x‖ = maxi∈[n] |xi|. A min-max function that preserves Rn is piecewise affine (we can cover Rn by
finitely many polyhedra in such a way that the restriction of the function to each polyhedron is affine).
Hence, the following general result applies in particular to such min-max functions.
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Theorem 2.4 (Kohlberg [Koh80]). A self-map of Rn that is nonexpansive in any norm and piecewise affine
admits an invariant half-line, meaning that there exist two vectors v, η ∈ Rn such that

f(v + tη) = v + (t+ 1)η(9)

for all scalars t large enough.

In the study of mean payoff games, an important issue is to determine the limit

χ(f) := lim
N→∞

fN (0)/N = lim
N→∞

vN/N ,

which gives the additive growth rate of the value of the finite horizon game as a function of the horizon N .
Kohlberg’s theorem implies that the limit χ(f) does exist.

Corollary 2.5. Assume that every player has at least one available action in every state (Assumptions 2.1-
2.2) and that the state space is finite. Then,

χ(f) = η ,

where (v, η) is an arbitrary invariant half-line of f .

Proof. This result is well known in the operatorial approach of zero-sum games (see in particular [Ney03,
RS01a]), we include the (simple) proof for the convenience of the reader. Since f is nonexpansive in the
sup-norm, ‖fN(x)− fN (y)‖/N 6 ‖x− y‖/N tends to 0 as N tends to infinity. It follows that the existence
and the value of the limit

lim
N→∞

fN(x)/N

are independent of the choice of x ∈ Rn. If v, η is an invariant half-line, choosing x = v+ t0η, for some large
enough t0, we deduce that fN(x) = x+Nη, and so, limN→∞ fN(x)/N = η. �

Remark 2.6. If f is an order-preserving and additively homogeneous map preserving Rn, then, it was
observed independently by Rubinov and Singer [RS01b] and by Gunawardena and Sparrow (see [Gun03])
that

f(x) = inf
y∈Rn

(

f(y) + max
j∈[n]

(xj − yj)

)

∀x ∈ R
n .(10)

This shows that f can be represented in the form f = A♯B (the set I is equal to Rn). This applies in
particular to the dynamic programming operator of a stochastic zero-sum game

fj(x) = inf
a∈Aj

sup
b∈Bj

(

rabj +
∑

k∈[n]

P ab
jk xk

)

, j ∈ [n] ,(11)

where [n] is the set of states at which the first player (Min) plays, Aj is the set of actions of this player,
Bj is the set of actions of the second player (Max), rabj the payment made by Min to Max if the actions

a and b are selected in state j, and then, P ab
jk is the probability to move to state k. The map f in (11) is

order preserving, additively homogeneous, and it preserves Rn if for instance the payments rabj are bounded.
Then, it can be represented as in (10). See [FV97] for more background on stochastic games.

2.3. The Collatz-Wielandt property. Some of the main results of this paper rely on a non-linear version
of the Collatz-Wielandt characterization of the spectral radius which appears in Perron-Frobenius theory.

Given any self-map f of (R ∪ {−∞})n that is order-preserving, additively homogeneous, and continuous,
we define the Collatz-Wielandt number of f to be

cw(f) = inf{µ ∈ R | ∃w ∈ R
n, f(w) 6 µ+ w} .(12)

A vector u 6≡ −∞ is a (non-linear) eigenvector of f for the eigenvalue λ ∈ R ∪ {−∞} if

f(u) = λ+ u .

The (non-linear) spectral radius of f is defined as the supremum of its eigenvalues

ρ(f) = sup{λ ∈ R ∪ {−∞} | ∃u ∈ (R ∪ {−∞})n, u 6≡ −∞, f(u) = λ+ u} ,
8



and is itself an eigenvalue of f . We shall also need the following “symmetrical” version of the Collatz-Wielandt
number

cw′(f) := sup{λ ∈ R ∪ {−∞} | ∃u ∈ (R ∪ {−∞})n, u 6≡ −∞, f(u) > λ+ u} ,

as well as the following quantity.

Proposition 2.7. If f is an order-preserving additively homogeneous self-map of (R ∪ {−∞})n, then, for
all x ∈ Rn, the following limit exists and is independent of the choice of x:

χ̄(f) := lim
N→∞

max
j∈[n]

fN
j (x)/N .(13)

Proof. This is a variant of a result established in [Vin97, GK95, GG04] when f preserves R
n. The proof

relies on a simple subadditive argument, which we adapt here for completeness. Although f may not
preserve Rn, it is still nonexpansive on Rn in a generalized sense, meaning that for all x, y ∈ Rn, −‖x −
y‖ + f(x) 6 f(y) 6 ‖x − y‖ + f(x). The same is true if we replace f by its Nth iterate fN , and so,
−‖x − y‖/N + maxj∈[n] f

N
j (x)/N 6 maxj∈[n] f

N
j (y)/N 6 ‖x − y‖/N + maxj∈[n] f

N
j (x)/N , which shows

that the existence and the value of the limit in (13) are independent of the choice of x ∈ R
n. Hence,

we take x = 0 in what follows. Since f is order-preserving and additively homogeneous, the sequence
tN := maxj∈[n] f

N
j (0) is easily seen to be subadditive, meaning that tN+M 6 tN + tM . It follows that the

limit χ̄(f) = limN→∞ tN/N exists. �

Of course, when χ(f) exists, we readily deduce from the definitions that

χ̄(f) = max
j∈[n]

χj(f) .

We next derive the following lemma from a theorem of Nussbaum [Nus86, Theorem 3.1], dealing with
non-linear maps on finite dimensional cones, which implies that cw(f) = ρ(f). When f preserves Rn, the
fact that cw(f) = χ̄(f), together with the final part of the statement of the lemma was proved in [GG04,
Theorem 8]. We refer the reader to [MPN02] for infinite dimensional generalizations.

Lemma 2.8 (Collatz-Wielandt property, compare with [Nus86] and [GG04]). Let f denote a map from
(R ∪ {−∞})n to itself, that is order-preserving, additively homogeneous, and continuous. Then,

cw′(f) = ρ(f) = cw(f) = χ̄(f) .(14)

Moreover, there is at least one coordinate j ∈ [n] such that χj(f) := limN→∞ fN
j (x)/N exists and is equal

to χ̄(f).

Proof. Nussbaum [Nus86, Theorem 3.1] showed that if F is a continuous self-map of a closed convex cone
C in Rn, of nonempty interior, which preserves the order of the cone, and is positively homogeneous, then,
the cone spectral radius of F , which is defined as

max{λ ∈ R+ | ∃u ∈ C \ {0}, F (u) = λu} ,

where R+ denotes the set of nonnegative real numbers, coincides with

inf{µ ∈ R+ | ∃w ∈ int(C), F (w) 6 µw} .(15)

We associate to a map f the map F (x) = exp(f(log x)), where log denotes the map from Rn
+ to (R∪{−∞})n

which does log entrywise (with log(0) = −∞), and exp denotes the inverse of this map. Applying Nussbaum’s
theorem to the map F , we obtain ρ(f) = cw(f).

If w ∈ R
n and µ ∈ R satisfy f(w) 6 µ+w, then, since f is order preserving and additively homogeneous,

we get fN (w) 6 Nµ+w, for all N > 0. It follows that χ̄(f) = limN→∞ maxj∈[n] f
N
j (w)/N 6 µ. Taking the

infimum over all µ and w, we deduce that χ̄(f) 6 cw(f).
If f(u) > λ+ u for some u ∈ (R ∪ {−∞})n, not identically −∞, let w be a vector obtained by replacing

every infinite entry of u by an arbitrary finite entry. Since u 6 w, we deduce that fN (w) > fN(u) > Nλ+u.
Since maxj∈[n] uj 6= −∞, we get χ̄(f) = lim

N→∞
maxj∈[n] f

N
j (w)/N > lim

N→∞
(Nλ + maxj∈[n] uj)/N = λ. It

follows that λ 6 χ̄(f). Taking the supremum over all λ and u, we deduce that cw′(f) 6 χ̄(f). We also
observe that by definition, ρ(f) 6 cw′(f). Hence, we obtain ρ(f) 6 cw′(f) 6 χ̄(f) 6 cw(f) = ρ(f), from
which we deduce the equality (14).
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Finally, let us denote by cw′
j(f) the supremum of the λ such that there exists u ∈ (R∪{−∞})n such that

uj is finite and f(u) > λ + u. By definition cw(f) = maxj∈[n] cwj(f), hence there exists j ∈ [n] such that
cw(f) = cwj(f). Let us fix such an index j. For all λ, u and w as above and such that uj is finite, and for
all x ∈ Rn, we deduce from ‖x − w‖ + fN(x) > fN(w) > fN (u) > Nλ + u that lim infN→∞ fN

j (x)/N >

λ. Taking the supremum over λ and u, it follows that lim infN→∞ fN
j (x)/N > cw′(f) = χ̄(f). Since

lim infN→∞ fN
j (x)/N 6 lim supN→∞ fN

j (x)/N 6 χ̄(f), we deduce that the limit χj(f) exists and is equal to
χ̄(f). �

Remark 2.9. For all integers k, it follows from the definition of χ̄(f) that χ̄(fk) = kχ̄(f). Hence, the same
is true for ρ(f), cw′(f), and cw(f).

Remark 2.10. When f preserves Rn, all the previous notions can be dualized. Indeed, it is known that
an order preserving, additively homogeneous self-map f of Rn admits a unique continuous extension to
(R ∪ {−∞})n, which we will still denote by f , see [BNS03]. Similarly, f admits a unique continuous
extension to (R ∪ {+∞})n, which we also denote by f . Then, the following dual quantities

sup{µ ∈ R | ∃w ∈ R
n, f(w) > µ+ w} ,

inf{λ ∈ R ∪ {+∞} | ∃u ∈ (R ∪ {+∞})n, u 6≡ +∞, f(u) = λ+ u} ,

inf{λ ∈ R ∪ {+∞} | ∃u ∈ (R ∪ {+∞})n, u 6≡ +∞, f(u) 6 λ+ u} ,

χ(f) := lim
N→∞

min
j∈[n]

fN
j (x)/N, x ∈ R

n,

are readily seen to coincide (apply Lemma 2.8 to the map x 7→ −f(−x)).

Remark 2.11. When f preserves Rn, we get χ(f) = cw(f) 6 maxi∈[n](fi(w) − wi) < ∞ for any vector
w ∈ Rn. By duality (Remark 2.10), χ(f) > −∞. Since ρ(f) = χ(f) > χ(f), this implies in particular that
ρ(f) is finite.

2.4. From spectral theory to mean payoff games. We now interpret the previous results in terms of
games. Whereas the “nonexpansive maps” approach of zero-sum games is well known [Ney03, RS01a], the
significance in terms of games of the Collatz-Wielandt property that we show in Proposition 2.12 does not
seem to have been noted previously (it shows that the value is always well defined if one player is allowed to
select the initial state, without the usual compactness and regularity assumptions).

We call positional strategy of Player Max a map σ : I → [n] such that Biσ(i) is finite for all i ∈ I (so
σ is a rule, telling to Player Max to move to state σ(i) when the current state is i). Similarly, we call
positional strategy of Player Min a map π : [n] → I such that Aπ(j)j is finite for all j ∈ [n]. We denote by
Σmax and Σmin the set of such strategies, respectively. We associate to the positional strategies σ and π the
“one-player” dynamic programming maps gσ and hπ,

gσj (x) := inf
i∈I

(−Aij +Biσ(i) + xσ(i))

hπ
j (x) = −Aπ(j)j + max

k∈[n]
(Bπ(j)k + xk) .

Hence, (gσ)Nj (0) represents the minimal amount that Player Min will have to pay to Player Max in N steps,
if the initial state is j, provided that Player Max applies the positional strategy σ. A dual interpretation
holds for (hπ)Nj (0).

By construction of gσ and hπ, we have

f(x) = sup
σ∈Σmax

gσ(x) = inf
π∈Σmin

hπ(x) , ∀x ∈ R
n ,(16)

moreover, there is at least one σ, depending on x, attaining the supremum (take σ(i) = k where k attains
the maximum in maxk(Bij + xk). Similarly, the infimum is attained by at least one π, also depending on x,
when the set I is finite.

The following proposition, which is a consequence of the Collatz-Wielandt property, shows that χ̄(f) can
be interpreted as the value of a variant of the mean payoff game in which the choice of the initial state
belongs to Player Max. The lack of symmetry between both players is due to the fact that the set of states
in which Max plays, i.e., the set I, can be infinite.
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Proposition 2.12. Make Assumptions 2.1, 2.2. Then, Player Max can choose an initial node j ∈ [n],
together with a positional strategy, so that he wins a mean payoff of at least χ̄(f), whatever strategy Player
Min chooses. Moreover, for all λ > χ̄(f), Player Min can choose a positional strategy so that she looses a
mean payoff no greater than λ for all initial nodes j ∈ [n], whatever strategy Player Max chooses.

Proof. Let us take arbitrary scalars λ, µ such that λ > µ > χ̄(f). Since χ̄(f) = cw(f), we can find a vector
u ∈ Rn such that f(u) 6 µ+ u. Since λ > µ and

fj(u) = inf
i∈I

(

−Aij + max
k∈[n]

(Bik + uk)

)

(17)

we can choose, for all j ∈ [n], an index i = π(j) such that −Aij +maxk∈[n](Bik + uk) is close enough to the
above infimum, and then,

hπ(u) 6 λ+ u .

Since hπ is order preserving and additively homogeneous, an inequality of the form hπ(u) 6 λ + u implies
that (hπ)N (u) 6 Nλ+ u. Moreover, since 0 6 ‖u‖+ u, we deduce that (hπ)N (0) 6 ‖u‖+ (hπ)N (u), and so,

(hπ)N (0) 6 2‖u‖+Nλ .

Thus, if Player Min applies the positional strategy π, and if the initial state is j ∈ [n], she is guaranteed to
loose no more than

lim sup
N

(hπ)Nj (0)/N 6 λ ,

whatever strategy Player Max selects.
Take now u to be an eigenvector of f for the eigenvalue ρ(f), so that f(u) = ρ(f) + u. Since the maxima

arising in the expressions (17) are taken over finite, non-empty, sets, Player Max can choose a positional
strategy σ in such a way that

f(u) = gσ(u) .

Then,

fN (u) = (gσ)N (u) = Nρ(f) + u .

Moreover, we can write 0 > α + u, where α := −maxk∈[n] uk ∈ R, and so (gσ)N (0) > α + (gσ)N (u) =
α+Nρ(f) + u. It follows that

lim inf
N

(gσ)Nj (0)/N > ρ(f) if uj 6= ∞ .

Hence, the positional strategy σ guarantees to Player Max the win of a mean payoff of at least ρ(f) if the
initial state i is such that ui 6= −∞. �

When the set of actions is finite on both sides, the previous analysis can be simplified. Actually, we have
the following strong duality result.

Theorem 2.13 (Coro. of [Koh80], or [GG98a]). Make Assumptions 2.1, 2.2, and assume that I is finite
(so, both players have finite actions sets). We have

χ(f) = max
σ

χ(gσ) = min
π

χ(hπ) ,(18)

where the supremum and the infimum are taken over the positional strategies σ ∈ Σmax and π ∈ Σmin of
players Max and Min, respectively. In particular, Player Max can choose a positional strategy, so that he
wins a mean payoff of at least χj(f) if the initial node is j, whatever strategy Player Min chooses. Similarly,
Player Min can choose a positional strategy, so that she looses a mean payoff no greater than χj(f) if the
initial node is j, whatever strategy Player Max chooses.

The first (and main) statement of this theorem appeared in [GG98a], as a consequence of the termination of
a policy iteration algorithm for mean payoff games, building on the ideas of [CTGG99]. A simpler argument
which applies more generally to stochastic games with perfect information and finite state and action spaces
appeared in [GG98b]. Actually, the result can be quickly derived from the existence of invariant half lines
established by Kohlberg [Koh80]. We include the latter derivation here, since it shows how optimal strategies
are effectively obtained from invariant half-lines. Note that Theorem 2.13 is related to, but different from,
a strong duality theorem of Liggett and Lippman [LL69], see Remark 2.14 below.
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Proof. The map f 7→ χ(f) is order preserving. For all σ, we have gσ 6 f , and so

χ(gσ) 6 χ(f), ∀σ .

Let v, η denote an invariant half-line of f , so that f(v + tη) = v + (t+ 1)η for t large enough. We shall use
the fact that the set of scalar affine functions t 7→ ϕ(t) := a + tb, with a, b ∈ R, is totally ordered for the
pointwise ordering 6 in a neighborhood of ∞, which is such that ϕ1 6 ϕ2 if the inequality φ1(t) 6 ϕ2(t)
holds for all t large enough. Actually, this order is nothing but the lexicographic order on the coefficients,
i.e., ϕ1(t) = a1 + tb1 6 ϕ2(t) = a2 + tb2 if b2 > b1 or b2 = b1 and a2 > a1. In particular, the supremum or
the infimum of a finite family of affine functions of t coincides with one of these affine functions of t, for t
large enough. It follows that, for every i ∈ I, we can choose σ(i) such that

max
k∈[n]

(Bik + vk + tηk) = Biσ(i) + vσ(i) + tησ(i)

holds for t large enough. Then, v + (t + 1)η = f(v + tη) = gσ(v + tη) for t large enough, showing that v, η
is also an invariant half-line of gσ. It follows from Corollary 2.5 that χ(f) = χ(gσ), showing that σ attains
the maximum in (18). The argument for π is similar. �

Remark 2.14. Theorem 2.13 should be compared with the strong duality theorem of Liggett and Lipp-
man [LL69], which concerns the value of the mean payoff game, in which the payment of an infinite run
is defined as the limsup of the payment per turn as the number of turns tends to infinity, instead of χ(f),
defined to be the limit of the value per turn of the finite horizon game. However, the existence of invariant
half-lines (Kohlberg’s theorem) implies that the limit and value operations commute, i.e., that χ(f) coin-
cides with the value of the mean payoff game. In fact, the strategies σ and π constructed in the proof of
Theorem 2.13 are easily seen to be optimal for the latter game. Hence, knowing Kohlberg’s theorem, one can
deduce Theorem 2.13, or rather, its generalization to the case of stochastic games with perfect information
and finite state and action spaces, from the result of Liggett and Lippman [LL69] and vice versa.

Remark 2.15. Theorem 2.13 provides a good characterization in the sense of Edmonds of the limit value
per turn, χ(f). The strategy σ attaining the maximum in (18) provides a concise certificate allowing one
to make sure that χ(f) is greater than or equal to a given vector. Indeed, gσ is the dynamic programming
operator of a one player problem, and so, χ(gσ) can be computed in polynomial time, by reduction to the
maximal circuit mean problem [Kar78]. Similarly, the strategy π attaining the minimum in (18) provides a
concise certificate allowing one to make sure that χ(f) is smaller than or equal to a given vector. This is
illustrated in Example 3.12 below.

3. The correspondence between tropical convexity and mean payoff games

3.1. The reductions. We now come back to our original system of inequalities (4), written as Ax 6 Bx for
brevity. We associate to this system the mean payoff game with dynamic programming operator f = A♯B.

Proposition 2.12 makes it legitimate to say that Player Max has a winning position whenever χ̄(f) > 0
(i.e., Player Max can choose the initial state in such a way that the mean payoff game has a nonnegative
value). More generally, we shall say that the initial state i is winning whenever χi(f) does exist and is
nonnegative.

Our first result, which we deduce from the Collatz-Wielandt property (Lemma 2.8), does not require the
number of inequalities to be finite.

Theorem 3.1. Under Assumption 2.1, the system of linear tropical inequalities Ax 6 Bx has a solution
x ∈ Rn

max non-identically −∞ if and only if Player Max has a winning state in the mean payoff game with
dynamic programming operator f(x) = A♯Bx.

Proof. Due to the residuation property (7), we have that Ax 6 Bx if and only if x 6 f(x).
Hence, if the system Ax 6 Bx has a solution x ∈ Rn

max not identically −∞, then, cw′(f) > 0, and so,
by Lemma 2.8, χ̄(f) > 0, showing that Player Max has a winning state. Conversely, if Player Max has a
winning state, ρ(f) = χ̄(f) > 0, and so, there exists a vector u ∈ (R ∪ {−∞})n, not identically −∞, such
that f(u) = ρ(f) + u > u. Then, Au 6 Bu. �

Actually, by using Kohlberg’s invariant half-lines, instead of the Collatz-Wielandt type property of
Lemma 2.8, we arrive at the following more precise result when the number of inequalities is finite.
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Theorem 3.2. Let Assumptions 2.1 and 2.2 be satisfied, and suppose that the system Ax 6 Bx consists of
finitely many inequalities (I = [m]). Consider the polyhedral cone P := {x ∈ Rn

max; Ax 6 Bx}, and define
the support S of P to be the union of the supports of the elements of P :

S := {j ∈ [n]; ∃u ∈ P, uj 6= −∞} .

Then S is a support of an element of P , that is there exists u ∈ P such that S = {j ∈ [n]; uj 6= −∞}.
Moreover, S coincides with the set of initial states with a nonnegative value for the associated mean payoff
game, that is:

(19) S = {j ∈ [n]; χj(f) > 0} ,

where f : (R ∪ {−∞})n → (R ∪ {−∞})n is such that f(x) = A♯Bx.

Proof. The first assertion follows from the max-plus convexity of P , which is itself due to the max-plus

linearity of the maps A and B. Indeed, for all j ∈ S, let u(j) be an element of P such that u
(j)
j 6= −∞. Then

v := supj∈S u(j) is an element of P since Av = supj∈S Au(j) 6 supj∈S Bu(j) = Bv, and vj 6= −∞ for all
j ∈ S. Hence, S ⊂ {j ∈ [n]; vj 6= −∞} ⊂ S, which shows that S is the maximal support of an element of P .

In order to prove the second assertion, let us denote by T the right hand side of (19). Let u ∈ P . Due
to the residuation property (7), we deduce that u 6 f(u). It follows that u 6 fN (u), for all N . Hence,
as in the proof of Lemma 2.8, considering a vector w obtained by replacing every infinite entry of u by an
arbitrary finite entry, we obtain that χi(f) = lim

N→∞
fN
i (w)/N > lim

N→∞
fN
i (u)/N > lim

N→∞
ui/N = 0 as soon

as ui 6= −∞. It follows that S ⊂ T .
Conversely, let v, η denote an invariant half-line of f (given by Theorem 2.4), so that f(v+tη) = v+(t+1)η

for t large enough, and χ(f) = η (by Corollary 2.5). Then, A(v + (t+ 1)η) 6 B(v + tη), i.e.

max
j∈[n]

(Aij + vj + (t+ 1)ηj) 6 max
j∈[n]

(Bij + vj + tηj) , i ∈ [m] .(20)

Let u ∈ Rn
max be such that uj = vj for all j ∈ T , and uj = −∞ for all j /∈ T . We shall show that, for t large

enough, A(u + tη) 6 B(u+ tη), or equivalently

max
j∈T

(Aij + vj + tηj) 6 max
j∈T

(Bij + vj + tηj), i ∈ [m] .(21)

Indeed, since ηj > 0 when uj 6= −∞, we deduce that A(u + tη) 6 A(u + (t + 1)η) 6 A(v + (t + 1)η) for
all t > 0. Moreover, by definition of T , we get that:

(22) max
j∈T c

(Bij + vj + tηj) 6 M + tµ ∀t > 0 and i ∈ [m],

where T c denotes the complement of T in [n], µ = maxj∈T c ηj < 0 and M is a real constant. Hence,
using (20), we obtain, for all t large enough:

(23) [A(u+ tη)]i 6 max([B(u+ tη)]i,M + tµ) .

Again, using that ηj > 0 when uj 6= −∞, we deduce that Au 6 A(u + tη) 6 Au + tχ̄(f) for all t > 0.
When [Au]i = −∞, this implies that [A(u + tη)]i = −∞ for all t > 0, so that [A(u + tη)]i 6 [B(u + tη)]i.
Otherwise, [Au]i 6= −∞, then M + tµ < [Au]i 6 [A(u+ tη)]i for t large enough, and by (23), we obtain that
[A(u + tη)]i 6 [B(u + tη)]i.

This shows that A(u+ tη) 6 B(u+ tη) holds for t large enough. Fixing such a t, we get that u+ tη ∈ P .
Since v ∈ Rn, the support of u+ tη is equal to T . We have proved that T ⊂ S, and so, T = S. �

Remark 3.3. Theorem 3.2 shows in particular that S is the maximal support of an element of P .

The case of a full support in Theorem 3.2 leads to the following result, which was already pointed out by
Dhingra and Gaubert in [DG06].

Corollary 3.4 ([DG06, §IV, C]). Make Assumptions 2.1 and 2.2, and suppose that the system Ax 6 Bx
consists of finitely many inequalities. Then, this system has a solution x ∈ Rn if and only if all the initial
states of the associated game have a nonnegative value, i.e.,

χ(f) > 0 .

13



Rather than a tropical polyhedral cone, we now consider a tropical polyhedron P , which is defined by
systems of affine tropical inequalities of the form

max(max
j∈[n]

(Aij + xj), ci) 6 max(max
j∈[n]

(Bij + xj), di), i ∈ [m](24)

where the matrices A,B are as above and ci, di ∈ Rmax.
As in the case of classical convexity, polyhedra can be represented by polyhedral cones, the latter being

the projective analogues of the former affine objects. So, we construct new matrices Â and B̂ by completing
the matrices A and B by an (n+1)th column, in such a way that Âi,n+1 = ci and B̂i,n+1 = di, for all i ∈ [m].

We now define the map f̂(y) := Â♯B̂y for all y ∈ (R ∪ {−∞})n+1.

Theorem 3.5. The tropical polyhedron P defined by (24) is nonempty if and only if the value of the mean

payoff game with dynamic programming operator f̂ , starting from the initial state n+1, is nonnegative, i.e.,

χn+1(f̂) > 0. �

Proof. For any x ∈ Rn
max, we define the vector x̂ by completing the vector x by an (n+1)th coordinate equal

to 0. Then,

x ∈ P ⇐⇒ x̂ ∈ C := {y ∈ R
n+1
max | Ây 6 B̂y} .

Moreover, if y ∈ C is such that yn+1 6= −∞, then the vector x ∈ R
n
max such that xi = yi − yn+1 for i ∈ [n]

belongs to P . Hence, the polyhedron P is nonempty if and only if there exists y in the polyhedral cone C
such that yn+1 6= −∞.

We may assume, perhaps after some transformations, that the matrices Â, B̂ satisfy Assumptions 2.1
and 2.2. Then, applying Theorem 3.2 to Â, B̂ and C, we readily obtain the assertion of the theorem. �

Note that this theorem shows that the emptyness problem for (affine) tropical polyhedra reduces to
checking whether a mean payoff game has a specific winning state.

The next theorem yields the converse reduction.

Theorem 3.6. Let f = A♯B, with A,B ∈ Mm,n(Rmax), denote the dynamic programming operator of a
mean payoff game (thus Assumptions 2.1 and 2.2 are satisfied). Then, for every r ∈ [n] and λ ∈ R, the
inequality χr(f) > λ holds if and only if the following tropical polyhedron is non-empty:

Pr := {y ∈ R
J
max | λ+max(max

j∈J
(Aij + yj), Air) 6 max(max

j∈J
(Bij + yj), Bir), ∀i ∈ [m]} ,

where J := [n] \ {r}.

Proof. Note first that χ(f) = λ + χ(g), where g is the dynamic map of the mean payoff game obtained by
adding the constant λ to every entry of A. Thus, it suffices to consider the case in which λ = 0. Then,
Theorem 3.2 shows that χr(g) > 0 if and only if the polyhedron

P := {x ∈ R
n
max | max

j∈[n]
(Aij + xj) 6 max

j∈[n]
(Bij + xj)}

admits a solution x such that xr 6= −∞. Setting yj = xj − xr for j ∈ J = [n] \ {r}, we get that y ∈ Pr, and
vice versa. �

Corollary 3.7. Each of the following problems:

(1) Is an (affine) tropical polyhedron empty?
(2) Is a prescribed initial state in a mean payoff game winning?

can be transformed in linear time to the other one.

Remark 3.8. We could use Theorem 3.6 together with a dichotomy argument to compute the value of a
mean payoff game using an oracle solving the emptyness problem for tropical polyhedra.

In some circumstances, the matrices A,B may have integer coefficients, and we may be only interested in
the elements of a tropical polyhedron with integer (or −∞) coordinates. The following result shows that in
this case, the feasibility problems over the integers and over the reals are equivalent.
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Proposition 3.9. Let A,B be two m× n matrices with entries in Z ∪ {−∞}. Then, if the polyhedron

P := {x ∈ R
n
max | max

j∈[n]
(Aij + xj) 6 max

j∈[n]
(Bij + xj), ∀i ∈ [m]}

contains a vector y with entries in R ∪ {−∞}, it also contains a vector z with entries in Z ∪ {−∞} and
precisely the same set of indices (positions) of finite coordinates.

Proof. Without loss of generality, we assume that all the coordinates of y are finite (otherwise, it suffices
to consider the pre-image of the polyhedron P by the injective map x ∈ RJ

max 7→ x̂ ∈ Rn
max where J is set

of indices of finite entries of y and [x̂] is obtained by completing x by −∞ entries: [x̂]j = xj for j ∈ J
and [x̂]j = −∞ for j 6∈ J). Then, we must show that P contains a vector z ∈ Zn. The condition that
y ∈ P may be written as y 6 f(y) where f := A♯B. Moreover, since y ∈ Rn is such that y 6 f(y), it
suffices to add or eliminate inequalities in the definition of P in order to obtain matrices A and B satisfying
Assumptions 2.1 and 2.2. Hence, the map f can be assumed to preserve R

n. Then, it is nonexpansive in
the sup-norm, and so does the map g(x) := min(f(x), x). Since y 6 f(y), we have g(y) = y. Consider
now the orbit zk = gk(0), recalling that gk denotes the kth iterate of g. Since g is nonexpansive, we have
‖zk − y‖ = ‖gk(0)− gk(y)‖ 6 ‖y‖, which shows that zk is bounded as k tends to infinity. By definition of g,
we have z0 > z1 > · · · . Hence the sequence zk is converging to some element of Rn. Since the coefficients
Aij and Bij are integers (or −∞), the map g preserves Zn, and so, the sequence zk must be ultimately
stationary, meaning that zk+1 = g(zk) = zk for some k. It follows that zk 6 f(zk), and so, P contains the
vector zk which has (finite) integer coordinates. �

Since every affine polyhedron in dimension n can be represented by a polyhedral cone in dimension n+1
by the trick which we used in the proof of Theorem 3.5, the following is obtained as an immediate corollary.

Corollary 3.10. Let A,B be two m× n matrices with entries in Z ∪ {−∞}, and let c, d be two vectors of
dimension n with entries in Z ∪ {−∞}. Then, if the polyhedron

P := {x ∈ R
n
max | max(max

j∈[n]
(Aij + xj), ci) 6 max(max

j∈[n]
(Bij + xj), di), ∀i ∈ [m]}

contains a vector y with entries in R ∪ {−∞}, it also contains a vector z with entries in Z ∪ {−∞} and
precisely the same set of indices of finite coordinates. �

Example 3.11. Let us illustrate Theorems 3.1 and 3.2 on the base of Example 2.3. An invariant half-line
of f is given by

v = (0, 0)T , and η = (−1, 5)T

The vector
v′ = (−∞, 0)T

is a solution of (4). The fact that η1 = −1 < 0 implies that there is no finite solution. (Recall that invariant
half-lines can be obtained from several mean payoff game algorithms, including [DG06].)

Example 3.12. We now give a geometrical illustration of Theorem 3.2. Let a denote a real parameter, and
consider the three inequalities

x1 6 a+max(x2 − 2, x3 − 1) (H1)

−2 + x2 6 a+max(x1, x3 − 1) (H2)

max(x2 − 2, x3 − a) 6 x1 + 2 (H3)

the tropical half-spaces (Hi) and their intersection being shown in Figure 2, for a ∈ {1,−1/2,−3/2}. Here,
each finite vector x ∈ R ∪ {−∞}3 is represented by its intersection with the hyperplane x1 + x2 + x3 = 0,
thus, vectors with −∞ coordinates correspond to points at infinity in this picture.

The associated game is shown in Figure 1. When a = 1, an invariant half-line of f is

v = (−1.5, 0.5, 0)T , η = (1.5, 1.5, 1.5) .

Choosing a positional strategy of Max is equivalent to selecting only one output arc in each square state.
Such a strategy σ is shown in Figure 1 (middle). The value of the one player game in which σ is fixed can
be easily seen to be (2a+1)/2. This corresponds to the payment-per-turn ratio of the circuit shown in bold
(recall that the weights of the arcs from a circle to a square nodes must be counted negatively, whereas the
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weights of arcs from square to circle nodes count positively; moreover, each arc counts for a half-turn). There
is in fact another circuit, from circle node 3 to square node 2, and back, which has a payment-per-turn ratio
of a+1; since a+1 > (2a+1)/2, the latter never arises in an optimal reponse of Player Min to the strategy
σ. By Theorem 2.13, we have χi(f) > χi(g

σ) = (2a + 1)/2 for all i, which by Theorem 3.2, implies that
the intersection of the three half-spaces H1 ∩ H2 ∩ H3 is not reduced to the identically −∞ vector for all
a > −1/2, which can be checked geometrically in Figure 2.

Similarly, choosing a positional strategy of Min is equivalent to selecting only one output arc in each circle
state. Such a strategy π is shown in Figure 1 (right). Whenever Min chooses this strategy, Max has no
better choice than going to the same circuit in bold, showing that χi(f) 6 χi(h

π) = (2a + 1)/2 for all i.
Thus, χi(f) = (2a+1)/2 for all i ∈ [3]. In particular, χ(f)i = χi(h

π) < 0 for a < −1/2, and so, the strategy
π certifies that the intersection H1 ∩H2 ∩H3 is reduced to the identically −∞ vector in this case.

3
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3 3
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1 1
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a− 1a− 1a− 1
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a− 1 a− 1 a− 1

Figure 1. Game associated with the family of tropical half-spaces Hi, 1 6 i 6 3 in Ex-
ample 3.12 (left). Positional strategies of Max (middle) and Min (right), both with a mean
payoff of (2a + 1)/2, corresponding to the circuit shown in bold (the strategies avoid the
dotted arcs).
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Figure 2. Example 3.12 (cont.); a = −3/2, a relative neighborhood of the boundary of
each half-space is shown in gray, the intersection does not contain any finite vector (left);
a = −1/2, the intersection is a tropical convex cone with two generators, represented by a
half-line in bold (middle); a = 1, the intersection of half-spaces H1 ∩H2 ∩H3 is the region
in gray (right).
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Remark 3.13. Theorem 3.2 shows that an initial circle state j ∈ [n] is winning if and only if there is a
vector x in the associated tropical polyhedral cone

P := {x ∈ (R ∪ {−∞})n | Ax 6 Bx} ,

such that xj 6= −∞. As noted in Remark 2.10, all the present constructions admit dual versions. In
particular, when the action states are finite on both sides, so that I = [m], it can be checked that a square
state i ∈ [m] is winning for Player Min if and only if there is a vector y, in the dual tropical polyhedral cone

P ′ := {y ∈ (R ∪ {+∞})n | A♯y 6 B♯y}

such that yi 6= +∞ (P ′ is a convex cone in the min-plus sense). To see this, it suffices to consider the one
day operator f(y) = BA♯y, and note that BA♯y 6 y holds if and only if A♯y 6 B♯y.

Remark 3.14. We note that solving the system of tropical inequalities Ax 6 Bx or the system of tropical
equalities Ax = Bx are computationally equivalent problems: each of the two problems trivially reduces to
the other one. Indeed, Ax 6 Bx holds if and only if Cx = Bx, where C denotes the matrix obtained by
taking the pointwise maximum of A and B. Conversely, Ax = Bx holds if and only if we have both Ax 6 Bx
and Bx 6 Ax, which is again a system of the form (4), but with 2m inequalities instead of m.

Remark 3.15. In [AM09], Atserias and Maneva show that a mean payoff game has a nonnegative mean
payoff vector if and only if an associated “max-atom problem” [BNgC08b] has a finite integer solution. The
latter is equivalent to finding a vector u ∈ Zn such that z 6 f(z). This is analogous to the result of [DG06]
(Corollary 3.4 here), the condition that u ∈ Rn being replaced by u ∈ Zn. This could also be obtained as
a consequence of the present Corollary 3.4, by using Proposition 3.9, showing that solvability over the reals
and over the integers are equivalent if the data are integer.

3.2. A power algorithm to check whether Player Max has a winning state. As it is mentioned in the
introduction, the problem of computing the value of a mean payoff game with finite state and action spaces
is a well studied one, for which several algorithms with a fast experimental average case execution time are
known [GKK88, CTGG99, GG98a], although the complexity of the problem is still unsettled [JPZ08]. Zwick
and Paterson [ZP96, Theorem 2.3] showed that the value iteration allows one to determine the value (the
vector χ(f)) of a mean payoff game in pseudo-polynomial time, assuming that the instantaneous payments,
i.e., here, the finite entries Aij and Bij , are integers.

However, to solve Problems 1.1 or 1.3, we only need to decide whether there is one winning state, and
then, the value iteration algorithm can be refined by exploiting the Collatz-Wielandt property, which leads
to the algorithm that we next describe.

We assume here that I = [m], that Assumptions 2.1 and 2.2 hold, take f = A♯B, and set

g(x) = min(f(x), x) .

Lemma 3.16. We have χ̄(g) > 0 if and only if χ̄(f) > 0.

Proof. Since g 6 f , we have gN (x) 6 fN (x) for all N and for all x, and so, χ̄(g) 6 χ̄(f). Hence, χ̄(g) > 0
implies χ̄(f) > 0. To show the converse, let us take a vector u ∈ (R ∪ {−∞})n, not identically −∞, such
that f(u) = ρ(f)+u. If χ̄(f) > 0, then, ρ(f) = χ̄(f) > 0, and so, g(u) = min(ρ(f)+u, u) = u, which implies
that χ̄(g) = ρ(g) > 0. �

Observe that if χ̄(g) < 0, we must have χ̄(g) 6 −1/(n+m). Indeed, since the mean payoff game admits
optimal positional strategies, ρ(g) must be equal to the weight-to-length ratio of an elementary circuit in
the graph of the game, and such a circuit must have a length at most n+m and a negative integer weight.

Define now the sequence

x0 = 0, xk+1 = g(xk) .(25)

We shall make several observations.

(1) If xk
j < 0 for all j ∈ [n], then, χ̄(g) < 0.

Indeed, we have cw(gk) 6 maxj∈[n](x
k
j − x0

j) < 0, and since, by Remark 2.9, cw(gk) = k cw(g),
we deduce that χ̄(g) = cw(g) < 0.
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(2) If χ̄(g) < 0, then xk
j < 0 holds for all j ∈ [n] as soon as k > K := 2(n+m)2M + 1, where M is the

maximal modulus of the integers appearing as the finite coefficients of A,B.
Indeed, Theorem 2.2 of [ZP96] shows that xk

i 6 kχi(g) + 2(n+m)M . Hence, if χ̄(g) < 0, we get
xk
i 6 −k/(n+m) + 2(n+m)M , and the result follows.

(3) If xk+1 = xk, then, we readily conclude that χ̄(g) = ρ(g) > 0, since xk ∈ Rn (by the assumptions on
A and B, f preserves Rn).

(4) Let Jk := {j ∈ [n] | xk+1
j < xk

j }, assume that Jk is non-empty and different from [n], and define yk

by

ykj =

{

xk
j if j ∈ [n] \ Jk

−∞ otherwise

By construction, yk is a non-identically −∞ vector, and it is a candidate to be a fixed point of g. If
g(yk) = yk, we must have χ̄(g) > 0.

The previous observations justify the following power type algorithm, which consists in computing the se-
quence xk. If, for some k, Condition (1) is satisfied, we stop the algorithm, xk being a certificate that
χ̄(g) < 0. Similarly, if for some k, Condition (3) or Condition (4) is satisfied, we stop the algorithm, xk or
yk being a certificate that χ̄(g) > 0. Finally, if step k = K is reached, we must have χ̄(g) > 0 and stop the
algorithm.

This algorithm requires at most K iterations, and since one iteration takes a linear time, the algorithm
is pseudo-polynomial. However, the practical interest of testing Conditions (3) or (4) in addition to Con-
dition (1) is that they can frequently be met before the termination time K is reached. A more precise
complexity analysis is beyond the scope of this paper.

Remark 3.17. The previous power algorithm can be initialized with an arbitrary vector x0 ∈ Rn. This
reduces to the former case if we replace f(x) by x0 + f(x− x0). Then, the payments and so the constant M
must be modified accordingly, and the stopping condition (1) becomes xk

j < x0
j for all j ∈ [n].

4. Mean payoff games expressing tropical linear independence

4.1. Extension of the tropical semiring and linear independence. In tropical algebra, the set of
“zeros” of an expression is generally defined by the requirement that the maximum of the terms arising
in this expression is attained at least twice. The notation “∗ = 0” is often used in this sense informally.
This notation can in fact be given a formal meaning, by using an extension of the tropical semiring, which
was introduced by Izhakian [Izh08]. The latter may be thought of as the “complex” analogue of the “real”
(signed) extension of the tropical semiring introduced by M. Plus [Plu90]. In a nutshell, the “numbers”
of the extension of Izhakian carry an information reminding whether the maximum of an expression is
attained twice, whereas the “numbers” of the extension of M. Plus carry a sign information, reminding
whether the maximum of a signed formal expression is attained by a positive term, by a negative one,
or both. The approach of [Izh08] has been pursued in several works of Izhakian and Rowen like [IR09a],
whereas the authors have studied in [AGG09] semirings with an abstract involution, in order to unify both
approaches. Such extensions provide a convenient notation, and, as shown in [Plu90, AGG09], they allow
one to perform elimination arguments, as in the Gauss algorithm, while staying at the tropical level, and to
obtain automatically polynomial identities over semirings.

Although our primary interest is in the basic max-plus case, we shall establish our results in the framework
of the extended tropical semiring, which leads to slightly more general results. The reader interested only
by the max-plus case may skip the present section, and specialize the further sections by assuming that the
matrices have entries in the max-plus semiring rather than in its extension.

The presentation which follows is a simplified version of [AGG09].

Definition 4.1. Let N2 be the semiring which is the quotient of the semiring N of nonnegative integers by
the equivalence relation which identifies all numbers greater than or equal to 2, and denote N

∗
2 = N2 \ {0}

and R∗
max = Rmax \ {−∞}. The extended tropical semiring is the subset of N2 × Rmax:

Te := (N∗
2 × R

∗
max) ∪ {(0,−∞)}
18



endowed with the addition

(a, b)⊕ (a′, b′) =







(a+ a′, b) if b = b′

(a, b) if b > b′

(a′, b′) if b < b′

and the multiplication

(a, b)⊙ (a′, b′) = (a · a′, b+ b′).

The extended tropical semiring as defined above is a semiring with zero 0 := (0,−∞) and unit 1 := (1, 0)
and it is isomorphic to the extended tropical semiring defined in [Izh08] (see [AGG09]).

The semiring Te is not idempotent, but is ordered naturally by the relation: x 6 y if there exists z ∈ Te

such that x ⊕ z = y. The map π : Te → Rmax, (a, b) 7→ π(a, b) := b is a surjective morphism, thus it is
order preserving. However the natural injection from Rmax to Te, which sends b ∈ R∗

max to (1, b) and −∞ to
(0,−∞) is not a morphism. Nevertheless, it is a multiplicative morphism, it is order preserving and denoting
by b∨ the image of b ∈ Rmax by this injection, the following holds for all x, y ∈ Te:

(26) x∨ ∨ y∨ 6 (x⊕ y)∨ 6 x∨ ⊕ y∨ ,

where a ∨ b denotes the least upper bound of two elements a, b ∈ Te.
The following notations are defined in [AGG09] for any semiring with symmetry. We avoid here the use

of the minus sign.

Definition 4.2. For any a ∈ Te, we set a◦ := a⊕ a, and we denote

T
◦
e := {a◦; a ∈ Te}, T

∨
e := (Te \ T

◦
e) ∪ {(0,−∞)} ,

and we define on Te the balance relation ∇ by

a∇ b ⇐⇒ a⊕ b ∈ T
◦
e .

The balance relation is reflexive, symmetric but not transitive. Denoting b◦ := (b∨)◦ for b ∈ Rmax, we get
that

T
◦
e = {b◦; b ∈ Rmax}, T

∨
e = {b∨; b ∈ Rmax} .

We shall say that an element of Te is of type real if it belongs to T∨
e and of type ghost if it belongs to T◦

e

(thus, the zero element of the semiring has both types). An element a of Te is determined by its projection
π(a) ∈ Rmax and by its type. The elements of T∨

e \ {0} are precisely the invertible elements of Te.
This algebraic structure encodes whether the maximum in an expression is attained once or at least twice.

The elements b∨ with b ∈ R∗
max correspond to expressions the maximum of which is finite and is attained

only once, the elements b◦ with b ∈ R∗
max correspond to expressions the maximum of which is finite and is

attained at least twice, the element 0 ∈ T◦
e ∩ T∨

e corresponds to expressions the maximum of which is −∞.
For instance, the following computations are valid

2∨ ⊕ 2∨ = 2◦, 2∨ ⊕ 3∨ = 3∨, 2∨ ⊕ 3◦ = 3◦ .

The previous notations will be extended to vectors, entrywise. For instance, if x, y ∈ T
n
e , we shall write

x∇ y if xj ∇ yj for all j ∈ [n].

Definition 4.3. If A is a matrix in Mm,n(Te), we shall say that the columns of A are tropically linearly
dependent if there exists a vector x ∈ (T∨

e )
n, different from the zero vector 0, such that

Ax∇ 0 .

When A is the image of some matrix B ∈ Mm,n(Rmax) by the canonical injection, meaning that Aij = B∨
ij ,

setting x = y∨ for some y ∈ Rn
max, we easily check that Ax∇ 0 holds if and only if the maximum in each of

the expressions

max
j∈[n]

(Bij + yj) , i ∈ [m] ,

is attained at least twice, or equal to −∞, which is the natural notion of tropical linear dependence over
Rmax given in the introduction (statement of Problem 1.3).

Thus, all the statements that follow which concern tropical linear independence over Te yield in particular
corresponding statements for tropical linear independence over Rmax. The interest of the notation Ax∇ 0 is
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its similarity with the classical notation Ax = 0 (the columns of a matrix over a ring are dependent if some
nontrivial linear combination of the columns vanishes).

Tropical linear independence turns out to be controlled by permanents.

Definition 4.4. Let A = (Aij) ∈ Mn,n(Te). The permanent perA of the matrix A is the element of Te

defined by

perA =
⊕

σ∈Sn

A1σ(1) · · · · · Anσ(n),

where Sn denotes the set of all permutations of the set [n].

If Aij = B∨
ij for some Bij ∈ Rmax, then, the projection onto Rmax of the permanent of A,

π(perA) = max
σ∈Sn

(B1σ(1) + · · ·+Bnσ(n)) ,

is the value of the optimal assignment problem with weights Bij . The type of perA is real if there is only
one optimal permutation, or if the value of the previous maximum is −∞, and it is ghost if there are at least
two optimal permutations. Moreover, perA is invertible if and only if B is tropically nonsingular as defined
in the introduction (see Section 1.4). This suggests the following definition.

Definition 4.5. We shall say that the matrix A ∈ Mn,n(Te) is tropically nonsingular if perA is invertible
in Te.

In the sequel, we shall establish results for matrices with entries in the extended tropical semiring Te.
Then, we shall derive the analogous results for matrices with entries in the tropical semiring as immediate
corollaries.

4.2. Reducing tropical linear independence to mean payoff games. We denote by A an m×n matrix
with entries in Te, and we shall assume:

Assumption 4.6. The matrix A has no column consisting only of elements of T◦
e .

This assumption is not restrictive, for if A had such a column, the columns of A were tropically linearly
dependent, and when m > n, all n×n submatrices were tropically singular, so that the equivalence which we
are going to prove in Theorem 4.12 for matrices satisfying Assumption 4.6 is trivially true in this situation.

We set

(27a) E = {(i, j); Aij ∈ T
∨
e \ {0}} .

Thanks to Assumption 4.6, for all j ∈ [n], there is at least one index i ∈ [m] such that (i, j) ∈ E.
We define the min-max function f : (R ∪ {−∞})n → (R ∪ {−∞})n given by

(27b) fj(x) = min
i∈[m], (i,j)∈E

(−Bij + max
k∈[n], k 6=j

(Bik + xk)) ,

where

(27c) Bij := πAij ∈ Rmax .

This function can be interpreted as the dynamic programming operator of the following combinatorial game,
which is played on a bipartite digraph with n column nodes and m row nodes. Being in a column node j,
player Min chooses a row node i such that (i, j) ∈ E, and moves to node i receiving Bij . Then, player Max
must move to some column node k which is different from the previously visited column node j, and he
receives Bik. Thus, when all entries of A are in T∨

e (that is A = B∨), player Min is advantaged, because she
can always come back to the state from which player Max just came, ensuring her a 0 loss. In that case, it
follows that χ̄(f) 6 0.

Such a game may be put in the form studied in Section 2.1, in which the available actions only depend on
the current state, by adding the previously visited node to the state. Formally, the map f may be written
as f(x) = C♯Dx, where C,D are (mn)× n matrices, with

(28) C(i,j),k =

{

Bij if k = j and (i, j) ∈ E

−∞ otherwise,
D(i,j),k =

{

Bik if k 6= j

−∞ otherwise.
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Due to Assumption 4.6, no column of C is identically −∞, hence f sends (R ∪ {−∞})n to itself. However,
some rows of D may be identically −∞, as soon as A has a row with at most one element not equal to
−∞. In that case the map f may not send Rn to itself. But one can apply Proposition 2.7, Lemma 2.8 and
Theorem 3.1.

Theorem 4.7. Let A be an m×n matrix with entries in Te, satisfying Assumption 4.6. Let E, B and f be
defined as in (27). Then a vector u ∈ Rn

max is such that

Au∨ ∇ 0

if and only if u 6 f(u).

Proof. If Au∨ 6∇ 0, then, there exists some index i such that (Au∨)i =
⊕

j Aij⊙u∨
j is invertible in Te, which

implies that there exists some index j such that Aij is invertible and πAij + uj > maxk∈[n], k 6=j(πAik + uk).
With the above definitions of B and E, it follows that (i, j) ∈ E and uj > −Bij +maxk∈[n], k 6=j(Bik + uk).
We deduce that uj > mini∈[m], (i,j)∈E(−Bij + maxk∈[n], k 6=j(Bik + uk)) = fj(u). The previous deductions
turn out to be equivalences, and so, Au∨ 6∇ 0 iff there exists some index j such that uj > fj(u). By negating
both conditions, this shows the theorem. �

We get as an immediate consequence.

Corollary 4.8. Let B be an m × n matrix with entries in Rmax which has no column consisting only of
elements −∞. Denote E = {(i, j); Bij 6= −∞}, and define f by (27b). Let u be a vector in (R ∪ {−∞})n,
not identically −∞. Then, the following conditions are equivalent:

(1) u 6 f(u);
(2) The equation “Bu = 0” holds in the tropical sense, meaning that in every expression

max
j∈[n]

(Bij + uj), i ∈ [m]

the maximum is attained at least twice or is equal to −∞;
(3) All the rows of the matrix B are contained in the tropical hyperplane consisting of those vectors

x ∈ Rn
max such that the maximum in maxj∈[n](xj + uj) is attained at least twice or is equal to

−∞. �

The following theorem provides an expression of tropical linear independence in terms of mean payoff
games.

Theorem 4.9. Let B be an m × n matrix with entries in Rmax which has no column consisting only of
elements −∞. Denote E = {(i, j); Bij 6= −∞}, and define f by (27b). The following assertions are
equivalent.

(1) The columns of the matrix B are tropically independent;
(2) Player Max has no winning state in the mean payoff game with dynamic programming operator f ,

i.e., χ̄(f) < 0;
(3) there exists a vector w ∈ Rn and a scalar λ < 0 such that

f(w) 6 λ+ w ;

(4) there is no vector u ∈ (R ∪ {−∞})n, without finite entries, such that u 6 f(u) .

In fact, we shall prove the following more general result, in the setting of the extended tropical semiring.

Theorem 4.10. Let A be an m× n matrix with entries in Te, satisfying Assumption 4.6. Let E, B and f
be defined as in (27). Then, the columns of the matrix A are tropically linearly independent if and only if
the map f satisfies one of the three equivalent conditions (2,3,4) of Theorem 4.9.

Proof. By Definition 4.3 and Theorem 4.7, the columns of A are tropically dependent if and only if there
exists a vector u ∈ (R ∪ {−∞})n non-identically −∞ such that u 6 f(u). This shows that Property (4)
is equivalent to the tropical linear independence of the columns of A. By definition, (3) is equivalent to
cw(f) < 0 and (4) is equivalent to cw′(f) 6> 0. From Assumption 4.6, the matrix C of (28) has no column
identically equal to −∞, hence the equivalence between (2), (3) and (4) follows from Lemma 2.8. �

21



4.3. Characterizations of the tropical rank. We shall now derive Theorem 1.4 and related results
concerning rank of matrices in the more general framework of matrices with entries in Te. We shall need
the following tropical Cramer theorem proved in [AGG09] which is analogous to the Cramer theorem of
M. Plus [Plu90], the symmetrized max-plus semiring being now replaced by the extended tropical semiring.
This is a refinement of a result concerning the tropical Cramer formula stated by Richter-Gebert, Sturmfels,
and Theobald in [RGST05], which deals with a generic case.

Theorem 4.11 ([AGG09, Theorem 6.6]). Let A ∈ Mn(Te) and b ∈ Tn
e , then

(1) Every real solution x of the linear system

Ax∇ b

satisfies the relation (perA)x∇Aadjb.
(2) Moreover, if the vector Aadjb is real and perA is invertible in Te, then x̂ := perA−1Aadjb is the

unique real solution of Ax∇ b.

Here Aadj is defined by (Aadj)ji = perA(i|j), where A(i|j) is the matrix obtained from A by deleting j-th
column and i-th row.

As a consequence of the game formulation and of the latter theorem, we obtain the following result.

Theorem 4.12. Let A ∈ Mm,n(Te) with m > n. Then, the columns of A are tropically linearly independent
if and only if A has an n× n submatrix that is tropically nonsingular.

Izhakian and Rowen obtained independently the same result in a recent work [IR09b], by a different
method.

Proof. The “if” part of the assertion was already shown in [AGG09, Lemma 8.1] using Theorem 4.11. We
reproduce the proof for completeness. Assume that A has a tropically nonsingular submatrix of maximal
size, denote it by F , and assume by contradiction that Ax∇ 0 for some real non-zero vector x. Then, Fx∇ 0.
Theorem 4.11 implies that (perF )x∇F adj

0. Since F adj
0 = 0 it follows that (perF )x∇ 0. Since at least one

coordinate of x is non-zero, and x is real, this coordinate is invertible, hence perF ∇ 0, which contradicts
the assumption.

Let us show the “only if” part. Assume that the columns of A are tropically linearly independent. This
implies in particular that no column of A consists of elements of T◦

e , that is Assumption 4.6 is satisfied.
Then, by Theorem 4.10, f satisfies Condition (3) of Theorem 4.9, that is there exists a vector u ∈ Rn and a
scalar λ < 0 such that

min
i∈[m], (i,j)∈E

(−πAij + max
k∈[n], k 6=j

(πAik + uk)) 6 λ+ uj , j ∈ [n] .

Hence, for every j ∈ [n], we can find an index σ(j) which attains the minimum, and so (σ(j), j) ∈ E and

−πAσ(j)j − uj + max
k∈[n], k 6=j

(πAσ(j)k + uk) 6 λ .

Let Gij := πAij + uj. The latter inequality can be rewritten as

Gσ(j)k −Gσ(j)j 6 λ , j ∈ [n], k ∈ [n], k 6= j .

We claim that σ is injective. Indeed, assume by contradiction that i = σ(j′) = σ(j′′) for some j′ 6= j′′. Then,
by selecting k = j′ and j = j′′ in the previous inequality, we get

Gij′ −Gij′′ 6 λ .

and by selecting k = j′′ and j = j′ we get symmetrically,

Gij′′ −Gij′ 6 λ .

Summing these inequalities, we get 0 6 2λ < 0, which is nonsense.
Let I := {σ(j); j ∈ [n]}. We get that the submatrix consisting of the rows of G with indices in I is such

that the maximum of row σ(j) is attained only at column j. It follows that σ−1 determines the unique
optimal solution of the optimal assignment problem corresponding to this submatrix, that is

∑

i∈I

Giσ−1(i) >
∑

i∈I

Giτ(i)
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for all bijective maps τ : I → [n]. Hence the same holds for the matrix B = πA instead of G. Since
(i, σ−1(i)) ∈ E for all i ∈ I, the submatrix F consisting of the rows of A with indices in I satisfies perF =
per(πF )∨ ∈ T∨

e \ {0}, that is, F is tropically nonsingular. �

The classical Radon theorem shows that m+ 1 vectors in dimension m can be partitioned in two subsets
that generate two convex cones with a non-zero intersection. Tropical versions of this result have appeared
in [But03, BH04, ABG06, GM10, AGG09]. The following result is another Radon analogue, this times in
the semiring Te. The proof uses the same method as the one of [AGG09].

Corollary 4.13. Any m+ 1 vectors of Tm
e are tropically linearly dependent.

Proof. Consider v1, . . . , vm+1 in Tm
e and denote by B the m× (m+ 1) matrix with columns vj , j ∈ [m+ 1].

If one of the m ×m submatrices of B is tropically singular, Theorem 4.12 shows that the columns of this
submatrix are tropically linearly dependent, hence the m+1 vectors v1, . . . , vm+1 are also tropically linearly
dependent. Otherwise, if A is the square submatrix obtained from B by deleting the last column, and
b = vm+1, we get that perA is invertible in Te and that the vector x̂ := perA−1Aadjb has all its entries in
T∨
e (and non zero). Hence, by Point (2) of Theorem 4.11, x̂ is a solution of Ax∇ b. Denoting by y the m+1

dimensional vector obtained by completing x with an m+ 1-entry equal to 1, we get that By ∈ T◦
e . Since y

is a non-zero real vector, this shows that the columns of B are tropically linearly dependent. �

Corollary 4.14. Let A ∈ Mm,n(Te). Then, the maximal number of tropically linearly independent rows of
A, the maximal number of tropically linearly independent columns of A, and the maximal size of a tropically
nonsingular submatrix of A coincide.

Proof. Assume that A has a tropically nonsingular submatrix of size k. Let F denote the submatrix of A
formed by the columns of A corresponding to the columns of this submatrix. It follows from the “if” part
of Theorem 4.12 that the columns of F are tropically linearly independent. Hence, A contains at least k
tropically independent columns, which shows that the maximal number of tropically linearly independent
columns of A is greater than or equal to the maximal size of a tropically nonsingular submatrix of A.

Conversely, assume that A has k tropically independent columns. Then Corollary 4.13 shows that k 6 m.
Let F denote the submatrix of A consisting of these columns. By the “only if” part of Theorem 4.12, we
can find a k× k submatrix of F which is tropically nonsingular, which shows the reverse inequality, thus the
equality between the maximal number of tropically linearly independent columns of A and the maximal size
of a tropically nonsingular submatrix of A.

Replacing A by its transpose matrix At, we obtain the same result for rows instead of columns, which
finishes the proof of the corollary. �

We next give several corollaries of these results for Rmax. Till the end of this section we shall consider
tropical linear dependence and tropical nonsingularity in Rmax, i.e., in the sense given in the introduction.

Corollary 4.15. Let A ∈ Mm,n(Rmax) with m > n. Then, the columns of A are tropically linearly inde-
pendent if and only if A has an n× n submatrix, which is tropically nonsingular.

Recall that the tropical rank of a matrix A ∈ Mm,n(Rmax) is defined as the maximal size of a tropically
non-singular submatrix. In [AGG09], we also defined the maximal row (resp. column) rank of a matrix A
with entries in Rmax as the maximal number of tropically linearly independent rows (resp. columns) of A.
We get as an immediate corollary of Corollary 4.14 the equivalence between all these rank notions.

Corollary 4.16. Let A ∈ Mm,n(Rmax). Then, the maximal row rank of A, the maximal column rank of A
and the tropical rank of A coincide.

Corollary 4.17. Checking whether a matrix A ∈ Mm,n(Rmax), with m > n, has tropical rank at least n−k,
reduces to solving

(

n
k

)

mean payoff game problems associated to m× (n − k) matrices, and can therefore be
done in pseudo-polynomial time for a fixed value of k.

Proof. It suffices to check, for every subset I of [n] of cardinality n− k, whether the columns in I of A are
tropically linearly independent, which, by Theorem 4.9, is a mean payoff game problem. �
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Remark 4.18. Recall that checking whether a square matrix is tropically singular can be done in O(n3)
time, as observed by Butkovič [But94]. Hence, for a fixed k, checking whether a matrix has tropical rank
strictly less than k is also a polynomial time problem (it suffices to check whether all the

(

m
k

)

×
(

n
k

)

submatrices
of size k×k are tropically singular). However, Kim and Roush showed that the general problem of computing
the tropical rank is NP-hard [KR05].

Example 4.19. Consider the points in R3
max,

a =
(

0 2 0
)

b =
(

0 3 2
)

c =
(

0 1 1
)

d =
(

1 3 0
)

e =
(

1 1 0
)

These points are represented in Figure 3. The hyperplane H defined by the condition that the maximum in

b

x1

x3

x2d

a

c

e

Figure 3. Tropical hyperplane passing through the points a, b, c, d

the expression

max(2 + x1, x2, 1 + x3)

is attained at least twice is represented by the union of three bold half-lines. The points a, b, c, d belong
to this hyperplane, but it is easy to check graphically there is no hyperplane containing the five points
a, b, c, d, e.

We next show that these conclusions can be obtained by the previous arguments. The game associated
to the matrix with rows a, b, c, d can be visualized in Figure 4. Recall that in the square states, Player Max

2

1 2 3

1 3 4

0

1 2

3
1

0

3

0

0

2
1 0

Figure 4. Game associated with the configurations of points in Figure 3

must choose a new circle state different from the previously visited one. The dynamic programming operator
f has the three following coordinates:

f1(x) := min(max(2 + x2, x3),max(3 + x2, 2 + x3),max(1 + x2, 1 + x3),−1 + max(3 + x2, x3))
f2(x) := min(−2 + max(x1, x3),−3 + max(x1, 2 + x3),−1 +max(x1, 1 + x3),−3 + max(1 + x1, x3))
f3(x) := min(max(x1, 2 + x2),−2 + max(x1, 3 + x2),−1 + max(x1, 1 + x2),max(1 + x1, 3 + x2)).
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By applying the power algorithm to the map g(x) = min(f(x), x), starting from x0 = (0, 0, 0), we compute
x1 := g(x0) = (0,−2, 0), and x2 := g(x1) = (0,−2,−1), which is a fixed point of g, and so the algorithm
stops. The coefficients of the fixed point (0,−2,−1) determine the half-space H containing a, b, c, d.

Let us now replace the vector d by the vector e. The map f becomes

f1(x) := min(max(2 + x2, x3),max(3 + x2, 2 + x3),max(1 + x2, 1 + x3),−1 + max(1 + x2, x3))
f2(x) := min(−2 + max(x1, x3),−3 + max(x1, 2 + x3),−1 +max(x1, 1 + x3),−1 + max(1 + x1, x3))
f3(x) := min(max(x1, 2 + x2),−2 + max(x1, 3 + x2),−1 + max(x1, 1 + x2),max(1 + x1, 1 + x2)).

The power algorithm, with the same initial condition, gives x1 = (0,−2, 0), x2 = (−1,−2,−1), and since
x2
i < 0 for all i = 1, 2, 3, the power algorithm stops, showing that the vectors a, b, d, e are tropically linearly

independent.

4.4. Alternative proof of Theorem 4.12 via the tropical Helly theorem and further comments.

When m = n, Theorem 4.12 can be proved by direct combinatorial means (essentially by network flows
arguments) as is done in [Izh08]. We next observe that the m > n case can be reduced to the m = n case
by means of the tropical Helly theorem, which appeared in the works of Briec and Horvath [BH04], Gaubert
and Sergeev [GS07], and Gaubert and Meunier [GM10], with three different proofs.

Theorem 4.20 (Tropical Helly theorem, [BH04, GS07, GM10]). Let (Ci)i∈[m] denote a collection of tropical
cones of Rn

max. If the intersection of all the Ci is reduced to the zero vector, then there exists a subcollection
of cardinality n the intersection of which is also reduced to the zero vector.

The following corollary shows that the rectangular case (m > n) in Theorem 4.12 can be derived from
the square case (m = n).

Corollary 4.21. Let A ∈ Mm,n(Te) with m > n has tropical linearly independent columns, then, it has an
n× n submatrix the columns of which are still tropically linearly independent.

Proof. We apply the tropical Helly theorem to

Ci = {x ∈ R
n
max; Aix

∨ ∇ 0}

where Ai denotes the ith row of A. The set Ci is a tropical cone. Since the map x 7→ x∨ is not a morphism
of semirings this is not immediate. But it is a multiplicative morphism, hence Ci is stable by tropical
multiplication: x ∈ Ci and λ ∈ Rmax imply λx ∈ Ci using (λx)∨ = λ∨x∨.

To prove that Ci is stable by tropical sum, we shall use Property (26) on page 19 for vectors with entries
in Te. Indeed, as for Te, T

n
e can be endowed with its natural order, u 6 v if there exists w ∈ T

n
e such that

u ⊕ w = v, which coincide with the pointwise order. Hence, since Property (26) holds for scalars in Te, it
also holds for vectors with entries in Te. Let x, y ∈ Ci, then Aix

∨ and Aiy
∨ are in T◦

e . Denote by z = x⊕ y
the tropical sum of x and y. By Property (26) for x and y, we get that x∨ 6 z∨ 6 x∨ ⊕ y∨. Applying
Ai, which is additive thus order preserving on Tn

e , we obtain Aix
∨ 6 Aiz

∨ 6 Ai(x
∨ ⊕ y∨) = Aix

∨ ⊕ Aiy
∨.

Replacing x by y and taking the supremum of both inequalities, we get

Aix
∨ ∨Aiy

∨ 6 Aiz
∨ 6 Aix

∨ ⊕Aiy
∨ .

Since Aix
∨ and Aiy

∨ are in T◦
e , we deduce that Aix

∨ ∨ Aiy
∨ = Aix

∨ ⊕ Aiy
∨, which together with the

previous inequality implies that Aiz
∨ = Aix

∨ ⊕Aiy
∨ ∈ T◦

e . This shows that z ∈ Ci, so that Ci is a tropical
cone.

By definition, the columns of the matrix A are linearly independent if and only if the intersection of all
the Ci is reduced to the zero vector. By the tropical Helly theorem, we can find i1 < i2 < · · · < in such that
Ci1 ∩ · · · ∩ Cin = {0}. It follows that the columns of the submatrix F consisting of the rows i1, . . . , in of A
are tropically linearly independent. �

Remark 4.22. The difficulty of computing the tropical rank is related to the lack of matroid structure,
see [DSS05, § 7].
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