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The Magnus embedding is a quasi-isometry
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Abstract

We show that the Magnus embedding, which embeds the free solvable
group Sd,r of rank r and degree d into the wreath product Zr ≀ Sd−1,r, is
a quasi-isometry.
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1 Introduction

In 1939 Magnus introduced in [Mag39] what has come to be known as

the Magnus embedding: an embedding of a group of the type F/N ′ into a

matrix group with coefficients in Z[F/N ]. In particular, the Magnus em-
bedding is used to embed free solvable groups into certain wreath prod-
ucts. In the 1950s, Fox developed the free differential calculus, which
offers a different point of view on the Magnus embedding. This was the
beginning of the study of algorithmic problems in free solvable groups,
but it also opened the door to extremely interesting geometric questions.
For example, in [MRUV10] Miasnikov et al. use Fox calculus and ideas of
Droms, Servatius and Lewin [DLS93] to compute the Magnus embedding
in uniform polynomial time and show that the bounded geodesic length
problem is NP-complete. In [Vas11], we use the Magnus embedding to
prove that the conjugacy and conjugacy search problems are solvable in
polynomial time. In this paper, we expand on these results and show that
the Magnus embedding is a quasi-isometry.

Solvable groups have long been studied from the view-point of combi-
natorial group theory. However, they have recently been at the focus of
intense research in geometric group theory. One can trace back this in-
terest to Gromov’s result [Gro81] on groups with polynomial growth. He
showed that a group quasi-isometric to nilpotent group is virtually nilpo-
tent. Erschler showed in [Dyu00] that this is not the case for solvable
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groups in general, that is, there are groups which are quasi-isometric to a
solvable group, but are not virtually solvable. This gave rise to an intense
study of finitely generated groups up to quasi-isometry. There have been
some positive results for certain classes of solvable groups. For example,
Farb and Mosher, [FM98], [FM99], showed that solvable Baumslag-Solitar
groups are quasi-isometrically rigid.

Another view-point from which the present result is interesting comes
from the study of distortion of subgroups in wreath products. The Magnus
embedding gives an embedding of free metabelian groups in the wreath
product of free abelian groups. In [DO11], Davis and Olshanskii show
that every finitely generated subgroup of A ≀ Z, where A is abelian, has
polynomial distortion. Further, they observe that the distortion in Z

r ≀
Z

r gives a upper bound to the distortion in free metabelian groups. A
corollary of our result is that the distortion of a subgroup H in the free
metabelian group Mr of rank r is in fact the same as the distortion of H
in Z

r ≀ Zr.

2 Geodesic length in A ≀ B and F/N ′

Let F = 〈x1, . . . , xr〉 be the free group of rank r and N a normal subgroup
of F . Denote by N ′ the commutator subgroup

N ′ = [N,N ] = 〈[x, y] | x, y ∈ N〉.

Let¯: F → F/N and µ : F → F/N ′ be the canonical epimorphisms. Since
N ′ ≤ N , the diagram

F
µ

//

¯

��

F/N ′

}}③③
③
③
③
③
③
③

F/N

commutes and we may use the symbol xi to denote any of xi, xi or µ(xi),
depending on the context.

Let A be a free abelian group of rank r, generated by {a1, . . . , ar} and

denote by B the group F/N . The homomorphism

φ : F
/

N ′ →֒ A ≀B

given by

φ(g) = g · a
∂g/∂x1
1 . . . a

∂g/∂xr
r ,

where ∂g/∂xi
is the Fox derivative of g with respect to the generator xi,

is injective [Mag39], and is called the Magnus embedding. For a good
description, see [Neu67].

The Cayley graph, Cay(G, {x1, . . . , xr}), of a group G with respect to
the generating set {x1, . . . , xr} has as vertex set the elements of G. Two
vertices g, h ∈ Cay(G) are connected by a directed edge (g, h) if for some
generator xi of G, h = gxi. We assume that if xi is in the generating
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set of G, then the formal inverse x−1
i is not. Instead, we allow paths to

traverse an edge in either direction.
We denote by ‖g‖G the length of the shortest word which is equal to

the element g in G. Hence ‖g‖G is the distance from 1G to g in Cay(G),
so we call it the geodesic length.

Geodesic length in A ≀ B

For two groups A and B, let A(B) denote the set of functions of finite
support from B toA, which forms a group under point-wise multiplication.
Then the wreath product A ≀ B of A and B is defined as the semi-direct
product B ⋉A(B). The action of b ∈ B on a function f ∈ A(B) is defined
by fb(x) = f(xb−1).

Regarding a ∈ A as the function

a(b) =

{

a if b = 1,
1 otherwise,

the groups A and B canonically embed in A ≀ B. Further, A ≀ B is gen-
erated by the union of the generating sets of A and B and the relation
[ab, (a′)b

′

] = 1 holds for all a, a′ ∈ A and b, b′ ∈ B. Moreover, if w is a
word given in the generators of A ≀B, it can be rewritten in the “standard
form”

w = bAB1
1 . . . A

Bk−1

k−1 A
Bk

k ,

where b ∈ B, A1, . . . , Ak are non-trivial elements of A, B1, . . . , Bk ∈ B
and Bi 6= Bj for i 6= j.

Walter Parry [Par92] showed that the geodesic length of w is given by

‖w‖A≀B = ‖b‖B +

k
∑

i=1

‖Ai‖A + LCay(B)(B1, . . . , Bk),

where LCay(B)(B1, . . . , Bk) denotes the length of the shortest circuit in
Cay(B) passing through the vertices in V = {1B , B1, . . . , Bk}. We will
call this a minimum length cycle.

Geodesic length in F/N ′

Miasnikov et. al [MRUV10] proved that the problem of finding geodesics
in free metabelian groups is NP-hard. In doing so, they gave a description
of geodesics in F/N ′. A word w in generators of F defines the path pw
that w traces in Cay(B). One can define a corresponding flow function

πw : E
(

Cay(B)
)

→ Z,

where πw(e) counts how many times pw passes through the edge e. Here,
whenever pw traverses an edge e in the negative direction, we say that pw
passes through this edge −1 times. This gives rise to a labeled subgraph
Γ of Cay(B) consisting of the edges

E(Γ) = {e ∈ E
(

Cay(B)
)

| πw(e) 6= 0}
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and with vertices the endpoints of these edges. The edges in E(Γ) are
labelled by their corresponding flow πw(e).

A remarkable fact proved in [MRUV10] is that two words u and v in

F define the same flow function in Cay(F/N) if and only if they are equal

as elements of F/N ′. Therefore we can study elements in F/N ′ through
their flows.

Denote by C1, . . . , Cl the connected components of Γ and let Q be a
minimal forest connecting them. That is, Q is a subgraph of Cay(B) such
that ∆ = Q∪C1∪ . . .∪Cl is connected and the edge set E(Q) is minimal.

Define ∆∗ as follows. It has the same vertex set as ∆. For each edge
(u, v) in C1 ∪ . . .∪Cl include |πw(u, v)| undirected edges between u and v
and for each edge (u, v) in Q add two undirected edges between u and v.
To every path in ∆∗ we can associate a path in ∆ (and hence in Cay(B))
in the obvious way.

It is proved in [MRUV10] that the label in Cay(B) of the path corre-
sponding to an Euler tour of the edges in ∆∗ starting at the identity gives
a geodesic for w as element of F/N ′. Hence, the geodesic length of w in
F/N ′ is equal to the number of edges in ∆∗, i.e.,

‖w‖F/N ′
=

∑

e∈supp(pw)

|πw(e)|+ 2|E(Q)|. (1)

3 The Magnus embedding is a quasi-

isometry

We show that φ : F/N ′ →֒ A ≀ B is a quasi-isometry. More precisely, the
following theorem is true.

Theorem 1. Let w be a word in F/N ′ given as a product of generators
x1, . . . , xr. Then

1

2(r + 1)
‖w‖F/N ′

≤ ‖φ(w)‖A≀B ≤ 3‖w‖F/N ′
.

Proof. Recall that

φ(w) = w · a
∂w/∂x1
1 . . . a

∂w/∂xr
r .

Since each ∂w/∂xi
is in the group ring Z[B], we can write for each i =

1, . . . , r,
∂w

∂xi

=
∑

b∈B

u
(i)
b b, (2)

with u
(i)
b ∈ Z for all b ∈ B and for all i = 1, . . . , r. Thus, we can rewrite

φ(w) as

φ(w) = w ·
∏

b∈B

(

a
u
(1)
b

1

)b
. . .

∏

b∈B

(

a
u
(r)
b

r

)b
.

For every b ∈ B, let

Ab =
∏

i

a
u
(i)
b

i . (3)
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Using the commutator relations of the wreath product, we can rewrite
φ(w) in standard form:

φ(w) = w ·
∏

b∈B

Ab
b. (4)

Since, by the definition of the Fox derivatives, the sum (2) is finite, the
product (4) is finite as well. Hence we can write

φ(w) = w ·AB1
1 . . . ABk

k ,

where A1, . . . , Ak ∈ A are non-trivial and all B1, . . . , Bk ∈ B are distinct.

Lemma 2.
∑

i

‖Ai‖A =
∑

e∈supp(pw)

|πw(e)|

Proof. Miasnikov et al. prove that for every generator xi,

∂w

∂xi

=
∑

b∈B

πw(b, bxi)b, (5)

i.e., that the coefficient of b in the expression for the Fox derivative of
w with respect to xi is equal to the flow through the edge (b, bxi). It
follows from equation (3) that

∑

i ‖Ai‖A is the sum of absolute values of
the coefficients in all the Fox derivatives. Indeed,

∑

i

‖Ai‖A =
∑

i

‖ABi
‖A =

∑

i

‖
∏

j

a
u
(j)
Bi

j ‖ =
∑

i

∑

j

∣

∣u
(j)
Bi

∣

∣

=
∑

i

∣

∣πw(Bi, Bixi)
∣

∣ =
∑

e∈supp(pw)

|πw(e)|

Lemma 3.

‖φ(w)‖A≀B ≤ 3‖w‖F/N ′
.

Proof. Note that since the elements B1, . . . , Bk come from the non-zero
terms in (2), it follows from (5) that all the vertices in V appear in the
vertex set of Γ. So V ⊆ V (Γ). As described above, the geodesic of w in
F/N ′ is found by touring all connected components of Γ and connecting

them in an optimal way. A geodesic representation of w in F/N ′ corre-
sponds to a tour of the vertices in V (Γ) and therefore to a tour of the
vertices in V . Clearly, it is longer than a minimal length tour on V , i.e.,

‖w‖F/N ′
≥ L(V ).

Moreover, since B = F/N is a quotient of F/N ′, it is easy to see that
‖w‖B ≤ ‖w‖F/N ′

. Further, since ‖w‖F/N ′
is given as in (1), it follows
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from Lemma 2 that
∑

i ‖Ai‖A ≤ ‖w‖F/N ′
. Therefore,

‖φ(w)‖A≀B = ‖w‖B +
∑

i

‖Ai‖A +
∣

∣L
(

V
)∣

∣

≤ ‖w‖F/N ′
+ ‖w‖F/N ′

+ ‖w‖F/N ′
= 3‖w‖F/N ′

.

Let T be a shortest circuit of the vertices in V . From T we will produce
a tour of the vertices in Γ. We will consider how the two vertex sets differ.

The vertices in V (Γ) consist of endpoints of all edges e with πw(e) 6= 0.
The vertices in V consist of only the initial endpoints of these edges, since

∂w

∂xi

=
∑

b∈B

πw(b, bxi)b.

Moreover, the vertices which are in V (Γ)\V are distance 1 away from
a vertex in V (because they correspond to the terminal vertex of edge
whose initial vertex is in V ). Now one can produce a tour of the vertices
in Γ by following T and simply ‘hopping’ (at an extra cost of 2) to visit a
‘missing’ vertex. Since for every vertex in V there are at most r ‘missing’
vertices (one for each generator), one obtains a tour of the vertices of Γ
which has length at most T + 2rT = (2r + 1)T .

Since T has minimal length L(V ), then we obtain a tour of V (Γ) of
length at most (2r + 1)L

(

V
)

.
It is clear that touring the connected components of Γ and connecting

them in a minimal way will give a minimal tour of the vertices in V (Γ)
and so its length will be less than that of T . In other words,

‖w‖F/N ′
≤ (2r + 1)L

(

V
)

≤ (2r + 1)‖φ(w)‖A≀B .

This finishes the proof of the theorem.

Corollary 4. The Magnus embedding of the free solvable group Sd,r of
class d and rank r into the wreath product Zr ≀Sd−1,r is a quasi-isometry.

References

[DLS93] Carl Droms, Jacques Lewin, and Herman Servatius. The
length of elements in free solvable groups. Proceedings of the
American Mathematical Society, 119(1):27 – 33, 1993.

[DO11] Tara C. Davis and Alexander Yu. Olshanskii. Subgroup dis-
tortion in wreath products of cyclic groups. Journal of Pure
and Applied Algebra, 215(12):2987 – 3004, 2011.

[Dyu00] A. Dyubina. Instability of the virtual solvability and the prop-
erty of being virtually torsion-free for quasi-isometric groups.
Int. Math. Res. Notices, 21:1097 – 1101, 2000.

6



[FM98] B. Farb and L. Mosher. A rigidity theorem for the solvable
baumslag-solitar groups. Invent. Math., 131:419 – 451, 1998.
With an appendix by Daryl Cooper.

[FM99] B. Farb and L. Mosher. Quasi-isometric rigidity for the solv-
able baumslag-solitar groups. Invent. Math., 137:613 – 649,
1999.

[Gro81] M. Gromov. Groups of polynomial growth and expanding
maps. Publ. Math. IHES, 53:53 – 73, 1981.

[Mag39] Wilhelm Magnus. On a theorem of Marshall Hall. Ann. of
Math. (2), 40:764–768, 1939.

[MRUV10] A. Myasnikov, V. Roman’kov, A. Ushakov, and A. Vershik.
The word and geodesic problems in free solvable groups.
Trans. Amer. Math. Soc., 362(9):4655–4682, 2010.

[Neu67] Hanna Neumann. Varieties of groups. Springer-Verlag New
York, Inc., New York, 1967.

[Par92] Walter Parry. Growth series of some wreath products. Trans.
Amer. Math. Soc., 331(2):751–759, 1992.

[Vas11] S. Vassileva. Polynomial time conjugacy in wreath products
and free solvable groups. Groups, Complexity, Cryptology,
3:105 – 120, 2011.

7


	1 Introduction
	2 Geodesic length in AB and F/N
	3 The Magnus embedding is a quasi-isometry

