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ON RESTRICTING SUBSETS OF BASES IN RELATIVELY FREE

GROUPS

LUCAS SABALKA AND DMYTRO SAVCHUK

Abstract. Let G be a finitely generated free, free abelian of arbitrary ex-
ponent, free nilpotent, or free solvable group, or a free group in the variety
AmAn, and let A = {a1, . . . , ar} be a basis for G. We prove that, in most
cases, if S is a subset of a basis for G which may be expressed as a word in A
without using elements from {al+1, . . . , ar}, then S is a subset of a basis for
the relatively free group on {a1, . . . , al}.

1. Introduction

Let F = F (A) be a free group of rank r ≥ 2 with basis A = {a1, . . . , ar}. A
subgroup V of F is fully invariant if, for all endomorphisms f : F → F , f(V ) ⊆ V .
Fully invariant subgroups of F include the trivial subgroup, the derived subgroups,
the subgroups in the lower central series of F , and, more generally, verbal subgroups
of F . Every fully invariant subgroup is normal in F , and the quotients of the form
F/V include the free group, free nilpotent groups, and free solvable groups. A
subset S ⊂ F is primitive in F mod V if the corresponding set of cosets SV of V
can be extended to a basis of F/V (i.e. to a generating set for F/V such that each
mapping of this set to F/V extends to an endomorphisms of F/V ).

We wish to study the following situation. Let V be a fully invariant subgroup
of F and let S be a primitive set mod V . Assume that there exists some index
l ∈ {1, . . . , r − 1} such that, for each s ∈ S, the generators at, t = l + 1, . . . , r of
F (A) are not used to express s as a reduced word in the alphabet A. In short,

S ⊂ F̂ ⊂ F , where F̂ := F ({a1, . . . , al}). Then V̂ = V ∩ F̂ is a fully invariant

subgroup of F̂ (as every endomorphism of F̂ can be extended to an endomorphism
of F ). Our main question is:

Main Question. Under what conditions is it true that S is also primitive in F̂
mod V̂ ?

If V is trivial – that is, if we are considering S to be primitive in F – and
|S| = r − 1 (where |S| denotes the size of set S), then it is not difficult to show

that S must be primitive in F̂ . The question becomes more interesting when |S|
is allowed to vary, and when V is allowed to vary. Our main results answer this
question for different choices of V , |S| and l. Let Am denote the variety of all
abelian groups whose exponent divides m. In particular, A := A0 is the variety
of all abelian groups. Then the product variety AmAn consists of extensions of
abelian groups of exponent dividing m by abelian groups of exponent dividing n.
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Theorem 1.1. Let S ⊂ F̂ be primitive in F mod V . Then S is primitive in F̂
mod V̂ if F/V is:

(1) free,
(2) free abelian of arbitrary exponent (including 0),
(3) free nilpotent,
(4) free in the abelian-by-abelian variety AmAn and at least one of the following

conditions fails: (a) m = 0, (b) n > 0, or (c) either |S| = r−1 or |S| = l−1;
or

(5) free solvable and |S| = r − 1.

The motivation for this theorem came from the statement in the free case, which
was initially proved by the authors as a lemma pertaining to the work in [SS13].
The result was a generalization of one case of a result describing the structure of
subwords of primitive elements in F that do not involve one of the generators of F .
Though it was eventually realized that this lemma was unnecessary for the paper
[SS13], the authors felt the lemma and proof interesting enough to generalize and
publish.

We conclude the introduction with the following natural question.

Question 1.2. Does there exist a variety of groups for which the Main Question
has a negative answer? In particular, are there varieties where a stably primitive
element is not necessarily primitive?

The structure of the paper is as follows. We begin by examining the case where
V is trivial in Section 2. Then we proceed to cases of the free abelian groups of
arbitrary exponent in Section 3 and the free nilpotent and free solvable groups in
Section 4. We conclude the paper by the cases of free abelian-by-abelian of arbitrary
exponents in Section 5 and free solvable groups in Section 6.

The authors would like to thank Mark Sapir for helpful advice on this paper, and
Michael Handel, Ilya Kapovich, Olga Kharlampovich, Marcin Mazur, and Benjamin
Steinberg for useful conversations on this material. And we are especially grateful
to Martin Kassabov for providing a short proof of the free nilpotent case that
replaced a longer argument involving ‘lifting primitivity’ and to Vitalĭı Roman’kov
for pointing out an error in an earlier version of the paper. Finally, we greatly
appreciate the comments and suggestions of the referee that enhanced the paper.

2. The Free Case

In the free case, the answer to our Main Question is: always. Our proof uses an
interpretation of primitivity using Fox derivatives via a theorem of Umirbaev.

We begin by recalling the definition of free Fox derivatives and establish notation
for them. Let ZFr denote the integral ring over the free group Fr. For each
j = 1, 2, . . . , r define a linear map ∂j : ZFr → ZFr recursively by

∂j(aj) = 1, ∂j(ai) = 0, i 6= j

and
∂j(uv) = ∂j(u) + u∂j(v) for all u, v ∈ Fr.

The map ∂j is called the (left) free Fox derivative associated with aj.

Theorem 2.1. [Umi94] A subset {x1, . . . , xk} is primitive in Fr if and only if the
k × r Jacobian matrix J =

[
∂j(xi)

]
1≤i≤k,1≤j≤r

, is right invertible in the integral

ring ZFr.
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We note that the “only if” part in this theorem was proven by Birman in [Bir73].

Theorem 2.2. Let S = {x1, x2, . . . , xk} ⊂ F̂ be primitive in F . Then S is primitive

in F̂ .

Proof. By Theorem 2.1, since the set S is primitive in F , the associated Jacobian
J is such that there exists an r × k matrix P = [pjl] with pjl ∈ ZFr satisfying

(1) JP = Ik,

where Ik is the k × k identity matrix over ZFr.
For m > l, since elements of S do not involve am, the mth column of the matrix

J consists of zeros and all other entries of J do not involve am. Each entry of
matrix P can be uniquely written in the form pij = qij + rij , where qij represents
the sum of all terms in pij involving some am with m > l, and rij is an element of
ZFl not involving any am with m > l. Then for matrices Q = [qij ] and R = [rij ]
we have P = Q+R, and by Equation (1), JQ+JR = Ik. But each entry of matrix
JQ is either 0 or involves am for some m > l. Since neither Ik nor JR involves am
for m > l we must have that JQ = 0, yielding

(2) JR = Ik

Now let Ĵ and R̂ be the matrices obtained from J and R, respectively, by deleting
last r− l columns and rows, respectively. Then Ĵ is the Jacobian matrix of the set
S seen as a subset of F̂ = Fl and R̂ is a matrix over ZF̂ = ZFl. Also, equation (2)
implies that

ĴR̂ = Ik.

Thus by Umirbaev’s criterion the set S is a subset of the basis of F̂ .
�

Via private communication, Ilya Kapovich has detailed an alternative proof of
Theorem 2.2, using Gersten’s characterization of Whitehead’s algorithm for sub-
groups [Ger84]. Olga Kharlampovich has also suggested a proof using Bass-Serre
theory. The benefit of the above proof is that it generalizes to the case of free
abelian-by-abelian groups of arbitrary exponents in Section 5 (and also to the case
of free metabelian groups and partially to the case of free solvable groups, though
shorter proofs in these cases are given here).

3. The Abelian Case

The answer to our Main Question in the free abelian case is also: always. Our
proof works for free abelian groups of arbitrary exponent and uses linear algebra.

For any n > 0, Let Zn := Z/nZ denote the free group of rank 1 in the variety
An of all abelian groups of exponent dividing n, and let Fn denote the subgroup
of F generated by all nth powers and similarly define F̂n. Let F ′ denote the

commutator subgroup of F and similarly define F̂ ′. Note (F̂ )′ = (̂F ′), so F̂ ′ is well
defined. Further, for each x ∈ F we denote by x̄ the image of x in F/F ′ under the
canonical epimorphism. For a subset A of F define Ā = {ā : a ∈ A}.

We start with the proof for free abelian groups in the case of exponent 0.

Proposition 3.1. Let S = {x1, x2, . . . , xk} ⊂ F̂ be primitive in F mod F ′. Then

S is primitive in F̂ mod F̂ ′.
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Before we proceed to our proof, we note that this Proposition follows from a well-
known fact (see, for example, [KM79]) that the basis of any subgroup of a finitely
generated free abelian group can be extended to a basis of the whole group. Indeed,
since S̄ can be extended to a basis in F/F ′, we get that S̄ is linearly independent.

Hence, S̄ is a basis of a subgroup 〈S̄〉 < F̂/F̂ ′. We give a proof of Proposition 3.1
that extends to the case of free abelian groups of finite exponent in Theorem 3.2.

Proof. There is a canonical embedding Z
l ∼= F̂ /F̂ ′ →֒ F/F ′ ∼= Z

r and with a

slight abuse of notation we will sometimes identify F̂ /F̂ ′ with its image under this
embedding.

The standard basis of Zr ∼= F/F ′ is {ā1, . . . , ār}, whereas {ā1, . . . , āl} is the

standard basis of Zl ∼= F̂ /F̂ ′. Extend S̄ to a basis B of Zr. Express B with respect
to the standard basis as a matrix M , where the elements of S̄ correspond to the
first k columns of M . Let M̂ denote the submatrix of M obtained by deleting the
last r − l rows and columns. Then M̂ corresponds to a set B̂ of l elements of Zl.
Since the elements of S̄ do not involve generators āl+1, . . . , ār, the matrix M has a
block triangular shape:

M =

[
M̂ P
0 Q

]
,

for some l × (r − l)-matrix P and (r − l) × (r − l)-matrix Q. Then since M is in
SLr(Z) we have

det M̂ · detQ = detM = ±1.

This is possible only if det M̂ = ±1, and M̂ is invertible. This shows B̂ is a basis
of Zl ∼= F̂ /F̂ ′. But S̄ ⊂ B̂, so S̄ is primitive in F̂ /F̂ ′ and thus S is primitive in F̂

mod F̂ ′. �

Now we proceed to the case of free abelian groups with exponent n > 0. First
we note that the free group of rank r in this variety is isomorphic to F/(F ′Fn).

Theorem 3.2. Let S = {x1, x2, . . . , xk} ⊂ F̂ be primitive in F mod F ′Fn. Then

S is primitive in F̂ mod F̂ ′F̂n.

Proof. The proof is almost identical to that of Proposition 3.1. We replace F ′ with
F ′Fn, F̂ ′ with F̂ ′F̂n, and Z with Zn, but otherwise define all other objects in the
same way. The only other change to make is the following argument to show that
M̂ is invertible. The matrix M is invertible in SLr(Zn) if and only if detM is a
unit in Zn. But a product of elements in Zn is a unit if and only if each of the
elements is also a unit. Thus, detM = det M̂ · detQ is a unit in Zn if and only if
det M̂ is a unit in Zn, if and only if M̂ is invertible in SLr(Zn). �

4. The Free Nilpotent Case

We now turn to the free nilpotent and free solvable cases. A commutator of
weight c is an expression recursively defined by [y1, . . . , yc−1, yc] := [[y1, . . . , yc−1], yc]
and [y1, y2] := y−1

1 y−1
2 y1y2. Fix a value for c ≥ 2, and let γc(F ) be the normal clo-

sure of subset of F consisting of all commutators of weight c (i.e. the cth term
in the lower central series of F ). Then F/γc+1(F ) is the free nilpotent group of
class c. Also define γ1(F ) = F . Further, we write F (t) for the tth derived sub-
group of F . Then F/F (t) is a free solvable group of derived length t. Note that
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F ′ = γ2(F ) = F (1), so the free abelian group is the free nilpotent group of class 1
and the free solvable group of derived length 1.

Theorem 4.1.

(1) Let S = {x1, x2, . . . , xk} ⊂ F̂ be primitive in F mod γt+1(F ) for some

t ≥ 1. Then S is primitive in F̂ mod γt+1(F̂ ).

The following proof is based on suggestions and references from Martin Kass-
abov and the referee. In the nilpotent case, our original proof used a primitivity
lifting technique [GG92]. In the solvable case, our original proof was based on a
generalization of our approach in the free case, and used Fox derivatives and cri-
teria for primitivity by Roman’kov and Timoshenko in the free metabelian case
[Rom91a, Tim92], and by Krasnikov in the free solvable case [Kra79]. However,
our original proofs were longer and less general.

Proof. It is a well-known fact (see, for example, [MKS04, Lemma 5.9]) that a set
of elements generates a nilpotent group N if and only if the projection of these
elements to the abelianization N/N ′ generates the abelianization. Assume a subset
S = {x1, . . . , xk} is primitive in F mod γt+1(F ) and S does not involve generators
al+1, . . . , ar. Then S is also primitive over F ′, which implies by Proposition 3.1

that S is primitive in F̂ mod F̂ ′. Now by the above fact S must be primitive in F̂
mod γt+1(F̂ ). �

5. The Abelian-by-Abelian Case

For integers m,n ≥ 0, we consider the case of free groups in the variety AmAn

of all extensions of abelian groups of exponent dividing m by abelian groups of
exponent dividing n. Let Vm,n and V̂m,n denote the corresponding fully invari-

ant subgroups of F and F̂ , respectively. The free Fox derivatives ∂i induce Fox
derivatives ∂0

i : ZF → Zm(F/F ′Fn) (see Gupta and Timoshenko [GT96]) by

ZF
∂i−→ ZF

α∗

−→ Z(F/F ′Fn)
γ∗

−→ Zm(F/F ′Fn),

where α∗ : ZF → Z(F/F ′Fn) and γ∗ : Z(F/F ′Fn) → Zm(F/F ′Fn) are linear ex-
tensions of the canonical epimorphisms α : F → F/F ′Fn and γ : Z → Zm respec-
tively.

In [GT99], Gupta and Timoshenko prove the following theorem.

Theorem 5.1. [GT99] Let S = {x1, x2, . . . , xk} ⊂ F . Let J = (∂0
j xi), i =

1, . . . , k, j = 1, . . . , r denote the k × r Jacobian matrix of S over Zm(F/F ′Fn).
Assume that at least one of the conditions m = 0, n > 0, or k = r − 1 fails. Then
S is primitive mod Vm,n if and only if:

(i) the ideal in the ring Zm(F/F ′Fn) generated by kth order minors of J is
the whole ring, and

(ii) S is primitive mod F ′Fn.

Using the above theorem we deduce:

Theorem 5.2. Let S = {x1, x2, . . . , xk} ⊂ F̂ be primitive in F mod Vm,n and
assume at least one of the following conditions fails: (a) m = 0, (b) n > 0, or (c)

either k = r − 1 or k = l − 1. Then S is primitive in F̂ mod V̂m,n.
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Proof. Let m1, . . . ,mt denote the kth order minors of J in Zm(F/F ′Fn), and let

Jm denote the ideal of Zm(F/F ′Fn) generated by m1, . . . ,mt. As S ⊂ F̂ , J is a

matrix over Zm(F̂ /F̂ ′F̂n) whose last r− l columns are zero columns. Therefore the

l× k Jacobian matrix Ĵ = (∂jxi) formed by viewing S as a subset of F̂ is obtained
from J by simply removing last r − l columns. But removing columns of zeros
does not change the kth order minors of a matrix, so the kth order minors of Ĵ
are also m1, . . . ,mt, considered now as elements in Zm(F̂ /F̂ ′F̂n) (via the canonical

embedding of Zm(F̂ /F̂ ′F̂n) into Zm(F/F ′Fn)). Let Ĵm denote the ideal generated

by m1, . . . ,mt in the ring Zm(F̂ /F̂ ′F̂n).
Since S is primitive in F mod Vm,n, by Theorem 5.1 we know that: (i) Jm =

Zm(F/F ′Fn), and (ii) S is primitive mod F ′Fn. It follows from (i) that Jm contains
the identity in Zm(F/F ′Fn). Therefore for some pi ∈ Zm(F/F ′Fn) we have

(3) 1 =

t∑

i=1

mipi.

We can decompose each pi as

pi = qi + ri,

where qi is the sum of terms in pi that do not involve al+1, . . . , ar, and ri is the sum
of terms in pi that do involve at least one of the al+1, . . . , ar in non-zero power.
Then equation (3) can be rewritten as

1−

t∑

i=1

miqi =

t∑

i=1

miri

The left-hand side of the above equation does not have terms involving al+1, . . . , ar.
However, since every term of each mi does not involve any of al+1, . . . , ar but ev-
ery term of each ri does, every term of miri involves at least one of the elements
al+1, . . . , ar. Some of the terms of miri might cancel, but it follows that every
surviving term of miri must involve at least one of the elements al+1, . . . , ar. Fur-
ther, when we take the sum of miri we cannot create terms that do not involve
al+1, . . . , ar as the support of

∑t
i=1 miri viewed as a function from F/F ′Fn to Zm

is included into the union of supports of miri, which, in turn, are included in the
set of all elements of F/F ′Fn that involve al+1, . . . , ar. Thus, for the two sides to
be equal, the only possibility is if both sides are equal to zero. But this yields that

1 =

t∑

i=1

miqi

with mi, qi ∈ Zm(F̂ /F̂ ′F̂n). Thus the identity in Zm(F̂ /F̂ ′F̂n) belongs to the ideal

Ĵm, and so condition (i) holds for S with respect to the ring Zm(F̂ /F̂ ′F̂n).

It follows from (ii), the fact that S ⊂ F̂ , and Proposition 3.1 and Theorem 3.2

that S is primitive mod F̂ ′F̂n. Thus, applying Theorem 5.1 to S thought of as a

subset of F̂ , we see that S is primitive in F̂ mod V̂m,n. Note that Theorem 5.1
applies in this situation if at least one of the conditions m = 0, n > 0, or k =
rank(F̂ )− 1 = l − 1 fails, which is true by assumption. �

Vitalĭı Roman’kov suggested that one could potentially use the basis cofinality
property of free groups of countable rank in subvarieties B of NcA (where Nc

denotes the variety of nilpotent groups of class c) to generalize our results in this
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section. This property was proved in this case by Bryant and Roman’kov in [BR99]
(see also [BE97] for definitions). To do so, one must show that primitive systems
in a finitely generated relatively free group in B that miss certain generators can
be lifted to primitive systems in F with the same property. For arbitrary varieties
this statement is false, but it could be true for the varieties above.

6. The Free Solvable Case

The final case we consider is the case of free solvable groups. First of all, the
free metabelian case is covered by Section 5. Alternatively, for the free metabelian
case one can use the primitivity criteria developed by Timoshenko [Tim88, Tim98]
and Roman’kov [Rom91b, Rom91a], which use Fox derivatives similar in spirit
to Umirbaev’s criterion [Umi94] stated in Theorem 2.1. Unfortunately, there is
no such criterion for free solvable groups of arbitrary derived length. However,
Krasnikov [Kra78] has obtained a result for groups of the form F/[N,N ] where N
is a normal subgroup of F , which works only in the case k = r. The Fox derivatives
used here are the free Fox derivatives of Section 2.

Theorem 6.1. [Kra78] A set {x1, . . . , xr} in F/[N,N ] is a generating set of this
group if and only if the r × r Jacobian matrix J =

[
Dj(xi)

]
1≤i,j≤r

of free Fox

derivatives, projected to Z(F/N), is left invertible in the integral ring Z(F/N).

With this criterion we obtain an analog of Theorem 2.2 in the case of free solvable
groups with a restriction on the size of S.

Theorem 6.2. Let S = {x1, x2, . . . , xr−1} ⊂ F̂ be primitive in F mod F (t), where

F (t) is the t-th derived subgroup of F , t > 0. Then S is a basis for F̂ /F̂ (t).

Proof. Since S is primitive in F mod F (t), we can extend S to a set S̃ = {x1, x2, . . . , xr} ⊂

F such that the images of elements of S̃ in F/F (t) under the canonical epimorphism

form a basis. By Theorem 6.1 we have that the associated to S̃ Jacobian matrix
J =

[
Dj(xi)

]
1≤i,j≤r

is left invertible over Z(F/F (t−1)), so there exists an r × r

matrix P =
[
pij ]1≤i,j≤r with entries over Z(F/F (t−1)) such that

PJ = Ir,

where Ir is an r × r identity matrix over Z(F/F (t−1)).
Since elements of S do not involve the generator ar, we have

Dr(xj) = 0, j = 1, . . . , r − 1,

and Di(xj) does not involve ar for 1 ≤ j ≤ r − 1. Therefore, matrix J can be
written in the form

J =




Ĵ

0
...
0

D1(xr) · · ·Dr−1(xr) Dr(xr)


 ,

where Ĵ =
[
Di(xj)

]
1≤i,j≤r−1

is the Jacobian martix of S in F̂ /F̂ (t−1).
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Then

Ir = PJ =




∗

p1rDr(xr)
...

pr−1,rDr(xr)
∗ · · · ∗ prrDr(xr)


 .

Hence, prrDr(xr) = 1 in Z(F/F (t−1)) and, in particular, Dr(xr) 6= 0. On the other
hand,

pinDr(xr) = 0, i = 1, . . . , r − 1,

so we must have pin = 0 in Z(F/F (t−1)). This follows from the fact that the free
solvable group F/F (t−1) is a torsion-free elementary amenable group, and for such
groups the Kaplansky conjecture on zero divisors holds true [Lin91]. In particular,
this implies that the ring Z(F/F (t−1)) does not have zero divisors.

Now we have

Ir = PJ =




P̂

0
...
0

pr1 · · · pr,r−1 prr







Ĵ

0
...
0

D1(xr) · · ·Dr−1(xr) Dr(xr)




=




P̂ Ĵ

0
...
0

∗ · · · ∗ prrDr(xr)


 .

Therefore we must have P̂ Ĵ = Ir−1, where Ir−1 is the (r − 1)× (r − 1) identity
matrix over Z(F/F (t−1)). Similarly to the proof in the free case, it follows that

P̂ can be chosen to be in Z(F̂ /F̂ (t−1)). Finally, applying Theorem 6.1 again, we

obtain that S is a basis for F̂ /F̂ (t). �
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