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THE ZERO–DIVISOR GRAPHS OF RINGS AND SEMIRINGS

DAVID DOLŽAN, POLONA OBLAK

Abstract. In this paper we study zero–divisor graphs of rings and semirings. We show
that all zero–divisor graphs of (possibly noncommutative) semirings are connected and
have diameter less than or equal to 3. We characterize all acyclic zero–divisor graphs
of semirings and prove that in the case zero–divisor graphs are cyclic, their girths are
less than or equal to 4. We find all possible cyclic zero–divisor graphs over commutative
semirings having at most one 3-cycle, and characterize all complete k-partite and regular
zero–divisor graphs. Moreover, we characterize all additively cancellative commutative
semirings and all commutative rings such that their zero–divisor graph has exactly one
3-cycle.

1. Introduction

For any semigroup S with zero, we denote by Z(S) the set of zero–divisors, Z(S) =
{x ∈ S; there exists 0 6= y ∈ S such that xy = 0 or yx = 0}. We denote by Γ(S)
the zero–divisor graph of S. The vertex set V (Γ(S)) of Γ(S) is the set of elements in
Z(S)∗ = Z(S) \ {0} and an unordered pair of vertices x, y ∈ V (Γ(S)), x 6= y, is an edge
x− y in Γ(S) if xy = 0 or yx = 0.

Similarly, we can define the zero–divisor graphs of other algebraic structures, e.g. rings,
semirings, near-rings, algebras.

The zero–divisor graphs of rings have been first introduced by Beck in [11] in the study
of commutative rings, and later studied by various authors, see for example [1, 2, 3, 7,
5, 8, 12, 14, 21, 24]. The zero–divisor graphs are also intensely studied in the semigroup
setting, e.g. [16, 17, 18, 19]. Recently, they were used to study near-rings (see e.g. [13])
and semirings (see e.g. [9, 10]).

In this paper we investigate the interplay between the algebraic properties of a (semi)ring
and the graph theoretic properties of its zero–divisor graph. In the next section, we give
all necessary definitions. In Section 3, we survey some of the known results of the theory of
the zero–divisor graphs over semigroups, rings, and semirings, and extend these results to
a more general setting of a noncommutative semiring and we characterize all acyclic zero–
divisor graphs of semirings (Theorem 3.9). Next, we study the cyclic zero–divisor graphs.
Firstly, we characterize the complete k-partite and regular zero–divisor graphs that can
appear as the zero–divisor graphs of commutative semirings (Theorem 4.2 and Corollary
4.3). In the case the zero–divisor graph of a commutative semiring contains at most one
triangle, we find all possible zero–divisor graphs (Theorems 6.4 and 7.5, Proposition 7.1).
If the zero–divisor graph of a commutative semiring is cyclic and contains no triangles,
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we describe the order of the nilpotent elements in the semiring (Proposition 6.5). In
the case the zero–divisor graph of an additively cancellative semiring contains exactly
one triangle, we prove that the semiring has to be a ring (Proposition 7.7) and we then
proceed to characterize all rings and their zero–divisor graphs containing exactly one
triangle (Theorem 8.4).

2. Definitions

A semiring is a set S equipped with binary operations + and · such that (S,+) is a
commutative monoid with identity element 0, and (S, ·) is a monoid with identity element
1. In addition, operations + and · are connected by distributivity and 0 annihilates S. A
semiring is commutative if ab = ba for all a, b ∈ S. A semiring is entire (or zero–divisor-
free) if ab = 0 implies that a = 0 or b = 0. The semiring S is additively cancellative if
a+ c = b+ c implies that a = b for all a, b, c ∈ S.

The simplest example of a commutative semiring is the binary Boolean semiring, the
set {0, 1} in which 1 + 1 = 1 · 1 = 1. We denote the binary Boolean semiring by B.
Moreover, the set of nonnegative integers (or reals) with the usual operations of addition
and multiplication, is a commutative semiring. Other examples of commutative semirings
are distributive lattices, tropical semirings etc.

The sequence of edges x0−x1, x1−x2, ..., xk−1−xk in a graph is called a path of length
k and is denoted by x0 − x1 − . . .− xk or Pk+1. The distance between two vertices is the
length of the shortest path between them. The diameter diam(Γ) of the graph Γ is the
longest distance between any two vertices of the graph. A path x0 − x1 − . . .− xk−1 − x0
is called a cycle. The girth of the graph Γ is the length of the shortest cycle contained in
the graph and will be denoted by girth(Γ).

The complete graph will be denoted by Kn and complete bipartite graph by Km,n. We
say that the star graph is a complete bipartite graph K1,n. Note that K1,0 = K1. The
two-star graph Sm,n, where n,m ∈ N∪{0}, is a graph with the set of vertices equal to the
set {v1, v2, u1, u2, . . . , um, w1, w2, . . . , wn}, and with the following edges: v1 − v2, ui − v1
for i = 1, 2, . . . ,m, and wj−v2 for j = 1, 2, . . . , n. Note that S0,n = K1,n+1 is a star graph.

S3,5 :

Let K
r
m,n be the complete bipartite graph Km,n together with r vertices v1, v2, . . . , vr

and edges vi−a for all i and some vertex a, such that deg(a) = n in the induced subgraph

Km,n. Moreover, choose vertex b, such that deg(b) = m and a − b is an edge in K
r
m,n.

Denote by K
△(r1,r2,r3)
m,n the graph K

r1
m,n together with vertices e, vi, wj and edges a−e−b,

b− vi, e− wj, i = 1, 2, . . . , r2, j = 1, 2, . . . , r3.
2



K
5
2,3 : K

△(5,0,3)
2,3 :

3. The zero–divisor graph of a semiring

Let us investigate the zero–divisor graph of an arbitrary (possibly noncommutative)
semiring.

Firstly, we shall prove that the zero–divisor graphs of (noncommutative) semirings are
always connected and have diameters at most 3. This is a similar result to [24, Thm. 3.2]
(for rings) and [9, Lemma 2.1] (for commutative semirings).

Theorem 3.1. If S is a semiring, then diam(Γ(S)) ≤ 3.

Proof. Take x, y ∈ Z(S)∗, such that xy 6= 0 and yx 6= 0. We want to show that there is a
path from x to y and d(x, y) ≤ 3.

There exist a, b ∈ Z(S)∗, such that ax = 0 or xa = 0 and by = 0 or yb = 0. Note
that here, a can be equal to x, as well as b equal to y. If a = b, ab = 0, ba = 0, ay = 0,
ya = 0, bx = 0 or xb = 0, then d(x, y) ≤ 3. So, suppose, none of the above is true. In the
case ax = 0, we have that either x − ba − y or x − ya − b − y is a path joining x and y.
Otherwise, if xa = 0, either x− ab− y or x− ay− b− y is a path from x to y. All of these
four paths are of length at most 3, even if some of the vertices coincide, and therefore
d(x, y) ≤ 3. �

Anderson and Mulay [8, Thm. 2.8] proved that for direct products of integral domains
and their subrings, the diameter is at most 2. We generalize this result to noncommutative
entire semirings.

Proposition 3.2. If S1 and S2 are entire semirings and S ⊆ S1 × S2 is a semiring. If
Γ(S) 6= ∅, then diam(Γ(S)) ≤ 2.

Proof. If S ⊆ S1 ×S2, where S1 and S2 are entire semirings, then (s1, s2) ∈ Z(S)∗ implies
that either s1 = 0 or s2 = 0.

Assume diam(Γ(S)) ≥ 2. Then, there exist x, y ∈ Z(S)∗, such that xy 6= 0, yx 6= 0.
Without loss of generality, let us assume that x = (x1, 0). This implies that y = (y1, 0).
Since Γ(S) is a connected graph, there exists an edge x− z in Γ(S) and z = (0, z1). Thus
x− y − z is a path in Γ(S) and diam(Γ(S)) ≤ 2. �

In the following examples we show that some families of the graphs with diam(Γ) ≤ 2
can be realized as the zero–divisor graphs of semirings. We will later need the realization
of these families of graphs in the characterization of complete k-partite and regular zero–
divisor graphs.
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We will denote by Mn(S) the set of all n× n matrices over a semiring S. The matrix
with the only nonzero entry 1 in the ith row and jth column will be denoted by Ei,j. The
matrix In will denote the n× n identity matrix, 0n will denote the n× n zero matrix and
Jn will denote the matrix E1,2 + E2,3 + . . . + En−1,n. Also, let us denote by A ⊕ B the

direct sum of matrix blocks

[

A 0
0 B

]

.

Example 3.3. We can realize all complete bipartite graphs as zero–divisor graphs of a
direct product of two semirings. Namely, if S and T are arbitrary entire semirings with
|S| = m+1 and |T | = n+1, then Γ(S × T ) = Kn,m. Such S and T exist, for example we
can choose totally ordered sets of appropriate cardinality. �

Example 3.4. Anderson and Livingston [7, Thm. 2.8] proved that if the zero–divisor graph
of a commutative ring R with 1 is equal to Γ(R) = Kn, n ≥ 3, then all zero–divisors are
nilpotents of order 2. This statement does not hold for semirings. However, we can show
that if S is a commutative semiring and Γ(S) = Kn, n ≥ 3, then x2 = 0 for all but possibly
one x ∈ Z(S)∗.

Suppose Z(S)∗ = {a1, a2 . . . , an} and a21 6= 0. Since Γ(S) = Kn, it follows that aiaj = 0
for all i 6= j, and therefore a1(a1 + ai) = a21 6= 0 for i 6= 1. Since aj(a1 + ai) = 0 for
all j 6= i, j, i 6= 1, it follows that a1 + ai ∈ Z(S)∗, thus a1 + ai = a1 for all i 6= 1. By
multiplying this equation by ai, we have a2i = 0 for all i 6= 1.

Moreover, such semirings S indeed exist. Consider a semiring S in M2n−1(B), gener-
ated by ai = Jn−2+i + Jn−1+i + . . . + J2n−2, where i = 1, 2, . . . , n. Since J2n−1 = 0, we
have aiaj = 0 for all i, j = 1, 2, . . . , n but for i = j = 1. Therefore Γ(S) = Kn, a

2
i = 0 for

all i 6= 1 and a21 6= 0. �

The next two examples show that we can also realize all possible star and two-star
graphs as the zero–divisor graphs of (even commutative) semirings. Compare this with
[7, Ex. 2.1] where it has been shown that for a commutative ring, the zero–divisor graph
cannot be equal to P4 = S1,1.

Example 3.5. Let Mn+1(B) be the semiring of n+1 by n+1 matrices over the Boolean
semiring, where n ≥ 1, and denote by S the subsemiring generated by the set {I1⊕0n, 01⊕
In, 01 ⊕ In + Jn}. The zero–divisors in the semiring S are of two types, I1 ⊕ 0n and
01 ⊕ (In + Jn + J2

n + . . .+ Jk
n) for k = 0, 1, . . . n− 1. It can be easily verified that then only

the products of the element I1 ⊕ 0n with 01 ⊕ (In + Jn + J2
n + . . . + Jk

n) are equal to zero
for all k, so Γ(S) = K1,n = S0,n−1.

Obviously, we can realize the graph K1 = K1,0 as the zero–divisor graph of a semiring,
for example the (semi)ring Z4. �

Example 3.6. Choose n,m ∈ N. Let L = {0, x1, x2, x3, . . . , 1} be any totally ordered
(distributive) lattice containing at least max{n,m} nonzero elements. Then L is also an
entire semiring for the operations xi + xj = xmax{i,j} and xi · xj = xixj = xmin{i,j}.

Now, let M4(L) denote the semiring of all 4×4 matrices over L. Denote v1 = 02⊕x1J2
and v2 = (x1(I2 + J2))⊕ 02. For i = 1, 2, . . . , n define ui = (x1I2 + xiJ2)⊕ x1J2, and for
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j = 1, 2, . . . ,m define wj = 02 ⊕ (xj(I2 + J2)). Let S denote the subsemiring of M4(L),
generated by the elements v1, v2, u1, u2, . . . , un, w1, w2, . . . , wm.

It can be easily seen, that since L is entire and antinegative, we do not get any zero–
divisors in S that are not already amongst the generating elements. So, the zero–divisor
graph of S consists of edges v1−v2, ui−v1 for i = 1, 2, . . . , n, and wj−v2 for j = 1, 2, . . . ,m,
which implies that Γ(S) = Sn,m is a two-star graph. �

We shall now see, that we can consider the case of cyclic zero–divisor graphs separately
from the case of acyclic ones. We will find all possible acyclic graphs that can be realized
as zero–divisor graphs of semirings, and for the cyclic graphs, we shall prove that they
always contain at least one cycle of length at most 4.

Lemma 3.7. If P5 is a subgraph of Γ(S), where S is an arbitrary semiring, then Γ(S) is
a cyclic graph and girth(Γ(S)) ≤ 4.

Proof. Denote by a − b − c − d − e the path P5 in Γ(S). Suppose that girth(Γ(S)) > 4,
i.e., there are no edges among other vertices from this path.

Consider first the case ba = bc = 0. Since eb 6= 0 and (eb)a = (eb)c = 0, we have that
eb = b. (Otherwise, there is a cycle of length 3 or 4 in Γ(S).) Similarly, we conclude
that db = b. Since d − e is an edge in Γ(S), we have either that de = 0, and thus
db = dbe = 0, or ed = 0, and therefore eb = edb = 0, which both contradict the asumption
that girth(Γ(S)) > 4.

Similarly, we can treat the case ab = cb = 0.
Suppose now ab = bc = 0 and ba 6= 0, cb 6= 0. By Theorem 3.1, we have that d(a, e) ≤ 3.

Since girth(Γ(S)) > 4, the path from a to e of the length at most 3 cannot contain any of
vertices b, c, d. If d(a, e) = 3 and a − x − y − e is a path from a to e, we obtain a cycle
a − b − c − d − e − y − x − a of length 7. Note that if d(a, e) = 2, then we can assume
that y = x and if d(a, e) = 1, then e = y = x. In all three cases, let us assume, that
a − x is an edge in Γ(S). If we assumed ax = 0, we would get a contradiction as in the
case ba = bc = 0. Thus, from now, let xa = 0. Since girth(Γ(S)) > 4 and b(cx) = 0, the
product cx is either equal to a, b, c or is an element, different from a, b, c, d, e, f, x, y. In the
first case, a2 = (cx)a = 0 and therefore a−ac−x−a is a 3-cycle in Γ(S), a contradiction.
In the second case, ba = (cx)a = 0, which is again a contradiction. Otherwise, b−cx−a−b
is a cycle of length 3. �

Corollary 3.8. The cycle on n vertices, n ≥ 5, cannot be realized as Γ(S), where S is a
semiring.

We can now prove the theorem that generalizes [8, Thm. 2.4, Thm. 2.5] and provides a
characterization of all acyclic zero–divisor graphs over semirings.

Theorem 3.9. Let S be a non–entire semiring.

(a.) If Γ(S) is a cyclic graph, then diam(Γ(S)) ≤ 3 and girth(Γ(S)) ≤ 4.
(b.) Γ is an acyclic zero–divisor graph of a non–entire semiring if and only if Γ = Sn,m

or Γ = K1.
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Proof. If Γ(S) is a cyclic graph which contains a cycle of length 5 or more, then it also
contains P5. By Lemma 3.7, it follows girth(Γ(S)) ≤ 4. Note that diam(Γ(S)) ≤ 3 by
Theorem 3.1. Assume now that Γ(S) is acyclic and contains at least 2 vertices. Again by
Lemma 3.7, we know that it does not contain P5, so the only possibility is that Γ(S) = Sn,m

for some n,m. The converse of (b.) follows from Examples 3.5 and 3.6. �

This result characterizes the acyclic zero–divisor graphs of (non)-commutative semir-
ings. In the following sections we will examine the cyclic zero–divisor graphs of commu-
tative semirings.

4. The complete k-partite and regular zero–divisor graphs of commutative

semirings

In this section we investigate two special families of cyclic graphs, complete k-partite
and regular graphs. DeMeyer et al. [18] showed that all complete k-partite graphs are
zero–divisor graphs of commutative semigroups, and (see Theorem 4.1) characterized all
regular graphs that can appear as the zero–divisor graphs of commutative semigroups.
In the semiring setting, these two assertions no longer hold, and in Theorem 4.2 and
Corollary 4.3 we shall characterize complete k-partite and regular graphs that can appear
as the zero–divisor graphs of commutative semirings.

Theorem 4.1 (DeMeyer, Greve, Sabbaghi, Wang [18]). Let Γ be a connected k-regular
graph with n vertices. Then Γ is a zero–divisor graph of a commutative semigroup if and

only if n− k|n and Γ =
∨n/(n−k)(n− k)K1.

Theorem 4.2. Let Γ be a complete k-partite graph with n vertices and k ≥ 2. Then Γ is
a zero–divisor graph of a commutative semiring if and only if k = 2 or Γ = Kk−1

∨

(n −
k + 1)K1.

Proof. Since Γ is connected, we have k ≥ 2. Suppose Γ = C1
∨

C2
∨

. . .
∨

Ck is a complete
k-partite zero–divisor graph with k ≥ 3. If Γ 6= Kk−1

∨

(n − k + 1)K1, then there exist,
say C1 and C2 with |C1| ≥ 2 and |C2| ≥ 2. Let a1, b1 ∈ C1, a2, b2 ∈ C2 and c ∈ C3. Since
a1c = a2c = 0, it follows that (a1 + a2)c = 0, so a1 + a2 ∈ Z(S). If a1 + a2 /∈ C1, then
(a1 + a2)b1 = 0 and thus a1b1 = 0, a contradiction. Therefore, a1 + a2 ∈ C1 and similarly
we obtain a1 + a2 ∈ C2 which is also a contradiction.

Example 3.3 shows that Km,n can be realized as the zero–divisor graph of a commutative
semiring. Choose an integer k, 3 ≤ k ≤ n−1 and consider the subsemiring S ⊆ M2n+1(B),
generated by matrices {Ai, B,Cj ; 2 ≤ i ≤ n−k+1, 2n−k+2 ≤ j ≤ 2n}, where J = J2n+1,
B = Jn + Jn+1 + . . . + J2n, Cj = J j + J j+1 + . . . + J2n and Ai = [aist] are the matrices
with entries

aist =

{

0, t− s < n or s = i, t = i+ n,

1, otherwise.

Observe that S is a semiring with Γ(S) = {C1, C2, . . . , Ck}
∨

{A1, A2, . . . , An−k+1, B} =
Kk−1

∨

(n − k + 1)K1. �
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Corollary 4.3. Let Γ be a r-regular graph with n vertices. Then Γ is a zero–divisor graph
of a commutative semiring if and only if r = n − 1 and Γ = Kn, or n even, r = n

2 and
Γ = Kn

2
,n
2

.

Proof. Assume that Γ is a zero–divisor graph of a semiring. Then, Γ is connected by
Theorem 3.1 and thus by 4.1, Γ is a join of n

n−r copies of (n− r)K1, which is a complete
n

n−r -partite graph. Now, Theorem 4.2 implies that there are two possibilities. In the first
case, n

n−r = 2 and thus Γ is a r-regular bipartite graph with r = n
2 , so Γ = Kn

2
,n
2

. In the

second case, Γ = K r

n−r

∨

(n − r
n−r )K1. Since Γ is r-regular, it follows that n − 1 = r

n−r

and therefore r = n− 1, so Γ = Kn.
Examples 3.3 and 3.4 show that Kn and Kn

2
,n
2

can both be realized as the zero–divisor

graphs of commutative semirings. �

5. The cyclic zero–divisor graphs

In this section we will study the cyclic zero–divisor graphs of commutative semirings. By
Theorem 3.9 every cyclic zero–divisor graph has a 3-cycle or a 4-cycle. We will define the
following graphs, which we shall prove are the graphs that cannot appear as the induced
subgraphs of a cyclic zero–divisor graph of a commutative semiring.

• C4,4, which is a graph consisting of two cycles a− b− c−d−a and a− b−f −e−a
with the common edge a− b, and

• C ′
4, which is a 4-cycle a−b−c−d−a together with two vertices e and f , connected

with edges a− e and b− f ,
• C

′′

4 , which is a 4-cycle a−b−c−d−a together with two vertices e and f , connected
with edges a− e and c− f ,

a b

c d

e

C4,3 :

Moreover, let us define the graph C4,3, which is a graph consisting of a 4-cycle a− b−
c− d− a and a 3-cycle a− b− e− a with the common edge a− b.

We can now state the following lemma.

Lemma 5.1. Let S be a commutative semiring and let the graph Γ(S) contain exactly one
3-cycle and at least one n-cycle, n ≥ 4. Then, Γ(S) contains C4,3 as an induced subgraph.

7



Proof. Let n ≥ 4 be the smallest integer, such that Γ(S) contains an n-cycle x1−x2−x3−
. . .−xn−x1. If x1x3 = 0, we obtain a n−1 cycle in the graph Γ(S) and thus n = 4 and Γ
has two 3-cycles, a contradiction. Since (x1x3)x2 = (x1x3)x4 = (x1x3)xn = 0, either x1x3
is a vertex on the cycle or x1x3 6= xi for all i. In both cases Γ(S) contains a 4-cycle.

Suppose Γ(S) contains a 4-cycle a− b− c− d− a and a 3-cycle e− f − g − e. We shall
firstly prove that they have a common vertex.

Choose an arbitrary vertex in the 3-cycle, say e. If e is a neighbour of at least 2 vertices
from the 4-cycle (say, one of them is a), then note that either Γ(S) contains more than one
3-cycle (which contradicts the assumption), or the only other neighbour of e in the 4-cycle
is c. In the latter case Γ(S) contains a 4-cycle (either a− e− c− b− a or a− e− c− d− a)
and the 3-cycle e − f − g − e with the common vertex e. So, suppose every vertex in
the 3-cycle e − f − g − e has at most one neighbour in the 4-cycle. In this case, there
exists a vertex in the 4-cycle, say a, such that ae 6= 0. Since (ae)f = (ae)g = 0 and
Γ(S) has only one 3-cycle, it follows that ae is an element of {e, f, g}. On the other hand,
(ae)b = (ae)d = 0, so ae has at least 2 neighbours in the 4-cycle. It follows that ae = c
and 4-cycle and 3-cycle have a common vertex.

We proved that 3-cycle and 4-cycle have a common vertex, for instance d = g. If a = e,
then the Lemma is proven. Otherwise, since the graph contains only one 3-cycle, ae 6= 0
and (ae)d = (ae)f = 0 imples that ae is an element of {d, e, f}. Moreover, (ae)b = 0 and
thus Γ(S) contains C4,3, since Γ(S) may contain only one 3-cycle. �

Lemma 5.2. Let S be a commutative semiring with girth(Γ(S)) = 4. Then C ′
4 cannot

appear as an induced subgraph of Γ(S).

Proof. Suppose that Γ(S) contains C ′
4, which is a 4-cycle a − b − c − d − a together

with two vertices e and f , connected with edges a − e and b − f . Firstly, ef 6= 0 and
(ef)a = (ef)b = 0. Again, since girth(Γ(S)) > 3, it follows that either ef = a or ef = b.
By the symmetry, we can assume that ef = a. Now, e(fd) = (ef)d = 0 and moreover
a(fd) = b(fd) = c(fd) = 0. Since fd 6= 0 and girth(Γ(S)) > 3, the product fd cannot
exist as a vertex in Γ(S). �

Lemma 5.3. Let S be a commutative semiring with Γ(S) containing at most one 3-cycle.
Then neither C ′′

4 , C4,4, nor C4,5 can appear as induced subgraphs of Γ(S).

Proof. Suppose Γ(S) contains C4,4 as an induced subgraph, i.e. Γ(S) contains vertices
a, b, c, d, e, f , where the only edges are a− b − c− d − a and a− b− f − e − a. Consider
the product ce. Clearly, (ce)a = (ce)b = (ce)d = (ce)f = 0 and ce 6= 0, and since Γ(S)
contains at most one 3-cycle, such vertex ce cannot exist in Γ(S).

If Γ(S) contains C4,5 as an induced subgraph, i.e. Γ(S) contains vertices a, b, c, d, e, f ,
where the only edges are a− b− c− d− a and a− b− c− f − e− a, then similarly as in
(1), ce 6= 0 is a zero divisor in S, but cannot exist as a vertex in Γ(S).

If Γ(S) contains C
′′

4 , which is a 4-cycle a− b− c−d−a together with two vertices e and
f , connected with edges a − e and c − f , note that ce 6= 0 and (ce)a = (ce)b = (ce)d =
(ce)f = 0. Since Γ(S) contains at most one 3-cycle, it follows that ce cannot exist as a
vertex in Γ(S). �
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6. Commutative semirings with zero–divisor graphs of girth 4

In this section we shall describe the zero–divisor graphs of commutative semirings with
their girth equal to 4.

If the semiring is a ring, the structure of the ring itself can be deduced from the prop-
erties of its zero–divisor graph. Anderson and Mulay, [8, Theorems 2.3 and 2.4] have
characterized commutative rings R with girth(Γ(R)) = 4. Their findings about this can
be summarized in the following theorem.

Theorem 6.1 (Anderson, Mulay, [8]). If R is a commutative ring with identity such that
girth(Γ(R)) = 4, then

(1) either Γ(R) = Km,n, m,n ≥ 2 and the total quotient ring of R is a direct product
of two fields F1 × F2, |Fi| ≥ 3,

(2) or Γ(R) = K
m
3,m and R = D × B, where D is an integral domain with at least 3

elements and B ∈ {Z4,Z2[X]/(X2)}.

The following examples show that there exist large families of commutative semirings
with their zero–divisor graphs equal to K

r
n,m.

Example 6.2. Let S = {0, a1, a2, . . . , am−1, 1} be a totally ordered lattice and T ⊆
Mn−1(B) the commutative semiring, generated by A = Jn−2

n−1 and B = In−1 + Jn−1. Note
that Z(S) = {0} and Z(T ) = {0, A}. Then, Z(S × T ) consists of two types of elements
(s, t) ∈ S × T : the first type are those having s = 0 or t = 0, which form the induced
subgraph Kn,m of Γ(S × T ); the second type are the elements having t = A, which are all

neighbours of the vertex (0, A). Thus, Γ(S × T ) = K
m
n,m. �

Example 6.3. Let S = M2(B) and consider the semiring S2n−3 for some k ∈ N. Denote
by ei the element in S2n−3, which has its only nonzero entry equal to I2 in the i-th position
and moreover let I = I2 and J = J2. Let us define the following elements:

a = Je1 b = e2

cj = (I + J)e1 +
j
∑

i=1
Je2i+1 for j = 1, 2, . . . , n− 2 d = e2 + e4

e =
n−2
∑

i=0
Je2i+1 +

n−2
∑

i=1
e2i

Consider the semiring T generated by {1, a, b, c1, c2, . . . , cn−2, d, e} and observe that Γ(T ) =

K
3
n,2. �

The following theorem shows that all zero–divisor graphs with their girth equal to 4 are
actually of this form.

Theorem 6.4. If S is a commutative semiring and girth(Γ(S)) = 4 then Γ(S) = K
r
m,n.
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Proof. Since girth(Γ(S)) = 4, Γ(S) contains K2,2 as induced subgraph. We proceed

inductively by adding vertices while always maintaining Γ(S) = K
ρ
µ,ν for some ρ, µ, ν.

Assume that we have in Γ(S) an induced subgraph K
ρ
µ,ν , µ, ν ≥ 2. Let us decompose

the vertex set of K
ρ
µ,ν into 3 sets: V1 = {v; deg v = 1} (possibly empty), V2 and V3 are

the bipartite parts of Kµ,ν , where each vertex in V3 has degree µ. Moreover, let a ∈ V2 be
the vertex with deg(a) = ν + ρ. If ρ = 0, then choose a to be any vertex in V2.

Choose any vertex x ∈ Γ(S), that is not in K
ρ
µ,ν .

• If x − v is an edge for some v ∈ V1, then by Theorem 3.1, x − w is an edge for
some w ∈ V2 ∪ V3. If w ∈ V2, then Γ(S) contains C4,5 as an induced subgraph,
and if w ∈ V3, then Γ(S) contains C4,4 as an induced subgraph. Both conclusions
contradict Lemma 5.3.

• If deg(x) = 1 and x− a is an edge, or V1 = ∅, then we get K
ρ+1
µ,ν .

• If V1 6= ∅ and deg(x) = 1, then if x− v is an edge for some v ∈ V2\{a}, then Γ(S)
contains C ′′

4 as an induced subgraph and otherwise, if x − v is an edge for some
v ∈ V3, then Γ(S) contains C ′

4 as an induced subgraph, which contradicts Lemma
5.2.

• If deg(x) ≥ 2 and w − x − v is a path, then v,w ∈ V2 or v,w ∈ V3. (Otherwise,
girth(Γ(S)) = 3.) Say, v,w ∈ V2. Suppose there exists u ∈ V2 such that xu 6=
0. Now, (xu)y = (xu)w = (xu)v = 0 for all y ∈ V3, and this contradicts the
assumption that girth(Γ(S)) = 4. Thus, x− u is an edge in Γ(S) for all u ∈ V2, so

we get K
ρ
µ,ν+1. Similarly, if v,w ∈ V3, we get K

ρ
µ+1,ν . �

The next observation is a semiring generalization of a result that appears in [6] for the
ring theoretic case.

Proposition 6.5. If S is a commutative semiring with girth(Γ(S)) = 4, then all nilpotents
are of the order equal to 2.

Proof. Note that since girth(Γ(S)) = 4, graph Γ(S) does not contain any triangles.
Suppose x ∈ N (S) and xn = 0, xn−1 6= 0, n ≥ 3. Thus, x − xn−1 is an edge in Γ(S).

Note that deg(x) = 1 since otherwise xy = 0 implies that x− y− xn−1 − x is a triangle in
Γ(S).

In Γ(S) there exists a 4-cycle a − b − c − d − a and since diam(Γ(S)) ≤ 3, it follows
that xn−1 ∈ {a, b, c, d}. Say, xn−1 = d. Then (bx)xn−1 = (bx)a = (bx)c = 0 and bx 6= 0.
Since Γ(S) does not contain any triangles, bx = xn−1. Similarly, bxn−1 = xn−1. Now,
xn−1 = bxn−1 = bxxn−2 = x2n−3 = 0, which is a contradiction. It follows that n = 2. �
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7. Commutative semirings having zero–divisor graphs with one 3-cycle

We now proceed to a description of all graphs with their girths equal to 3, with an
additional assumption that they contain exactly one 3-cycle.

The main purpose of the last two sections is to obtain the characterization of all rings
(or equivalently all additively cancellative semirings) having the zero–divisor graph with
one 3-cycle, which is a step towards the characterization of rings with the girth of their
zero–divisor graph equal to 3.

Proposition 7.1. If S is a commutative semiring and Γ(S) contains exactly one 3-cycle,

then Γ(S) = K
△(r1,r2,r3)
m,n .

Proof. If Γ(S) contains an n-cycle for some n ≥ 4 then it also contains C4,3, a − b − c −
d− a− e− d− a as an induced subgraph by Lemma 5.1.

We proceed by adding arbitrary vertices from Γ(S) to this subgraph, while showing that

in the process we always maintain the structure of Γ(S) = K
△(ρ1,ρ2,ρ3)
µ,ν for some ρ, µ, ν.

Assume that in Γ(S), we have an induced subgraph K
△(ρ1,ρ2,ρ3)
µ,ν , µ, ν ≥ 2. Let us

decompose the vertex set of K
△(ρ1,ρ2,ρ3)
µ,ν into 4 sets: V1 = {v; deg v = 1} (possibly

empty), V2 and V3 are the bipartite parts of Kµ,ν , where each vertex in V3 has degree µ,
and V4 = {e}, the top of the 3-cycle.

Choose any vertex x ∈ Γ(S), that is not in K
△(ρ1,ρ2,ρ3)
µ,ν and add it to the graph.

• If x − v is an edge for some v ∈ V1, then by Theorem 3.1, x − w is an edge for
some w ∈ V2 ∪ V3. If w ∈ V2, then Γ(S) contains C4,5 as an induced subgraph,
and if w ∈ V3, then Γ(S) contains C4,4 as an induced subgraph. Both conclusions
contradict Lemma 5.3.

• If deg(x) = 1 and x is a neighbour of a, d or e, then we get K
△(ρ1+1,ρ2,ρ3)
µ,ν ,

K
△(ρ1,ρ2+1,ρ3)
µ,ν or K

△(ρ1,ρ2,ρ3+1)
µ,ν , respectively.

• If deg(x) = 1 and x is not a neighbour of a, d and e, let us assume without loss
of generality that x− v is an edge for some v ∈ V2\{a, d}. Since deg(x) = 1, then
xa 6= 0 and (xa)y = (xa)v = (xa)e = 0 for all y ∈ V3, and this contradicts the
assumption that Γ(S) has exactly one 3-cycle.

• If deg(x) ≥ 2 and w − x − v is a path, then v,w ∈ V2 or v,w ∈ V3. (Otherwise,
we obtain a new 3-cycle in Γ(S) if w ∈ V2 and v ∈ V3 or if w and v are two
vertices of the 3-cycle a − e − d − a, and we obtain C4,4 if one of v,w is equal
to e.) Say, v,w ∈ V2. Suppose there exists u ∈ V2 such that xu 6= 0. Now,
(xu)y = (xu)w = (xu)v = 0 for all y ∈ V3, and this contradicts the assumption
that Γ(S) has exactly one 3-cycle. Thus, x− u is an edge in Γ(S) for all u ∈ V2,

so we get K
△(ρ1,ρ2,ρ3)
µ,ν+1 . Similarly, if v,w ∈ V3, we get K

△(ρ1,ρ2,ρ3)
µ+1,ν .

If the only cycle in Γ(S) is the 3-cycle, then all other vertices in Γ(S) are at distance 1
from the triangle. Otherwise, if a−b−e−a−x−y is a subgraph of Γ(S), but then xb 6= 0
and (xb)a = (xb)e = (xb)y = 0 which is a contradiction, since we obtain a new 3-cycle in
Γ(S). �
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Corollary 7.2. If S is a commutative semiring with the only cycle of Γ(S) being a 3-cycle,

then Γ(S) = K
△(r1,r2,r3)
1,1 .

The following example shows that there exist commutative semirings with their zero–

divisor graphs equal to K
△(r1,r2,r3)
1,1 for all r1, r2, r3 ≥ 1.

Example 7.3. Let us denote by ei the element in Br1+r2+r3 , which has its only nonzero
entry in the i-th position and fj the element in Br1+r2+r3 , which has its only zero entry
in the j-th position. Let us define elements

ai = fi
r1−1
∑

t=1
et + er1+r2 + er1+r2+r3 for all i = 1, 2, . . . , r1 − 1,

bj = fr1+j

r2−1
∑

t=1
er1+t + er1 + er1+r2+r3 for all j = 1, 2, . . . , r2 − 1,

cℓ = fr1+r2+ℓ

r3−1
∑

t=1
er1+r2+t + er1 + er1+r2 for all ℓ = 1, 2, . . . , r3 − 1.

Denote by S the semiring, generated by

Z = {er1 , er1+r2 , er1+r2+r3 , ai, bj , cℓ;

= 1, 2, . . . , r1 − 1, j = 1, 2, . . . , r2 − 1, ℓ = 1, 2, . . . , r3 − 1}

and note that Z(S)∗ = Z. Clearly,

er1 − ai er1 − (er1+r2 + er1+r2+r3)
er1+r2 − bj er1+r2 − (er1 + er1+r2+r3)
er1+r2+r3 − cℓ er1+r2+r3 − (er1 + er1+r2)

are edges in Γ(S) for all i = 1, 2, . . . , r1 − 1, j = 1, 2, . . . , r2 − 1 and ℓ = 1, 2, . . . , r3 − 1,

and er1 − er1+r2 − er1+r2+r3 − er1 form a 3-cycle. Thus, Γ(S) = K
△(r1,r2,r3)
1,1 . �

Recall that we proved in Lemma 5.1 that all zero–divisor graphs containing exactly
one 3-cycle and at least one k-cycle, k ≥ 4, also contain C4,3 as an induced subgraph.
The following technical lemma will give us some algebraic properties on the elements,
corresponding to the vertices of C4,3. It will enable us to prove that in this case Γ(S) =

K
△(r1,r2,0)
m,n where r1, r2 ≥ 1, m,n ≥ 2.

Lemma 7.4. Suppose S is a commutative semiring, Γ(S) contains exactly one 3-cycle
and at least one k-cycle, k ≥ 4. Let us denote by a− b− c− d− a− e− b− a its induced
subgraph and let a− f be an edge in Γ(S) and deg f = 1. Then,

(1) a2 = b2 = e2 = 0,
(2) ac = ec = fc = a,
(3) bd = ed = b,
(4) a+ b = e.

Moreover, if S is additively cancellative, then

(5) 2a = 2b = 2e = 0,
(6) b+ e = a and a+ e = b.
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Proof. Firstly, let us note that ec 6= 0 and (ec)a = (ec)b = (ec)d = 0, and since Γ(S)
contains only one 3-cycle, we have ec = a. Similarly we prove that ac = fc = a and
bd = ed = b.

Consider now the element a2. Since a2e = a2b = 0, and a2 6= b (otherwise bd = a2d = 0),
a2 6= e (otherwise be = a2e = 0), a2 6= a (otherwise a2 = aa = aec = 0), it follows that
a2 = 0. Similarly we prove that b2 = 0.

Now, let us observe that (a + b)a = (a + b)b = (a + b)e = 0. Note that a + b 6= 0
(otherwise, bd = (a + b)d = 0), a+ b 6= a (otherwise, bd = (a + b)d = ad = 0), a + b 6= b
(otherwise, ac = (a + b)c = bc = 0), and since Γ(S) contains only one 3-cycle, we have
a+ b = e and therefore also e2 = a2 + b2 + 2ab = 0.

Suppose now, S is additively cancellative. Then, 2a 6= a and (2a)b = (2a)e = (2a)d = 0,
thus 2a = 0. Similarly, 2b = 0 and therefore also 2e = 2(a + b) = 0. Now, it follows that
a = a+ b+ b = e+ b and b = b+ a+ a = e+ a. �

Theorem 7.5. If S is a commutative semiring and Γ(S) contains exactly one 3-cycle and

at least one k-cycle, k ≥ 4, then Γ(S) = K
△(r1,r2,0)
m,n and r1, r2 ≥ 1, m,n ≥ 2.

Proof. If Γ(S) contains a k-cycle for some k ≥ 4 then it also contains C4,3, a−b−c−d−a−

e− b− a as an induced subgraph by Lemma 5.1. By Proposition 7.1, Γ(S) = K
△(r1,r2,r3)
m,n

and let ai, bj , eℓ ∈ S such that deg(ai) = deg(bj) = deg(eℓ) = 1 and a− ai, b − bj, e − eℓ
are edges in Γ(S) for i = 1, 2, . . . , r1, j = 1, 2, . . . , r2 and ℓ = 1, 2, . . . , r3.

Now, let us prove that r1 ≥ 1. Consider the sum d + e and observe that d + e 6= 0.
Namely, if d + e = 0, we would have ec = (e + d)c = 0. Since (e + d)a = 0, we have
few possibilities for e + d. Because e + d 6= a (otherwise db = (d + e)b = ab = 0),
e + d 6= b (otherwise db = (d + e)b = b2 = 0 by Lemma 7.4 (1)), e + d 6= e (otherwise
db = (d + e)b = eb = 0) and c(d + e) 6= 0 (otherwise a = ce = c(d + e) = 0), it follows
that d + e = ai for some i. Similarly, we prove that e + c = bj for some j and therefore
r1, r2 ≥ 1.

Assume r3 ≥ 1 and consider an element aeℓ 6= 0. We have (aeℓ)b = (aeℓ)e = (aeℓ)d =
(aeℓ)ai = 0 and since Γ(S) contains only one 3-cycle, we have aeℓ = a. Similarly we prove
that beℓ = b. Now, by Lemma 7.4 (4) we have that e = a + b = aeℓ + beℓ = (a + b)eℓ =

eeℓ = 0, which is a contradiction. Thus, r3 = 0 and Γ(S) = K
△(r1,r2,0)
m,n . �

Corollary 7.6. If S is an additively cancellative commutative semiring and Γ(S) contains

exactly one 3-cycle and at least one k-cycle, k ≥ 4, then Γ(S) = K
△(n−1,m−1,0)
m,n with

m,n ≥ 2.

Proof. By Theorem 7.5 we know that m,n ≥ 2, and denote (as in the proof of the same
theorem) by a−b−cj−di−a−e−b−a the induced subgraph of Γ(S), let d1, d2, . . . , dn−1, b
and c1, c2, . . . , cm−1, a be the partition of vertices of an induced complete bipartite sub-
graph of Γ(S). By Lemma 7.4 (1) we have that e2 = 0 and therefore (di + e)a = 0,
(di + e)e 6= 0, (di + e)b 6= 0 and (di + e)cj 6= 0 for all i = 1, 2, . . . , n − 1. Therefore,
deg(di + e) = 1 and (di + e) − a is an edge in Γ(S). Since di + e 6= dj + e for i 6= j, it
follows that r1 ≥ n− 1. Similarly, we can see r2 ≥ m− 1.

13



Let a−f be an edge in Γ(S) and deg f = 1. Using Lemma 7.4, observe that (f+a)a = 0,
(f + a)ci = fc+ aci = a+ a = 0 and (f + a)e 6= 0 and thus f + a = dj for some j. Now,
dj + b = f + a+ b = f + e and since (dj + b)a = (dj + b)ci = 0 for all i and S is additively
cancellative, it follows that dk = dj + b = f + e. By adding e it follows that dk + e = f ,
which proves that r1 = n− 1. Similarly, r2 = m− 1. �

Every additively cancellative semiring can be embedded into a ring of differences (see for
example [20, Thm. 5. 11]), but in case the zero–divisor graph of the additively cancellative
semiring contains exactly one 3-cycle, we can prove that the semiring actually has to be a
ring. We will then study the zero–divisor graphs of rings in the next section.

Proposition 7.7. If S is a commutative additively cancellative semiring and Γ(S) con-
tains exactly one 3-cycle, then S is a ring.

Proof. Denote the only 3-cycle in Γ(S) by a − b − e − a. Now (2a)b = (2a)e = 0, so
2a ∈ Z(S) and 2a ∈ {0, b, e}, since 2a = a implies that a = 0. Similarly, we can show
that 3a ∈ {0, b, e} and 4a ∈ {0, b, e}. So, either at least one of 2a, 3a, 4a is equal to zero
or at least two of 2a, 3a, 4a coincide. Since S is additively cancellative, it follows that
in all cases there exists an integer n > 0 such that na = 0. Similarly, we can also show
that mb = re = 0 for some integers m, r > 0. This implies that (nm)a = (mn)b = 0, so
nm ∈ Z(S) and nm ∈ {0, a, b, e}. In each case we get that N = 0 for some integer N > 0,
so for every x ∈ S we have −x = (N − 1)x ∈ S, therefore S is a ring. �

The following example shows that in case S is not additively cancellative, the zero–

divisor graph Γ(S) = K
△(r1,r2,0)
m,n need not have r1 = n− 1 and r2 = m− 1.

Example 7.8. Let S ⊆ M2(B)×M2(B)×M2(B) be a commutative semiring, generated
by

a = (J2, 0, 0) b = (0, 0, J2) c = (I2 + J2, 0, 0)
d = (0, 0, I2 + J2) f = (J2, J2, I2 + J2) 1 = (I2, I2, I2)

Observe that Z(S)∗ = {a, b, c, d, a + b, f, a+ d, b+ c} and that Γ(S) = K
△(2,1,0)
2,2 . �

8. Commutative rings having zero–divisor graphs with one 3-cycle

We now know the types of graphs that can appear as the zero–divisor graphs of semir-
ings. However, the setting appears to be too general to allow for a classification of the
structure of semirings that have these types of zero divisor graphs. We will characterize
all commutative rings (with identity), such that their zero divisor graphs contain exactly
one 3-cycle.

For an arbitrary ring R, let T2(R) denote the ring of all matrices of the form aI2 + bJ2,
where a, b ∈ R.
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Lemma 8.1. If S = S1 × S2 is an additively cancellative commutative semiring such
that Γ(S) contains exactly one 3-cycle, then S1, S2 ∈ {Z4, T2(Z2)} are rings and Γ(S) =

K
△(2,2,0)
3,3 .

Proof. Suppose firstly that all 3 vertices (x1, y1), (x2, y2), (x3, y3) on the 3-cycle have one
component equal to 0. Since Γ(S) contains exactly one 3-cycle, it follows that at least
one of x1, x2, x3 is nonzero and at least one of y1, y2, y3 is nonzero. So, let us assume that
(a, 0) − (b, 0) − (0, c) − (a, 0) is a 3-cycle. If a2 = 0, then (a, 0) − (a, c) − (b, 0) − (a, 0) is
another 3-cycle in the graph and if a2 6= 0, then (b, 0) − (a2, 0) − (0, c) − (b, 0) is another
3-cycle in the graph, contradiction.

Let (a, b), (a2, b2) and (a3, b3) be the vertices on the 3-cycle and suppose that a, b 6= 0.
Since (a, 0) and (0, b) are also zero divisors, we have {(a2, b2), (a3, b3)} = {(a, 0), (0, b)}
and a2 = b2 = 0. If there exists x ∈ Z(S1), x /∈ {0, a}, then xy = 0 for some y ∈ Z(S1)

∗, so
either (x, 0)−(y, 0)−(0, b)−(x, 0) is another 3-cycle (if x 6= y) or (x, 0)−(x, b)−(0, b)−(x, 0)
is another 3-cycle (if x = y). Thus, Z(S1) = {0, a} and Z(S2) = {0, b}. Since 2a ∈ Z(S1)
and S1 is additively cancellative, it follows that 2a = 0. Now, choose an x ∈ S1\Z(S1).
Note that xa ∈ Z(S1) implies xa = a. Since (2x)a = 0, it follows that 2x = 0 or 2x = a.
Also, (x + 1)a = 0, so either x + 1 = 0 or x + 1 = a. By adding either x or x + a
to these equations, we can conclude that x = 1 or x = 1 + a. Thus we proved that
S1 = {0, 1, a, 1 + a}. Since a2 = 2a = 0 and we either have 1 + 1 = 0 or 1 + 1 = a, it
follows that either S1 ≃ T2(Z2) (via mapping 1 7→ I2, a 7→ E1,2) or S1 ≃ Z4. Similarly, we
show that S2 ∈ {Z4, T2(Z2)}. �

In the case S is a ring, the following Proposition shows that the assumption that S is
a direct product is actually superfluous.

Proposition 8.2. Let R be a commutative ring with identity such that Γ(R) contains
exactly one 3-cycle and at least one k-cycle, k ≥ 4, then R is isomorphic to a direct

product R1 ×R2, where R1, R2 ∈ {Z4, T2(Z2)} and Γ(R) = K
△(2,2,0)
3,3 .

Proof. By Corollary 7.6 it follows that Γ(R) = K
△(n−1,m−1,0)
m,n with m,n ≥ 2. Denote by

a− b− ci − dj − a− e− b− a the induced subgraph of Γ(R) where d1, d2, . . . , dn−1, b and
c1, c2, . . . , cm−1, a is the partition of vertices of an induced complete bipartite subgraph of
Γ(R).

By Lemma 7.4 we know that eci = a and therefore (ci−cj)e = (ci−cj)b = (ci−cj)dk = 0
for all i, j, k. Thus ci − cj = a for all i 6= j and m,n ≤ 3.

Observe that (b + ci)b = 0 and c2i 6= 0, because c2i = 0 yields (b + ci)ci = 0 and since
b+ci 6= 0, b+ci 6= b, b+ci 6= ci and b+ci 6= dj (otherwise, aci = a(b+ci) = adj = 0), we get
a contradiction. Since cicj = a together with Lemma 7.4 implies that cia = cicje = ae = 0,
it follows that cicj = ck for some k. If m = 2, then c21 = c1. Suppose that m = 3 and
assume without loss of generality that c1c2 = c1. If c2 is not idempotent, i.e., c22 = c1, it
follows that c21 = c1c

2
2 = c1c2 = c1 and therefore c1 is idempotent. We proved that R in

all cases contains an idempotent c. Then, 1 = c+ (1− c) is an orthogonal decomposition
of identity, thus R ≃ Rc×R(1− c). Now, the proposition follows by Lemma 8.1. �
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It remains for us to investigate the zero–divisor graphs with girth equal to 3, containing
exactly one cycle.

Lemma 8.3. If R is a commutative ring with identity and Γ(R) = K3, then R is isomor-
phic to one of the following rings: T2(GF (4)), Z4[x]/(x

2 + x+1), Z2[x, y]/(x
2, xy, y2), or

Z4[x]/(2x, x
2).

Proof. If Γ(R) = K3, then let Z(R) = {0, a, b, e}. Suppose there exists f ∈ R such
that fa = b or fa = e. Without loss of generality, we can assume that fa = b. Then
(f + 1)a = b + a and a + b ∈ Z(R). If a + b = e, then aR = Z(R). Otherwise, since R
is a ring, a + b /∈ {a, b}, so a + b = 0. Then b = −a, and (1 − f)a = a − b = 2a ∈ Z(R).
Note that 2a = 0 implies that b = −a = a and 2a = a implies that a = 0. So, consider
the case 2a = b = −a. Since a + e ∈ Z(R) and is obviously not equal to 0, a, e, we have
a + e = b = −a and thus e = −2a = a, s contradiction. Therefore, 2a = e and again
aR = Z(R).

Since R-module Ra is isomorphic to RR/Ann(a), and Ann(a) = Z(R), we have that
|R| = 16. By [23, Thm. 12] it follows that R ≃ T2(GF (4)), R ≃ Z4[x]/(x

2 + x+ 1).
In the remaining case we have that fa = a therefore (1 − f)a = 0 for all f ∈ R\Z(R).

We thus have 1 − f ∈ Z(R) and therefore R = {0, 1, a, b, e, 1 + a, 1 + b, 1 + e}. Since the
set of zero divisors is closed under addition, R is a local ring of order 8. By [15, p. 687],
R is one of the following:

• GF (8), which has no nontrivial zero–divisors,
• Z2[x]/(x

3), but Γ(R) = P3,
• Z2[x, y]/(x

2, xy, y2), which gives us Γ(R) = K3,
• Z4[x]/(2x, x

2 − 2), but Γ(R) = P3,
• Z4[x]/(2x, x

2), which gives us Γ(R) = K3,
• Z8, but Γ(R) = P3.

Thus the Lemma follows. �

We are now in a position to characterize all rings such that their zero–divisor graphs
contain exactly one 3-cycle.

Theorem 8.4. If R is a commutative ring with identity and Γ(R) contains exactly one
3-cycle, then exactly one of the following statements holds:

(1) R is isomorphic to a direct product R1 × R2, where R1, R2 ∈ {Z4, T2(Z2)} and

Γ(R) = K
△(2,2,0)
3,3 ,

(2) R ≃ T2(GF (4))), R ≃ Z4[x]/(x
2 + x + 1), R ≃ Z2[x, y]/(x

2, xy, y2), or R ≃

Z4[x]/(2x, x
2), and Γ(R) = K3 = K

△(0,0,0)
1,1 ,

(3) R ≃ Z16 or R ≃ Z2[x]/(x
4) and Γ(R) = K

△(4,0,0)
1,1 .

Proof. If Γ(R) apart from the 3-cycle also contains an n-cycle for some n ≥ 4, then
Proposition 8.2 implies (1) and if Γ(R) = K3, then Lemma 8.3 implies (2).

By Proposition 7.1 the only remaining case is Γ(R) = K
△(r1,r2,r3)
1,1 , and let a− b− e− a

denote the 3-cycle and let ai, bj , eℓ ∈ S such that deg(ai) = deg(bj) = deg(eℓ) = 1 and
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a−ai, b−bj, e−eℓ are edges in Γ(S) for i = 1, 2, . . . , r1, j = 1, 2, . . . , r2 and ℓ = 1, 2, . . . , r3.
Note that ((1 + bj)a)b = ((1 + bj)a)e = ((1 + bj)a)ai = 0. This yields (1 + bj)a = 0, since
(1 + bj)a = a implies that bja = 0.

If r1, r2, r3 > 0 then note that bje = e and then (1 + bj)e = e + e = 2e = 0, since
(2e)a = (2e)b = (2e)eℓ = 0 and 2e 6= e. Since (1 + bj)b 6= 0, we have 1 + bj = b. By
multiplying this equation with b, we obtain b2 = b and this gives us a contradiction by
Lemma 8.1. Therefore r3 = 0.

Now, we shall prove that also r2 = 0. Since the left R-module Re is isomorphic to the
quotient module R/Ann(e), and both Re and Ann(e) have at most 4 elements (0, e, a, b),
we know that R is a ring of at most 16 elements. We also know that R is a directly
indecomposable ring by Lemma 8.1, therefore it contains no non-trivial idempotents. Thus,
by [22, Theorem VII.7] R is a local ring and the set of zero divisors Z(R) is the Jacobson
radical of R. Assume that r2 > 0. Similarly as above, we can see that (1 + bj)a 6= a, so
(1 + bj)a = 0 and thus 1 + bj is a zero divisor. Since bj is a zero divisor as well, we have
that 1 = 1 + bj + (−bj) is a zero divisor, which gives us a contradiction.

Therefore, Γ(R) = K
△(r1,0,0)
1,1 and we can assume that r1 > 0. Note that (a2)ai =

(a2)b = (a2)e = 0, so a2 = 0 since there are no non-trivial idempotents in R. Then for
each ai such that aia = 0 we also obtain (ai + a)a = (ai + b)a = (ai + e)a = 0. Observe
that ai + a, ai + b, ai + e /∈ {0, a, e, b}: for example, if ai + b = a then aie = 0; if ai + b = e
then since (a+b)a = (a+b)e = 0, it follows that a+b = e, and therefore ai = a. Similarly,
we treat other cases.

Therefore r1 ≥ 4 and thus |Z(R)| ≥ 8. Since Z(R) 6= R this implies that |R| = 16.
Now, all rings of order 16 are listed in [15, pages 687–690], and we can check which ones
are commutative rings such that their zero–divisor graph only has one 3-cycle. Among
the rings of characteristic 2, the only suitable ring is Z2[x]/(x

4), since all 3 commutative
rings in [15, page 687, case 1.2] have J2 = {0, a} and the generators x1, x2, a of J give us
an additional 3-cycle, either a−x1 −x2 − a in case x1x2 = 0, or a− ai − a+ ai − a in case
x21 = x22 = 0. Similarly, we can deal with the [15, page 689, case 2.2.a], which proves that
there are no such rings of characteristic 4. It is easy to check all the remaining cases to
see that the only other ring that can occur is the ring Z16. �
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