1006.2570v1 [math.GR] 13 Jun 2010

arXiv

3 Power circuits

Power Circuits, Exponential Algebra, and Time
Complexity

Alexei G. Myasnikov, Alexander Ushakov, and Dong Wook Won
October 24, 2018

Abstract

Motivated by algorithmic problems from combinatorial group theory
we study computational properties of integers equipped with binary oper-
ations +, —, z = 22Y, z = 227 Y (the former two are partial) and predicates
< and =. Notice that in this case very large numbers, which are obtained
as n towers of exponentiation in the base 2 can be realized as n appli-
cations of the operation z2Y, so working with such numbers given in the
usual binary expansions requires super exponential space. We define a
new compressed representation for integers by power circuits (a particu-
lar type of straight-line programs) which is unique and easily computable,
and show that the operations above can be performed in polynomial time
if the numbers are presented by power circuits. We mention several appli-
cations of this technique to algorithmic problems, in particular, we prove
that the quantifier-free theories of various exponential algebras are decid-
able in polynomial time, as well as the word problems in some “hard to
crack” one-relator groups.

Contents

1 Introduction
1.1 Motivation
1.2 Algorithmic problems for algebraic circuits.
1.3 Exponential algebras 00000
1.4 Ourresults
1.5 Outline

2 Binary sums
2.1 Elementary properties oL
2.2 Shortest binary forms L

3.1 Powercircuits and terms
3.2 Term evaluation and constant circuits

http://arxiv.org/abs/1006.2570v1

4 Standard, reduced and normal power circuits
4.1 Standard circuits oo
4.2 Reduced power circuits Lo
4.3 Normal forms of constant power circuits

5.1 Geometric order
5.2 Equivalent verticeso oL
5.3 Reduction process

i
1
d
1
5 Reduction process 22
kg
kd
kd
37

6 Computing normal forms

7 Elementary operations over power circuits

7.1 Addition and subtraction L. RY:|
7.2 Exponentiation 0oL @
7.3 Multiplication Lo
7.4 Multiplication and division by a power of two 42
7.5 Ordering l14
8 Exponential algebra on power circuits 15
8.1 Algebra of power circuits l47
8.2 Power representation of integers 47
8.3 Quantifier-free formulas in exponential algebra l1d

9 Some inherent difficulties in computing with power circuits [5d

9.1 DIviSIon by 3 .« o o v o ld
9.2 Power circuits and multiplication 51
10 Open Problems [51

1 Introduction

In this paper we study power circuits (arithmetic circuits with exponentiation),
and show that a number of algorithmic problems in algebra, involving exponen-
tiation, is solvable in polynomial time.

1.1 Motivation

Massive numerical computations play a very important part in modern science.
In one way or another they are usually reduced to computing with integers.
This unifies various computational techniques over algebraic structures within
the theory of constructive [19] or recursive models [23]. From a more prac-
tical view-point these reductions allow one to utilize the fundamental mathe-
matical fact that the standard arithmetic manipulations with integers can be
performed fairly quickly. In computations, integers are usually presented in
the binary form, i.e., by words in the alphabet {0,1}. Given two integers a

and b in the binary form one can perform the basic arithmetic operations in
time O(N log Nloglog N), where N is the maximal binary length of a and b
(see, for example, []). In the modern mathematical jargon one can say that
the structure Z = (Z,+, —, -, <) (the standard arithmetic) is computable in at
most quadratic time with respect to the binary representation of integers, or
it is polynomial time computable (if we do not want to specify the degree of
polynomials). This result holds for arbitrary n-ary representations of integers.

Notice, that the reductions mentioned above are not necessary computable in
polynomial time. In fact, there are recursive structures where polynomial time
computations are impossible. Furthermore, there are many natural algebraic
structures that admit efficient computations, though efficient algorithms are
not easy to come by (we discuss some examples below). Usually, the core of
the issue is to find a specific representation (data structure) of given algebraic
objects which is suitable for fast computations.

For example, the standard representation of integer polynomials from Z[X]
as formal linear combinations of monomials in variables from X, may not be
the most efficient way to compute with. Sometimes, it is more computationally
advantageous to represent polynomials by arithmetic circuits. These circuits
are finite directed labeled acyclic graphs C' of a special type. Every node with
non-zero in-degree in such a circuit C is labeled either by + (addition) or by
— (subtraction), or by - (multiplication); nodes of zero in-degree (source nodes)
are labeled either by constants from Z or by indeterminates z; € X. Going
from the source nodes to a distinguished sink node (of zero out-degree) one can
write down a polynomial pco represented by the circuit C. Observe, that given
two circuits C' and D it is easy to construct a new circuit that represents the
polynomial pc + pp (or po - pp), so algebraic operations over circuits repre-
sentations are almost trivial. In [30] Strassen used arithmetic circuits to design
an efficient algorithm that performs matrix multiplication faster than O(n?).
There are polynomial size circuits to compute determinants and permanents.
We refer to a survey [31] and a book [7] for results on algebraic circuits and
complexity.

The idea to use circuits (graphs) to represent terms of some fixed functional
language, or the functions they represent, is rather general. For example, boolean
circuits are used to deal with boolean formulas or functions. Here boolean for-
mulas can be viewed as terms in the language {A, V, -, 0, 1} of boolean algebras.
Construction of boolean circuits is similar to the arithmetic ones, where the
arithmetic operations are replaced by the boolean operations and integers are
replaced by the constants 0, 1. Again, it is easy to define boolean operations over
boolean circuits, but to check if two such circuits represent the same boolean
function (or, equivalently, if a given circuit represents a satisfiable formula) is
a much more difficult task (NP-hard). In 1949 Shannon suggested to use the
size of a smallest circuit representing a given boolean function f as a measure
of complexity of f [29]. Eventually, this idea developed into a major area of
modern complexity theory, but this is not the main subject of our paper.

Another powerful application of the “circuit idea” is due to Plandowski,
who introduced compression of words in a given finite alphabet X [21I]. These

compressed words can be realized by circuits over the free monoid X*, where
the arithmetic operations are replaced by the monoid multiplication, so every
such circuit C represents a word we € X*. The crucial point here is that the
length of the word we can grow exponentially with the size of the circuit C, so
the standard word algorithms become time-consuming. For instance, the direct
algorithm to solve the comparison problem (if we = wp for given circuits C, D)
requires exponential time, though there are smart polynomial time (in the size
of the circuits) algorithms that can do that [21I]. In [I4] Lohrey proved similar
results for reduced words in a given free group (in the group language). This
brought a whole new host of efficient algorithms in group theory [2§].

1.2 Algorithmic problems for algebraic circuits

In view of the examples above, we introduce here a general notion of an algebraic
circuit and related algorithmic problems. Let £ be a finite set of symbols of
operations (a functional language). An algebraic circuit C in L (or an L-circuit)
is a finite directed graph whose nodes are either input nodes or gates. The inputs
nodes have in-degree zero and are each labeled by either variables or constants
from L; each gate is labeled by an operation from £ whose arity equals to the
in-degree of the gate; vertices of out-degree zero are called output nodes. For a
distinguished output vertex in C' one can associate a term tc as was described
above. Observe, that this notion of an algebraic circuit is more general than
the usual one (see, for example, [2 B1]), where L is either the ring or field
theory language. On the other hand, algebraic circuits can be viewed also as
straight-line programs in L (see [I] by Aho and Ullman). In our approach to
algebraic circuits we follow [I], even though in this case the orientation of edges
is reversed, but this should not confuse the reader.

There are several basic algorithmic problems associated with L-circuits over
a fixed algebraic structure A in £. Denote by Const(A) the set of elements of
A which are specified in £ as constants. The value problem (VP) is to find the
value of the term tc under an assignment of variables n: X — Const(A) for a
given L-circuits C. The value comparison problem (VCP), mentioned above, is
to decide if the terms t and tp take the same value in A under the assignment
n for given L-circuits C' and D. For a functional language £, decidability of
VCP in A implies decidability of the quantifier-free theory Th,(A) of A. More
generally, one may allow any assignments 77 with values in a fixed subset S of A.
In this case decidability of VCP in A relative to S is equivalent to decidability
of the quantifier-free theory of A in a language Lg (obtained from £ by adding
constants from 5).

If the language £ contains predicates then decidability of Thqs(A) depends
completely on decidability of the set of atomic formulas in A. Recall, that
atomic formulas in Lg are of the form P(¢{,...,t"), where P is a predicate in
L (including equality) and ¢} is evaluation of a term ¢; under an assignment 7).
Notice, that if A is recursive then all the problems above are decidable in A in
the language L4.

From now on we deal only with recursive structures, and our main concern

is the time complexity of the decision problems. This brings an important new
twist to decision problems. It might happen that the direct evaluation of t;
under 7 is time consuming, so we prefer to keep ¢! in the “compressed form”
tc, for some L-circuit C; and proceed to checking whether or not the formula
P(tc,,. .. tc,) holds in A without computing the values ¢;. This is the essence
of our approach to computational problems in this paper — we operate with terms
t in their compressed form C; to speed up computations. Such approach makes
the following term-realization problem crucial: for a given term t(z1,...,2,) in
L construct in polynomial time an L-circuit C' such that t¢ gives the function
defined by t in A. A related term-equivalence problem asks for given L-circuits
C and D if the functions defined in A by tc and tp are equal or not. Observe,
that tc = tp in A if and only if the identity VX (t¢(X) = tp(X) holds in A. So
decidability of the term-equivalence problem in A is equivalent to decidability
of the equational theory of A (the set of all identities in £g which hold in A).

1.3 Exponential algebras

In this paper we introduce and study algebraic circuits in exponential algebras.
Typically, every such algebra has a unary exponential function y = E(z) as
an operation, besides the standard ring operations of addition and multiplica-
tion. Some variations are possible here, so the language may contain additional
operations (subtraction, division, multiplication by a power of 2, etc.) or pred-
icates (ordering, divisibility, divisibility by a power of 2, etc.). We refer to such
language, in all its incarnations, as to exponential algebra language and denote
it by Leqzp. Exponential algebra is a very active part of modern algebra and
model theory, it stems from two Tarski’s problems. The first one, The High
School Algebra Problem, is about axioms of the equational theory of the high
school arithmetic, i.e., the structure Ngs = (Nso;+, -, ¥, 1), where N+ is the
set of positive integers. Namely, it asks if every identity that holds on Nyg log-
ically follows from the classical “high school axioms” (introduced by Dedekind
in [8]). This problem was settled in the negative by Wilkie in [34], where he
gave an explicit counterexample. Moreover, it was shown that the equational
theory of Npggs is not finitely axiomatizable, though decidable (Gurevich [10]
and Macintyre [I5]). The time complexity of the problem is unknown. Effective
manipulations with terms over Ngg are important in numerous applications, it
suffices to mention such programs as Mathematica, Maple, etc.

The second Tarski’s problem asks whether or not the elementary theory of
the field of reals R with the exponential function y = e in the language is
decidable. In the paper [I8] Macintyre and Wilkie proved that the elementary
theory of (R,e®) is decidable provided the Schanuel’s Conjecture holds. The
time complexity of the quantifier-free theory of (R, e*) or the term-equivalence
problem for algebraic circuits over (R, e”) is unknown (see [24] 25] 26] for related
problems).

1.4 Our results

Our main results here concern with the time complexity of the quantifier-free
theory of the typical exponential algebras over natural numbers. We show that
the quantifier-free theory is decidable in polynomial time in a structure N =
(Nso; 4,z - 2Y, <, 1), a slight modification of the high-school arithmetic Nyg,
where, exponentiation and multiplication are replaced by x-2¥ and the ordering
predicate < is included. Of course, substituting 1 for x one gets the exponential
function 2¥. We show that the term-realization problem in N is decidable in
polynomial time, as well as the quantifier-free theory T'h, f(]\~]). This is precisely
the case when the direct evaluation of a term for a particular assignment of
variables might result in a superexponentially long number, so we avoid any
direct evaluations of terms and work instead with algebraic circuits. The result
holds if the partial function = - 27¥ is added to the language. In this event for
every quantifier-free sentence one can decide in polynomial time whether or not
it holds in A, or is undefined. Strangely, the methods we exploit fail for the
term-realization problem in the classical high-school arithmetic Ny g, the size
of the resulting circuit may grow exponentially.

The Tarski’s problem on decidability of (R, e*) generated very interesting re-
search on exponential rings and fields (see, for example, [32] [17, 16, 33| 18] [35]).
In [32 [16] a free commutative ring with exponentiation Z[X]¥ (with basis X)
was constructed — a free object in the variety of commutative unitary rings with
an extra unitary operation for exponentiation y = E(x). To perform various
manipulations with exponential polynomials (elements of Z[X]¥) it is conve-
nient to use power circuits, i.e., algebraic circuits over an algebraic structure
Z = (Z;+,—,x-2Y,<,1). The results described above for N hold also in Z, so
the term-realization problem and the quantifier-free theory of Z are decidable
in polynomial time. Whether these results hold with the multiplication in the
language is an open problem.

In fact, our technique gives decidability in polynomial time of the term-
realization problem and the quantifier-free theory of the classical exponential
structures Nyg and Zeyp = (Z;+, —, x -y, 2Y, <, 1) even with the multiplication
in the language if one considers only terms in the standard form, i.e., if they are
given as exponential polynomials (see [32] [16]).

All the results mentioned above also hold if the exponentiation in the base
2 is replaced by an exponentiation in an arbitrary base n € N,n > 2. The
argument for base 2 goes through in the general case as well.

Another application of power circuits comes from the theory of automatic
structures, that was introduced by Hodgson [I1], and Khoussainov and Nerode
[13] (we refer to a recent survey [27] for details). Automatic structures form a
nice subclass of recursive structures with decidable elementary theories. Arith-
metic with weak division Nyear = (N; S, +, <, |2), where z|oy if and only if x is
a power of 2 and y is a multiple of z (“weak division”), is an important example
of an automatic structure. It has the following universal property (see Blumen-
sath and Gradel [B]): an arbitrary structure A has an automatic presentation
if and only if it is interpretable (in model theory sense) in Nyeqr. This implies

that first-order questions about automatic structures can be reformulated as
first-order questions on Nyeqr. It is known that the first order theory of Nyeqk
is decidable, but its time complexity is non-elementary [5]. In view of the above,
the complexity of the existential theory of Nyeqx is an open problem of prime
interest. Notice, that complexity of the problem depends on the representation
of the inputs. It follows from our results on power circuits that the quantifier-
free theory of Nyeqr is decidable in polynomial time even when the numbers
are presented in the compressed form by power circuits. We mention in passing
that it would be interesting to see if the structure N = (Nsg; 4,2 - 2¥,<,1) is
automatic or not.

We would like to mention one more application of power circuits, which
triggered this research in the first place. In the subsequent paper we use power
circuits to solve a well-known open problem in geometric group theory. In 1969
Baumslag introduced ([3]) a one relator group

G ={(a,b; (b"'ab) ta(b~ab) = a?),

which later became one of the most interesting examples in geometric group
theory. It has been noticed by Gersten that the Dehn function of G cannot be
bounded by any finite tower of exponents [9] (see complete proofs and upper
bounds in the paper by Platonov [22]). The Word Problem in G is considered
to be the hardest among all known one-relator groups. Recently, Kapovich and
Schupp showed in [12] that the Word Problem in G is decidable in exponential
time. Using power circuits we prove in [20] that the Word Problem in G is
polynomial time decidable.

All the results above are based on a new representation of integers, which
is much more “compressed” than the standard binary representation. This
“power representation” is interesting in its own sake. We represent integers
by constant power circuits in the normal form. Such representation is unique
and easily computable: a number n € N can be presented by a normal power
circuit P,, of size at most log,n + 2, and it takes time O(loganlogalogan) to
find P,,. Furthermore, we develop algorithms that allow one to perform the
standard algebraic manipulations (in the structure N) over integers given in
power representation in polynomial time.

1.5 Outline

In SectionRlwe introduce a new way to represent integers as binary sums (forms)
by allowing coefficients —1 in binary representations. In Section 2.1l we describe
some elementary properties of these forms and design an algorithm that com-
pares numbers given in such binary forms in linear time (in the size of the
forms). In Section 222l we introduce “compact” binary sums which give shortest
possible representations of numbers, and show that these forms are unique. It
takes linear time (in the size of the standard binary representation) to compute
the shortest binary form for a given integer n.

In Section[3 we give a definition of a general algebraic circuit in the language
L={+,—,,x-2Y} and define a special type of circuits, called power circuits.

Power circuits are main technical objects of the paper. We show in due course
that every algebraic circuit in £ is equivalent in the structure 7= (Z,+,—, - x-
2Y) to a power circuit, but power circuits are much easier to work with. Besides,
power circuits give a very compact presentation of natural numbers, designed
specifically for efficient computations with exponential polynomials.

In Section Ml we define several important types of circuits: standard, reduced
and normal. The standard ones can be easily obtained from general power cir-
cuits through some obvious simplifications. The reduced power circuits output
numbers only, they require much stronger rigidity conditions (no redundant or
superfluous pairs of edges, distinct vertices output distinct numbers), which are
much harder to achieve. The normal power circuits are reduced and output
numbers in the compact binary forms. They give a unique compact presenta-
tion of integers, which is much more compressed (in the worst case) than the
canonical binary representations. This is the main construction of the paper,
designed to speed up computations in exponential algebra. We hope that the
construction is interesting in its own right.

In Section B we describe a reduction process which for a given constant
power circuit P constructs an equivalent reduced power circuit Reduce(P) in
cubic time in the size of P. This is the main technical result of the paper.

In Section[fwe show how to compute the normal power circuit representation
of a given integer n (given in its binary representation) in time O(logan logalogan).

In Section [we describe how to perform the standard arithmetic operations
and exponentiations (in the language £) over integers given in their power circuit
representations. It turns out that the size of the resulting power circuits grows
linearly, except for the ones produced by the multiplication (this is the main
difficulty when dealing with power circuits). Finally, we show how to compare
(in cubic time) the values of given constant power circuits without producing
the binary representations of the actual numbers; and how to find the normal
form of a given constant power circuit (in cubic time).

In Section [§] we solve some problems mentioned earlier in the introduction.
Fix a language £ = {4+, —,*,x - 2¥, 2 - 27¥ < 0,1}, its sublanguage Ly, which
is obtained from £ by removing the multiplication *; and structures Z, =
(Zy+,—,x,x-2Y,2-27Y,<,1) and 7 = (Zy+,—,x-2Y,2-27Y < 1). We show
that there exists an algorithm that for every algebraic L-circuit C' finds an
equivalent standard power circuit P, or equivalently, there exists an algorithm
which for every term ¢ in the language £ finds a power circuit C; which represents
a term equivalent to the term ¢ in Z,. Moreover, if the term ¢ is in the language
Lo then the algorithm computes the circuit C; in linear time in the size of t. For
integers and closed terms in Ly one can get much stronger results. Let C,orm
be the set of all constant normal power circuits (up to isomorphism). We show
that if ¢(X) is a term in £y and n : X — Z an assignment of variables, then
there exists an algorithm which determines if ¢(n(X)) is defined in Z, (or Z)
or not; and if defined it then produces the normal circuit P; that presents the
number £(n(X)) in polynomial time. At the end of the section we prove that
the quantifier-free theory of the structure Z with all the constants from Z in
the language is decidable in polynomial time.

In Section [@ we demonstrate some inherent difficulties when dealing with
products of power circuits (the size of the resulting circuit grows exponentially).

Finally, in Section we state some open problems on complexity of algo-
rithms in the classical exponential algebras.

2 Binary sums

In this section we introduce a new way to represent integers as binary sums
(forms) by allowing also coefficients —1 in binary representations. In Section 2]
we describe some elementary properties of these forms and design an algorithm
that compares numbers given in such binary forms in linear time (in the size
of the forms). In Section we introduce “compact” binary sums which give
shortest possible representations of numbers, and show that these forms are
unique. It takes linear time (in the size of the standard binary representation)
to compute the shortest binary form for a given integer n.

2.1 Elementary properties

A binary term P(Z,7) is a term in the language {+, —,-,2¥} (or {+,—, - 2¥})
of the following type:

k
2129 + ...+ 24,2Y (which we also denote by Z x;29). (1)
i=1

Any assignment of variables x; = &;,y; = ¢; with ¢; € {-1,1} and ¢; € N
(1t = 1,...,k) gives an algebraic expression, called a binary sum (or a binary

form),
€12 4 .. 4 2%, (2)

which we also denote by Ele ;2% or P(%,q), where € = (e1,...,6;) ¢ =
(q1,---,qr). Let N(g,9) be the integer number resulting in performing all the
operations in (2)).

The standard binary representation of a natural number is a binary sum
with ¢; € {0,1}. Every integer can be represented by infinitely many different
binary sums. We say that two binary sums are equivalent if they represent the
same number. Furthermore, a binary sum P(2,q) is reduced if the sequence g is
strictly decreasing. The following lemma is obvious.

Lemma 2.1. The following hold:

1) For each binary sum P(,q) there exists an equivalent reduced binary sum
which can be computed in linear time O(|[q]).

2) For any positive integer z there exists a unique reduced binary sum P(2,q)
withey =...=¢p =1 and q, < |log, z], representing z. Furthermore, it
can be found in O(log, z) time.

The unique binary sum representing a given natural number N with all
coeflicients ¢; = 1 is called positive normal form of N.

Remark 2.2. Notice, that positive binary representations of numbers may not
be the most efficient. For instance, the binary sum 2" — 2° is equivalent to
2n=t 4 27=2 1 4+ 2! + 20 but has much fewer terms.
Lemma 2.3. Let P(g,q) be a reduced binary sum. Then:

1) N(&,9) =0 if and only if [q) = 0 (here |q| is the length of the tuple q).

2) N

[l

,q@) >0 if and only if e1 = 1.

[l

3) N(2,9) <0 if and only if 1 = —1.

(
(
(
(

—_ — = =

4) N(E,q) is divisible by 2™ if and only if g, > n (here m = |q|, and n € N).
5) In the notation above if N(2,q) is divisible by 2™ and not divisible by 271
then qp = n.

Proof. We prove 1), the rest is similar. If [g] = 0 then N(Z,7) = 0. Assume now
that N(2,9) =0 and ¢ = (q1,...,qx), where k > 0. Let S={1 <i<k|¢g >
0}. Then

N(z,7q) = <Z 2%) _ Z 24

i€S Je{1,....,k}\S

The binary sums in the brackets have coefficients 1. Since P(g,q) is reduced
these binary sums are different and by Lemma BTl define different numbers.
This implies that N(g,7) # 0, and 1) follows by contradiction. O

Let P(z,q) be a reduced binary sum. We say that a pair of powers (g;, gi+1)
in P(z,9q) is superfluous if ¢; = ¢;11 + 1 and ¢; = —e; 1. The next lemma shows
that a binary sum with superfluous pairs can be simplified, by getting rid off
such pairs in linear time.

Lemma 2.4. Given a binary sum P(g,q) one can find an equivalent reduced
binary sum without superfluous pairs in liner time O(|g|).

Proof. Let (gi,qi+1) be a superfluous pair in P(g,q). Define

q/ - (qla' s i1, 441, - 7qn)

and

=/
€ = (81, sy €1y TEipls e 7577,)-

The equality F2+! + 2! = 2% implies N(g,q) = N(Z/,7). Clearly, it requires
linear number (in [g]) of steps like that to eliminate all superfluous pairs in
P(z,7q). O

10

For a reduced binary sum P(q,g) define

(P.q) = £, if there exists (unique) j such that ¢; = ¢;

)= 0, otherwise.

The following technical lemma gives the main tool for efficiently comparing
values of binary sums.

Lemma 2.5. Let A = P(£,q) and B = P(5,7) be reduced binary sums without
superfluous pairs, k = |g|, and m = |F|. Put n = max{q,r1}, a1 = ¢(4,n),
as =¢e(A,n—1), By =e(B,n), and B2 = e(B,n —1). Then the following hold:

1) If oy =1 and py = —1 then N(A)— N(B) > 2. Similarly, if oy = —1 and
81 =1 then N(A) — N(B) < 2.

2) Assume an = 1 and 81 = 1, or oy = —1 and 1 = —1. Define A’ =
PE,q) and B' = P(S/,T’), where § = (q2,...,qxr), € = (g2,...,€k),
7 =(re,...,"m), 5 = (02,...,0m). Then N(A)—N(B) = N(A")—N(B’).

3) Assume an =1 and 81 = 0:

a) If ag =1 then N(A) — N(B) > 2.
b) If aa =0 and B2 < 1 then N(A) — N(B) > 2.

¢) If aag = 0 and Ba = 1 define A’ = P(g,q) and B' = P(5,7),
where q/ = (TL— 1aQ27---7Qk): g = (17525"'5516)) 7= (T25"'arm)7
5 = (62,...,0m). Then N(A) — N(B) = N(A') — N(B).

Proof. In the case 1) by LemmaZ3I N(A) > 1 and N(B) < —1, so the statement
holds. In the case 2) N(A’) = N(A) — 2" and N(B’) = N(B) — 2™ and the
statement holds. In the case 3.a) N(A) > 2" +2""1 — 2772 4+ 1 and N(B) <
2" 4+ 2n~1 — 1 (since A and B have no superfluous pairs). In the case 3.b)
N(A)>2"!'41and N(B) < 2" ! —1. In the case 3.c) N(4") = N(A4) —2"~1
and N(B') = N(B) — 2"~ These imply that 3) holds. O

Proposition 2.6. For given binary sums P(Z,q) and P(68,7) it takes linear time
C([q] + [7|) to compare the values N(g,q) and N(J,7).

Proof. By Lemmas 2.1 and 2.4 one can reduce and get rid off superfluous pairs
in given binary sums in linear time. Now, let A = P(5,q) and B = P(6,7)
be reduced binary sums without superfluous pairs. In the notation of Lemma
one can describe the comparison algorithm as follows. Determine the values
aq,as and [y, [o. If they satisfy either of the case 1, 3.a, or 3.b then the
answer follows immediately from the lemma. Otherwise, they satisfy either
the case 2 or 3.c, and one can compute new binary sums A’ and B’ such that
N(A")=N(B') = N(A) — N(B) and |A’| + |B’| < |A| + |B]|, and compare their
values. Notice that the binary sum A’ in case 3.c) might contain a superfluous
pair, which should be removed in the simplification process.
Now we describe the comparison algorithm formally.

11

Algorithm 2.7. (To compare values of reduced binary sums with no superfluous

Pairs.
INPU’I)‘. P(z,3) and P(6,7) two reduced binary sums with no superfluous pairs
of powers.
OurpuT. 3
—2, if N7 <N(@G,7) —1
-1, if N(,q9) = N(0,7) — 1
0, if N(£,9) = N(J,7)
1, if Ng) =N(6,7)+1
2, if N(£,9) > N(5,7) + 1
COMPUTATIONS.
A) Remove all superfluous pairs from P(Z,q) and P(§,7).

B)
C)

Compute n = max{q,r1}.

If n < 1 then the current binary sums P(Z,g) and P(§,7) are at most
one-bit numbers. Compute them, compare, and output the result.

If n > 1 then compute oy = ¢(P(%,9),n), az = ¢(P(£,9),n — 1), p1 =
e(P(6,7),n), and B2 = e(P(4,T),n — 1).

Determine if (g,) and (51, f2) satisfy one of the cases 1, 3.a, or 3.b
from Lemma 25l If so, return the result prescribed in Lemma.

Determine if (a1, a2) and (1, 82) satisfy one of the cases 2 or 3.c. If

so, compute new binary sums A" and B’ as prescribed in Lemma [Z.5] put
P(z,q) = A" and P(0,7) = B’ and goto A).

Notice, that each iteration of Algorithm [Z7] decreases the number || + |7 at
least by 1, so the algorithm terminates in at most C(|g| + |F|) steps, as claimed.

2.2

Let P(2,g) be a reduced binary sum, where ¢ = (q1,¢2,.-

(61,..
1,...

O

Shortest binary forms

'aqk)v and € =
.,€k). We say that P(2,q) is compact if g1 — q; > 2 for every i =

k1.

Lemma 2.8. The following hold:

(1)

(2)

(3)

For any n € N there exists a unique compact binary sum P, = €129 +
...+ er2? representing n. Furthermore, k,qu,...,q, <logyn and P, can
be found in linear time O(logyn).

A compact binary sum representation of a given number involves the least
possible number of terms.

Given a binary sum one can find an equivalent compact binary sum in
linear time.

12

Proof. By Lemmal2Tlfor n € N we can find a reduced binary sum P representing
n in time O(log, n). Below we prove the existence and uniqueness of a compact
binary sum equivalent to P.

Existence. Consider any binary sum P(g,g). Consider the following finite
rewriting system C on binary sums: a system of transformations of binary sums

27 2™ — 2l

2m —2Mm ¢

2m+1 + 2m — 2m+2 _ 2m
gmtl _gm _y gm

Obviously, each application of a rule from C to a binary sum results in an
equivalent binary sum, which is either shorter or has the same length as the
initial sum. It is easy to see that the system C is terminating, i.e., starting
on a given binary sum P(g,q) after finitely many steps of rewriting one arrives
to a sum that no rule from C can be applied to. Observe, that the number
of steps required here is at most linear in the length of P(g,q). Furthermore,
the system C is locally confluent, hence confluent (see [6] for definitions). This
implies that the rewriting of a given binary sum always results in a compact
form and such a form does not depend on the rewriting process. In particular,
applying the rewriting process to the standard binary representation of a given
natural number n one can find the shortest binary form of n (and of —n) in
linear time.
Uniqueness. Consider two compact binary sums

k s
P(EQ) =) 2%, P@,p) =Y 52"
=1 1=1

Observe that

o If g # 05 then N(Z,7) and N(5,p) have opposite signs, in particular
N(,q) # N(0,D).

o If ¢, =d, =1 and ¢x > ps then
N(E,q)—N(6,p) > (20 —20 =24 y_(90~1 903 oqk=51) >1,
In particular N(z,q) # N(9,D).

e Similarly, N(z,3) # N(8,p) whenever ¢, = §;, = —1 and/or qi, < ps.

Therefore, equality N(z,§) = N(0,p) implies that e = J, and g, = p,. Using
this it is easy to prove that two compact binary sums representing the same
number are equal.

Minimality. Any non-compact binary sum can be rewritten into an equiv-
alent compact binary sum by the length non-increasing system C. Therefore,
the compact binary sums involve the least possible number of terms. |

13

Lemma 2.9. Suppose P(g,q) is reduced and P(5,p) is the equivalent compact
binary sum. Then for every d € p either d € ¢ or d — 1 € §. Furthermore, if
N(z,q) # 0 then the compact binary sum representing the number N(2,q) + 1
satisfies the same condition.

Proof. We may assume that P(g,q) does not contain superfluous pairs because
removing superfluous pairs from P(g,q) results in a new binary sum P(g',q)
where ¢ C . Therefore there exist sequences of positive integers {a;}, {b;} and
a sequence {e;} such that

PEQ) = (127 4 ...+ e1297F01) b (6429 4 ... 4 £, 200 T0K)

where a; +b; < a;y1 and €; = £1. Making the sum in the first brackets compact
we get

PE, Q) = (—12% 4 1200y 1 4 (6,27 4. 4 g, 200k,

If a; + by + 1 < az — 2 then we can think that (—&;2% + ;29 701F1) is already
compact and consider the next sum. The induction finishes the proof in this
case.

Assume that a3 + b1 +1 =as — 1. If &1 = —gq then £1201 01+ 4 25902 jg 5
superfluous pair. Removing it we obtain

P(E,q) = (—£12% — g 200F0itly 4 (go002 L 4 gp0a2tba)y 4

and as above the sum (—&12% —¢;2%1+%1+1) is compact and we can consider the
next sum. If e; = €5 then the power £,2%1 701+ is being added to the second
sum. Induction finishes the proof in this case.

Observe that in each case either we do not introduce a new power of 2 or
we stop at 221T01+1 Therefore, for every d € p either d € Gord —1€q. In a
similar way we can prove the last statement of the lemma. O

3 Power circuits

We gave a definition of general algebraic circuits in the language £ = {+, —, -,z
2¥} in the introduction. In this section we define a special type of circuits, called
power circuits. Power circuits are main technical objects of the paper. They
can be viewed as versions of the algebraic circuits of a special kind. We show
in due course that every algebraic circuit in £ is equivalent in the structure
7 = (Z,+,—,-,x - 2Y) to a power circuit, but power circuits are much easier
to work with. Besides, power circuits give a very compact presentation of nat-
ural numbers, designed specifically for efficient computations with exponential
polynomials.

3.1 Power circuits and terms

Let P = (V(P), E(P)) be a directed graph. For an edge e = v1 — v2 € E(P)
we denote by «f(e) its origin v; and by S(e) its terminus ve. We say that P

14

contains multiple edges if there are two distinct edges e; and e in P such that
aler) = a(ez) and B(e1) = B(e2). For a vertex v in P denote by Out, the set of
all edges with the origin v and by In, the set of all edges with the terminus v.
A vertex v with Out,, = () is called a leaf or a gate; Leaf(P) is the set of leaves
in P.

A power circuit is a tuple (P, p, M, v,~) where:

e P = (V(P),E(P)) is a non-empty directed acyclic graph with no multiple
edges;

w: E(P) — {1,—1} is called the edge labeling function,;

e M C V(P) is a non-empty subset of vertices called the marked vertices;

v:M — {-1,1} is called a sign function.

v : Leaf(P) — X U{0} is a function which assigns to each leaf in P either
a variable from a set of variables X or the constant 0.

For simplicity we often omit w, M, v,~v from notation and refer to the power
circuit above as P.

For a power circuit P we define a term ¢, in the language £ for each vertex
v € V(P), by induction starting at leaves (which exists since P is acyclic):

;= { ~(v) if v e Leaf(P);

22 ccout, M (BE)) otherwise.

where the sum »_ o, denotes composition of additions in some fixed order
on terms in L. Finally, define a term

Tp = Z v(v)ty.

veM

The number |P| = |V(P)| + |E(P)| is called the size of a power circuit P.
Two circuits P; and Py are equivalent ~(symbolicaully Py ~ Ps) if the terms Tp,

and 7Tp, induce the same function in Z. Notice, that these functions could be
partial (not everywhere defined) on Z.

3.2 Term evaluation and constant circuits

A power circuit P = (P, u, M,v,7) is called constant if the function ~ assigns
no variables (i.e., v = 0). In this case every term t, (v € V(P)), represents a
real number which we denote by £(v). The real represented by 7p is denoted
by E(P). We say that P properly represents an integer number N if N = E(P)
and £(v) € N for every v € V(P). In this case we write N = £(P). Notice that
the term 7p(X) is defined in Z for an assignment of variables 5 : X — Z if and
only P properly represent an integer N(P). Similarly, we say that P properly
represents a natural number if £(P) € N and E(v) € N for every v € V(P).
Observe, that two constant circuits Py and Pq are equivalent if E(Py) = E(Pa).

15

For constant circuits we omit the function v from notation. Equivalent power
circuits P; and Pq are strongly equivalent if Py is proper if and only if Ps is
proper.

Lemma 3.1. For n € N one construct a power circuit P properly representing
n in time O(logan).

Proof. Induction on n. By Lemma 2T for a given number n one can find in time
O(logy n) the a reduced binary sum 129 + ... 4 £,2% representing n, where
k,qi,-..,q <logyn. By induction, one can construct power circuits C1, ..., Cj
representing the numbers g1, ..., qx. It takes time O(log3(log, n)) time to con-
struct each circuit Cy. So altogether it takes at most O(log, nlogs(log, n))
time. Given power circuits C, ..., Cy it requires additional time O(log,n) to
a construct a power circuit representing n. The time estimate follows from the
obvious observation logan logs(log, n) = O(log3 n). O

See Figure [[l for examples of (constant) power circuits. In figures we denote
unmarked vertices by white circles and marked vertices by black circles. Each
edge and marked vertex is labelled with the plus or minus sign denoting 1 or
—1 respectively.

,,,

Figure 1: Examples of power circuits representing integers 1, —1, 16, 2, and 35.

Let P be a power circuit, 7p = Tp(X), and n : X — Z an assignment
of variables in X. The following lemma allows one to operate with the value
Trp(n(X)) by means of constant power circuits.

Lemma 3.2. Let P be a power circuit, Tp = Tp(X), andn : X — Z an as-
signment of variables. Then one can construct a constant power circuit P’ rep-
resenting the number Tp(n(X)) in time O(|P|+logs(size(n))), where size(n) =
> ex logy(n(x)). Moreover, the value Tp(n(X)) is defined in Z if and only if
the circuit P’ properly represents Tp(n(X)).

16

4 Standard, reduced and normal power circuits

In this section we define several important types of circuits: standard, reduced
and normal. The standard ones can be easily obtained from general power cir-
cuits through some obvious simplifications. The reduced power circuits output
numbers only, they require much stronger rigidity conditions (no redundant or
superfluous pairs of edges, distinct vertices output distinct numbers), which are
much harder to achieve. The normal power circuits are reduced and output
numbers in the compact binary forms. They give a unique compact presenta-
tion of integers, which is much more compressed (in the worst case) than the
canonical binary representations. This is the main construction of the paper, it
is interesting in its own right.

4.1 Standard circuits

We say that a vertex v is a zero vertexzin a circuit P if v € Leaf(P) and y(v) = 0.
If P is a constant circuit then v is a zero vertex if and only if £(v) = 0. The
following lemma is obvious.

Lemma 4.1. A constant power circuit contains at least one zero vertex.

Let P be a constant power circuit. Below we describe some obvious rewriting
rules that allow one to simplify P (if applicable) keeping the strong equivalence.

Trivializing: Notice that if every marked vertex in P is a zero vertex then
E(P) = 0. In this event we replace P by a strongly equivalent circuit P’ con-
sisting of a single marked vertex v.

From now on we assume that P has a non-zero marked vertex.

Unmark a zero: Let v be a marked zero vertex in P. If P’ is obtained from
P by making v unmarked then P and P’ are strongly equivalent.

Fold two zeros: Let vi,vs € V(P) be two zeros in P. If P’ is obtained from
P by folding v; and vy then P and P’ are strongly equivalent.

Remove redundant “zero edges”: Let z be a zero vertexin P,e=v — z €
E(P), and |Out,| > 1. If P’ is obtained from P by removing the edge e then P
and P’ are strongly equivalent.

A power circuit P is trimmed if for each vertex v € P there ia a directed
path from a marked vertex to v. The following rewriting rule allows one to trim
circuits.

Trimming: Let v be an unmarked vertex v € P with In, = (). If P’ is obtained
from P by removing the vertex v and all the adjacent edges then P’ is strongly
equivalent to P.

Definition 4.2. A trimmed power circuit P is in the standard form if it contains
a unique unmarked zero vertex and contains no redundant zero edges.

17

Figure 2: Removing redundant zero edges.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: Example of trimming.

18

Algorithm 4.3. (Standard power circuit)
INPUT. A circuit P.
OUuTPUT. A strongly equivalent circuit P’ in a standard form.

COMPUTATIONS.
1) Compute the set Leaf(P).

2) Fold all zero vertices in Leaf(P) into one vertex z and make it unmarked.

4) Trim the circuit.

5) Return the result P’.

(1)
(2)
(3) Erase all redundant edges incoming into z.
(4)
(5)
Summarizing the argument above one has the following result.
Proposition 4.4. Let P’ be produced from P by Algorithm Then
e P’ is standard and is strongly equivalent to P.
o [V(P)| < V(P)| and |E(P)| < |E(P").
e it takes time O(|P|) to construct P’.

There is one more procedure that is useful for operations over power circuits
(see Sections and [T4). Recall that a vertex v in P is a source if In, = 0.
The following algorithm converts a circuit into an equivalent one where each
marked vertex is a source.

Algorithm 4.5.

INPUT. A circuit P = (P, M, u,v).

OUTPUT. An equivalent circuit P’ in which every marked vertex is a source.
COMPUTATIONS:

A. For each vertex v € M with In, # 0 do:

(1) introduce a new vertex v';
(2) for each edge v = u introduce a new edge v/ = u;

(3) replace v with v" in M and put v(v') = v(v).
B) Output the obtained circuit.
Lemma 4.6. Let P’ be produced by Algorithm [{.3] from P. Then:
e P is strongly equivalent to P’,
o V(P <2[V(P)|, and |E(P')| < 2|E(P)].

o Algorithm [[-3] has linear time complexity O(|P]).

19

Figure 4: Processing of marked vertices that are not sources.

4.2 Reduced power circuits

Let P be a constant power circuit in the standard form. A pair of edges e; =
v — v1 and e; = v — vy with the same origin v is called a redundant pair in P

if p(er) = —p(ez) and E(v1) = E(va).

Removing redundant edges: Let e; and e; be a redundant pair of edges in
P. If P’ is obtained from P by removing the pair ej,es then P’ is equivalent
to P. Moreover, if P properly represents an integer then P’ properly represents
the same integer.

A pair of edges e; = v — v1 and ea = v — vg as above is termed superfluous

if u(er) = —p(ez) and E(v1) = 2E(v2).

Removing superfluous edges: Let (e1,e2) be a pair of superfluous edges in
P. If P is obtained from P by removing the edge e; from P and changing u(ez)
to —u(ez) then P’ is strongly equivalent to P.

Remark. If one knows what pairs of edges are redundant or superfluous in P
then it takes time O(|P|) to remove them (applying the rules above). However,
it is not obvious how to check efficiently if £(v1) = E(va) or E(vy) = 2E(ve). We
take care of this in due course.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5: Removing superfluous edges. Here, £(v1) = 2E(va) = 2.

20

Definition 4.7. A circuit P is reduced if

(R1) P is in the standard form.

(R2) For any vy,v2 € V(P), E(v1) = E(v2) if and only if v1 = vs.
(R3) P contains no redundant or superfluous edges.
Proposition 4.8. Let P be a reduced circuit. Then

1) &(P) = 0 if and only if P is trivial, i.e., P consists of a single marked
vertex.

2) Let v € M be such that for any v' € M E(v) > E(v') (the vertex with the
maximal -value in M). Then:
o If v(v) =1 then £(P) > 0.
o If v(v) = —1 then £(P) < 0.
Proof. Tf P is trivial then clearly £(P) = 0. Now, suppose that P is not trivial.
Then E(P) = 3 cp ¥(0)E(v), where E(v) = 22 ceout, MEEWBE) Hence E(P)

is a reduced binary sum, so by Lemma 23] it is not equal to 0. Which proves

1).

The second statement can be proved similarly using Lemma

4.3 Normal forms of constant power circuits
Let P be a constant power circuit. We say that P is in the normal form if
(N1) P is proper and reduced.

(N2) For every vertex v € V(P) the binary sum »_ ., #(e)E(B(e)) is com-
pact (after proper enumeration of children of v).

(N3) The binary sum E(P) = >,y ¥(v)E(v) is in the compact form.

Power circuits P; and Pq are isomorphic if there exists a graph isomorphism
¢ : P1 — P2 mapping M (P1) bijectively onto M (P2) and preserving the values
of u, v, an ~.

Theorem 4.9. Two constant power circuits in the normal form are equivalent
if and only if they are isomorphic.

Proof. “<” Obvious.

“=” For v € V(P1) we define p(v1) to be the vertex vy € V(Ps) such
that £(v1) = E(v2). Below we prove that for every v there exists v with that
property. Uniqueness of vy follows from the fact that Ps is reduced.

Since P; and Py are equivalent we have

Y vEW) =EP) =EP) = D v(v)E),

vEM(P1) vEM (P2)

21

where E(v) = 2%ceous, MOEWB)) By (N3) the sums for £(P) and £(Py) are
compact and, hence, by Lemmal[Z8 are essentially the same (up to a permutation
of summands). Therefore, ¢ defined above gives a one to one correspondence
between M (P1) and M (Ps).

Suppose that v1 € V(P1) and ve € V(P2) satisfy £(v1) = E(v2). Then

Y ul@EBe) = Y uleEBe)

e€Outy, e€Out,,

and both sums are in compact form by (N2). By Lemma these sums are
essentially the same and there is one to one correspondence of the summands.

Finally, since P; and P, are trimmed, every vertex is a descendant of a
marked vertex. Therefore, we can inductively extend the one to one correspon-
dence ¢ from the marked vertices to all vertices of P;. It is easy to see that ¢
is a required graph isomorphism preserving values of u, v, and ~. O

5 Reduction process

The main goal of this section is to prove the following theorem, which is the
main technical result of the paper.

Theorem 5.1. There is an algorithm that given a constant power circuit P
constructs an equivalent reduced power circuit P’ in time O(|V (P)|3). Moreover,

V(P < V(P)[+1.

We accomplish this in a series of lemmas and propositions. The algorithm
itself is described as Algorithm [E.14] below.

5.1 Geometric order

In this section we present an algorithm which transforms a circuit P into a
reduced one. Property (R1) and (R3) can be easily achieved using Algorithm
which produces a trimmed strongly equivalent standard circuit of smaller
size. Our main goal is to find an algorithm that produces equivalent circuit
satisfying property (R2).

We say that a sequence {v1,...,v,} of vertices of P is geometrically ordered
if for each edge e = v; — v; € E(P) we have i > j.

Lemma 5.2. For any circuit P there exists a ge