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COMPLETE INTERSECTIONS AND MOVABLE CURVES ON

THE MODULI SPACE OF SIX-POINTED RATIONAL CURVES

PAUL L. LARSEN

Abstract. A curve on a projective variety is called movable if it belongs to an
algebraic family of curves covering the variety. We consider when the cone of
movable curves can be characterized without existence statements of covering
families by studying the complete intersection cone on a family of blow-ups
of complex projective space, including the moduli space of stable six-pointed
rational curves, M0,6, and the permutohedral or Losev-Manin moduli space of
four-pointed rational curves. Our main result is that the movable and complete
intersection cones coincide for the toric members of this family, but differ for
the non-toric member, M0,6. The proof is via an algorithm that applies in
greater generality. We also give an example of a projective toric threefold for
which these two cones differ.

1. Introduction

A foundational result in the geometry of projective varieties is Kleiman’s theo-
rem [Kle66], which states the closure of the ample cone equals the nef cone. The
containment of the ample cone in the nef cone is easy to prove, and since the nef
cone is by definition closed, one inclusion of cones follows. The proof of the opposite
inclusion is more involved; see [Kle66], or Section 1.4.C of [Laz04].

By duality, Kleiman’s theorem is equivalent to the equality NE(X)∨ = Amp(X).
It is natural to wonder which other cones of divisor and curve classes fit into a
Kleiman-type duality. For the pseudoeffective cone of divisor classes, it is not
difficult to see that dual cone Eff(X)∨ contains the closure of the cone of movable
curve classes, where a reduced, irreducible curve C is called a movable curve if
C = Ct0 belongs to an algebraic family (Ct)t∈S covering X . To see this inclusion,
let D be an effective prime divisor, and let C be a movable curve. Since the support
of D is a codimension one subvariety, there must exist an irreducible curve C′ in
the covering family containing C such that C′ is not contained in the support of D,
hence C′ · D ≥ 0. Since algebraic equivalence is finer than numerical equivalence,
it follows that C · D ≥ 0. The other inclusion was proved in 2004 by Boucksom,
Demailly, Pǎun, and Peternell in [BDPP04], where they also give an alternative
characterization of the cone of movable curve classes:

Definition 1.1. Let µ : X ′ → X be a projective, birational morphism. A class
γ ∈ NE(X) is called movable if there exists a representative one-cycle C and ample
divisors A1, . . . , Adim(X)−1 on X ′ such that

µ∗(A1 · . . . · Adim(X)−1) = C.

The closure of the cone generated by movable classes in NE(X) is called the movable

cone, and is denoted Mov(X).
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Both formulations involve non-trivial existence statements: in the first, to see
that a curve C is movable, we must prove the existence of a covering family to which
it belongs, and in the second, we require knowledge about all projective, birational
morphisms to the variety X . If, however, we consider only the identity morphism,
we obtain a subcone of Mov(X) called the complete intersection cone:

Definition 1.2. The complete intersection cone of X , denoted CI(X), is the closed
cone generated by the classes of all smooth curves obtained as an intersection of
dim(X)− 1 ample divisors on X .

The aim of this paper is to investigate when these cones of curve classes do and
do not coincide for two natural testing grounds: moduli spaces of curves and toric
varieties. Were there actual equality CI(X) = Mov(X), then we could character-
ize movable curves without having to first classify all birational morphisms to X .
A disadvantage of working with the complete intersection cone, however, is the
combinatorial complexity of CI(X), especially when the nef cone of X has a large
number of extremal rays.

Example 1.3. Let X be a smooth projective surface. Then one-cycles and divisors
coincide, so Eff(X)∨ = Nef(X) = CI(X), where the second equality follows from
Kleiman’s theorem, since by definition CI(X) is the closure of the ample cone.

Example 1.4. LetX = Pn, and letH ⊆ Pn be a hyperplane, and let ℓ ⊆ Pn be a line.
Then N1(Pn)R = 〈[H ]〉 and Eff(Pn) = Nef(Pn) = 〈[H ]〉≥0, while N1(P

n)R = 〈[ℓ]〉,
and Eff(Pn)∨ = Mov(Pn) = 〈[ℓ]〉≥0 = 〈[H ]n−1〉≥0, hence CI(Pn) = Mov(Pn).

Peternell has calculated an example of a smooth projective threefold for which
the containment of the complete intersection cone in the movable cone is strict
[Pet], but one can ask if there are natural families of varieties for which these cones
coincide. Two obvious testing grounds are toric varieties and moduli spaces of
stable pointed rational curves, since the intersection theory on these varieties is
well-understood. A connection between these two families is the Kapranov blow-up
construction. In [Kap93a],M0,n is constructed by a series of toric blow-ups of Pn−3,

culminating in the permutohedral or Losev-Manin moduli space Ln−2, followed by
(for n ≥ 5) additional blow-ups along non-torus-invariant centers.

Example 1.4 can be taken as the base case of a progression of varieties obtained
by successive Kapranov-like blow-ups. More specifically, setting X0 = P3, the next
variety we take to be the blow-up of P3 at a general point, labeling the resulting
variety X1. We define X2 to be the blow-up of P3 along two general points, and the
proper transform of the line spanned by the points. In general, for 1 ≤ r ≤ 5, we
blow-up r points of P3 in general linear position, and then the proper transforms of
the

(

r
2

)

lines generated by the r points. For r ≤ 4, the centers of the blow-ups can

be chosen to be torus-invariant. Then X4 is the permutohedral space L4, while X5

is M0,6. The complete intersection and movable cones of the first few varieties Xr

can be computed easily to show that these cones coincide, but there is little reason
to expect this equality of cones to be preserved under increasing blow-ups.

The main result of this paper is the following:

Theorem 1.5. There is a strict inclusion CI(M0,6) ( Mov(M0,6), while for the

toric varieties Xr, 1 ≤ r ≤ 4, equality holds: CI(Xr) = Mov(Xr).

In other words, the containment of these cones becomes strict when we leave the
toric world in the Kapranov construction of M0,6.
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We prove this theorem by reinterpreting the complete intersection cone in com-
binatorial terms (see Definition 3.5 and Lemma 3.6). Since the nef and pseudoeffec-
tive cones of M0,6 and L4 are finitely generated, it follows by this reinterpretation
that equality of the moving and complete intersection cones can be tested by an
algorithm that requires as input the extremal rays of the nef and effective cones of
divisors, plus intersection products of divisors (see Section 3).

That the complete intersection and movable cones coincide for the toric blow-
ups of Theorem 1.5 might give hope that these cones coincide for smooth projective
toric varieties. It turns out, however, that even for a toric blow-up of projective
space the complete intersection cone need not equal the movable cone. In Example
3.11, we produce such a toric variety.

The remainder of this paper is organized as follows. We begin with some general-
ities on the pseudoeffective and nef cones of divisors, as well as the the closed cones
of curves, for M0,n and the other blow-ups Xr in Section 2. In Section 3, we estab-
lish a combinatorial definition of the complete intersection cone, and describe the
algorithm used to prove Theorem 1.5. We also show that extremal movable curve
classes of the toric variety Ln−2 pull back to extremal classes in M0,n. Section 4
contains proofs for intersection calculations used for our algorithm.

Acknowledgments: I would first like to thank Gavril Farkas for suggesting
this problem, and for his help throughout. This project has benefitted greatly from
conversations with Nathan Ilten, Sam Payne, and Thomas Peternell. I would also
like to thank Klaus Altmann and Angela Gibney for comments on an earlier version
of this paper.

2. Definitions and background

In this section we give definitions from intersection theory on a complex projec-
tive variety before focusing on the particular examples of toric varieties and the
moduli space of stable pointed rational curve, M0,n. We refer to [Laz04], [Ful98],
and Appendix A of [Har77] for the basics of intersection theory, and [Kee92] and
[Lar10] for background and examples involving M0,n.

Let X be a smooth complex projective variety, with DivR(X) denoting the space
of R-linear formal sums of algebraic hypersurfaces on X (called R-divisors on X).
There is a well-defined intersection pairing between R-divisors and R-linear formal
sums of algebraic curves on X (called one-cycles), which we denote by “·”.

Definition 2.1. Two divisors D1, D2 ∈ DivR(X) are said to be numerically equiv-

alent if for all algebraic curves C ⊆ X , D1 · C = D2 · C.

We thus obtain an equivalence relation on DivR(X), and denote the numerical
equivalence class of a divisor D by [D].

Definition 2.2. The Néron-Severi space of X is defined as

N1(X)R = {[D] : D ∈ DivR(X)},

and the dual vector space induced by the intersection product is denoted N1(X)R.

We will also denote the numerical class of a one-cycle C as [C] ∈ N1(X)R. A key
fact for what follows is that N1(X)R and N1(X)R are finite-dimensional R-vector
spaces.
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Definition 2.3. The pseudoeffective cone of divisors, written Eff(X), is the closed
subcone of N1(X)R generated by classes of effective divisors. Explicitly, Eff(X) is
the closure in N1(X)R of

Eff(X) =
{

∑

di[Di] : di ≥ 0, Di an effective divisor on X
}

.

The analogous cone in N1(X)R is called the closed (or Mori) cone of curves :

Definition 2.4. Define NE(X) as the closed subcone of N1(X)R generated by
classes of algebraic curves, that is, the closure in N1(X)R of

NE(X) =
{

∑

ci[Ci] : ci ≥ 0, Ci ⊆ X an algebraic curve
}

.

Definition 2.5. The cone of nef divisors on X is

Nef(X) = {[D] ∈ N1(X)R : D · C ≥ 0 for all [C] ∈ NE(X)} = (NE(X))∨.

We will sometimes reduce intersection properties on M0,n to intersections on a
more amenable variety via the projection formula. We use this result for numerical
equivalence classes on non-singular varieties, where the formula takes on a partic-
ularly simple form (see [Ful98], Proposition 8(c), noting that rational equivalence
is finer than numerical equivalence). We only give the formula for divisors and
one-cycles, though the statement holds for all pairs of complementary dimensional
subvarieties.

Lemma 2.6 (Projection formula). Let f : X → Y be a proper morphism of non-

singular varieties. For δ ∈ N1(X)R and γ ∈ N1(Y )R,

f∗(δ · f
∗γ) = f∗(δ) · γ.

We next give a short description of the moduli space M0,n. Set theoretically, it
is defined as follows:

Definition 2.7. For n ∈ N, n ≥ 3, the elements of M0,n are equivalence classes of

{(C, p1, . . . , pn) : C a tree of P1s, pi ∈ C distinct}

such that

(i) all marked points pi are distinct from the nodes of C,
(ii) each irreducible component C contains at least three marked or singular

points,
(iii) two marked curves (C, p1, . . . , pn) and (C′, q1, . . . , qn) are equivalent if there

is an isomorphism φ : C → C′ with φ(pi) = qi for all i.

The resulting moduli space is a smooth projective variety [Knu83], and can be
realized as a sequence of blow-ups of Pn−3 along linear centers [Kap93a]. This blow-
up construction will feature heavily in the remainder, and although it corresponds
to that of [Kap93a], the ordering of the blow-ups differs slightly from that given
in subsequent literature. First pick n − 2 general points in Pn−3; via a projective
transformation, we may choose x1 = [1, 0, . . . , 0], . . ., xn−2 = [0, . . . , 0, 1] ∈ Pn−3.
Note that these points are invariant under the action of the torus (C∗)n−3. First
blow up Pn−3 iteratively along x1, . . . , xn−2, then along the proper transforms of the
lines spanned by pairs of x1, . . . , xn−2, and continue blowing up proper transforms
of linear subspaces spanned by these points until all codimension two subspaces
have been blown up. Since all blow-up centers were torus invariant, the result is a
smooth projective toric variety.
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Definition 2.8. The variety obtained from the above blow-ups of Pn−3 is the
permutohedral or Losev-Manin moduli space Ln−2.

The name permutohedral space is given in [Kap93a] since the corresponding poly-
tope in a permutahedron, while the second variant reflects the modular interpreta-
tion given in [LM00]. More on these varieties can be found in [BB11] and [Lar11a].

To obtain M0,n from Ln−2 we first blow up the point xn−1 = [1, . . . , 1], and
then—in order of increasing dimension—all remaining proper transforms of linear
subspaces spanned by x1, . . . , xn−1. These blow-up constructions also give natural
bases for N1(Ln−2)R and N1(M0,n)R, which we will call the Kapranov basis :

• For Ln−2, denote by [H ] the pull-back of the hyperplane class on Pn−3, and
by [EJ ] with J ⊆ {1, . . . , n−2}, 1 ≤ |J | ≤ n−4 the proper transforms of the
exceptional divisors resulting from blowing up a linear subspace spanned
by the collection of {x1, . . . , xn−2} indexed by J .

• For M0,n, we abuse notation by again writing [H ] for the pull-back of the
hyperplane class, and as above [EJ ] for the proper transforms of exceptional
divisors, where now J ⊆ {1, . . . , n− 1}.

We will be especially concerned with two collections of divisor and curve classes
on M0,n, namely those of boundary divisors and F-curves.

Definition 2.9. For J ⊆ {1, . . . , n} with 2 ≤ |J | ≤ n− 2, the boundary divisor ∆J

is the locus of elements in M0,n whose underlying curve can be decomposed into
two components C = C′ ∪C′′ such that the marked points on C′ are indexed by J
and those of C′′ are indexed by Jc.

We will tacitly identify ∆J and ∆Jc . The boundary divisors form the codimension
one constituents of a stratification of M0,n by dual-graph. The dimension one ele-
ments of this stratification are known as F-curves. The numerical equivalence class
of an F-curve is uniquely determine by a partition of {1, . . . , n} into four subsets,
{µ1, µ2, µ3, µ4}. To go from F-curves to such partitions, let (C, p1, . . . , pn) ∈ M0,n

be a generic element of an F-curve. Then C can be decomposed as C = Cspine ∪
C1 ∪ C2 ∪ C3 ∪ C4, where Cspine is a P1 with four special points, and the marked
points indexed by µi are located on Ci for all i. That this partition uniquely de-
termines the numerical class of an F-curve results from the following intersection
pairings, proved in [KM96].

Proposition 2.10. Let Fµ be a one stratum, with corresponding partition µ =
(µ1, µ2, µ3, µ4). For any boundary divisor ∆J ,

Fµ ·∆J =







−1 if J or Jc equals µi for some i
1 if J = µi ∪ µj for some i 6= j,
0 otherwise.

Since classes of boundary divisors generate N1(M0,n)R, these intersection numbers
uniquely determine the class of F .

We will require one final fact about intersection theory on M0,n relating bound-
ary divisors and elements of the Kapranov basis:

∆J∪{n} = EJ , if 1 ≤ |J | ≤ n− 4,

[

∆J∪{n}

]

= [H ]−

(

∑

J′(J

[EJ′ ]

)

, if |J | = n− 3.
(2.1)
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Except for small values of n, little is known about the pseudoeffective cone of
divisors or the closed cone of curves for M0,n. The pseudoeffective cone of M0,n

(and hence, by duality, the movable cone of curve classes) is known to be finitely
generated only for n ≤ 6 [HT02, Cas09], while finite-generation of the closed cone
of curve classes of M0,n (and hence, by duality, the cone of nef divisor classes) has
been proven for n ≤ 7 [KM96, Lar11b].

For M0,6, the closed cone of curve classes is generated by classes of F-curves,

while the pseudoeffective cone of M0,6 is generated by the boundary divisors ∆J ,
and the Keel-Vermeire divisors [Ver02]. In the Kapranov blow-up description of
M0,6, Keel-Vermeire divisors are the pull-backs under the blow-up morphism t6 :

M0,6 → P3 of the unique quadric surface containing points p1, . . ., p5, and the
lines lac, lad, lbc and lbd. Taking (a, b, c, d) = (1, 2, 3, 4), the Keel-Vermeire divisor
Q(12)(34)(56) has numerical class

(2.2) [Q(12)(34)(56)] = 2[H ]−
5

∑

i=1

[Ei]− [E13]− [E14]− [E23]− [E24].

The remaining fourteen Keel-Vermeire divisors arise by varying the indexing prod-
uct of two cycles (here meant in terms of symmetric groups, not algebraic cycles).

For toric varieties, each of the cones described above is finitely generated, and
admits an explicit description (sometimes more than one) in combinatorial terms.
The starting point for understanding the various cones of a toric variety XΣ of
dimension d is the Orbit-Cone correspondence (see for example [CLS11], §3.2 and
§6.3). Recalling that Σ(k) denotes the k-dimensional cones of the fan Σ, and V (σ)
is the codimension k subvariety corresponding to σ ∈ Σ(k), we have the following
descriptions of Eff(XΣ) and NE(XΣ):

Proposition 2.11. For a complete toric variety XΣ,

Eff(XΣ) = 〈[V (ρ)] : ρ ∈ Σ(1)〉≥0,

while

NE(XΣ) = 〈[V (τ)] : τ ∈ Σ(d− 1)〉≥0.

The duals of these cones, Mov(XΣ) and Nef(XΣ), can be calculated by the combi-
natorics of the defining fans. Example calculations appear in Example 3.11.

3. Comparing complete intersection and movable curve classes

The proof of Theorem 1.5 involves comparing intersections of pairs of nef divisor
classes with movable classes. To begin this section, we give defining inequalities
for the nef and movable cones, and calculate intersections of pairs of divisors on
the varieties Xr (defined below), thus providing the input data for the algorithmic
proof of Theorem 1.5. Proofs are given in Section 4.

Definition 3.1. Let Xr be the composition of the blow-ups of r general points in
P3, 1 ≤ r ≤ 5, followed by the blow-ups of the proper-transforms of the

(

r
2

)

lines of

P3 spanned by the r points.

Note that X4 = L4 and X5 = M0,6. Let H be the pullback of a general hy-
perplane, let E1, . . . , Er be the exceptional divisors obtained by blowing up the
points, and let E12, . . . , Er−1 r be the proper transforms of the exceptional divisors
obtained by blowing up the lines.
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As in Section 2, the Kapranov basis of N1(Xr)R is

{[H ], [E1], . . . , [Er], [E12], . . . , [Er−1 r]},

and the dual Kapranov basis of N1(Xr)R is denoted

{[H ]∨, [E1]
∨, . . . , [Er]

∨, [E12]
∨, . . . , [Er−1 r]

∨}.

Again, we will abuse notation and not distinguish notationally among the Kapranov
bases from the different Xr.

To characterize the nef cones of the Xr, we adopt the notational convention
for the defining inequalities that a coefficient dij is set to zero if the indices are
impossible for a given inequality. For example, if r = 1, then all dij appearing
below are taken to be 0, and if r = 2, the final inequality below reads dh + di ≥ 0
for i ∈ {1, 2}. We also identify dij and dji.

Proposition 3.2. Let [D] = dh[H ] +
∑r

i=1 di[Ei] +
∑

1≤j<k≤r djk[Ejk] be an arbi-

trary divisor class in Xr. The cone of nef divisors is determined by the inequalities



















−dij ≥ 0, for 1 ≤ i < j ≤ r,

dh + di + dj − dij ≥ 0, for 1 ≤ i < j ≤ r,

−di + dij + dik ≥ 0, for 1 ≤ i, j, k ≤ r, i /∈ {j, k},

dh + di + djk + dlm ≥ 0, for {i, j, k, l,m} = {1, . . . , r}.

To determine the movable cone of curves, Mov(M0,6), we consider intersections

of one-cycles with the generators of Eff(M0,6), that is, with all boundary divisor
classes [∆J ] and the fifteen Keel-Vermeire divisor classes [Q(ab)(cd)(e6)]. We apply
an analogous convention used to characterize Nef(Xr) to the terms ci and cjk in
the inequalities below.

Proposition 3.3. Let [C] = ch[H ]∨+
∑r

i=1 ci[Ei]
∨+

∑

1≤j<k≤r cjk[Ejk]
∨ be a one

cycle class in N1(M0,6). The cone of movable curve classes in Xr is determined by

the inequalities


















ci ≥ 0, for i = 1, . . . , r,

cjk ≥ 0, for 1 ≤ j < k ≤ r,

ch − ci − cj − ck − cij − cik − cjk ≥ 0, for 1 ≤ i < j < k ≤ r,

2ch −
∑5

i=1 ci − cjl − ckl − cjm − ckm ≥ 0, for j, k, l,m ∈ {1, . . . , r} distinct.

Note that for each inequality of the last type follows from inequalities of the first
three types when r ≤ 4.

We will give an alternative definition of the complete intersection cone in Lemma
3.6 involving intersections of nef divisors, so we next write the remaining intersec-
tions of elements of the Kapranov basis for N1(M0,6)R in terms of the dual basis.

Proposition 3.4. The intersections of elements of the Kapranov basis for Xr, in

terms of the dual basis, are, for distinct i, j, k, l ∈ {1, . . . , r},

(3.1) 0 = [H ] · [Ei] = [Ei] · [Ej ] = [Ei] · [Ejk] = [Eij ] · [Ekl] = [Eij ] · [Eik],

[H ]2 = [H ]∨, [H ] · [Ejk] = [Ej ] · [Ejk] = [Ek] · [Ejk] = −[Ejk]
∨,

[Ei]
2 = [Ei]

∨, [Ejk]
2 = 2[Ejk]

∨ − [H ]∨ − [Ej ]
∨ − [Ek]

∨.
(3.2)
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Now we turn to the algorithm used to prove Theorem 1.5. We begin with a
recasting of the complete intersection cone of a projective variety X with a finitely
generated nef cone.

Definition 3.5. For X a smooth projective variety of dimension d with a finitely
generated nef cone, define (Nef(X))d−1 ⊆ N1(X)R as

(Nef(X))d−1 = 〈[N1] · . . . · [Nd−1] : each [Ni] an extremal ray of Nef(X)〉≥0

Note that finite generation of Nef(X) implies that (Nef(X))d−1 is a closed cone.

Lemma 3.6. The cones (Nef(X))d−1 and CI(X) are equal.

Proof. To see that (Nef(X))d−1 ⊆ CI(X), note first that every nef divisor is a
limit of ample divisors (see [Laz04], Section 1.4). Since CI(X) is a closed cone,
multilinearity and continuity of the intersection product ([Laz04], Section 1.1) imply
the first inclusion. The reverse inclusion is obvious. �

Corollary 3.7. If the nef cone of X is finitely generated, the cones CI(X) and

Mov(X) coincide if and only if every extremal ray of Mov(X) is a non-trivial mul-

tiple of a generator of (Nef(X))d−1.

This corollary leads directly to an algorithm to test the equality of CI(X) and
Mov(X) when Nef(X) and Mov(X) are finitely generated, and all necessary inter-
sections are known. We describe the algorithm in detail for a projective three-fold;
the extension of the algorithm to higher-dimensional varieties will be obvious.

Algorithm 3.8. Determine if CI(X) = Mov(X) for a smooth projective threefold.

Input: Extremal rays γ1, . . . , γs of Mov(X) with respect to the basis B1 ofN1(X)R;
extremal rays η1, . . . , ηr of Nef(X) with respect to the dual basis (with
respect to the intersection product) B1 of N1(X)R; intersection products
of pairs from B1 in the basis B1.

Output: Extremal rays γi1 , . . . , γit of Mov(X) not in CI(X) to a file NotEq.

1.a. Read in γ1.
1.b. For each pair 1 ≤ i ≤ j ≤ r, calculate ηi · ηj with respect to B1. If ηi · ηj

is a non-trivial multiple of γ1, continue to the next pair 1 ≤ i′ ≤ j′ ≤ r.
Otherwise output γ1 to NotEq and continue to the next pair.

2.a. Read in γ2.
2.b. . . .

s.a. Read in γs.
s.b. For each pair 1 ≤ i ≤ j ≤ r, calculate ηi · ηj with respect to B1. If ηi · ηj is

a non-trivial multiple of γs, continue to the next pair 1 ≤ i′ ≤ j′ ≤ r. Else
output γs to NotEq and continue to the next pair.

The cones CI(X) and Mov(X) are equal precisety when the file NotEq is empty
after running the algorithm. Note that the second step for each ray γi involves
recalculating all generators for (Nef(X))2. This apparent inefficiency is in practice
preferable to storing every generator ηt1 ·ηt2 in an array due to memory requirements
and the computational time required to access elements in this array.

An implementation of the algorithm as a C++ program for Xr, r = 2, . . . , 5,
is available at www.math.hu-berlin/∼larsen/papers.html (for X1 the algorithm is
easy to implement by hand). We obtain enumerations of the extremal rays of

http://www.math.hu-berlin/~larsen/papers.html
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u1

u2

u3 u5

u4

Figure 1. Fan of the toric variety from Example 3.11

Nef(X) and Mov(X) by inputting the inequalities from Propositions 3.2 and 3.3
into software that implements Fourier-Motzkin elimination, such as PORTA [CL].
These PORTA files are also available at www.math.hu-berlin/∼larsen/papers.html.
Intersections of pairs of nef divisors are calculated according to Proposition 3.4.
Running these programs yields:

Corollary 3.9. There is a strict inclusion CI(M0,6) ( Mov(M0,6), while CI(Xr) =

Mov(Xr) for r = 1, . . . , 4.

A mostly by-hand implementation of the algorithm appears in Example 3.11.

Corollary 3.10. Extremal rays of Mov(M0,6) not contained in CI(M0,6) intersect

the canonical class of M0,6 negatively.

Proof. The canonical class of M0,6 is

[KM0,6
] = −4[H ] + 2

5
∑

i=1

[Ei] +
∑

1≤j≤k≤5

[Ejk].

Inspection of the file NotEq for r = 5 then yields the result. �

An obvious question to ask is whether the complete intersection and movable
cones coincide for all smooth projective toric varieties. We next give an example of
a toric blow-up of P3 for which the complete intersection cone is strictly contained
in the movable cone.

Example 3.11. Let Y2 be the toric variety obtained by blowing up P3 first in the
line V (z1, z3), followed by the blow-up of the proper-transform of the line V (z1, z2),
where C[z0, z1, z2, z3] is the homogeneous coordinate ring of P3. The variety Y2 is
smooth and projective, and its fan Σ is depicted in Figure 1, with the other segments
indicating the two-faces of the fan. The standard facts about divisor classes and
intersection theory on toric varieties reviewed and used in this example can be
found in [CLS11], Chapters 4 and 6.

http://www.math.hu-berlin/~larsen/papers.html
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The primitive generators u0, . . . , u5 of the fan of Y2 are, respectively,




−1
−1
−1



 ,





1
0
0



 ,





0
1
0



 ,





0
0
1



 ,





1
0
1



 ,





0
1
1



 .

As usual, we label the torus-invariant divisors via the (primitive generators of the)
rays of Σ(1), so N1(Y2)R is generated by the classes of the divisors D0, . . . , D5. The
relations among the classes of divisors Di are generated by

[D1] + [D4]− [D0] = 0,

[D2] + [D5]− [D0] = 0,

[D3] + [D4] + [D5]− [D0] = 0.

We now perform the calculations of Algorithm 3.7 to compare CI(Y2) and
Mov(Y2). It is clear from the relations in N1(Y2)R that the pseudoeffective cone is

Eff(Y2) = 〈[D3], [D4], [D5]〉≥0.

We therefore choose the basis for N1(Y2)R consisting of the classes of D3, D4, and
D5, while for N1(Y2)R we take the corresponding dual basis. It follows that the
movable cone is

Mov(Y2) = 〈[D3]
∨, [D4]

∨, [D5]
∨〉≥0,

or, in coordinates, the non-negative orthant of R3.
As noted in Proposition 2.11, the closed cone of curves of Y2 is generated by

classes of orbit closures V (τ), τ ∈ Σ(2), and we will label them as V (τ) = Ci,j ,
where i and j index the rays generating τ .

Writing an arbitrary divisor class as [D] = d3[D3]+d4[D4]+d5[D5], the nef cone
of Y2 is defined by the inequalities

d4 = [C0,1] · [D] = [C1,2] · [D] = [C1,4] · [D] = [C2,5] · [D] ≥ 0,

d5 = [C0,2] · [D] ≥ 0,

−d4 + d5 = [C2,4] · [D] ≥ 0,

−d3 + d4 + d5 = [C0,3] · [D] = [C3,4] · [D] = [C3,5] · [D] ≥ 0,

d3 − d5 = [C0,5] · [D] = [C4,5] · [D] ≥ 0,

d3 − d4 = [C0,4] · [D] ≥ 0.

These intersections can be calculated via the geometry of the fan of Y2 as in [CLS11],
Section 6.3.

For example, to obtain the fourth inequality above, we intersect D with the curve
C0,3. Setting C0,3 = V (τ), with τ = 〈u0, u3〉≥0, note that τ is contained precisely
in the full-dimensional cones 〈u4, u0, u3〉≥0 and 〈u0, u3, u5〉≥0. We obtain from the
coefficients of the linear dependence relation

(1)





1
0
1



+ (1)





−1
−1
−1



+ (−1)





0
0
1



+ (1)





0
1
1



 =





0
0
0





the intersection numbersD4·C0,3 = 1,D0·C0,3 = 1,D3·C0,3 = −1, andD5·C0,3 = 1,
with all remaining intersection numbers equal to zero.

In particular, we obtain the coordinates for C0,3 in the dual basis N1(Y2)R:

[C0,3] = −[D3]
∨ + [D4]

∨ + [D5]
∨ = (−1, 1, 1).
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Coordinates of the other generators of N1(Y2)R with respect to the dual basis
{[D3]

∨, [D4]
∨, [D5]

∨} are:

[C0,1] = [C1,2] = [C1,4] = [C2,5] = (0, 1, 0),

[C0,2] = (0, 0, 1)

[C2,4] = (0,−1, 1)

[C0,3] = [C3,4] = [C3,5] = (−1, 1, 1),

[C0,5] = [C4,5] = (1, 0,−1),

[C0,4] = (1,−1, 0).

By a PORTA calculation, the nef cone is

Nef(Y2) = 〈[D3] + [D5], 2[D3] + [D4] + [D5], [D3] + [D4] + [D5]〉≥0.

We denote the three extremal rays by η1, η2, and η3, respectively. To calculate
all pairs of intersections ηi · ηj , we first calculate [Dr] · [Ds] for r, s = 3, 4, 5. For
self-intersections, we rewrite the divisor using the relations in N1(Y2)R to make the
intersection transverse. For example,

[D3]
2 = [D3] · ([D0]− [D4]− [D5]) = [C0,3]− [C3,4]− [C3,5].

With respect to the dual basis {[D3]
∨, [D4]

∨, [D5]
∨}, we obtain [D3]

2 = (1,−1,−1).
The other intersections are obtained analogously:

[D4]
2 = (1,−2, 0),

[D5]
2 = (1,−1,−1),

[D3] · [D4] = (−1, 1, 1),

[D3] · [D5] = (−1, 1, 1),

[D4] · [D5] = (1, 0,−1).

Finally, we calculate the generators ηi · ηj , 1 ≤ i ≤ j ≤ 3, in the dual basis
N1(Y2)R by using the above intersections among the basis elements of N1(Y2)R:

η21 = ([D3] + [D5])
2 = (0, 0, 0),

η22 = (2[D3] + [D4] + [D5])
2 = (0, 1, 1),

η23 = ([D3] + [D4] + [D5])
2 = (1, 0, 0),

η1 · η2 = ([D3] + [D5]) · (2[D3] + [D4] + [D5]) = (0, 1, 0),

η1 · η3 = ([D3] + [D5]) · ([D3] + [D4] + [D5]) = (0, 1, 0),

η2 · η3 = (2[D3] + [D4] + [D5]) · ([D3] + [D4] + [D5]) = (0, 1, 1).

Since the extremal ray (0, 0, 1) of Mov(Y2) does not appear among the generators
of CI(Y2), it follows that CI(Y2) ( Mov(Y2).

To conclude this section, we use basic polyhedral geometry to give one example
of how permutohedral spaces partially encode the geometry of M0,n. Namely, we

show that extremal rays of the movable cone of Ln−2 pull back to extremal rays of
the movable cone ofM0,n. Recalling the Kapranov blow-up construction, we define

f :M0,n → Ln−2 to be the final (non-toric) composition of blow-ups.

Proposition 3.12. Let γ be an extremal ray of Mov(Ln−2). Then f∗(γ) is an

extremal ray of Mov(M0,n).
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Proof. Note that

f∗ : N1(Ln−2)R → N1(M0,n)R and

f∗ : N1(M0,n)R → N1(Ln−2)R

are dual with respect to the intersection pairing. Since f∗ is surjective, f∗ is in-
jective, and in particular f∗(γ) 6= 0. Moreover, by the projection formula 2.6 with
[D] ∈ Eff(M0,n),

[D] · f∗(γ) = f∗([D]) · γ ≥ 0,

since f∗([D]) is also an effective divisor class, hence f∗(γ) ∈ Mov(Ln−2).
Set ρL = dimN1(Ln−2)R and ρM = dimN1(M0,n)R. Extremality of γ implies

that there exist ρL − 1 linearly independent defining hyperplanes of Mov(Ln−2)
intersecting γ with value zero, i.e. there exist linearly independent divisor classes
[D′

1], . . . , [D
′
ρ
L
−1] on Ln−2 satisfying [D′

i] · γ = 0 for all i. Next select ρL − 1

divisor classes [Di] ∈ N1(M0,n)R such that f∗([Di]) = [Di] for all i (the [Di] are by
construction linearly independent).

It is easy to see from the Kapranov blow-up construction that

ker f∗ = 〈[EJ ] : n− 1 ∈ J〉,

while the projection formula implies that [Ej ] · γ = 0 if n − 1 ∈ J . Since the
collection {[Di] : i = 1, . . . , ρL} ∪ {[EJ ] : n − 1 ∈ J} is linearly dependent with

cardinality ρM − 1, it follows that f∗(γ) is an extremal ray of Mov(M0,n). �

By applying this proposition toM0,6 and varying which marked points are chosen

as poles for L4 (this choice is explained for example in [Lar10], Sec. 3.3), we can
obtain an enumeration of extremal rays common to Mov(M0,6) and CI(M0,6).
This collection, however, does not give all common extremal rays: for example, the
extremal ray

γ = 6[H ]∨ + 2

4
∑

i=1

[Ei]
∨ + [E15]

∨ + [E25]
∨ + [E35]

∨,

and its symmetric analogues, is an extremal ray of both CI(M0,6) and Mov(M0,6),

but it is not the pull-back of an extremal ray from Mov(L4), as can be seen by
examining the PORTA file for Mov(L4).

4. Calculating complete intersection and movable cones

Proof of Proposition 3.2. We present the proof only for r = 5, since the other cases
are standard (for details, see Chapter 4 of [Lar10]). These inequalities will follow by
intersecting the divisor class [D] with all classes of F-curves. Using the identification
of the hyperplane class with the psi-class ψ6 from [Kap93b], it is not hard to show
that for each partition µ = (µ1, µ2, µ3, µ4),

H · Fµ =

{

1 if µi = {6} for some i,

0 else.

To intersect F-curves with the remaining elements of the Kapranov basis, we ap-
ply Proposition 2.10 and the dictionary between boundary and exceptional divisor
classes from Equations (2.1). The first set of inequalities arise from F-curves with
partitions (µ1, µ2, µ3, µ4) satisfying |µi| = 1 for 1 ≤ i ≤ 3, with 6 ∈ µ4, while the
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second set of inequalities comes from such partitions with instead 6 /∈ µ4. Parti-
tions with |µ1| = |µ2| = 1 and |µ3| = |µ4| = 2 such that i ∈ µ3 ∪ µ4 give the third
set of inequalities, while the final set results from such partitions when 6 ∈ µ1 ∪µ2.

Up to the action of the symmetric group permuting the four elements of the parti-
tion (which leaves the numerical class unchanged), the above partitions correspond
to all possible partitions corresponding to F-curves in M0,6, so these inequalities
define the nef cone. �

Proof of Proposition 3.3. Since we represent [C] ∈ N1(M0,6)R with respect to the
dual Kapranov basis, by duality these inequalities can just be read off of the
coordinates of the generators for Eff(M0,6) expressed in the Kapranov basis for

N1(M0,6)R: the first set of inequalities are from intersecting [C] with the [Ei], the
second from intersecting with the [Eij ], the third from intersecting with [∆ij ] where
6 /∈ {i, j}, and the last from intersecting with the Keel-Vermeire divisors. �

Proof of Proposition 3.4. The first equality of (3.1) holds since we can always choose
a hyperplane not containing any of the points pi. Since exceptional divisors corre-
sponding to disjoint blow-up centers are also disjoint, the remaining equalities follow
immediately, with the possible exception of the final one. To see that Eij ∩Eik = ∅
for i, j, k distinct, let ℓij , ℓik ⊆ P3 be the corresponding lines, and pi their intersec-
tion. Since the Kapranov construction requires blowing up in order of increasing
dimension, after blowing up pi the proper transforms of ℓij and ℓik will be disjoint,
giving last equality.

To express the intersections of divisor classes [D′], [D′′] in (3.2) in the dual basis,
we intersect an arbitrary divisor class [D] = dh[H ] +

∑r

i=1[Ei] +
∑r

j,k=1[Ejk] with

[D′] · [D′′], giving an expression in the coefficients dh, di, and djk. Since the dual
bases are related by the intersection product, this expression is the one-cycle [D′] ·
[D′′] in the dual Kapranov basis once we substitute [H ]∨ for dh, [Ei]

∨ for the
di, and [Ejk]

∨ for the djk. The triple intersection products required are standard

calculations on M0,6 and toric varieties. For details, see Chapter 4 of [Lar10].
�
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[CL] Thomas Christof and Andreas Löbel. PORTA: polyhedron representation transformation
algorithm. available at http://www.zib.de/Optimization/Software/Porta.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2011.

[Ful98] William Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Math-

ematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer-Verlag, Berlin, second edition, 1998.

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.



14 PAUL L. LARSEN

[HT02] Brendan Hassett and Yuri Tschinkel. On the effective cone of the moduli space of
pointed rational curves. In Topology and geometry: commemorating SISTAG, volume
314 of Contemp. Math., pages 83–96. Amer. Math. Soc., Providence, RI, 2002.

[Kap93a] M. M. Kapranov. Chow quotients of Grassmannians. I. In I. M. Gel′fand Seminar,
volume 16 of Adv. Soviet Math., pages 29–110. Amer. Math. Soc., Providence, RI,
1993.

[Kap93b] M. M. Kapranov. Veronese curves and Grothendieck-Knudsen moduli space M0,n. J.
Algebraic Geom., 2(2):239–262, 1993.

[Kee92] Sean Keel. Intersection theory of moduli space of stable n-pointed curves of genus zero.
Trans. Amer. Math. Soc., 330(2):545–574, 1992.

[Kle66] Steven L. Kleiman. Toward a numerical theory of ampleness. Ann. of Math. (2),
84:293–344, 1966.

[KM96] Sean Keel and James McKernan. Contractible extremal rays on M0,n. arXiv
math.AG:9607009, 1996.

[Knu83] Finn F. Knudsen. The projectivity of the moduli space of stable curves. II. The stacks
Mg,n. Math. Scand., 52(2):161–199, 1983.

[Lar10] Paul Larsen. Applied Mori theory of the moduli space of stable pointed ra-
tional curves. PhD thesis, Humboldt-Universität zu Berlin, http://edoc.hu-
berlin.de/dissertationen/larsen-paul-2010-11-09/PDF/larsen.pdf, 2010.

[Lar11a] Paul Larsen. Permutohedral spaces and relations in the Cox ring of the moduli space
of stable pointed rational curves. arXiv math.AG:1105.5106, 2011.

[Lar11b] Paul L. Larsen. Fulton’s conjecture for M0,7. Journal of the London Mathematical
Society, 2011.

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Math-
ematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern
Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles
and linear series.

[LM00] A. Losev and Y. Manin. New moduli spaces of pointed curves and pencils of flat
connections. Michigan Math. J., 48:443–472, 2000. Dedicated to William Fulton on
the occasion of his 60th birthday.

[Pet] Thomas Peternell. The movable cone–an example. private communication.

[Ver02] Peter Vermeire. A counterexample to Fulton’s conjecture on M0,n. J. Algebra,
248(2):780–784, 2002.

Humboldt-Universität zu Berlin, Institut für Mathematik, 10099 Berlin, Germany

E-mail address: larsen@mathematik.hu-berlin.de


	1. Introduction
	2. Definitions and background
	3. Comparing complete intersection and movable curve classes
	4. Calculating complete intersection and movable cones
	References

