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Abstract

This paper proves that any monoid presented by a confluent
context-free monadic rewriting system is word-hyperbolic. This
result then applied to answer a question asked by Duncan &
Gilman by exhibiting an example of a word-hyperbolic monoid
that does not admit a word-hyperbolic structure with uniqueness
(that is, in which the language of representatives maps bijectively
onto the monoid).

1 Introduction

Hyperbolic groups — groups whose Cayley graphs are hyper-
bolic metric spaces — have grown into one of the most fruitful areas of group
theory since the publication of Gromov’s seminal paper [Gro87]. The concept
of hyperbolicity generalizes to semigroups and monoids in more than one
way. First, one can consider semigroups and monoids whose Cayley graphs
are hyperbolic [Cai, CS09]. Second, one can use Gilman’s characterization of
hyperbolic groups using context-free languages [Gil02]. This characterization
says that a group G is hyperbolic if and only if there is a regular language L

(over some generating set) of normal forms for G such that the language

M(L) =
{

u#1v#2wrev : u, v,w ∈ L∧ uv =G w
}

(where wrev denotes the reverse of w) is context-free. (The pair (L,M(L)) is
called a word-hyperbolic structure.) Duncan & Gilman [DG04] pointed out that
this characterization generalizes naturally to semigroups and monoids. The
geometric generalization gives rise to the notion of hyperbolic semigroup; the

Acknowledgements: The first author’s research was funded by the European Regional De-
velopment Fund through the programme COMPETE and by the Portuguese Govern-
ment through the FCT (Fundação para a Ciência e a Tecnologia) under the project PEst-
C/MAT/UI0144/2011 and through an FCT Ciência 2008 fellowship.

1

http://arxiv.org/abs/1201.6616v1
http://www.fc.up.pt/pessoas/ajcain/ 


linguistic one to the notion of word-hyperbolic semigroups. While the two no-
tions are equivalent for groups [DG04, Corollary 4.3] and more generally for
completely simple semigroups [FK04, Theorem 4.1], they are not equivalent
for general semigroups. This paper is concerned with word-hyperbolic semi-
groups.

Some of the pleasant properties of hyperbolic groups do not generalize
to word-hyperbolic semigroups. For example, hyperbolic groups are always
automatic [ECH+92, Theorem 3.4.5]; word-hyperbolic semigroups may not
even be asynchronously automatic [HKOT02, Example 7.7]. On the other hand,
word-hyperbolicity for semigroups is independent of the choice of generat-
ing set [DG04, Theorem 3.4], unlike automaticity for semigroups [CRRT01,
Example 4.5].

Duncan & Gilman [DG04, Question 2] asked whether every word-hyper-
bolic monoid admits a word-hyperbolic structure where the language of rep-
resentatives L projects bijectively onto the monoid. By analogy with the case of
automatic groups [ECH+92, § 2.5] and semigroups [CRRT01, p. 380], such a
word-hyperbolic structure is called a word-hyperbolic structure with uniqueness.
The question also applies to semigroups; Duncan & Gilman have a particular
interest in the situation for monoids because a positive answer in that case
would imply that the class of word-hyperbolic semigroups is closed under
adjoining an identity.

As explained in Subsection 2.1 below, every hyperbolic group admits a
word-hyperbolic structure with uniqueness. Furthermore, every automatic
semigroup admits an automatic structure with uniqueness [CRRT01, Corol-
lary 5.6].

The main goal of this paper is to give a negative answer to the question
of Duncan & Gilman by exhibiting an example of a word-hyperbolic monoid
that does not admit a word-hyperbolic structure with uniqueness (Example
4.2). En route, however, a result of independent interest is proven: that any
monoid presented by a confluent context-free monadic rewriting system is
word-hyperbolic (Theorem 3.1).

2 Preliminaries

This paper assumes familiarity with regular languages and finite
automata and with context-free grammars and languages; see [HU79, Chs 2–4]
for background reading and for the notation used here.

The empty word (over any alphabet) is denoted ε.

2.1 Word-hyperbolicity

Definition 2.1. A word-hyperbolic structure for a semigroup S is a pair (L,M(L)),
where L is a regular language over an alphabet A representing a finite gener-
ating set for S such that L maps onto S, and where

M(L) = {u#1v#2wrev : u, v,w ∈ L∧ uv =S w}

(where #1 and #2 are new symbols not in A and wrev denotes the reverse of
the word w) is context-free. The pair (L,M(L) is a word-hyperbolic structure
with uniqueness if L maps bijectively onto S; that is, if every element of S has a
unique representative in L.
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A semigroup is word-hyperbolic if it admits a word-hyperbolic structure.

A group is hyperbolic in the sense of Gromov [Gro87] if and only if it
admits a word-hyperbolic structure ([Gil02, Theorem 1] and [DG04, Corol-
lary 4.3]). Furthermore, every group admits a word-hyperbolic structure with
uniqueness: if (L,M(L)) is a word-hyperbolic structure for a group G, then
the fellow-traveller property is satisfied [DG04, Theorem 4.2] and so L forms
part of an automatic structure for G [ECH+92, Theorem 2.3.5]. Therefore
there exists an automatic structure with uniqueness for G, where the lan-
guage of representatives L ′ is a subset of L [ECH+92, Theorem 2.5.1]. Hence
(L ′,M(L) ∩ L ′#1L ′#2(L ′)rev) is a word-hyperbolic structure with uniqueness
for G.

2.2 Rewriting systems

This subsection contains facts about string rewriting needed later
in the paper. For further background information, see [BO93].

A string rewriting system, or simply a rewriting system, is a pair (A,R), where
A is a finite alphabet and R is a set of pairs (ℓ, r), known as rewriting rules,
drawn from A∗ ×A∗. The single reduction relation ⇒R is defined as follows:
u ⇒R v (where u, v ∈ A∗) if there exists a rewriting rule (ℓ, r) ∈ R and
words x, y ∈ A∗ such that u = xℓy and v = xry. That is, u ⇒R v if one can
obtain v from u by substituting the word r for a subword ℓ of u, where (ℓ, r)

is a rewriting rule. The reduction relation ⇒∗

R is the reflexive and transitive
closure of ⇒R. The process of replacing a subword ℓ by a word r, where
(ℓ, r) ∈ R, is called reduction, as is the iteration of this process.

A word w ∈ A∗ is reducible if it contains a subword ℓ that forms the left-
hand side of a rewriting rule in R; it is otherwise called irreducible.

The string rewriting system (A,R) is noetherian if there is no infinite se-
quence u1, u2, . . . ∈ A∗ such that ui ⇒R ui+1 for all i ∈ N. That is, (A,R)

is noetherian if any process of reduction must eventually terminate with an
irreducible word. The rewriting system (A,R) is confluent if, for any words
u,u ′, u ′′ ∈ A∗ with u ⇒∗

R u ′ and u ⇒∗

R u ′′, there exists a word v ∈ A∗ such
that u ′ ⇒∗

R v and u ′′ ⇒∗

R v.
The string rewriting system (A,R) is length-reducing if (ℓ, r) ∈ R implies

that |ℓ| > |r|. Observe that any length-reducing rewriting system is necessarily
noetherian. The rewriting system (A,R) is monadic if it is length-reducing and
the right-hand side of each rule in R lies in A ∪ {ε}; it is special if it is length-
reducing and each right-hand side is the empty word ε. Observe that every
special rewriting system is also monadic.

A special or monadic rewriting system (A,R) is context-free if, for each
a ∈ A∪ {ε}, the set of all left-hand sides of rules in R with right-hand side a is
a context-free language.

Let (A,R) be a confluent noetherian string rewriting system. Then for any
word u ∈ A∗, there is a unique irreducible word v ∈ A∗ with u ⇒∗

R v [BO93,
Theorem 1.1.12]. The irreducible words are said to be in normal form. The
monoid presented by 〈A | R〉 may be identified with the set of normal form
words under the operation of ‘concatenation plus reduction to normal form’.

The subscript symbols in the derivation and one-step derivation relations
⇒∗

R and ⇒R for a rewriting system R are never omitted in this paper, in order
to avoid any possible confusion with the derivation and one-step derivation
relations ⇒∗

Γ and ⇒Γ for a context-free grammar Γ .
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3 Monoids presented by confluent context-free monadic

rewriting systems

Theorem 3.1. Let (A,R) be a confluent context-free monadic rewriting system. Then
(A∗,M(A∗)) is a word-hyperbolic structure for the monoid presented by 〈A | R〉.

Proof. Let M be the monoid presented by 〈A | R〉. Let

K = {u#2vrev : u, v ∈ A∗, u =M v}.

Let φ : (A ∪ {#1, #2})∗ → (A ∪ {#1})∗ be the homomorphism extending

#1 7→ ε, #2 7→ #2, a 7→ a for all a ∈ A.

Then M(A∗) = Kφ−1 ∩ A∗#1A∗#2A∗. Since the class of context-free lan-
guages is closed under taking inverse homomorphisms, to prove that M(A∗)

is context-free it suffices to prove that K is context-free.
For each a ∈ A ∪ {ε}, let $a and $̃a be new symbols. Let

$A∪{ε} = {$a : a ∈ A ∪ {ε}} $A = {$a : a ∈ A},

$̃A∪{ε} = {$̃a : a ∈ A ∪ {ε}} $̃A = {$̃a : a ∈ A},

and for any word w = w1 · · ·wn with wi ∈ A, let $w and $̃w be abbreviations
for $w1

· · · $wn
and $̃w1

· · · $̃wn
respectively.

For each a ∈ A ∪ {ε}, let Γa = (Na, A, Pa, Oa) be a context-free grammar
such that L(Γa) is the set of left-hand sides of rewriting rules in R whose right-
hand side is a. Since R is length-reducing, no L(Γa) contains ε. Therefore
assume without loss of generality that no Γa contains a production whose
right-hand side is ε [HU79, Theorem 4.3].

Modify each Γa by replacing each appearance of a terminal letter b ∈ A

in a production by $b; the grammar Γ ′
a = (N ′

a, $A∪{ε}, P
′
a, O

′
a) thus formed

has the property that w ∈ L(Γa) if and only if $w ∈ L(Γ ′
a). Modify each Γa

by reversing the right-hand side of every production in Pa and by replacing
each appearance of a terminal letter b ∈ A in a production by $̃b; the grammar
Γ ′′
a = (N ′′

a, $A∪ε, P
′′
a , O

′′
a) thus produced has the property that w ∈ L(Γa) if and

only if $̃wrev ∈ L(Γ ′′
a ).

The language
{$p#2$̃prev : p ∈ A∗}

is clearly context-free. (Notice that $p can either be an abbreviation for a
non-empty word $p1

· · · $pk
or the single letter $ε, and similarly for $̃prev .)

Let ∆ = (N∆, $A ∪ $̃A{#2}, P∆, O∆) be a context-free grammar defining this
language. Assume without loss of generality that the various non-terminal
alphabets N ′

a, N ′′
a and N∆ are pairwise disjoint.

Define a new context-free grammar Θ = (NΘ, A ∪ {#2}, PΘ, O∆) by letting

NΘ = N∆ ∪ $A∪{ε} ∪ $̃A∪{ε} ∪
⋃

a∈A∪{ε}

(N ′

a ∪N ′′

a),

and

PΘ = P∆ ∪
[

⋃

a∈A∪{ε}

(P ′

a ∪ P ′′

a)
]

∪
{

$a → $a$ε, $a → $ε$a, $̃a → $̃a$̃ε, $̃a → $̃ε$̃a : a ∈ A ∪ {ε}
}

(3.1)

∪
{

$a → O ′

a, $̃a → O ′′

a : a ∈ A ∪ {ε}
}

(3.2)

∪
{

$a → a, $̃a → a : a ∈ A ∪ {ε}
}

. (3.3)
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Notice that elements of $A∪{ε} now play the rôle of non-terminals, while in
the various grammars Γ ′

a and Γ ′′
a , they were terminals. Notice further that the

start symbol of Θ is O∆.
The aim is now to show that L(Θ) = K.

Lemma 3.2. If w ∈ L(Θ), then w = u#2vrev for some u, v ∈ A∗, and there exists
some p ∈ A∗ such that $p ⇒∗

Θ u and $̃prev ⇒∗

Θ vrev.

Proof. Let w ∈ L(Θ). Then O∆ ⇒∗

Θ w, and the first production applied is from
P∆. Since no production in PΘ − P∆ introduces a non-terminal symbol from
N∆, assume that all productions from P∆ in the derivation of w are carried
out first, before any productions from PΘ − P∆. This shows that there is some
word q ∈ L(∆) such that O∆ ⇒∗

Θ q ⇒∗

Θ w. By the definition of ∆, it follows
that q = $p#2$̃prev with

O∆ ⇒∗

Θ $p#2$̃prev ⇒∗

Θ w.

Since symbols from $A∪{ε} ∪ $̃A∪{ε} can ultimately only derive symbols from
A (and not the symbol #2), it follows that there exist u, v ∈ A∗ with $p ⇒∗

Θ u

and $̃prev ⇒∗

Θ vrev such that w = u#2vrev.

Lemma 3.3. Let w,u ∈ A∗. If w ⇒∗

R u, then $u ⇒∗

Θ $w.

Proof. Suppose

w = w0 ⇒R w1 ⇒R w2 ⇒R . . . ⇒R wn = u

is a sequence of rewriting of minimal length from w to u.
Proceed by induction on n. If n = 0, it follows that w = u and there is

nothing to prove. So suppose n > 0 and that the result holds for all shorter
such minimal-length rewriting sequences. Then w0 ⇒R w1, and so w0 = xℓy

and w1 = xay for some x, y ∈ A∗, a ∈ A ∪ {ε}, and (ℓ, a) ∈ R. So ℓ ∈ L(Γa).
Hence, first applying a production of type (3.2), the construction of Γ ′

a and the
inclusion of all its productions in Θ shows that

$a ⇒Θ O ′

a ⇒∗

Θ $ℓ. (3.4)

By the induction hypotheses, $u ⇒∗

Θ $w1
. Now consider the cases a ∈ A and

a = ε separately:

1. a ∈ A. Then $w1
= $x$a$y and so

$u ⇒∗

Θ $w1
(by the induction hypothesis)

= $x$a$y
⇒∗

Θ $x$ℓ$y (by (3.4))

= $w0

= $w.

2. a = ε. Then $w1
= $x$y and so by (3.4),

$u ⇒∗

Θ $w1
(by the induction hypothesis)

⇒∗

Θ $x$y
⇒Θ $x$a$y (by (3.1))

⇒∗

Θ $x$ℓ$y (by (3.4))

= $w0

= $w.
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This completes the proof.

Lemma 3.4. Let u,w ∈ A∗. If $u ⇒∗

Θ $w, then w ⇒∗

R u.

Proof. The strategy is to proceed by induction on the number n of productions
of type (3.1) or (3.2) in the minimal-length derivation of $w from $u.

Suppose such a minimal length derivation involves a production $ε → ε

(of type (3.3)). If this symbol $ε is introduced by a production of type (3.1),
then the derivation would not be of minimal length. So this symbol $ε must
be present in $u, which, by the definition of the abbreviation $u requires
u = ε. But this would mean that the derivation produced ε, which contradicts
the hypothesis of the lemma. So the derivation does not involve productions
$ε → ε.

The only productions where symbols from $A∪{ε} appear on the left-hand
side are of types (3.1), (3.2), and (3.3). Since there are no productions $ε →
ε, any production of type (3.3) would produce a terminal symbol, which is
impossible. So the first production applied in the derivation sequence must
be of type (3.1) or (3.2).

Suppose first that n = 0. Then there is no possible first production and
thus $w = $u, which entails w = u and so there is nothing to prove.

Suppose now that n > 0 and that the result holds for all shorter such
minimal-length derivations. Consider cases separately depending on the whether
the first production applied in the derivation is of type (3.1) or (3.2).:

1. Type (3.1). So $u = $x$y ⇒Θ $x$ε$y for some x, y ∈ A∗ with xy = u.
The symbol $ε thus produced does not derive ε since no production
$ε → ε is involved. So $x ⇒∗

Θ $w ′ , $ε ⇒∗

Θ $w ′′ , $y ⇒∗

Θ $w ′′′ , where
w = w ′w ′′w ′′′, where w ′,w ′′′ ∈ A∗ and w ′′ ∈ A+ and all three of these
derivations involve fewer than n productions of type (3.1) or (3.2). By
the induction hypothesis, w ′ ⇒∗

R x, w ′′ ⇒∗

R ε, and w ′′′ ⇒∗

R y, and thus
w = w ′w ′′w ′′′ ⇒∗

R xy = u.

2. Type (3.2). So $u = $x$a$y ⇒Θ $xO ′
a$y for some x, y ∈ A∗ with xay =

u. Now, O ′
a is the start symbol of Γ ′

a, and L(Γ ′
a) consists of words of the

form $ℓ where ℓ ⇒R a. Thus

$u ⇒Θ $xO ′

a$y ⇒∗

Θ $x$ℓ$y ⇒∗

Θ $w.

Thus $x ⇒∗

Θ $w ′ , $ℓ ⇒∗

Θ $w ′′ , and $y ⇒∗

Θ $w ′′′ , where w ′,w ′′,w ′′′ ∈ A∗

are such that w = w ′w ′′w ′′′, and each of these derivation sequences
involve fewer than n productions of type (3.1) or (3.2). Hence by the
induction hypothesis, w ′ ⇒∗

R x, w ′′ ⇒∗

R ℓ, and w ′′′ ⇒∗

R y. Therefore

w = w ′w ′′w ′′′ ⇒∗

R xℓy ⇒R xay = u.

This completes the proof.

Lemma 3.5. For any u,w ∈ A∗ w ⇒∗

R u if and only if $u ⇒∗

Θ w.

Proof. Suppose w ⇒∗

R u. Then $u ⇒∗

Θ $w by Lemma 3.3. By |w| applications
of productions of type (3.3), $w ⇒∗

Θ w. So $u ⇒∗

Θ w.
Suppose that $u ⇒∗

Θ w. Only productions of type (3.3) have terminals on
the right-hand side. So $u ⇒∗

Θ $w ⇒∗

Θ w. So by Lemma 3.4, w ⇒∗

R u.
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Reasoning symmetric to the proofs of Lemmata 3.3, 3.4, and 3.5 establishes
the following result:

Lemma 3.6. For any u,w ∈ A∗ w ⇒∗

R u if and only if $̃urev ⇒∗

Θ wrev.

Suppose u#2vrev ∈ K. Then u, v ∈ A∗ and u =M v. Therefore there is a
normal form word p with u ⇒∗

R p and v ⇒∗

R p. So by Lemmata 3.5 and 3.6,
$p ⇒∗

Θ u and $̃prev ⇒∗

Θ vrev. Since every production in P∆ is included in PΘ, it
follows that

O∆ ⇒∗

Θ $p#2$̃prev ,

whence O∆ ⇒∗

Θ u#2vrev and so u#2vrev ∈ L(Θ).
Conversely, suppose w ∈ L(Θ). By Lemma 3.2, there are words u, v, p ∈ A∗

with w = u#2vrev, $p ⇒∗

Θ u, and $̃prev ⇒∗

Θ vrev. By Lemmata 3.5 and 3.6, it
follows that u ⇒∗

R p and v ⇒∗

R p. So u =M v and thus w = u#2vrev ∈ K.
Hence L(Θ) = K. Thus K and so M(A∗) are context-free. Therefore

(A∗,M(A∗)) is a word-hyperbolic structure for the monoid M.

4 Word-hyperbolic structures with uniqueness

This section exhibits an example of a word-hyperbolic monoid
that does not admit a word-hyperbolic structure with uniqueness.

The following preliminary result, showing that admitting a word-hyper-
bolic structure with uniqueness is not dependent on the choice of generating
set, is needed. The proof is similar to that of the independence of word-
hyperbolicity from the choice of generating set [DG04, Theorem 3.4], but the
detail and exposition are different to make clear that uniqueness is preserved.
Additionally, the result here also shows that whether one deals with monoid
or semigroup generating sets is not a concern.

Proposition 4.1. Let M be a monoid that admits a word-hyperbolic structure with
uniqueness over either a semigroup or monoid generating set, and let A be a finite
alphabet representing a semigroup or monoid generating set for M. Then there is a
language L such that (A, L) is a word-hyperbolic structure with uniqueness for M.

Proof. Suppose S admits a word-hyperbolic structure (B,K). For each b ∈ B,
let ub ∈ A∗ be such that ub =M b. (If A represents a semigroup generating
set, ensure that ub lies in A+; this restriction is important only if b is actually
the identity.) Let P ⊆ B∗ ×A∗ be the rational relation:

P =
(

{(b, ub) : b ∈ B}
)∗

Notice that if (v,w) ∈ P, then v =M w.
Let

L = K ◦ P =
{

w ∈ A∗ : (∃v ∈ K)((v,w) ∈ P)
}

;

observe that L is a regular language. Notice that, by the definition of P, for
each word v in K there is exactly one word w ∈ L with (v,w) ∈ P. Since for
each x ∈ M there is exactly one word v in K with v =M x, it follows that
there is exactly one word w ∈ L with w =M x. That is, the language L maps
bijectively onto M.

Let Q be the rational relation

P(#1, #1)P(#2, #2)Prev.

7



Then M(L) = M(K) ◦ Q and so M(L) is a context-free language.
Thus (A, L) is a word-hyperbolic structure for S in every case except when

S is a monoid, A is a semigroup generating set, and the representative in K of
the identity is ε. In this case, let L1 = (L−{ε})∪{e}, where e ∈ A+ representings
the identity. Then L1 is contained in A+ and maps bijectively onto S. The
language M(L1) is context-free: a pushdown automaton recognizing it can be
constructed from one recognizing M(L) by modifying it to read e instead of
the empty word as one of the multiplicands or result while simulating reading
the empty word whenever e is encountered.

Example 4.2. Let A = {a, b, c, d} and let R = {(abαcαd, ε) : α ∈ N}. Let M

be the monoid presented by 〈A | R〉. Then M is word-hyperbolic but does not
admit a regular language of unique representatives and thus, in particular,
does not admit a word-hyperbolic structure with uniqueness.

Proof. Let G be the language of left-hand sides of rewriting rules in R. The
language G is context-free, and so (A,R) is a context-free special rewriting
system. Two left-hand sides of rewriting rules in R only overlap if they are
exactly equal, and so (A,R) is confluent. Hence, by Theorem 3.1, (A∗,M(A∗))

is a word-hyperbolic structure for the monoid M. So M is word-hyperbolic.
Identify M with the language of normal form words of (A,R).

Suppose for reductio ad absurdum that M admits a word-hyperbolic struc-
ture with uniqueness. Then, by Proposition 4.1, there is a regular language L

over A such that (L,M(L)) is a word-hyperbolic structure with uniqueness for
M. In particular, every element of M has a unique representative in L. Let A
be a finite state automaton recognizing L and let n be the number of states in
A.

Now, if w ∈ L represents u ∈ M, then w ⇒∗

R u: the word u can be obtained
from w by replacing subwords lying in G by the empty word, which effectively
means deleting subwords that lie in G. Consider this process in reverse: the
word w can be obtained from u by inserting words from G.

If a word from G is inserted between two letters of u, call it a depth-1 in-
serted word. If a word from G is inserted between two letters of a depth-k
inserted word, it is called a depth-(k+ 1) inserted word. A word inserted im-
mediately before the first letter or immediately after the last letter of a depth-k
inserted word also counts as a depth-k inserted word. See the following ex-
ample, where for clarity symbols from u are denoted by x:

xab

depth 2
︷ ︸︸ ︷

abbccdbccd
︸ ︷︷ ︸

depth 1

depth 1
︷ ︸︸ ︷

abbccd xx

depth 1
︷ ︸︸ ︷

abbbcccdxx.

Then it is possible to obtain w from u by performing all depth-1 insertions
first, then all depth-2 insertions, and so on until w is reached.

Suppose that, in order to obtain w from u, a word abαcαd ∈ G is inserted
for some α > n. Let w = w ′aw ′′dw ′′′, where these distinguished letters a and
d are the first and last letters of this inserted word. Notice that w ′′ ⇒∗

R bαcα,
since

w = w ′aw ′′dw ′′ ⇒∗

R w ′abαcαdw ′′′ ⇒R w ′w ′′′ ⇒∗

R u.

(Of course, w ′′ may or may not contain inserted words of greater depth.)
Since α exceeds n, the automaton A enters the same state immediately af-
ter reading two different symbols b of this inserted word, say after read-
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ing w ′apb and w ′apbqb. Similarly it enters the same state immediately af-
ter reading two different symbols c of this inserted word, say after reading
w ′apbqbrc and w ′apbqbrcsc. Therefore by the pumping lemma, w factors
as w ′apbqbrcsctdw ′′′ such that

w ′apb(qb)irc(sc)jtdw ′′′ ∈ L

for all i, j ∈ N ∪ {0}, where the subwords p and q consist of letters b (members
of this inserted word) and possibly also inserted words of greater depth, the
subwords s and t consist of letters c (members of this inserted word) and
possibly also inserted words of greater depth, and the subword r consists of
some letters b followed by some letters c (members of this inserted word) and
possibly also inserted words of greater depth. Thus

p ⇒∗

R bβ1 , q ⇒∗

R bβ2 , r ⇒∗

R bβ3cγ3 , s ⇒∗

R cγ2 , t ⇒∗

R cγ1 ,

where β1 + β2 + β3 + 2 = γ1 + γ2 + γ3 + 2 = α. It follows that

w ′apb(qb)irc(sc)jtdw ′′′

⇒∗

R w ′abβ1b(bβ2b)ibβ3cγ3c(cγ2c)jcγ1dw ′′′

= w ′abα+(β2+1)(i−1)cα+(γ2+1)(j−1)dw ′′′.

Set i = γ2 + 2 and j = β2 + 2 to see that

w ′apb(qb)γ2+1rc(sc)β2+1tdw ′′′ ∈ L

and

w ′apb(qb)γ2+1rc(sc)β2+1tdw ′′′

⇒∗

R w ′abα+(β2+1)(γ2+1)cα+(γ2+1)(β2+1)dw ′′′

⇒∗

R w ′w ′′ (since abα+(β2+1)(γ2+1)cα+(γ2+1)(β2+1)d ∈ G)

⇒∗

R u.

So there are two distinct words w and w ′apb(qb)γ2+1rc(sc)β2+1tdw ′′ in L

representing the same element u of M. This is a contradiction and so shows
the falsity of the supposition that the insertion of a word abαcαd with α > n

is used in obtaining the representative in L from a normal form word in M.
Let G ′ = {abαcαd : α 6 n}. Then obtaining a word w ∈ L representing

u ∈ M requires inserting only words from G ′ ⊂ G.
Now suppose that an insertion of depth greater than n2 is required to

obtain w from u. Then w factorizes as w ′apaqdrdw ′′, where the first dis-
tinguished letter a and second distinguished letter d are the first and last
letters of some inserted word of depth k, and the second distinguished letter
a and first distinguished letter d are from some inserted word of depth ℓ > k,
and where the automaton A enters the same state after reading the two distin-
guished letters a and enters the same state after reading the two distinguished
letters d. (Such a factorization must exist because there are only n2 possible
pairs of states, and there are inserted words of depth exceeding n2.) Notice
that aqd ⇒∗

R ε and so apaqdrd ⇒∗

R aprd ⇒∗

R ε. Then, by the pumping
lemma,

w ′apapaqdrdrdw ′′ ∈ L,

but

w ′apapaqdrdrdw ′′ ⇒∗

R w ′apaprdrdw ′′ ⇒∗

R w ′aprdw ′′ ⇒∗

R w ′w ′′ ⇒∗

R u,
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and so there are two representatives w and w ′apapaqdrdrdw ′′ in L of u ∈
M. This is a contradiction and so shows the falsity of the assumption that
insertions of depth greater than n2 are required to obtain the representative
in L of a normal form word in M.

Suppose that, in the process of performing insertions to obtain a represen-
tative w ∈ L for an element u ∈ M, a word w(k) is obtained after the insertions
of depth k have been performed. Suppose further that in performing the in-
sertions of depth k+ 1, more than n insertions are made between consecutive
letters of w(k) to obtain a word w(k+1). (The reasoning below also applies if
w(k) is the empty word, which would require k = 0.) Then w(k+1) factors as

w(k+1) = v ′abα1cα1dabα2cα2d · · ·abαhcαhdv ′′,

where h > n, and each abαicαid is a word from G ′. Then w factors as

w = w ′ap1dap2d · · · aphdw
′′,

where w ′ ⇒∗

R v ′, w ′′ ⇒∗

R v ′′, and pi ⇒∗

R bαicαi for each i. Then A enters
the same state on reading w ′ap1dap2d · · ·apid and w ′ap1dap2d · · ·apjd for
some i < j. So by the pumping lemma,

q = w ′ap1dap2d · · ·apid(api+1d · · ·apjd)
2apj+1d · · ·apkdw

′′ ∈ L.

But

q = w ′ap1dap2d · · ·apid(api+1d · · ·apjd)
2apj+1d · · ·apkdw

′′

⇒∗

R v ′abα1cα1dabα2cα2d · · ·

· · · abαicαid(abαi+1cαi+1d · · ·

· · ·abαjcαjd)2abαj+1cαj+1d · · ·abαhcαhdv ′′,

⇒∗

R v ′v ′′

⇒∗

R u,

and so there are two representatives w and q of the element u ∈ M. This
contradicts the uniqueness of representatives in L and shows the falsity of
the supposition that more that n insertions between consecutive letters in the
process of obtaining a representative in L for an element of M.

Therefore, to sum up: a representative w in L of an element u of M can be
obtained by inserting elements of G ′ to a depth of at most n2, with at most n
consecutive words being inserted between adjacent letters at any stage. Notice
that the maximum length of words in G ′ is 2n + 2. Thus, starting with empty
word, the after depth 1 insertions, there are at most n(2n + 2) letters; after
depth 2 insertions, at most n2(2n + 2)2; and after depth n2 insertions, at
most h = nn2

(2n + 2)n
2
. Similarly, if one starts with a word u and performs

insertions to obtain its representative in L, at most h new symbols are inserted
between any adjacent pair of letters in u.

Define
H =

{

w ∈ A∗ : |w| 6 h,w ⇒∗

R ε
}

.

Then, by the observations in the last paragraph, if u ∈ M with u = u1 · · ·un

is represented by w ∈ L, then w ∈ Hu1Hu2 · · ·HunH. Define the rational
relation

P =
(

{(a, a) : a ∈ A} ∪ {(p, ε) : p ∈ H}
)∗
.
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Then, since removing all subwords in H from a word in L yields the word to
which it rewrites, it follows that

M = (L ◦ P) ∩ (A∗ −A∗HA∗) =
{

u ∈ A∗ −A∗HA∗ : (∃w ∈ L)((w,u) ∈ P)
}

,

and so M, which is the language of normal forms of (A,R), is regular.
However, two words abαcβd and abα ′

cβ
′

d (where α,β, α ′, β ′ ∈ N) rep-
resent the same element of M if and only if α = β and α ′ = β ′, in which
case they both represent the identity of M. Thus, since in M the unique rep-
resentative of the identity is ε, the language K = ab∗c∗d − M, which is also
regular, consists of precisely those words of the form abαcβd that represent
the identity. That is, the language K is {abαcαd : α ∈ N}, which is not regular
by the pumping lemma. This is a contradiction, and so M does not admit a
regular language of unique representatives.
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