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1 Introduction

Partially commutative groups are a class of groups widely studied on account
both of their intrinsically rich structure and their natural appearance in many
diverse branches of mathematics and computer science (see [7] or [21] for
example.) It is therefore natural that the pace of study of their automorphism
groups should be gaining momentum, as it has been recently.

A partially commutative group G(Γ) (also known as a right-angled Artin
group, a trace group, a semi-free group or a graph group) is a group given by
a finite presentation 〈X|R〉, where X is the vertex set of a simple graph Γ
and R is the set consisting of precisely those commutators [x, y] of elements
of X such that x and y are joined by an edge of Γ. (A simple graph is
one without multiple edges or self-incident vertices. Our convention is that
[x, y] = x−1y−1xy.)

Initial work by Servatius [36] and Laurence [29] established a finite gen-
erating set for the automorphism group of a partially commutative group. In
a resurgence of interest over the last few years considerably more has been
discovered: for example, Bux, Charney, Crisp and Vogtmann [8, 10, 5] have
shown that these groups are virtually torsion-free and have finite virtual co-
homological dimension and Day has shown how peak reduction techniques
may be used on certain subsets of the generators and thereby has given a
presentation for the automorphism group [13]. Moreover these groups have
a very rich subgroup structure: Gutierrez, Piggott and Ruane [27] have con-
structed a semi-direct product decomposition for the more general case of
automorphism groups of graph products of groups. Duncan, Remeslennikov
and Kazachkov [19] describe several arithmetic subgroups of the automor-
phism group of a partially commutative group; while different arithmetic
subgroups have been found by Noskov [33]. Under certain conditions on the
graph Γ, Charney and Vogtmann have shown [11] that the Tits alternative
holds for the outer automorphism group of G(Γ) and moreover Day [15] has
shown that in all cases this group contains either a finite-index nilpotent
subgroup or a non-Abelian free subgroup. Minasyan has shown [32] that
partially commutative groups are conjugacy separable, from which (loc. cit.)
it follows that their outer automorphism groups are residually finite. By
reduction to the compressed word problem in G(Γ), Lohrey and Schleimer
have shown that the word problem in Aut(G(Γ)) has polynomial time com-
plexity [30]. Charney and Faber [9], and subsequently Day [14], have studied
automorphism groups of partially commutative groups associated to random
graphs, of Erdös-Rényi type, and found bounds on the edge probabilities so
that, with probability tending to one as the number of vertices tends to ∞,
such groups have finite outer automorphism groups.
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In this paper we continue the investigation of [19] into the structure of the
automorphism group and its subgroups. We introduce several standard auto-
morphisms of a partially commutative group and describe how an arbitrary
automorphism may be decomposed as a product of these standard automor-
phisms. This reduces the study of the automorphism group to the study of
subgroups generated by particular types of standard automorphism. We then
define subgroups of a geometric character and use these to analyse the group
structure. Note that if R is the ring of integers or a field of characteristic 0
and G is a partially commutative group in the class of 2-nilpotent R-groups,
the structure of Aut(G) has been completely described, by Remeslennikov
and Treier [35]; and decomposes as an extension of an Abelian group by a
subgroup of GL(n,R).

With this program in mind we define certain automorphisms, based on
the combinatorial properties of the graph Γ, and these form our stock of stan-
dard automorphisms. The idea is to emulate the theory of automorphisms
of algebraic and Chevalley groups. There is extensive literature on abstract
isomorphisms of the classical linear groups and algebraic groups, over fields
and special classes of rings, in which the fundamental results are theorems
on splitting of arbitrary automorphisms into special automorphisms (such
as algebraic, semialgebraic, simple, central, etc.) [3, 25] and representations
of the group of automorphisms as products of the corresponding subgroups.
Similar splitting theorems have also been established for Chevalley groups.
Steinberg [37] and Humphreys [28] established such results for Chevalley
groups over fields and Bunina [4] has defined several special types of auto-
morphism (Central, Ring, Inner and Graph automorphism) and shown that,
if G is a Chevalley group over a commutative local ring (subject to certain
restrictions) then an arbitrary automorphism of G decomposes as a prod-
uct of such automorphisms. Moreover similar results have been obtained for
Kac-Moody groups (see [6] and the references therein).

In [19] we obtained certain decomposition theorems for the automorphism
group of a partially commutative grouup which we extend in this work. We
use the orthogonalisation operator Y ⊥ and a closure operator cl(Y ) both
defined on subsets Y ⊆ X in [18]. In particular, for x ∈ X , the set {x}⊥

consists of all vertices incident to x, as well as x itself: so is the “star”
of x; and the closure cl({x}) of {x} is the intersection of the stars of all
elements of {x}⊥. The closure operator cl defines a lattice of “closed” subsets
L = L(X) ofX and the results of [19] were obtained by considering the action
of automorphisms on this lattice. In this paper we consider a similar lattice
K = K(X) of “admissible” subsets of X and the action of automorphisms on
K. In particular there is an admissible set a(x) associated to each element
of X : namely the intersection of the stars of all elements of {x}⊥\{x}. We
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consider the following subgroups of the automorphism group Aut(G) of the
partially commutative group G.

• The subgroup AutΓ(G) of automorphisms induced by automorphisms
of the graph Γ (Definition 3.7).

• The subgroup AutΓcomp(G) of Aut(G), which is isomorphic to the auto-
morphism group of the graph Γcomp, the compressed graph of Γ (Defi-
nition 3.7).

• The subgroup Conj(G) of basis-conjugating automorphisms: those
which map each generator x to xfx , for some fx ∈ G (Definition 3.14).

• The subgroup ConjN(G) of Conj(G), of automorphisms such that, for
all x ∈ X , there exists gx in G with the property that z maps to zgx ,
for all z ∈ a(x) (Definition 3.33).

• The subgroup St(K), elements of which stabilise subgroups generated
by subsets A, where A is an element of the lattice K (Definition 4.1).

• The subgroup Stconj(K), elements of which map each subgroup 〈A〉,
where A ∈ K, to 〈A〉gA, for some gA ∈ G (Definition 4.2).

• Various subgroups illustrated in Figure 1.1 below.

(Several of these groups are well-known: some are defined for example in [29]
and others in [19].)

The first step in our decomposition of Aut(G) is to separate out the
automorphisms induced by automorphisms of the compressed graph.

Theorem 4.4. The group Aut(G) can be decomposed into the internal semi-
direct product of the subgroup Stconj(K) and the finite subgroup AutΓcomp(G),
i.e.

Aut(G) = Stconj(K)⋊AutΓcomp(G).

This theorem essentially reduces the problem of studying Aut(G(Γ)) to
the study of the group Stconj(K).

We may also decompose the automorphism group using the connected
components of Γ. If Γ has connected components Γ1, . . . ,Γn then the par-
tially commutative group determined by Γ is the free product of those deter-
mined by the Γi. The group of automorphisms of a free product of groups has
been completely described (from the point of view of generators and defining
relations) in papers [22, 23, 24, 12]. We specialise these results to the case
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under consideration to give generators and relations for the full automor-
phism group in terms of presentations for the automorphism groups of the
factors.

However, here we encounter the first of two main obstructions to identify-
ing the structure of Aut(G(Γ)). The problem arises when there are isolated
vertices in the graph Γ (vertices of valency zero). In this case the automor-
phism group does not have a natural semi-direct product decomposition in
terms of the automorphism groups of the factors. Nonetheless, in the special
case where there are no isolated vertices the quoted results give the following
theorem, where LInnext is a subset of Conj(G), which is empty unless Γ is
disconnected and is defined in Definition 3.24, Γ has connected components
Γ1, . . . ,Γn and Gi = G(Γi).

Theorem 3.31 (cf. [12], Theorem C]). Suppose that no component of Γ is
an isolated vertex. Define Ḡ = G1 × · · · ×Gn and FR(G) = 〈LInnext〉. Then
FR(G) is the kernel of the canonical map from Aut(G) to Aut(Ḡ). Moreover
FR(G) has a normal series

1 < Pn−1 < · · · < P2 < FR(G)

such that, setting FRi(G) = FR(G)/Pi,

(i) FR(G) = Pi ⋊ FRi(G),

(ii) FRi(G) = FR(G1 ∗ · · · ∗Gi) and

(iii) all the Pi are finitely generated.

The last theorem reduces analysis of the structure of Aut(G), in the case
when Γ has no isolated vertices, to analysis of Aut(G(Γi)), i = 1, . . . n, and
of the Fouxe-Rabinovitch kernel FR(G).

In the light of these results we may often reduce to the study of Stconj(K)
where Γ is a connected graph. First of all we have the following theorem.

Theorem 4.5. The subgroup ConjN(G) is a normal subgroup of Stconj(K)
and therefore of Conj(G).

The next step might appear to be to give an affirmative answer to the
following question.

Question 4.7. Let Γ be a connected graph. Is Stconj(K) = St(K) ConjN(G)?

However as examples show the answer to this question is negative; and
this brings us to the second major obstruction to the description of the
structure of Aut(G). This is the existence of vertices x and y such that
{y}⊥\{y} is contained in {x}⊥. When this occurs we say that x dominates
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y (Definition 3.37). If there are no such vertices x and y in Γ then we obtain
a clear description of the structure of Stconj(K) in terms of Conj(G) and the
stabiliser St(L) of the lattice of closed sets (studied in detail in [19]). In fact,
in this case Conj(G) = ConjN(G) and St(K) = St(L).

Theorem 4.10. The following are equivalent for a graph Γ.

(i) G has no dominated vertices.

(ii) Stconj(K) = ConjN(G)⋊ St(L).

(iii) Stconj(K) = Conj(G)⋊ St(L).

(iv) Stconj(K) = Conj(G)⋊ St(K).

Therefore, in the case where there are no dominated vertices the structure
of Stconj(K) is determined by the structure of ConjN(G) and St(L) and, as
we have shown in [19], St(L) is an arithmetic group for which we have a
complete structural decomposition.

We conclude by establishing conditions under which Stconj(K) =
Conj(G) St(K), even though there are dominated vertices (and this product
may not be semi-direct). In Section 4.1 we introduce balanced graphs, which
include those without dominated vertices, and prove the following theorem.

Theorem 4.19. Let Γ be a connected graph and G = G(Γ). Then
Stconj(K) = St(K) Conj(G) if and only if Γ is a balanced graph.

Therefore in many cases the structure of Stconj(K) is determined by the
structure of St(K), Conj(G) and ConjN(G). In this paper we find generators
for (most of) the subgroups discussed above, as well as those appearing in the
diagram below, establish some of their basic properties and investigate the
decomposition of the automorphism group of G, in terms of these subgroups,
in the simplest cases, leaving the case where there are dominated vertices,
and the structure of St(K) to later papers.

The structure of the paper is as follows. In Section 2 we introduce par-
tially commutative groups, admissible sets, the lattices K and L and describe
an ordering on the vertex set of a graph induced from the lattice K. In Section
3 we turn to the automorphism groups of partially commutative groups, show
how they may be decomposed using the subgroups AutΓ(G) and AutΓcomp(G),
mentioned above, and, using the results of Fouxe-Rabinovitch and Gilbert
and Collins, show how the connected components of the graph Γ determine
generators and relations for the automorphism group of G(Γ). In Section 3.5
we define a collection of subgroups of the basis-conjugating automorphism
subgroup Conj(G), to be used to decompose Stconj(K), and show how these
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Aut(G)

Stconj(K) AutΓcomp(G)

Conj(G) St(K)

ConjV(G) Conj(G) ∩ St(K) = ConjS(G)

ConjN(G) ConjV(G) ∩ St(K) = ConjC(G)

ConjA(G) ConjN(G) ∩ St(K)

Inn(G) ConjA(G) ∩ St(K)

Inn(G) ∩ St(K)

{1}

Figure 1.1: Subgroups of Aut(G(Γ)), where Γ has no isolated vertices

relate to each other (see Figure 1.1 below). In Section 4 we consider the
subgroups St(K) and Stconj(K), show that ConjN(G) is normal in Stconj(K),
describe the intersection St(K)∩ConjN(G) and give an example to show that,
in general, Stconj(K) 6= St(K) Conj(G). Finally in Section 4.1 we define bal-
anced graphs and show that the equality Stconj(K) = St(K) Conj(G) holds for
G = G(Γ) if and only if Γ is balanced. In the version of the paper on arxiv

we include an appendix with details of the construction of a presentation of
AutΓcomp(G) and the proof of the Theorem 3.29.

For reference purposes Figure 1.1 shows a diagram of the lattice of the
main subgroups which we define in the paper. The figure covers the case
where Γ has no isolated vertices (that is vertices of valency zero). If Γ does
have isolated vertices then the subgroups ConjN(G) and ConjN(G) ∩ St(K)
are removed from the diagram, which otherwise remains the same. (In this
case ConjN(G) = Inn(G).) Subgroups ConjA(G), ConjV(G), ConjS(G) and
ConjC(G) are defined in definitions 3.32, 3.34, 3.35 and 3.38, respectively.
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2 Preliminaries

Graph will mean undirected, finite, simple graph throughout this paper. A
subgraph S of a graph Γ is called a full subgraph if vertices a and b of S are
joined by an edge of S whenever they are joined by an edge of Γ. If S is a
subset of V (Γ) we shall write Γ(S) for the full subgraph of Γ with vertices S.

If a and b are elements of a group then [a, b] denotes a−1b−1ab. If A and
B are subsets of a group then [A,B] denotes {[a, b] : a ∈ A, b ∈ B}.

For the remainder of the paper let Γ be a finite, undirected, simple graph.
Let X = V (Γ) = {x1, . . . , xn} be the set of vertices of Γ and let F (X) be the
free group on X . Let

R = {[xi, xj ] ∈ F (X) | xi, xj ∈ X and there is an edge of Γ joining xi to xj}.

We define the partially commutative group with (commutation) graph Γ to
be the group G(Γ) with presentation 〈X | R〉. When the underlying graph
is clear from the context we write simply G.

The subgroup generated by a subset Y ⊆ X is called a canonical parabolic
subgroup of G and denoted G(Y ). This subgroup is equal to the partially
commutative group with commutation graph the full subgraph of Γ with
vertices Y (see [2] or [21]).

By a word over X is meant an element of the free monoid (X ∪ X−1)∗.
We identify elements of F (X) with reduced words (that is those have no
subwords of the form xεx−ε, where x ∈ X and ε = ±1). The length of a
word w is its length as an element of (X ∪X−1)∗ and is denoted |w|. Denote
by lg(g) the minimum of the lengths of words that represent the element g
of G(X). If w is a word representing g and w has length lg(g) we call w a
minimal form for g. If w is a minimal form for some element of G then we
say that w is a geodesic word. When the meaning is clear we shall say that
w is a minimal element of G when we mean that w is a minimal form of an
element of G. We say that h ∈ G is cyclically minimal if and only if

lg(g−1hg) ≥ lg(h)

for every g ∈ G.
The support of a word w over X is the set of elements of X such that

x or x−1 occurs in w. If u and v are minimal forms of an element g ∈ G
then both u and v have the same support (see for example [21]). Therefore
we may define the support ν(g) of an element g ∈ G to be the support of
a minimal form of g. If w ∈ G define A(w) = G(Y ), where Y is the set of
elements of X\ν(w) which commute with every element of ν(w). If S ⊆ G
then we define A(S) = ∩w∈SA(w).
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From now on we regard words as representing elements of G, so when
we write u = v, where u and v are words, we mean that u and v represent
the same element of G. We write u ◦ w to express the fact that lg(uw) =
lg(u) + lg(w), where u, w ∈ G. Let u and w be elements of G. We say that
u is a left (right) divisor of w if there exists v ∈ G such that w = u ◦ v
(w = v ◦ u). We partially order the set of all left (right) divisors of a word w
as follows. We say that u2 is greater than u1 if and only if u1 is a left (right)
divisor of u2. It is shown in [21] that, for any w ∈ G and Y ⊆ X , there exists
a unique maximal left divisor of w which belongs to the subgroup G(Y ) of G:
called the greatest left divisor gdlY (w) of w in Y . The greatest right divisor
of w in Y is defined analogously.

The non-commutation graph of the partially commutative group G(Γ) is
the graph ∆, dual to Γ, with vertex set V (∆) = X and an edge connecting xi
and xj if and only if [xi, xj] 6= 1. The graph ∆ is the union of its connected
components ∆1, . . . ,∆k and if u and v are words such that ν(u) ⊆ ∆i and
ν(v) ⊆ ∆j , with i 6= j, then u and v represent commuting elements of G.
Thus, if the vertex set of ∆j is Ij and Γj = Γ(Ij), the full subgraph of Γ on
Ij , then G = G(Γ1)× · · · ×G(Γk).

Let g ∈ G and suppose that the full subgraph ∆(ν(g)) of ∆ with vertices
ν(g) has connected components ∆′

1, . . . ,∆
′
l and let the vertex set of ∆′

j be I
′
j.

If w is a minimal form of g then, since [I ′j , I
′
k] = 1, we can factor w as a product

of commuting words, w = w1 ◦ · · · ◦wl, where wj ∈ G(Γ(I ′j)), so [wj, wk] = 1
for all j, k. If g is cyclically minimal then we call this expression for g a block
decomposition of g and say wj is a block of g, for j = 1, . . . , l. Thus w itself is
a block if and only if ∆(ν(w)) is connected. Moreover it follows (see [21] for
example) that if g has another minimal form u with a block decomposition
u = u1 ◦ · · · ◦ uk then k = l (as ∆(ν(u)) = ∆(ν(g)) = ∆(ν(w))) and after
reordering the us’s if necessary ws = us, for s = 1, . . . , l.

In general let v be an element of G, not necessarily cyclically minimal.
We may write v = u−1◦w◦u, where w is cyclically minimal and then w has a
block decomposition w = w1 · · ·wl, say. We call the expression v = wu1 · · ·w

u
l

a block decomposition of v and say that wuj is a block of v, for j = 1, . . . , l.
Note that this definition is slightly different from that given in [21].

The centraliser of a subset S of G is

C(S) = CG(S) = {g ∈ G : gs = sg, for all s ∈ S}.

An element g ∈ G is called a root element if g is not a proper power of any
element of G. If h = gn, where g is a root element and n ≥ 1, then g is said to
be a root of h. As shown in [2] (and also [16]) every element of the partially
commutative group G has a unique root, which we denote r(g). Let w be a
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cyclically minimal element of G with block decomposition w = w1 · · ·wk and
let vi = r(wi). Then from [2] (and also [16, Theorem 3.10]),

C(w) = 〈v1〉 × · · · × 〈vk〉 × A(w). (2.1)

The following lemma will be useful.

Lemma 2.1. Let x, y ∈ X and f, g ∈ G such that [x, y] = [xf , yg] = 1 and

(i) xf = f−1 ◦ x ◦ f , yg = g−1 ◦ y ◦ g and

(ii) gdrX(f, g) = 1.

Then [ν(f), ν(g)] = {1} and [f, y] = [g, x] = 1.

Proof. By hypothesis [xfg
−1

, y] = 1. From condition (ii) fg−1 = f ◦ g−1 and
from [17], Lemma 2.3, there exist a, b, u ∈ G such that fg−1 = a ◦ b ◦ u,
xfg

−1

= u−1 ◦ x ◦ u, a = xn, for some n ∈ Z, and [b, x] = 1. From (2.1),
b = xm ◦ c, for some c ∈ A(x); so a ◦ b = xk ◦ c, for some k ∈ Z. Now a ◦ b
is a left divisor of f ◦ g−1 and it follows from condition (i) that u = u1 ◦ u2,
where f = u1 and g−1 = a ◦ b ◦ u2 = xk ◦ c ◦ u2, for some words u1, u2 with
[u1, x

k ◦ c] = 1. From condition (i) again, k = 0, a = 1 and b = c ∈ A(x).
From [17] Corollary 2.6, [x, y] = [xu, y] = 1 implies that u ∈ C(y). As u

is a right divisor of f ◦ g−1 it follows, from condition (i) again, that u2 = 1;
so f = u1 = u, and g = b. It follows, using condition (ii) once more, that
[ν(b), ν(u)] = 1 and this gives the result.

2.1 Admissible sets

In this section we establish some properties of graphs which we shall apply
to the study of the automorphism group of G(Γ). If x and y are vertices of a
graph Γ then we define the distance d(x, y) from x to y to be the minimum
of the lengths of all paths from x to y in Γ. Given a subset Y of X the
orthogonal complement of Y is defined to be

Y ⊥ = {u ∈ X|d(u, y) ≤ 1, for all y ∈ Y }.

For a set {x} of one element we write x⊥ instead of {x}⊥ and in general often
write x in place of {x}. For any set Y ⊆ X we write Y ⊥⊥ for (Y ⊥)⊥. By
convention we set ∅⊥ = X .

We define the closure of Y to be cl(Y ) = Y ⊥⊥. The closure operator
in Γ satisfies, among others, the properties that Y ⊆ cl(Y ), cl(Y ⊥) = Y ⊥

and cl(cl(Y )) = cl(Y ) [18, Lemma 2.4]. Moreover if Y1 ⊆ Y2 ⊆ X then
cl(Y1) ⊆ cl(Y2).

10



Definition 2.2. A subset Y of X is called closed (with respect to Γ) if Y =
cl(Y ). Denote by L = L(Γ) the set of all closed subsets of X.

For non-empty Y ⊆ X define a(Y ) = ∩y∈Y (y
⊥\y)⊥. Define a(∅) = X.

Subsets of the form a(Y ), where Y ⊆ X are called admissible sets. Let
K = K(Γ) denote the set of admissible subsets of X.

Properties of the set L are considered in detail in [18] and applied to the
study of centralisers and automorphisms of partially commutative groups in
[17], [20] and [19]. We shall see, in Section 3, that distinct elements x and y
of X , such that x⊥\x ⊆ y⊥, give rise to a particular type of automorphism of
G. The motivation for the definition of an admissible set is then clear from
the first part of the following lemma.

Lemma 2.3. For all x ∈ X,

(i) the set a(x) = {y ∈ X : x⊥\x ⊆ y⊥} and

(ii) y ∈ a(x) if and only if cl(y) ⊆ a(x), for all y ∈ X.

Proof. (i) y ∈ a(x) if and only if [y, v] = 1, for all v ∈ x⊥\x, if and only if
x⊥\x ⊆ y⊥.

(ii) For all y ∈ X we have y ∈ cl(y), so the “if” clause follows. On the
other hand if y ∈ a(x) then, from (i), x⊥\x ⊆ y⊥; so y⊥⊥ ⊆ (x⊥\x)⊥,
as required.

Example 2.4. In the graph Γ of Figure 2.1a

• a(a) = {b, c, d, e, g, h, i}⊥ = {a} = cl(a);

• d⊥ = g⊥ = {a, c, d, e, g, h} and a(d) = a(g) = {a, d, g} = cl(d) = cl(g);

• cl(b) = {a, b, c, h}⊥ = {a, b}, cl(i) = {a, c, h, i}⊥ = {a, i}, i⊥\i = b⊥\b
and a(i) = a(b) = {a, c, h}⊥ = {a, b, d, g, i} = cl(b) ∪ cl(d) ∪ cl(i);

• cl(c) = {a, c}, cl(h) = {a, h}, c⊥\c = h⊥\h and a(c) = a(h) =
{a, c, h} = cl(c) ∪ cl(h);

• a(e) = {a, d, f, g}⊥ = {e} = cl(e) and

• cl(f) = {e, f}⊥ = {e, f} and a(f) = {e}⊥ = {a, d, e, f, g} = cl(d) ∪
cl(f).

11



PSfrag replacements

a

b

c

d

e

f

g

h

i

a(a)
a(b)
a(c)
a(d)
a(e)
a(f)
a(g)
a(∅)
a(X)

(a) A graph Γ
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a(b)a(c)

a(d)

a(e)

a(f)

a(g)

a(∅)

a(X)

(b) The lattice K(Γ)

Figure 2.1: A graph and it’s lattice of admissible sets

For sets U, V we write U < V to indicate that U ⊆ V and U 6= V . A
subset Y of X is called a simplex if the full subgraph of Γ with vertices Y is
isomorphic to a complete graph.

Lemma 2.5. For x 6= z ∈ X and subsets U and V of X the following hold.

(i) If U ⊆ V then a(V ) ⊆ a(U).

(ii) a(U) ∩ a(V ) = a(U ∪ V ).

(iii) cl(x) = a(x) ∩ x⊥ so a(x) = cl(x) if and only if a(x) ⊆ x⊥.

(iv) x⊥ ⊆ a(x) if and only if x⊥ generates a complete subgraph.

(v) If x⊥\x ⊆ z⊥\z then a(z) ⊆ a(x).

(vi) If x⊥ ⊆ z⊥ then a(z) ⊆ a(x).

(vii) a(z) ⊆ a(x) if and only if x⊥\x ⊂ z⊥.

(viii) a(x) = a(z) if and only if either x⊥ = z⊥ or x⊥\x = z⊥\z.

(ix) If z ∈ a(x) then a(z) ⊆ a(x).

(x) a(U) = ∪y∈a(U)a(y).

12



(xi) If cl(x) = a(x) then cl(y) = a(y), for all y ∈ a(x).

(xii) If [x, z] = 1 then [G(a(x)), G(a(z))] = 1.

Proof. Statements (i) to (v) follow directly from the definitions and the fact
that if S ⊆ T then T⊥ ⊆ S⊥, for all subsets S, T of X . For (vi) note that
in this case z ∈ x⊥, so as x 6= z, a(x) = (x⊥\x)⊥ = ((x⊥\{x, z}) ∪ {z})⊥ =
(x⊥\{x, z})⊥ ∩ z⊥ ⊇ (z⊥\{x, z})⊥ ∩ x⊥ = a(z).

The right to left implication of (vii) is a consequence of (v) and (vi),
and the fact that if x⊥\x ⊆ z⊥ then x⊥ ⊆ z⊥ or x⊥\x ⊆ z⊥\z. To see the
opposite implication: if a(z) ⊆ a(x) then, as z ∈ a(z), we have z ∈ a(x), so
x⊥\x ⊆ z⊥, from Lemma 2.3.

To see (viii) suppose first that a(x) = a(z). Then, from (vii), we have
x⊥\x ⊆ z⊥ and z⊥\z ⊆ x⊥. If x ∈ z⊥ then z ∈ x⊥, and in this case x⊥ = z⊥.
Otherwise x /∈ z⊥ and z /∈ x⊥ in which case x⊥\x = z⊥\z. Conversely,
if either x⊥ = z⊥ or x⊥\x = z⊥\z then it follows, from (v) and (vi), that
a(x) = a(z).

Statement (ix) follows immediately from (vii) and Lemma 2.3. Statement
(x) follows from (ix) as if y ∈ a(U) then a(y) ⊆ a(U).

To see statement (xi) observe that cl(x) is a simplex so if cl(x) = a(x)
and y ∈ a(x) then a(y) ⊆ a(x) implies that a(y) is a simplex. Therefore
a(y) ⊆ y⊥ and the result follows from (iii).

For (xii) suppose that u ∈ a(x) and v ∈ a(z). Since z ∈ x⊥\x we have
u ∈ z⊥ and similarly v ∈ x⊥. Since [u, y] = 1 for all y ∈ x⊥, except possibly
x, it follows that u commutes with v, unless v = x. However if v = x then,
since v ∈ (z⊥\z)⊥, v commutes with all elements of z⊥, including u.

Let ∼⊥ be the relation on X given by x ∼⊥ y if and only if x⊥ = y⊥ and
let ∼♦ be the relation given by x ∼♦ y if and only if x⊥\x = y⊥\y. These
are equivalence relations and the equivalence classes of x under ∼⊥ and ∼♦

are denoted by [x]⊥ and [x]♦, respectively. Note that if |[x]⊥| > 1 then
[x]♦ = {x} and the same is true on interchanging ⊥ and ♦. Therefore the
relation ∼, given by x ∼ y if and only if x ∼⊥ y or x ∼♦ y, is an equivalence
relation. Denote the equivalence class of x under ∼ by [x]. Then x ∼ y if
and only if x ∼⊥ y or x ∼♦ y, and [x] = [x]⊥ ∪ [x]♦. It follows that x ∼ y if
and only if x⊥\{x, y} = y⊥\{x, y}.

Lemma 2.6. For all x, z ∈ X,

(i) a(x) = a(z) if and only if z ∈ [x],

(ii) [x] = a(x)\(∪{a(y)|y ∈ a(x) and a(y) < a(x)}).

13



Proof. The second statement follows directly from the first, together with
(ix) of Lemma 2.5. Therefore it suffices to show that a(x) = a(z) if and only
if z ∈ [x]. By definition, z ∈ [x] if and only if x⊥ = z⊥ or x⊥\x = z⊥\z.
From Lemma 2.5 (viii), this holds if and only if a(x) = a(z).

Lemma 2.7.

[x] =

{

[x]⊥, if a(x) = cl(x)
[x]♦ , if a(x) > cl(x)

.

Proof. First suppose a(x) = cl(x). Then, from Lemma 2.5 (iii), a(x) ⊆ x⊥.
If z ∈ [x] then, from Lemma 2.6 (ii), z ∈ [x] ∩ x⊥ and so z ∼⊥ x.

Now suppose that cl(x) < a(x). If z ∈ [x], z 6= x, and z⊥ = x⊥ then
x ∈ z⊥\z, so a(x) = a(z) ⊆ x⊥, contradicting Lemma 2.5 (iii). Hence z ∈ [x]
implies z ∼♦ x.

In view of Lemma 2.5 (ii) above, for an arbitrary subset Y of X the
a-closure of Y may be defined to be the admissible set

cla(Y ) = ∩{U ⊆ X|Y ⊆ U and U = a(V ), for some V ⊆ X}.

Then cla(Y ) is the smallest admissible set containing Y and Y is admissible
if and only if Y = cla(Y ).

It is shown in [18] that Y ∈ L if and only if Y = U⊥, for some U ⊆ X .
Therefore K ⊂ L. The set K, partially ordered by inclusion, with infimum
U∧V = U∩V and supremum U∨V = cla(U∪V ) forms a lattice. The lattice
K has maximal element X = cla(X) = a(∅) and minimal element a(X). The
lattice of admissible sets for the graph of Example 2.4 is shown in Figure
2.1b.

Although the lattice K(Γ) of the graph Γ in Example 2.4 consists of a(∅),
a(X) and sets of the form a(x), where x ∈ X , this is atypical. For example
consider the path graph of length three: that is the tree with vertices a,
b, c and d and edges {a, b}, {b, c} and {c, d}. In this case a(a) = {a, b, c}
and a(b) = {b}. It follows that |a(x)| = 1 or 3, for all vertices x. How-
ever a({a, d}) = {b, c}; so a({a, d}) 6= a(x), for all vertices x. Moreover
cla({a, d}) = X 6= a({a, d}). We shall be mostly interested here in the ad-
missible sets a(x), for x ∈ X ; for which we can say the following.

Lemma 2.8. For x ∈ X, cla(x) = a(x).

Proof. By definition cla(x) ⊆ a(x). If U is admissible then U = ∩y∈Y a(y),
for some Y ⊆ X . If x ∈ U this means that x ∈ a(y), so a(x) ⊆ a(y), for all
y ∈ Y . Hence a(x) ⊆ U . It follows that a(x) ⊆ cla(x).
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2.2 Ordering X

The next goal is to define a total ordering on X which reflects the structure
of the lattice K. First define a partial order <K on X by x <K y if and only
if a(x) < a(y). If a(x) = a(y) we write x =K y. We say x is K-minimal if
y ≤K x implies y =K x. The definition of K-maximal is then the obvious one.
Recall that in [19] the analogous ordering using L instead of K was defined,
and the definitions of L-minimal and L-maximal were also defined using the
closure operator instead of the a operator.

Lemma 2.9. An element x ∈ X is K-minimal if and only if [x] = a(x). If
x is K-minimal then

(i) x is L-minimal and

(ii) cl(y) = [y]⊥, for all y ∈ a(x).

Proof. The first statement follows immediately from the definitions and
Lemma 2.6. For the second suppose x is K-minimal. If [x] = a(x) = cl(x) =
[x]⊥ then cl(y) = cl(x), for all y ∈ cl(x), so x is L-minimal and (i) and (ii)
hold. If [x] = a(x) > cl(x) then [x]♦ = a(x), so cl(x) = [x]♦ ∩ x⊥ = {x},
from Lemma 2.5(iii), so again x is L-minimal. To see (ii) in this case note
that y ∈ a(x) implies y ∈ [x]♦ = [y]♦ and cl(y) = y⊥ ∩ a(y) = y⊥ ∩ a(x) =
y⊥ ∩ [y]♦ = {y} = [y]⊥.

As in Example 2.10 below, there may be elements which are L-minimal
but are not K-minimal.

We now define a total order ≺ on X , which will have the properties that

1. if x <K y then y ≺ x and

2. if z ≺ y ≺ x and z ∈ [x] then y ∈ [x].

Define KX to be the subset of K consisting of sets a(x), for x ∈ X . To begin
with let

B0 = {Y ∈ KX : Y = a(x), where x is K-minimal}.

Suppose that B0 has k elements and choose an ordering Y1 < · · · < Yk of
these elements. If i 6= j then it follows from Lemma 2.9 that Yi ∩ Yj = ∅.
Therefore we may define the ordering ≺ on ∪ki=1Yi in such a way that if
xi ∈ Yi and xj ∈ Yj and Yi < Yj then xj ≺ xi: merely by choosing an
ordering for elements of each Yi. (For instance, in Example 2.10 we can
choose f ≺ e ≺ d ≺ c.)
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We recursively define sets Bi of elements of KX , for i ≥ 0, as follows.
Assume that we have defined sets B0, . . . , Bi, set Ui = ∪ij=0Bj and define
Xi = {u ∈ X : u ∈ Y, for some Y ∈ Ui}. If Ui 6= KX define Bi+1 by

Bi+1 = {Y = a(x) ∈ KX : Y /∈ Ui, and y <K x implies that a(y) ∈ Ui}.

If Ui 6= KX then Xi 6= X and Bi+1 6= ∅. We assume inductively that we have
ordered the set Xi in such a way that if

(i) 0 ≤ a < b ≤ i,

(ii) xa ∈ Ya where Ya ∈ Ba and

(iii) xb ∈ Yb where Yb ∈ Bb;

then xb ≺ xa. If Y = a(x) ∈ Bi+1 then

[x] = Y \{u ∈ a(y) : y <K x}

= Y \{u ∈ Xi}.

Therefore we have defined ≺ on the set Y \[x]. Moreover, if Y1 6= Y2 and
Y1, Y2 ∈ Bi+1 then Y1 ∩ Y2 ∈ K so z ∈ Y1 ∩ Y2 implies a(z) ⊆ Y1 ∩ Y2. As
Y1 6= Y2 this implies that a(z) is strictly contained in Yi, i = 1, 2. If Yi = a(xi)
then z <K xi and so z /∈ [xi], i = 1, 2. That is, [x1]∩ [x2] = ∅. Now choose an
ordering on the set of elements of Bi+1: Z1 < · · · < Zk say, where Zj = a(xj).
Then Zj\[xj ] ⊆ Xi, j = 1, . . . , k. We can extend the total order ≺ on Xi to

Xi+1 = Xi ∪ ∪kj=1Zj = Xi ∪ ∪kj=1[xj ]

as follows. Assume the order has already been extended to Xi ∪
s−1
j=1 [xj ].

Extend the order further by choosing the ordering ≺ on the elements of
[xs] and then defining the greatest element of [xs] to be less than the least
element of Xi ∪

s−1
j=1 [xj ] (as in the last step of Example 2.10). At the final

stage s = k and the order on Xi is extended to Xi+1. We continue until
Ui = KX , at which point X = Xi and we have the required total order on
X . Note that, by construction, if x, y ∈ X and x <K y then y ≺ x. Also,
if x ≺ y ≺ z and [z] = [x] then [y] = [x]. Thus 1 and 2 above hold. If
a(x) belongs to Bi we shall say that x, a(x) and [x] have height i and write
h(x) = h(a(x)) = h([x]) = i.

Example 2.10. Let Γ be the graph of Figure 2.2. Then

a(a) = a(b) = {a, b, e, f},

a(c) = a(d) = {c, d},

a(e) = a(f) = {e, f} and

a(g) = {c, d, g}.

In the partial order <K we have
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• x <K a and x <K b, if x ∈ {e, f}, and

• c <K g and d <K g.

Elements c, d, e and f are K-minimal while a, b and g are K-maximal.
(For all x ∈ X, we have cl(x) = {x}, so a, b and g are L-minimal but not
K-minimal.)

We have B0 = {a(c), a(e)} and we must choose an order on this set: say
a(c) < a(e). Next choose orders on a(c) and a(e): say d ≺ c and f ≺ e. The
construction now gives the order

f ≺ e ≺ d ≺ c

on a(c) ∪ a(e).
Now U0 = B0 and X0 = a(c) ∪ a(e); so B1 = {a(a), a(g)}. We must

choose an ordering on B1: say a(a) < a(g).

a(a) = {a, b} ∪ {e, f} and

a(g) = {g} ∪ {e, f},

where {a, b} = [a], {g} = [g] and {e, f} ⊆ X0. We must choose an ordering
on [a]: say b ≺ a and then extend the order on X0 to X0 ∪ [a] by

b ≺ a ≺ f ≺ e ≺ d ≺ c.

Finally extend this order to [g] to obtain

g ≺ b ≺ a ≺ f ≺ e ≺ d ≺ c.

17



3 Generators for Aut(G) and Decomposition

over Graph Automorphisms

Recall the convention of Section 2: G denotes a partially commutative group
with commutation graph Γ, and X = V (Γ).

Notation. We shall often abuse notation when discussing elements of X−1

by referring to x−1 as a “vertex” of Γ, when we really mean that x is a vertex.
In particular, for z = x−1 we refer to z⊥ and a(z) when we mean x⊥ and
a(x), respectively.

3.1 Graph Automorphisms

For any graph Ω let Aut(Ω) denote the group of graph automorphisms of Ω. If
Ω is labelled then by an automorphism of Ω we mean a graph automorphism
which preserves labels. We shall use the equivalence ∼ of Section 2.1 to
define a quotient graph of Γ. Let u, v ∈ X . In [17] it is shown that there is
an edge of Γ joining u to v if only if there is an edge joining a to b, for all
a ∈ [u] and b ∈ [v]. Therefore there is a well-defined graph with vertex set
consisting of the equivalence classes of ∼ and an edge joining vertices [u] and
[v] if and only if there is an edge of Γ joining u and v. The resulting graph
has no multiple edges but may have loops.

Definition 3.1. The compression of the graph Γ is the labelled graph Γcomp

with vertices Xcomp = {[v] : v ∈ X} and an edge joining [u] to [v] if and only
if u is joined to v by an edge of Γ. Vertices of Γcomp are labelled as follows.
Let u ∈ X and |[u]| = d.

1. If d = 1 then [u] is labelled (1, 1).

2. If d > 1 and [u] = [u]⊥ then [u] is labelled (⊥, d).

3. If d > 1 and [u] = [u]♦ then [u] is labelled (♦, d).

We shall express each automorphism φ of Γ as a product φ = αβ, where
α corresponds to a certain automorphism of Γcomp and β is an automorphism
of Γ which maps [u] to itself, for all u ∈ X . First we make some definitions.
If Ω and Ω′ are graphs without multiple edges and f is a map from V (Ω) to
V (Ω′) then we say that f induces a graph homomorphism if, for all u, v ∈
V (Ω), uf is joined to vf whenever u is joined to v. It is easy to see (for
details see [17]) that the map from X to Xcomp sending u to [u] induces
a homomorphism comp : Γ → Γcomp. Every automorphism φ ∈ Aut(Γ)
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induces a label preserving automorphism φcomp ∈ Aut(Γcomp): sending [u]
to [uφ] = [u]φ. In fact the map πcomp : Aut(Γ) → Aut(Γcomp), given by
φπcomp = φcomp, is a homomorphism (see [17]).

On the other hand we may fix a total order on the elements of [u], for
all u ∈ X . Then, if φcomp is an automorphism of Γcomp, the label of [u] is
identical to the label of [u]φcomp, for all u ∈ X . Hence there is a unique order
preserving bijection from [u] to [u]φcomp. The union of these bijections is an
automorphism φ of Γ; and we may define ιcomp to be the map from Aut(Γcomp)
to Aut(Γ) given by φcompιcomp = φ. Then ιcomp is a homomorphism and
ιcompπcomp is the identity map of Γcomp.

Definition 3.2. Define the compressed automorphism group Autcomp(Γ) of
Γ to be the subgroup Aut(Γcomp)ιcomp of Aut(Γ).

For v ∈ X let S[v] denote the group of permutations of [v]; so S[v] is a
subgroup of Aut(Γ) isomorphic to the symmetric group of degree |[v]|.

The definition of Autcomp(Γ) depends on the choice of ordering of [u],
which we regard as fixed for the remainder of the paper. We then have the
following lemma.

Lemma 3.3 (cf. [17, Proposition 2.52]). Aut(Γ) =
(

∏

[v]∈Xcomp S[v]

)

⋊

Autcomp(Γ).

Now we focus attention on automorphisms which interchange connected
components of Γ. First of all we fix notation for these connected components.
In the following definition we adopt the convention that, if m is a non-
negative integer and Ω is a graph then Ωm denotes the disjoint union of m
copies of Ω (and is empty if m = 0).

Definition 3.4. Let Ω0 denote the graph consisting of a single vertex and no
edges. Suppose that there exist pairwise non-isomorphic graphs Ω1, . . . ,Ωd,
such that every connected component of Γ with at least two vertices is iso-
morphic to Ωi, for some i ≥ 1, and that d is minimal with this property.
Then

Γ ∼= Ωm0

0 ∪ Ωm1

1 ∪ · · · ∪ Ωmd

d , (3.1)

for some mi ∈ Z, with m0 ≥ 0 and mi ≥ 1, for i ≥ 1. In this case we say
that the right hand side of (3.1) is the isomorphism type of Γ.

Suppose that Γ has isomorphism type Ωm0

0 ∪ Ωm1

1 ∪ · · · ∪ Ωmd

d . Identify
each connected component of Γ with a particular copy of Ωj (to which it is
isomorphic) in the disjoint union Ω

mj

j . To be explicit, let

Γ = ∪dj=0 ∪
mj

k=1 Γj,k,
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where Γj,k ∼= Ωj , for k = 1, . . . , mj . Fix an isomorphism from Γj,k to Ωj , for
all j and k. For 0 ≤ j ≤ d and 1 ≤ a < b ≤ mj there is an isomorphism
of Ωm0

0 ∪ Ωm1

1 ∪ · · · ∪ Ωmd

d interchanging the ath and bth copy of Ωj and
fixing all other connected components pointwise. This induces, via the fixed
isomorphisms of Γj,k and Ωj , an isomorphism ωja,b of Γ, which interchanges
Γj,a and Γj,b and leaves all other components fixed. The subgroup of Aut(Γ)
generated by {ωja,b : 1 ≤ a < b ≤ mj} is then isomorphic to the symmetric
group Smj

of degree mj .

Definition 3.5. Denote by Autsymm(Γj,∗) the subgroup of Aut(Γ) generated
by {ωja,b : 1 ≤ a < b ≤ mj}. Denote by Autcomp(Γj,k) the subgroup of
Autcomp(Γ) consisting of compressed automorphisms φ such that φ|Γj,k

is an
automorphism of Γj,k and xφ = x, for all x ∈ X\Xj,k.

Thus Autcomp(Γj,k) ∼= Aut(Ωcomp
j ). Note that Γcomp has isomorphism type

Ωn0

0 ∪ ∪di=1(Ω
comp
i )mi , where n0 = 0, if m0 = 0, and n0 = 1, if m0 > 0; so we

obtain the following decomposition.

Lemma 3.6. Let Γ have isomorphism type given by (3.1). Then

Autcomp(Γ) =

d
∏

j=1

(

mj
∏

k=1

Autcomp(Γj,k)⋊ Autsymm(Γj,∗)

)

,

with Autsymm(Γj,∗) isomorphic to the symmetric group of degree mj and
Autcomp(Γj,k) isomorphic to Aut(Ωcomp

j ).

Each of the above subgroups of Aut(Γ) is naturally isomorphic to a sub-
group of the automorphism group of G; which we shall now name.

Definition 3.7. Let Aut(G) be the automorphism group of the partially com-
mutative group G with commutation graph Γ. An element φ ∈ Aut(G) is

• a graph automorphism if the restriction φ|X of φ to X is an element
of Aut(Γ); and

• a compressed graph automorphism if φ|X is an element of Autcomp(Γ).

• Denote by AutΓ(G) and AutΓcomp(G) the subgroups of Aut(G) consisting
of graph automorphisms and compressed graph automorphisms, respec-
tively.

• For v ∈ X, denote by S[v](G) the subgroup of AutΓ(G) consisting of
elements φ such that φ|X ∈ S[v].
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• Denote by AutΓsymm(Gj,∗) the subgroup of automorphisms φ of Aut(G)
such that φ|X is an element of Autsymm(Γj,∗); and

• by AutΓcomp(Gj,k) the subgroup of automorphisms φ such that φ|X is an
element of Autcomp(Γj,k).

Remark 3.8. The subgroup
∏d

j=0Aut
Γ
symm(Gj,∗) of Aut(G) is denoted Π and

called the group of permutation automorphisms in [24].

The following proposition follows from Lemmas 3.3 and 3.6.

Proposition 3.9. Let Γ have isomorphism type given by (3.1). Then

(i) AutΓ(G) = (
∏

[v]∈Xcomp S[v](G))⋊ AutΓcomp(G), with S[v](G) isomorphic

to the symmetric group of degree |[v]|, and

(ii)

AutΓcomp(G) =

d
∏

j=1

(

mi
∏

k=1

AutΓcomp(Gj,k)⋊ AutΓsymm(Gj,∗)

)

.

Moreover AutΓsymm(Gj,∗) is isomorphic to the symmetric group of degree

mj and AutΓcomp(Gj,k) is isomorphic to AutΩj
comp(G(Ωj)).

In the sequel we shall the particular generators for AutΓcomp(G) of the next
definition.

Definition 3.10. Define the following sets of graph automorphisms.

(a) For 1 ≤ j ≤ d, let PΓ
comp,j be a generating set for AutΓcomp(Gj,1).

(b) For 0 ≤ j ≤ d and 1 ≤ a < b ≤ mj, the group automorphism induced
by the graph automorphism ωja,b (defined above) is also called ωja,b and
we define

PΓ
symm,j = {ωja,b|1 ≤ a < b ≤ mj} ⊆ AutΓ(G).

(c) PΓ
comp(G) = PΓ

symm,0 ∪ ∪dj=1(P
Γ
comp,j ∪ PΓ

symm,j).

When the meaning is clear we write PΓ
comp instead of PΓ

comp(G).

Lemma 3.11. (i) AutΓsymm(Gj,∗) is generated by PΓ
symm,j.

(ii) AutΓcomp(G) is generated by PΓ
comp(G).

Proof. The lemma follows directly from the definitions and Proposition
3.9(ii).

Clearly a presentation for AutΓcomp(G) may be constructed from the de-
composition of Proposition 3.9, using the generators PΓ

comp(G), but we leave
details to the appendix.
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3.2 Generators for Aut(G)

Definition 3.12. Given x ∈ X, the automorphism of G mapping x to x−1

and fixing all other generators is called an inversion and denoted ιx. The set
of all inversions is denoted Inv = Inv(G).

Definition 3.13. For fixed x, y ∈ X±1 an automorphism sending x to xy
and fixing all elements of X±1 other than x±1 is denoted τx,y and called a
transvection. The set of all transvections τx,y such that x ∈ X±1 and y ∈ X
is denoted Tr = Tr(G).

For distinct x, y ∈ X , there exists an element τxε,yδ ∈ Aut(G) if and only
if x⊥\x ⊆ y⊥.

Definition 3.14. Let φ ∈ Aut(G) be an automorphism and assume that,
for all x ∈ X, there exists gx ∈ G such that xφ = xgx. Then φ is called a
basis-conjugating automorphism. The subgroup of Aut(G) consisting of all
basis-conjugating automorphisms is denoted Conj(G).

The group of inner automorphisms Inn(G) is a normal subgroup of
Conj(G).

Definition 3.15. For S ⊆ X define ΓS to be Γ\S, the graph obtained from
Γ by removing all vertices of S and all their incident edges.

Definition 3.16. Let x ∈ X, let C be the vertex set of a connected component
of Γx⊥ and let ε = ±1. The automorphism αC,xε given by

y 7→

{

yx
ε

, if y ∈ C
y, otherwise

is called an elementary conjugating automorphism of Γ.
The set of all elementary conjugating automorphisms (over all connected

components of Γx⊥ and all x ∈ X) is denoted LInn = LInn(G).

Theorem 3.17 (Laurence [29]). The group of basis-conjugating automor-
phisms Conj(G) is generated by the set LInn(G).

In [29] it is shown that Aut(G) is generated by the following automor-
phisms.

(i) A fixed choice PΓ of generators for the graph automorphisms AutΓ(G).

(ii) The set of inversions Inv.

(iii) The set of transvections Tr.

22



(iv) The set of elementary conjugating automorphisms LInn.

We shall construct various decompositions of Aut(G) and in view of these
decompositions we shall reduce to proper generating subsets of Laurence’s
generators. The first such reduction is the following.

Proposition 3.18. Aut(G) is generated by Inv∪Tr∪LInn ∪ PΓ
comp.

Proof. To see that these automorphisms generate Aut(G), it suffices, using
Lemma 3.11(ii), to show that every automorphism φ ∈ AutΓ(G) belongs to
the subgroup generated by Inv, Tr and AutΓcomp(G). From Proposition 3.9, φ

may be written as φ = αβ, where α ∈
∏

[v]∈Xcomp S[v](G) and β ∈ AutΓcomp(G).

Hence it is enough to show that S[v](G) ⊆ 〈Inv,Tr〉. As [v] generates a free or
free Abelian subgroup of G, for all x, y ∈ [v] and ε = ±1, the transvections
τxε,y and inversions ιx and ιy are automorphisms of G and belong to Inv∪Tr.
The permutation σx,y sending x to y and y to x and fixing all other generators
can be obtained as a word in these generators; σx,y = ιxτ

−1
x,yτy,xτx−1,y. As

S[v](G) is generated by such elements it follows that S[v](G) ⊆ 〈Inv,Tr〉 as
required.

3.3 Decomposition of Aut(G) over Graph Automor-

phisms

Definition 3.19. Let Aut∗(G) denote the subgroup of Aut(G) generated by
the set P∗ = Inv∪Tr∪LInn.

Later we shall show that Aut∗(G) has a natural description in terms of
the stabiliser of the lattice K. Here we establish what we need in order to
obtain an initial decomposition of Aut(G) in terms of AutΓcomp(G). It is useful
to establish the following fact first.

Lemma 3.20. Let x, y ∈ X and let C be a connected component of Γy⊥. If
a(x) * C ∪ y⊥ and a(x) ∩ C 6= ∅ then y ∈ a(x).

Proof. Suppose that y /∈ a(x). Then there exists u ∈ x⊥\x such that [y, u] 6=
1. Thus u /∈ y⊥ and u ∈ x⊥\x; so [u, v] = 1 for all v ∈ a(x). This means that
a(x)\y⊥ is contained in some connected component of Γy⊥. If a(x) ∩ C 6= ∅
it follows that a(x) ⊆ C ∪ y⊥, and the result follows.

Proposition 3.21. Let φ ∈ Aut∗(G). Then, for all x ∈ X, there exists
fx ∈ G such that G(a(x))φ = G(a(x))fx.
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Proof. It suffices to prove the statement in the case where φ is a generator
of Aut∗(G). First consider the case where φ is a elementary conjugating
automorphism.

Suppose then that y ∈ X , C is a connected component of Γy⊥ and that
φ = αC,y. Now let x ∈ X . If C ∩ a(x) = ∅ then G(a(x))φ = G(a(x)), so we
may assume that C ∩ a(x) 6= ∅. If a(x) ⊆ C ∪ y⊥ then G(a(x))φ = G(a(x))y,
as required. This leaves the case where C ∩ a(x) 6= ∅ and a(x) * C ∪ y⊥. In
this case y ∈ a(x), from Lemma 3.20, and zφ = z or zφ = zy, for all z ∈ a(x),
so G(a(x))φ = G(a(x)).

The case where φ ∈ Inv is straightforward (and fx = 1, for all x, in this
case). Suppose then that φ is a transvection; more precisely let y, z ∈ X
with y⊥\y ⊆ z⊥ and φ = τyε,z, where ε ∈ {±1}. Let x ∈ X . If y /∈ a(x) then
φ is the identity on G(a(x)) so we may assume that y ∈ a(x). In this case we
have z ∈ cl(z) ⊆ a(y) ⊆ a(x). Hence G(a(x))φ = G(a(x)), as required.

Remark 3.22. Note that the proof of this proposition shows that if φ is in
the subgroup of Aut∗(G) generated by Inv and Tr then G(a(x))φ = G(a(x)),
for all x ∈ X .

Proposition 3.23. Aut∗(G) is a normal subgroup of Aut(G) and the latter
decomposes as a semi-direct product Aut(G) ∼= Aut∗(G)⋊ AutΓcomp(G).

Proof. To see that Aut∗(G) is normal in Aut(G) it is only necessary to check
that θ−1φθ ∈ Aut∗(G) where θ ∈ AutΓ(G) and φ is a generator of Aut∗(G).
It is straightforward to check from the definitions that if θ ∈ AutΓ(G) then
θ acts by conjugation on the generators of Aut∗(G) as follows. If ιz ∈ Inv
then ιθz = ιzθ. If x ∈ X±1, y ∈ Y and τx,y ∈ Tr then τ θx,y = τxθ,yθ. If αC,y is
an elementary conjugating automorphism then, since θ restricts to a graph
automorphism of Γ, it follows that Cθ is a connected component of Γ(yθ)⊥ .
Furthermore αθC,y = αCθ,yθ. Therefore Aut∗(G) is normal.

Next we show that Aut∗(G) ∩ 〈PΓ
comp〉 = {1}. From Proposition 3.21, for

all x ∈ X and φ ∈ Aut∗(G), we have xφ = wg, for some w ∈ G(a(x)) and
g ∈ G. This means that the exponent sum of y ∈ X in xφ is zero unless
y ∈ a(x).

We claim that if θ ∈ AutΓ(G) then, for all x ∈ X , xθ = y and a(x)θ =
a(y)θ, for some y ∈ X with h(y) = h(x). To see this note that θ ∈ AutΓ(G)
implies θ|X is in Aut(Γ) so a(x)θ = a(xθ). If xθ = y then it follows from
Lemma 2.6 and induction on the height h(x) of x that h(y) = h(x), and the
claim follows.

Now if θ is a non-trivial element of AutΓcomp(G) there is x ∈ X such
that [x]θ = [y] with [y] 6= [x]. Without loss of generality we may assume
xθ = y; so the exponent sum of y in xθ is non-zero. As h(x) = h(y) it follows
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from Lemma 2.6 that [y] ∩ a(x) = ∅ and so y /∈ a(x). Combining this with
the above we have Aut∗(G) ∩ AutΓcomp(G) = 1. As Aut(G) is generated by
Inv∪Tr∪LInn ∪ PΓ

comp it follows not only that Aut∗(G) is normal but that
Aut(G) decomposes as a semi-direct product, as claimed.

3.4 Decomposition over Connected Components

In this section we use the theory of automorphisms of free products developed
in [22, 23], [24] and [12] to give a presentation of Aut(G), and describe its
structure, in terms of automorphisms of the groups corresponding to the
connected components of Γ. A presentation for the automorphism group of a
free product in terms of presentations for automorphism groups of the factors
is given in [22, 23] and reformulated in [24]. Using the latter we construct a
presentation for Aut(G), in terms of presentations of automorphism groups
of factors of G, appropriate to our particular setting.

Definition 3.24. Let Γ have isomorphism type given by (3.1) and, as in
Section 3.1, let Γi,j be the connected components of Γ, where Γi,j ∼= Ωi, for
1 ≤ j ≤ mi and 0 ≤ i ≤ d. Let

• Xi,j be the vertex set of Γi,j,

• let S = {(0, j) : 1 ≤ j ≤ m0},

• let XS = ∪s∈SXs, the set of isolated vertices of Γ, and

• let J = {(i, j) : 1 ≤ i ≤ d, 1 ≤ j ≤ mi}.

(i) Define the following sets of automorphisms which preserve subgroups
generated by connected components of Γ and fix all elements of Xi,j

when j 6= 1: let

(a) Invint(G) = {ιx ∈ Inv |x ∈ Xi,1, 0 ≤ i ≤ d};

(b) Trint(G) = {τx,y ∈ Tr |x ∈ X±1
i,1 , y ∈ X±1

i,1 , 1 ≤ i ≤ d};

(c) LInnint(G) = {αC,x ∈ LInn|x ∈ X±1
i,1 , C ⊆ Xi,1, 1 ≤ i ≤ d};

(d) Pint(G) = Invint(G) ∪ Trint(G) ∪ LInnint(G).

(ii) Define the following sets of automorphisms which do not preserve sub-
groups generated by connected components of Γ. Let

(a) Trext(G) = {τx,y ∈ Tr |x ∈ X±1
S , y ∈ X±1};

(b) LInnext(G) = {αC,y ∈ LInn|C = Xj, y ∈ X±1
k , j ∈ J, k ∈ S∪J, k 6=

j};

25



(c) Pext(G) = Trext(G) ∪ LInnext(G).

Finally define P(G) = PΓ
comp(G) ∪ Pint(G) ∪ Pext(G).

When the group G in question is clear from the context we often drop
the argument G from these definitions, writing P for P(G), and so on.

Remark 3.25. 1. The conditions on Tr imply that Trext is empty un-
less there exists an isolated vertex x of Γ, in which case there is an
automorphism τx,y ∈ Trext, for all y ∈ X\{x}.

2. If s ∈ S and Xs = {x}, z ∈ X±1, z 6= x±1, then Aut(G) contains the
automorphism αXs,z, but also contains τx±1,z; and αXs,z = τx,zτx−1,z.
Hence we make the restriction j ∈ J ; i.e. |Xj| ≥ 2, in Definition 3.24
(ii)b above.

3. In [24] elements of Trext∪LInnext are called Whitehead automorphisms.

Proposition 3.26. The set P generates Aut(G).

Proof. In the light of Proposition 3.18, it suffices to show that every auto-
morphism in Inv∪Tr∪LInn belongs to the subgroup generated by P. For
all i, j with 1 ≤ i ≤ d and 1 < j ≤ mi the automorphism ωi1,j belongs
to PΓ

symm,i ⊆ PΓ
comp and for all xj , yj ∈ Xi,j there are x1, y1 ∈ Xi,1 such

that x1 = xjω
i
1,j and y1 = yjω

i
1,j. Then we have ιxj = (ωi1,j)

−1ιx1ω
i
1,j,

τxεj ,yj = (ωi1,j)
−1τxε1,y1ω

i
1,j and αCj ,xj = (ωi1,j)

−1αC1,y1ω
i
1,j, where Cj = C1ω

i
1,j.

As ιx1 , τxε1,y1 and αC1,y1 are all elements of P it follows that Inv∪Tr∪LInn
is contained in the subgroup generated by P, as required.

We extend the notation of Definition 3.7, for graph automorphisms of the
factors of G, to cover all automorphisms of the factors.

Definition 3.27. For i = 0, . . . , d, let Aut(Gi,1) denote the subgroup of
Aut(G) consisting of elements φ ∈ Aut(G) such that xφ = x, for all x ∈
X\Xi,1 and G(Γi,1)φ ⊆ G(Γi,1).

Before choosing generators and relators for Aut(G) note that

AutΓcomp(Gi,1) ≤ Aut(Gi,1) ∼= Aut(G(Ωi))

and that, from Proposition 3.18, Aut(Gi,1) is generated by
(Pint ∩ Aut(Gi,1)) ∪ PΓ

comp,i.
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Definition 3.28. Choose presentations

〈PΓ
symm,i|R

Γ
symm,i〉 for AutΓsymm(Gi,∗), 0 ≤ i ≤ d, and

〈PΓ
comp,i|R

Γ
comp,i〉 for AutΓcomp(Gi,1), 1 ≤ i ≤ d.

(For notational convenience set PΓ
comp,0 = RΓ

comp,0 = ∅.) For 0 ≤ i ≤ d, let

Pi = (Pint ∩ Aut(Gi,1)) ∪ PΓ
comp,i,

so Pi is a set of generators for Aut(Gi,1). Choose a presentation 〈Pi|Ri〉 for
Aut(Gi,1) such that Ri ⊇ RΓ

comp,i, the relators chosen (in the appendix) for

AutΓcomp(Gi,1).

Proposition 3.29. Aut(G) has a presentation 〈P|R〉, where P is given in
Definition 3.24 and R is defined in Definition 3.30 below.

Definition 3.30. Let R be the union of the following sets.

(i) RΓ
symm,i, for i = 0, . . . , d.

(ii) Ri, for i = 0, . . . , d.

(iii) The sets

Wj = {[ωja,b, p] : p ∈ Pj , 2 ≤ a < b ≤ mj}

∪ {[p, ωj1,aqω
j
1,a] : p, q ∈ Pj, 2 ≤ a ≤ mj}

∪ {[ωj1,apω
j
1,a, ω

j
1,bqω

j
1,b] : p, q ∈ Pj, 2 ≤ a < b ≤ mj},

for j = 0, . . . , d

(iv) D = {[p, q]|p ∈ Pi ∪ PΓ
symm,i, q ∈ Pj ∪ PΓ

symm,j, with 0 ≤ i < j ≤ d}.

(v) The set of relations Ri, for i=1,. . . ,11, below.

Note that if τx,y ∈ Trext then necessarily x ∈ X±1
i , for some i ∈ S and y ∈

X±1
j , where j ∈ S ∪ J with j 6= i. Similarly, if αC,x ∈ LInnext then x ∈ X±1

i ,
for some i ∈ S ∪ J and C = Γj, where j ∈ J , with j 6= i. In the relations
below all the transvections τ·,· and elementary conjugating automorphisms
α·,·, that are mentioned explicitly, belong to Trext or LInnext, respectively.
The relations are defined for all u, v, x, y, z ∈ X±1 and i, j, k, l ∈ S ∪ J , for
which the preceding conditions hold. To ease the description of conditions
placed on such automorphisms, for a ∈ ∪j∈JG(Γj) ∪X

±1
S , we define

ă =

{

j if a ∈ G(Γj)
x if a = xε, where x ∈ XS, ε = ±1

.
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For y ∈ X±1
j , where j ∈ J , we write γy(j) for the automorphism con-

jugating every element of Xj by y and fixing all elements of X\Xj. That
is

xγy(j) =

{

xy if x ∈ Xj

x if x ∈ X\Xj

,

so γy(j) is equal to the product over all connected components C of (Γj)y⊥
of the automorphisms αC,y.

R1. [τx,y, τu,v] = 1, if either

(i) u = x−1 or

(ii) x̆ 6= ŭ, x̆ 6= v̆ and y̆ 6= ŭ.

R2. [τ−1
x,y , τ

−1
u,x] = τ−1

u,y , if x̆ 6= ŭ and y̆ 6= ŭ.

R3. τ−1
x,yτy,xτx−1,y = ω0

i,jω
0
1,jιzω

0
1,j, where x ∈ X±1

0,i ⊆ X±1
S and y ∈ X±1

0,j ⊆

X±1
S , i 6= j and X0,1 = {z}. (If j = 1 the right hand side of this relation

is replaced by ω0
i,1ιz .)

R4. [αXi,x, αXj ,y] = 1, if x̆, y̆ /∈ {i, j}, i 6= j and i, j ∈ J .

R5. [αXj ,x, αXi,yαXj ,y] = 1, if i 6= j and x̆ = i.

R6. [τx,y, αXl,z] = 1, if y̆ 6= l and x̆ 6= z̆.

R7. [τ−1
x,y , α

−1
Xl,x

] = α−1
Xl,y

, if y̆ 6= l.

R8. [τx,y, αXi,zτx,z] = 1, if y̆ = i.

R9. τx,yαXi,x = αXi,xτ
−1
x−1,y

γy(i)
−1, if y̆ = i.

R10. Let x ∈ X±1
S , y, z ∈ X±1, i ∈ S ∪ J be such that y̆ = z̆ = i, with

ν(y) ∩ ν(z) = ∅ and [y, z] = 1. Let u ∈ X and j ∈ J , where i 6= j.
Then

(i) τ−1
x,u = τx,u−1;

(ii) [τx,y, τx,z] = 1;

(iii) α−1
Xj ,u

= αXj ,u−1 and

(iv) [αXj ,y, αXj ,z] = 1.

R11. Let y ∈ X±1 and θ ∈ PΓ
comp∪Pint and let y1 · · · yk be a word representing

yθ, with yi ∈ X±1.
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(i) Let x, z ∈ X±1
S such that z = xθ. Then

τx,yθ = θτz,yk · · · τz,y1,

for all τx,y ∈ Trext.

(ii) Let i, j ∈ J and Γjθ = Γi. If y̆ 6= j then, with C = V (Γj) and
D = V (Γi),

αC,yθ = θαε1D,yk · · ·α
ε1
D,y1

,

for all αC,y ∈ LInnext.

The proof of this theorem is left to the appendix.
In the case where m0 = 0, that is, no component of Γ is an isolated vertex,

the set Trext is empty and the the relations of this presentation reduce to the
union of the sets ∪di=1Rsymm,i, ∪

d
i=1Ri,W andD, given in (i)–(iv) of Definition

3.30, together with R4, R5, R10(iii), (iv) and R11(ii). In this case Aut(G)
decomposes as a semi-direct product Aut(G) = 〈LInnext〉 ⋊ 〈PΓ

comp ∪ Pint〉;
and 〈LInnext〉 is called the Fouxe-Rabinovitch kernel and denoted FR(G) (see
[12] for more details). The structure of Aut(G) is then given by the following
(special case of a) theorem from [12].

Theorem 3.31 (cf. [12], Theorem C). Suppose that no component of Γ is
an isolated vertex. Define Ḡ = G1 × · · · ×Gn and FR(G) = 〈LInnext〉. Then
FR(G) is the kernel of the canonical map from Aut(G) to Aut(Ḡ). Moreover
FR(G) has a normal series

1 < Pn−1 < · · · < P2 < FR(G)

such that, setting FRi(G) = FR(G)/Pi,

(i) FR(G) = Pi ⋊ FRi(G),

(ii) FRi(G) = FR(G1 ∗ · · · ∗Gi) and

(iii) all the Pi are finitely generated.

In the light of the results of this section we may when necessary reduce
to the study of AutΓ(G) where Γ is a connected graph. In particular, to give
an explicit presentation of Aut(G) it remains to determine the sets Ri of
Definition 3.28.
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3.5 Conjugating Automorphisms

The subgroup of basis-conjugating automorphisms, which we consider here,
plays an important role in the structure of Aut(G) and has a rich and complex
structure, even in the case of free groups: see for example [31, 26, 34, 1].
We shall consider several subgroups of the basis-conjugating automorphisms
Conj(G) = 〈LInn(G)〉 which we now define.

Let x ∈ X and, as usual, denote by Γx the full subgraph of Γ generated
by X\{x} and note that if y ∈ X lies in a connected component C of Γx
then y⊥ ⊆ C ∪ {x}.

Definition 3.32. Let x ∈ X and let C be a connected component of Γx.
Then the automorphism βC,x given by

yβC,x =

{

yx, if y ∈ C
y, otherwise

is called an aggregate conjugating automorphism. The subgroup of Conj(G)
generated by all aggregate conjugating automorphisms is denoted ConjA(G).

Definition 3.33. An element φ ∈ Conj(G) is said to be a normal conju-
gating automorphism if, for every element x ∈ X, there exists fx ∈ G such
that yφ = yfx, for all y ∈ a(x). The subgroup of all normal conjugating
automorphisms is denoted ConjN(G).

Definition 3.34. An element φ ∈ Conj(G) is said to be a vertex conjugating
automorphism if, for every element x ∈ X there exists fx ∈ G such that yφ =
yfx, for all y ∈ [x]. The subgroup of all vertex conjugating automorphisms is
denoted ConjV(G).

If Γ is compressed (Γ = Γcomp) then ConjV(G) = Conj(G).

Definition 3.35. An elementary conjugating automorphism αC,u, where
u = x±1, for some x ∈ X is called an elementary singular conjugating auto-
morphism if C = {y}, for some y ∈ X, and the set of all such elementary
conjugating automorphisms is denoted LInnS = LInnS(G). The subgroup of
Conj(G) generated by LInnS(G) is called singular and denoted ConjS(G).

Definition 3.36. Let Tr⊥ = {τxε,yδ ∈ Tr |x ∈ y⊥, ε, δ = ±1} and Tr♦ =
{τxε,yδ ∈ Tr |x /∈ y⊥, ε, δ = ±1}.

Definition 3.37. • If x and y are vertices of X such that x⊥∩y⊥ = y⊥\y
then we say that x dominates y.
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• The set of all vertices dominated by x is denoted Dom(x) = {u ∈
X | x dominates u}.

• The set of all dominated vertices is denoted Dom(Γ) = ∪x∈X Dom(x).

• For fixed y ∈ X the set of all x such that y ∈ Dom(x) and [y] 6= [x] is
the outer admissible set of y, denoted out(y).

From the definition and Lemma 2.5 (vii) it follows that x dominates y
if and only if [x, y] 6= 1 and a(x) ⊆ a(y). Thus out(y) = {x ∈ a(y) : x /∈
[y] ∪ y⊥}.

If αC,x ∈ LInnS(G) then C = {y} is a connected component of Γx⊥ so
y⊥\y ⊆ x⊥ and y /∈ x⊥. Therefore x dominates y and τy,x ∈ Tr♦ and
αC,x = τy,xτy−1,x. Hence ConjS is the subgroup of Aut(G) generated by the
set {τy,xτy−1,x|x dominates y} = LInnS.

Definition 3.38. Let x, u ∈ X such that x dominates u and let [u]\{x} =
{v1, . . . , vn}. The conjugating automorphism

α[u],x =
n
∏

i=1

α{vi},x

is called a basic collected conjugating automorphism and the set of all basic
collected conjugating automorphisms is denoted LInnC = LInnC(G). The
subgroup of Conj(G) generated by LInnC(G) is denoted ConjC = ConjC(G).

Definition 3.39. • The set of regular elementary conjugating automor-
phisms is LInnR = LInnR(G) = (LInn(G) ∩ ConjV(G))\LInnS(G).

• The set of basic vertex conjugating automorphisms is LInnV =
LInnV (G) = LInnR(G) ∪ LInnC(G).

We record some straightforward properties of these definitions in the fol-
lowing lemma.

Lemma 3.40. Let Γ be a graph.

(i) (a) If Γ has an isolated vertex then Inn = ConjN and

(b) if Γ has no isolated vertex then ConjA ≤ ConjN.

In all cases
Inn ≤ ConjA ≤ ConjV ≤ Conj

and
Inn ≤ ConjN ≤ ConjV ≤ Conj .
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(ii) LInnV ⊆ ConjV.

(iii) If φ ∈ ConjS then xφ = xfx, where ν(fx) ⊆ a(x), for all x ∈ X.

Proof. (i) It is immediate from the definitions that Inn ≤ ConjA, Inn ≤
ConjN and ConjV ≤ Conj. That ConjA ≤ ConjV follows from the fact that,
if x, y ∈ X then [y] ⊆ C ∪ x, for some connected component C of Γx. As
[x] ⊆ a(x), for all x, it follows that ConjN ≤ ConjV.

If x is an isolated vertex then a(x) = X , so for φ ∈ ConjN there exists
fx ∈ G such that yφ = yfx, for all y ∈ X . Hence, in this case ConjN = Inn.
Assume then that Γ has no isolated vertex. In this case, for all x ∈ X ,
the connected component of Γ containing x also contains a(x). To see that
ConjA ≤ ConjN suppose that u ∈ X and consider the aggregate conjugating
automorphism β = βC,x, where x ∈ X . If x ∈ u⊥\u then vβ = v, for all
v ∈ a(u), so assume that this is not the case. If x ∈ a(u) then x /∈ u⊥\u
implies that a(u) ⊆ C ′ ∪ {x}, for some component C ′ of Γx, so we may also
assume that x /∈ a(u).

Now let v and w be distinct elements of a(u)and r be any element of
u⊥\u. Then the path v, r, w does not contain x; so v and w are either both
in C or both outside C. Hence βC,x either fixes every element of a(u), or acts
as conjugation by x on every element of a(u). Thus all elements of ConjA
are normal, as required.

(ii) This follows directly from the definitions and the fact that the sets
[x] partition X , so that LInnC ⊆ ConjV.

(iii) An induction on the length of φ as a word in the generators LInnS is
used. If φ is trivial there is nothing to be proved, so assume inductively that
the result holds for words of length at most n− 1 and that φ = φ0φ1, where
φ0 has length n − 1 as a word in LInn±1

S and φ1 ∈ LInn±1
S , say φ1 = αC,z,

for some z ∈ X±1 and C = {y}. Then xφ0 = xfx , where ν(fx) ⊆ a(x), for
all x ∈ X . Let x ∈ X and u ∈ a(x)±1. Then uφ1 = u unless u = y±1.
In the latter case y ∈ a(x) so z ∈ a(y)±1 ⊆ a(x)±1 and uφ1 = uz implies
ν(uφ1) ⊆ a(x). Thus we have ν(fxφ1) ⊆ a(x). Now xφ = (xφ1)

fxφ1 and since
xφ1 = xz if and only if x = y±1 it follows that ν(xφ) ⊆ a(x), as required.

We shall use the following definition of Laurence [29].

Definition 3.41. Let φ be a conjugating automorphism and for each x ∈ X
let gx ∈ G be such that xφ = g−1

x ◦x◦ gx. The length |φ| of φ is
∑

x∈X lg(gx).

We shall prove, in Propositions 3.44 and in a subsequent paper, versions
of Theorem 3.17 (i.e. Theorem 2.2 of [29]) appropriate to ConjV and ConjN
and to do so make use of Lemma 2.5 and Lemma 2.8 (loc. cit.) which we
state here for reference.
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Lemma 3.42 ([29][Lemma 2.5 & Lemma 2.8]). Let φ be a non-trivial element
of Conj and, for each x ∈ X, let gx ∈ G such that xφ = g−1

x ◦ x ◦ gx. Then

(i) there exist x, y ∈ X and ε ∈ {±1} such that xεgx is a right divisor of
gy, and

(ii) if y, z ∈ X\x⊥ such that [y, z] = 1 and xεgx is a right divisor of gy then
xεgx is a right divisor of gz.

(As can be seen from the example φ = α−1
C,x the variable ε taking values

±1 is a necessary part of this lemma.)

Lemma 3.43. Let φ ∈ ConjV and for each y ∈ X let gy ∈ G be such that
yφ = g−1

y ◦ y ◦ gy.

(i) If [y] = [y]⊥ then gu = gy, for all u ∈ [y].

(ii) If [y] = [y]♦ and |[y]| ≥ 2 then there exists v ∈ [y] and my ∈ Z such
that gu = vmy ◦ gv, for all u ∈ [y]\{v}. Moreover if my 6= 0 then v is
the unique element of [y] with this property and, setting ε = −my/|my|,
S = [y]\{v} and α =

∏

u∈S α{u},vε we have α ∈ LInn±1
C and |αφ| < |φ|.

Proof. Since φ ∈ ConjV, for all y ∈ X , there exists fy ∈ G such that uφ = ufy ,
for all u ∈ [y], and we may choose an fy of minimal length with this property.
Fix y ∈ X . Then ufy = uφ = ugu so guf

−1
y ∈ CG(u), for all u ∈ [y]. Therefore

there are a, b, c ∈ G such that gu = a◦b, fy = c◦b and guf
−1
y = a◦c−1 ∈ CG(u).

As gu has no left divisor in CG(u) this means that a = 1 and so fy = cu ◦ gu,
for c = cu ∈ CG(u). If [y] = [y]⊥ then CG(u) = CG(y), for all u ∈ [y], so in
this case gy = fy = gu, for all u ∈ [y].

Assume then that [y] = [y]♦, with |[y]| ≥ 2, and let u, v ∈ [y], v 6= u,
so [u, v] 6= 1. Suppose v ∈ ν(fy). Then fy = cv ◦ gv = c′v ◦ v

m ◦ gv, where
c′v ∈ G(v⊥\v) and m ∈ Z. Then ufy = uv

mgv , since v⊥\v = u⊥\u. As gv has
no left divisor in CG(v) and [v, u] 6= 1 we have uv

mgv = g−1
v ◦ v−m ◦u◦ vm ◦ gv,

so gu = vm◦gv. By choice of fy we have c
′
v = 1, and if m 6= 0 then no element

u ∈ [y], u 6= v, can be a left divisor of vm ◦ gv, so the first statement of (ii) as
well as the uniqueness of v follow. Moreover v dominates u, for all u ∈ [y],
so the final statement of (ii) also holds.

Proposition 3.44. ConjV is generated by LInnV = LInnR ∪LInnC and
ConjV ∩ConjS = ConjC.

Proof. That 〈LInnV 〉 ≤ ConjV is Lemma 3.40 (ii). For the opposite inclusion
we use induction on the length of an automorphism φ in ConjV. If |φ| = 0
then φ = 1 and there is nothing to prove. Assume that |φ| > 1 and that,
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for all conjugating automorphisms ψ of shorter length, ψ ∈ ConjV implies
ψ ∈ 〈LInnV 〉. If there exists y ∈ X such that, [y] = [y]♦, |[y]| ≥ 2 and,
in the notation of Lemma 3.43, my 6= 0, then it follows from that lemma
and induction that φ ∈ 〈LInnV 〉, as claimed. Hence we assume that either
[y] = [y]⊥ or my = 0, and so gy = gu, for all u ∈ [y] and for all y ∈ X . From
Lemma 3.42 (i) there exist x, y ∈ X , ε ∈ {±1} such that xφ = g−1

x ◦ x ◦ gx,
yφ = g−1

y ◦ y ◦ gy and xεgx is a right divisor of gy. Suppose that [x, y] = 1.
Then [xφ, yφ] = 1; that is [xgx , ygy ] = 1. If gy = a ◦ xε ◦ gx, for some a ∈ G,
then this implies that [x, yax

ε

] = 1, from which it follows that [x, a] = 1.
However, in this case ygy is not reduced, a contradiction. Therefore y /∈ x⊥,
and so u /∈ x⊥, for all u ∈ [y].

Let [y] = {v1, . . . , vr} and let C1, . . . , Cs be the components of Γx⊥ con-
taining v1, . . . , vr. Then, from Lemma 3.42 (ii), xεgx is a right divisor of gc
for all c ∈ C1 ∪ · · · ∪ Cs. Let α =

∏s

i=1 αCi,x−ε. Then |αφ| < |φ|. We claim
that α ∈ ConjV. Suppose not, so there is some z ∈ X and elements u, v ∈ [z]
such that u ∈ Ci, for some i, but v /∈ ∪si=1Ci ∪ {x⊥}. This implies that
u⊥\u = v⊥\v ⊆ x⊥ and, as u ∈ Ci implies x /∈ u⊥, so x dominates u. Then
Ci = {u} so u ∈ [y] and [z] = [y] ⊆ ∪si=1Ci, a contradiction. Thus no such z
exists and α ∈ ConjV.

If s = 1 and |C1| ≥ 2 then α ∈ LInn±1
R . If s = 1 and |C1| = 1 then x

dominates y and α ∈ LInn±1
C . If s > 1 then x⊥ ⊇ y⊥\y and x dominates

every element of [y]. In this case α ∈ LInn±1
C again. Hence by induction

φ ∈ 〈LInnR ∪ LInnC〉.
Suppose then that φ ∈ ConjV ∩ConjS. The first paragraph of the argu-

ment above goes through with LInnC in place of LInnV and ConjV ∩ConjS in
place of ConjV. In the second paragraph, from Lemma 3.40 (iii) it now fol-
lows that a(x) ⊆ a(y) = a(vi); so x dominates vi, for i = 1, . . . , r. Therefore
α ∈ LInn±1

C ⊆ ConjS and, by induction on |φ| again, φ ∈ 〈LInnC〉 = ConjC,
as claimed.

To describe the structure of ConjA(G) it is convenient to work with outer
automorphisms. Denote the group Aut(G)/ Inn(G) of outer automorphisms
by Out(G) as usual and given a subgroup B of Aut(G) let B denote the
group B Inn(G)/ Inn(G). We write β̄ for the image of β ∈ Aut(G) in Out(G)
and γx for the inner automorphism of G mapping g to gx, for all g ∈ G.

Proposition 3.45. Let G = G(Γ), where Γ is a connected graph. Then
ConjA(G) is torsion-free and ConjA(G) is free Abelian and a normal subgroup
of Aut∗(G). Moreover, if c(x) is the number of connected components of Γx,
for all x ∈ X, then the ConjA(G) has rank

∑

x∈X(c(x)− 1).
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Proof. First we show that ConjA(G) is a free Abelian group. Let x ∈ X and
suppose that Γx has connected components C1, . . . , Cr. If y ∈ X , y 6= x, then
there is some i such that y⊥ ⊆ Ci ∪ {x}. Assume that Γy has components
D1, . . . , Ds. We claim that there is a j such that

(i) Dj ⊇ Ck ∪ {x}, for all k 6= i, and

(ii) Ci ⊇ Dk ∪ {y}, for all k 6= j.

To see this choose j such that x ∈ Dj , so x⊥ ⊆ Dj ∪ {y}. Let u ∈ Ck,
k 6= i. Then there exists a path in Γ from u to x and, as y ∈ Ci, this path
may be chosen so that none of its vertices is y. Hence u and x belong to
the same component of Γy. Thus, if Dj is the component of Γy containing x
then Dj ⊇ Ck ∪ {x}, for all k 6= i. This shows that the first statement of the
claim holds and the second follows by symmetry.

The subgroup ConjA(G) is generated by the images β̄C,x in Out(G) of
aggregate conjugating automorphisms βC,x, where x ranges over X and C
ranges over the connected components of Γx. Let β̄C,x and β̄D,y be generators
of ConjA(G). If x = y then these two generators commute, so we assume
x 6= y and that components Ci and Dj of Γx and Γy, respectively, have been
chosen as in the claim above; so x ∈ Dj and y ∈ Ci. If C = Ci then let
β1 = γx−1βC,x, so β̄C,x = β̄1 and β1 =

∏

Ck 6=C
β−1
Ck ,x

∈ ConjA(G). Otherwise
let β1 = βC,x. In either case uβ1 = u, for all u ∈ Ci. Similarly we may choose
a representative β2 of β̄D,y such that uβ2 = u, for all u ∈ Dj. Then, from (i)
and (ii) above, it follows that β1β2 = β2β1 and so β̄C,xβ̄D,y = β̄D,yβ̄C,x, and
ConjA(G) is Abelian as claimed.

Now, for i = 1, . . . , r, let β̄i = β̄Ci,x ∈ ConjA(G). As
∏r

i=1 β̄i = 1, given
any element φ ∈ ConjA(G) we may write φ = γ̄0γ̄1, where γ0 =

∏r−1
i=1 β

mi

i , for
some mi ∈ Z, and γ1 is a product of generators βD,y, with y 6= x. Let y ∈ Ci,
where 1 ≤ i ≤ r − 1. Then yγ0 = yx

mi and yγ1 = yh, for some h ∈ G such
that x /∈ ν(h). Also xγ1 = xg, for some g ∈ G such that x /∈ ν(g). Then

yγ0γ1 = (yh)(x
mi )g .

If w is a geodesic word representing h(xmi)g then the exponent sum |w|x of
x in w equals mi; so yγ0γ1 = v−1 ◦ y ◦ v, where |v|x = mi. For z ∈ Cr
we have zγ0γ1 = zγ1 = u−1 ◦ z ◦ u, for some u ∈ G such that |u|x = 0. If
φ = 1 then γ0γ1 ∈ Inn(G) and so it must be that m1 = · · · = mr−1 = 0.
It follows by induction, on the minimal number of generators appearing in a
word representing φ, that ConjA(G) is free Abelian of rank

∑

x∈X(c(x)− 1),
as claimed.

To see that ConjA(G) is torsion free it suffices to note that Inn(G) is
torsion free; since Inn(G) ∼= G/Z(G), which is a partially commutative group.
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Figure 3.1: ConjA(G) is non-Abelian

In fact G/Z(G) ∼= G(ΓZ), where Z is the subset of X consisting of vertices
connected to all vertices of Γ and ΓZ is the full subgraph of Γ on X\Z.
As both Inn(G) and ConjA(G) = ConjA(G)/ Inn(G) are torsion-free, so is
ConjA(G).

To show that ConjA(G) is normal in Aut∗(G) we shall show that if β̄C,x is

an arbitrary generator of ConjA(G) and φ is a generator of Aut∗(G), which
is not in ConjA(G), then φ

−1β̄C,xφ ∈ ConjA(G). We consider the cases where

φ is the image in Aut∗(G) of an inversion and a transposition separately.
Let φ = ῑz ; an inversion. Straightforward checking shows that

(a) if x = z then ι−1
z βC,xιz = β−1

C,x and

(b) if x 6= z then ι−1
z βC,xιz = βC,x.

Hence the result holds in this case.
Next suppose that φ = τ̄v,z , where v = y or y−1. If y = x then we

have x⊥\x ⊆ z⊥ which implies that Γx is connected and so βC,x is an inner
automorphism; as are all its conjugates. Thus we assume that y 6= x±1 and
Γx is not connected. Let C1 be the component of Γx containing y. Then
y⊥\y ⊆ z⊥ and y⊥ ⊆ C1 ∪ {x}. If z ∈ C2, for some component C2 of Γx
with C2 6= C1 then z⊥ ⊆ C2 ∪ {x} so y⊥\y ⊆ (C1 ∪ {x}) ∩ (C2 ∪ {x}) =
{x}; in which case y⊥ = {x, y} and x ∈ z⊥. These conditions imply that
τ−1
v,z βC,xτv,z = βC,x, so we may now assume that z ∈ C1. Assume in addition
that the connected components of Γx are C1, . . . , Cr. If C = Ci, where i 6= 1
then φ−1βC,xφ = βC,x. If C = C1 then set β1 =

∏r

i=2 β
−1
Ci,x

, so β̄C,x = β̄1 and

φ−1β1φ = β1. Thus φ−1βC,xφ = β1 = βC,x, and the result follows.

The previous proposition can not be extended to disconnected graphs or
to Conj(G)/ Inn(G), in place of ConjA(G)/ Inn(G), as the following examples
show.

Example 3.46. In the graph Γ of Figure 3.1, let C be the component of
Γx containing a and let D be the component of Γy containing a. Then
ConjA contains βC,x and βD,y and a[βC,x, βD,y] = a[x,y], while b[βC,x, βD,y] = b.
Therefore [βC,x, βD,y] /∈ Inn, so ConjA is non-Abelian.
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Example 3.47. Let Γ be the graph of Figure 3.2. Then Γx⊥ has a component
C = {c, d, e, y} and Γy⊥ has a component D = {a, b, c, x}. Let α = αC,x and
β = αD,y. The images of c and g under [α, β] are c[x,y] and g, respectively.
Therefore αβ 6= βα modulo Inn(G). In this example Inn(G) = ConjA(G), so
in general Conj(G)/ConjA(G) is also non-Abelian.
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4 The stabilisers St(K) and Stconj(K).

Definition 4.1. Define

St(K) = {φ ∈ Aut(G)|G(Y )φ = G(Y ), for all Y ∈ K}.

Then, from Lemma 2.5 (x) it follows that φ ∈ St(K) if and only if
G(a(x))φ = G(a(x)), for all x ∈ X . Also, from Remark 3.22 the subgroup of
Aut∗(G) generated by Inv and Tr is contained in St(K).

Definition 4.2. Define

Stconj(K) = {φ ∈ Aut(G)|G(Y )φ = G(Y )fY , for some fY ∈ G, for all Y ∈ K}.

We shall make use of the following fact in the proof of the next proposi-
tion.

Lemma 4.3. Let H and K be canonical parabolic subgroups of G and let
θ ∈ Aut(G) be such that Hθ = Hf and Kθ = Kg, for some f, g ∈ G. Then
there exists h ∈ H such that (H ∩K)θ = (H ∩K)h.

Proof. First suppose that f = 1 and that g has no left divisor in K. In this
case it follows from [17, Corollary 2.4], that if u ∈ K then there exist words
a, b (dependent on u) such that g = a ◦ b and ug = b−1 ◦ u ◦ b. Thus, if
w ∈ H∩Kg, then for some u ∈ K, we have w = ug = b−1 ◦u◦b. This implies
that u ∈ H ∩K, so w = ug ∈ (H ∩K)g. That is, H ∩Kg ⊆ (H ∩K)g.

Now (H ∩ K)θ ⊆ H ∩ Kg ⊆ (H ∩ K)g. Moreover, from the hypothesis
on H , K and θ, we have Hθ−1 = H and Kθ−1 = Kh, where h = (gθ−1)−1.
Applying the previous argument gives (H ∩K)θ−1 ⊆ (H ∩K)h, so H ∩K ⊆
(H ∩K)θhθ, from which we obtain (H ∩K)g ⊆ (H ∩K)θ.

In the general case let γf−1 denote conjugation by f−1 and let φ = θγf−1 .

Then Hφ = H and Kφ = Kgf−1

. Let gf−1 have minimal form gf−1 = a ◦ b,
where a ∈ K and b has no left divisor in K. Then Kφ = Kb, so from the
first case above (H ∩ K)φ = (H ∩ K)b. Hence (H ∩ K)θ = (H ∩ K)bf , as
required.

Theorem 4.4. Stconj(K) = Aut∗(G) and the group Aut(G) can be decom-
posed into the internal semi-direct product of Stconj(K) and the finite subgroup
AutΓcomp(G):

Aut(G) = Stconj(K)⋊AutΓcomp(G).

Proof. That Aut(G) = Stconj(K) ⋊ AutΓcomp(G) follows immediately from
Proposition 3.23 once the first statement has been proved. From Lemma
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4.3 and the definition of admissible sets, φ ∈ Stconj(K) if and only if
G(a(x))φ = G(a(x))fx , for some fx ∈ G, for all x ∈ X . It follows then
from Proposition 3.21 that Aut∗(G) ⊆ Stconj(K).

For the reverse inclusion note that from Proposition 3.23 every element
φ of Aut can be expressed as φ = αβ, with α ∈ Aut∗ and β ∈ AutΓcomp(G).

If φ ∈ Stconj(K) then, since Aut∗(G) ⊆ Stconj(K) we have α−1φ ∈ Stconj(K) ∩
AutΓcomp(G). However, from the definitions of Stconj(K) and AutΓcomp(G) this
means that α−1φ = β = 1, so φ = α ∈ Aut∗(G), as required.

Theorem 4.5. ConjN(G) is a normal subgroup of Stconj(K).

Proof. In the light of Lemma 3.40 we may assume that Γ has no isolated
vertex. Let φ ∈ ConjN(G) and ψ ∈ Stconj(K). Let x ∈ X and let gx and hx
be elements of G such that uφ = ugx, for all u ∈ a(x), and G(a(x))ψ−1 =
G(a(x))hx . For each u ∈ a(x) let wu be the minimal form of an element

of G such that whxu = uψ−1, so ν(wu) ⊆ a(x) and wuψ = uh
−1
x ψ. Then

uψ−1φψ = ufx , where fx = (h−1
x gx(hxφ))ψ, so fx is dependent only on x and

ψ−1φψ ∈ ConjN(G).

Lemma 4.6. (i) St(K) ∩ Conj(G) = ConjS(G).

(ii) St(K) ∩ ConjV(G) = ConjC(G).

(iii) If φ ∈ Aut(G) then φ ∈ ConjS(G) if and only if xφ = xfx where
ν(fx) ⊆ a(x), for all x ∈ X.

Proof. If α ∈ LInnS then G(a(x))α = G(a(x)), for all x ∈ X , so ConjS ⊆
St(K) ∩ Conj(G). For the converse use induction on |φ|, where φ ∈ St(K) ∩
Conj(G). If |φ| = 0 then φ = 1 and so belongs to ConjS. Assume then that
|φ| > 0. In this case, from Lemma 3.42 (i), there exist u1, u2 ∈ X such that
uiφ = uwi

i , reduced as written, for some w1, w2 ∈ G, and u1w1 is a right
divisor of w2. It follows, as in the proof of Proposition 3.44, that u1 /∈ u⊥2 .
As φ ∈ St(K) we have w2 ∈ G(a(u2)) so u1w1 ∈ G(a(u2)). In particular
u1 ∈ a(u2) so u⊥2 \u2 ⊆ u⊥1 . Therefore τu2,u1 ∈ Tr♦ and β = τu2,u1τu−1

2 ,u1
∈

ConjS ⊆ St(K) ∩ Conj(G). Therefore βφ ∈ St(K) ∩ Conj(G) and |βφ| < |φ|
so, by induction, βφ ∈ ConjS(G). This gives φ ∈ ConjS(G), as required.
From this and Lemma 3.40 (iii) the last statement of the lemma follows
immediately.

That St(K)∩ConjV(G) = ConjC(G) follows immediately from Proposition
3.44

The following question now arises naturally.

Question 4.7. Let Γ be a connected graph. Is Stconj(K) = St(K) ConjN(G)?
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It seems on first sight very plausible that the answer is “yes”, but, as the
subsequent example shows, it turns out to be “no” and in fact, in general
St(K) Conj(G) ( Stconj(K).

Example 4.8. Take G to be the group G(Γ) where Γ is the graph of Figure
4.1. Denote the components of Γv⊥ by C = {a, r, s} and D = {b, t}, let
α = αC,v, τ = τv,aτv,bτv,a−1 , and set φ = ατ .

zφ =







z, if z = b, c, t
vba, if z = v
zvb

a

if z ∈ C

The answer to question 4.7 above is “no” in this example, as φ cannot
be written as γδ, where δ ∈ Conj and γ ∈ St(K), as we shall demonstrate.
Suppose then that φ = γδ, where δ ∈ Conj and γ ∈ St(K). The set K
consists of a(v) = {a, b, c, v}, a(s) = {a, r, s}, a(t) = {b, c, t} and four more
sets a(z) = {z}, where z = a, b, c and r. As γ maps the subgroup generated
by a(a) = {a} to itself we have aγ = a±1. As aδ = ag, for some g ∈ G,
it must be that aγ = a. Similarly bγ = b, cγ = c and rγ = r. Combined
with the expression for φ above we obtain aδ = avb

a

, bδ = b and cδ = c.
As cδ = c, we have CG(c)δ = CG(cδ) = CG(c), so G(c

⊥)δ = G(c⊥): that is
G(a, b, c, v)δ = G(a, b, c, v). Moreover, as δ acts on generators by conjugation,
δ must map G(a, b, v) to itself; so vδ = vg, for some g ∈ G(a, b, v), and δ
restricts to an automorphism of G(a, b, v). Applying Lemma 3.42 to the
restriction of δ to G(a, b, v) we see that either bε or aεvba is a right divisor
of g, or that vg is a right divisor of vba, in which case g = ba. In the latter
case consider the automorphism αC,v−1δ. This maps a to ab

a

, b to itself, c
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to itself and v to vb
a

. Restricting to G(a, b, v) again gives a contradiction to
Lemma 3.42. Thus we may assume that either aεvba or bε is a right divisor
of g. Suppose that m is maximal such that aεmvba is a right divisor of g; say
g = g0 ◦ a

εmvba. If m ≥ 1 then δ0 = α−m
v,aεδ maps a to avb

a

, fixes b and c and
maps v to vg0vb

a

. As this contradicts Lemma 3.42 we have m = 0. Similarly,
if bε is a right divisor of g then we obtain a contradiction. Hence no such
conjugating automorphism δ exists.

It is also possible to show that τα /∈ Conj(G) St(K). Moreover the exam-
ple shows that replacing Stconj(K), St(K) and ConjN(G) with their canonical
images in Out(G) the equality of Question 4.7 still fails.

If there are no dominated vertices in Γ, that is Dom(Γ) = ∅, then following
holds. Here

St(L) = {φ ∈ Aut(G)|G(Y )φ = G(Y ), for all Y ∈ L},

a subgroup of Aut(G) defined originally in [19], where it was shown to be an
arithmetic group.

Lemma 4.9. Let Γ be a graph such that Dom(Γ) = ∅. Then

(i) Conj(G) ∩ St(K) = ConjS(G) = {1} and Conj(G) = ConjV(G) =
ConjN(G) is normal in Stconj(K) and

(ii) St(L) = St(K).

Proof. (i) In this case ConjC(G) = ConjS(G) = {1} so ConjV ∩ St(K) = 1.
To see that ConjN = Conj, note first that, from Lemma 2.5 (iii), it follows
that a(x) = cl(x), for all x ∈ X . Let x, y ∈ X and let C be a component
of Γy⊥ . If a(x) ∩ C 6= ∅ then, from Lemma 3.20, either a(x) ⊆ C ∪ y⊥ or
y ∈ a(x). If y ∈ a(x) = cl(x) then cl(x) ⊆ y⊥; so either a(x) ∩ C = ∅ or
a(x) ⊆ C ∪ y⊥. Therefore, either uαC,y = uy, for all u ∈ a(x), or uαC,y = u,
for all u ∈ a(x); and it follows that ConjN = Conj.

(ii) From [18, Lemma 2.4] it follows that if Y ∈ L then Y = ∪y∈Y cl(y).
Therefore, for all φ ∈ Aut(G), φ ∈ St(L) if and only if and G(cl(y))φ =
G(cl(y)), for all y ∈ Y . Given that a(x) = cl(x), for all x ∈ X , the result
follows from the remark following the definition of St(K) above.

Theorem 4.10. The following are equivalent.

(i) Dom(Γ) = ∅.

(ii) Stconj(K) = ConjN(G)⋊ St(L).

(iii) Stconj(K) = Conj(G)⋊ St(L).
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(iv) Stconj(K) = Conj(G)⋊ St(K).

Proof. In view of Lemma 4.9 it suffices to show that each of the last three
statements implies the first. To see that the second or third statement im-
plies the first, suppose Stconj(K) decomposes as the given internal semi-direct
product. If y ∈ Dom(x), for some x, y ∈ X , then τ = τy,x ∈ Stconj(K), so
τ = αλ, for some α ∈ Conj and λ ∈ St(L). Then, for z ∈ X\y we have
z = zτ = zαλ = zgλ = zλgλ, for some g ∈ G. As zλ ∈ G(cl(z)) it follows
that zλ = z ◦w, for some w ∈ G(cl(z)), so (zw)gλ = z, from which, counting
exponents of letters, we infer that w = 1. Hence gλ ∈ G(z⊥), so g ∈ G(z⊥),
which implies that zα = z, and consequently zλ = z. Now yα = yh and
zα = zλ = z, for some h ∈ G and all z ∈ X\y. As λ ∈ St(L) we have
yλ ∈ G(cl(y)) and, since zλ = z for all z 6= y, we have yλ = yεw, for some
w ∈ G(cl(y)), ε = ±1. However this means that yx = yτ = yαλ = (yεw)hλ

and, as x /∈ y⊥, the exponent sum of x on the left hand side of this expression
is zero, while on the right it is one. Hence no such x, y exist and Dom(Γ) = ∅.

To see that the fourth statement implies the first: from the fourth state-
ment it follows that Conj(G) ∩ St(K) = {1}, so LInnS = ∅ and this implies
that Dom(Γ) = ∅.

4.1 Balanced graphs

Although Dom(Γ) = ∅ is a necessary condition for the intersection of
Conj(G) and St(K) to be trivial, the class of graphs for which Stconj(K) =
Conj(G) St(K) is much wider than those without dominated vertices: it can,
as we shall show, be characterised using the following definition.

Definition 4.11. A graph Γ is called balanced if the following condition
holds for all v ∈ Dom(Γ). Either

1. out(v) = ∅, or

2. there exists a connected component Cv of Γv⊥ such that out(v) ⊆ Cv.

In this section we shall use the following extensions of the terminology
for transvections and conjugating automorphisms.

Definition 4.12. If τx,yi is a transvection, for x, yi ∈ X±1, and w = y1 · · · yn
is a geodesic word in G then τ̃x,w = τx,yn · · · τx,y1 is called a composite
transvection and the set of all composite transvections is denoted T̃r = T̃r(G).

Definition 4.13. • If L consists of a union L = ∪ri=1 of connected com-
ponents Ci of Γx⊥ then αL,xε =

∏r

i=1 αCi,xε is called an extended ele-
mentary conjugating automorphism. The set of all extended elementary
conjugating automorphisms is denoted LInnW = LInnW (G).
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• Let y ∈ X±1 and αL,y ∈ LInnW (G). If a(y)∩L = ∅ then αL,y is called a
tame elementary conjugating automorphism of G. The set of all tame
elementary conjugating automorphisms is denoted LInnT (G).

Lemma 4.14. Let x and y be elements of X such that x dominates y and
let C be a component of Γy⊥.

(i) If x /∈ C then C is a component of Γx⊥.

(ii) If x ∈ C and the components of Γx⊥ which meet C are C1, . . . , Cr then
C = [(C1 ∪ · · · ∪ Cr) ∪ x

⊥]\y⊥.

Proof. (i) If C = {u}, for some u ∈ X , then y dominates u so u⊥\u ⊆ y⊥.
In this case, if x ∈ u⊥ then x = u, since x /∈ y⊥, but this contradicts x /∈ C.
Thus x /∈ u⊥ and u⊥∩x⊥ = y⊥∩u⊥∩x⊥ = u⊥\u; so x also dominates u and
C is a component of Γx⊥. If C contains two elements u and v then there is
a path p from u to v which does not meet y⊥. If u and v belong to different
components of Γx⊥ then p meets x⊥, and as x /∈ y⊥ this means that x ∈ C, a
contradiction. Hence C ⊆ C ′, for some component C ′ of Γx⊥. As y

⊥\y ⊆ x⊥,
every component of Γx⊥ containing at least 2 elements is contained in some
component of Γy⊥ , so C = C ′.

(ii) Suppose that u ∈ Ci, for some i ∈ {1, . . . , r}. Either u belongs to y⊥

or to some component of Γy⊥ . However y
⊥\y ⊆ x⊥ and u /∈ x⊥, so u /∈ y⊥\y.

As {y} is a connected component of Γx⊥, which does not meet any component
of Γy⊥ , the vertex u 6= y. Hence u belongs to some component C ′ of Γy⊥.
If x /∈ C ′ then, from (i), C ′ = Ci, in which case C ′ = C and x ∈ C ′, a
contradiction. Hence x ∈ C ′ and C = C ′; so Ci ⊆ C, for all i. By definition
C ⊆ ∪ri=1Ci ∪ x

⊥, and the result follows.

Lemma 4.15. Let y ∈ X, v, x ∈ X±1, α = αL,y ∈ LInnW and τ = τv,x ∈ Tr.

(i) If either v ∈ L and x ∈ L ∪ y⊥ or v /∈ L, v 6= y±1 and x /∈ L then

ατ = τα.

(ii) If v ∈ L and x /∈ L ∪ y⊥ then v ∈ Dom(y) and

ατ = τv,yττ
−1
v,yα.

(iii) If v /∈ L, v 6= y±1 and x ∈ L then v ∈ Dom(y) and

ατ = τ−1
v,y ττv,yα.
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(iv) If y = v±1 and x /∈ L then L is a union of connected components of
Γx⊥ and, setting β = αL,x,

ατ =

{

τβα, if v = y

ταβ−1, if v = y−1
.

Proof. (i) If v ∈ L and x ∈ L ∪ y⊥ then

zατ = zτα =







z, if z /∈ L
(vx)y, if z = v
zy, if z ∈ L and z 6= v±1

. (4.1)

If v /∈ L, v 6= y±1 and x /∈ L then

zατ = zτα =







z, if z /∈ L, z 6= v±1

vx, if z = v
zy, if z ∈ L

. (4.2)

(ii) In this case [x, v] 6= 1, as v ∈ L and x /∈ y⊥; so x ∈ out(v). As v ∈ L
and x /∈ L ∪ y⊥, all paths from v to x must intersect y⊥, so v⊥\v ⊆ y⊥;
and v /∈ y⊥, so v ∈ Dom(y). Then zατ is as given in (4.1), and is equal to
zτv,yττ

−1
v,yα, for all z ∈ X .

(iii) If y ∈ v⊥ then, as v 6= y±1, x ∈ y⊥, a contradiction. Thus, as in the
previous case, y dominates v. Then zατ is as given in (4.2), and is equal to
zτ−1
v,y ττv,yα, for all z ∈ X .
(iv) In this case y is dominated by x so, from Lemma 4.14, L is a union

of connected components of Γx⊥. Suppose v = yε, where ε = ±1. Then

zατ =







z, if z /∈ L, z 6= v±1

vx, if z = v
z(vx)

ε

, if z ∈ L

and this is equal to zτ(βαε)ε, for all z ∈ X .

Corollary 4.16. Let y ∈ X and v ∈ X±1, v 6= y±1. Let α = αL,y ∈ LInnT
and let τ̃v,a ∈ T̃r. Then

ατ̃v,a = τ̃v,bα,

for some τ̃v,b ∈ T̃r.

Proof. Let a = a1 · · · an, where ai ∈ X±1, be a geodesic word representing a.
Then τ̃v,a = τv,an · · · τv,a1 . As v 6= y±1, ατv,ai = τ−εiv,y τv,aiτ

εi
v,yα, with εi = 0 or

±1, for all i. The corollary follows on setting b equal to the word obtained
by freely reducing

∏n

i=1 y
εiaiy

−εi.
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Corollary 4.17. Let v ∈ X, α = αL,v ∈ LInnT and let τ = τ̃v,a ∈ T̃r. Then

ατ = τβ,

for some β ∈ 〈LInnT 〉.

Proof. Let a = a1 · · · an, where ai ∈ X±1, be a geodesic word representing a.
By definition of T̃r we have ai ∈ (a(v)\{v})±1, for all i. Hence, by definition
of LInnT , ai /∈ L, for all i. Thus

ατv,ai = τv,aiαL,aiα.

Since v 6= a±1
i , v /∈ L and aj /∈ L, also

αL,aiτv,aj = τv,ajαL,ai

when i 6= j. Therefore

ατ = ατv,an · · · τv,a1
= τv,an · · · τv,a1αL,an · · ·αL,a1α

= ταL,an · · ·αL,a1α.

As α ∈ LInnT , we have a(v)∩ L = ∅ and, as τv,ai ∈ Tr, we have a(ai) ⊆ a(v)
so a(ai) ∩ L = ∅. Hence αL,ai ∈ LInnT ; and the result follows.

Proposition 4.18. Let Γ be a connected graph. Then 〈Tr∪LInnT 〉 =
〈Tr〉〈LInnT 〉.

Proof. It suffices to prove the proposition holds with T̃r in place of Tr. First
suppose that u is a word on the generators LInnT and their inverses and that
τ ∈ T̃r. It follows by a straightforward induction on |u| and Corollary 4.17
that uτ = τu′ in Stconj(K), for some word u′ over LInn±1

T .
Now let w be a word in the generators of 〈T̃r∪LInnT 〉 and their inverses.

If |w| ≤ 1 then w ∈ 〈T̃r〉〈LInnT 〉. Assume inductively that for some k ≥ 1
all words w of length at most k can be expressed as elements of 〈T̃r〉〈LInnT 〉.

Let w be a word of length k+1 (in the given generators). Then w = w0ξ,
for some word w0 of length k and generator ξ ∈ (T̃r∪LInnT )

±1. By induction
there exists words w1 ∈ 〈T̃r〉 and w2 ∈ 〈LInnT 〉 such that w0 = w1w2, in

Stconj(K). If ξ ∈ LInn±1
T the proof is complete. Otherwise ξ ∈ T̃r

±1
and,

from the first part of the proof we may rewrite w2ξ to a word ξ′w′
2, with

ξ′ ∈ T̃r
±1

and w′
2 ∈ 〈LInnT 〉, such that w2ξ = ξ′w′

2 in Stconj(K). Then
w = w1ξ

′w′
2 ∈ 〈T̃r〉〈LInnT 〉, as required.
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Theorem 4.19. Let Γ be a connected graph and G = G(Γ). Then
Stconj(K) = St(K) Conj(G) if and only if Γ is a balanced graph.

Proof. First suppose that Γ is a balanced graph. Let ι = ιy ∈ Inv, let
αL,x ∈ LInn and τ = τv,x ∈ Tr, where y ∈ X and x, v ∈ X±1. Then αι = ια
unless y = x±1, in which case αι = ια−1. Also τι = ιτ , unless y = x±1, in
which case τι = ιτ−1, or v = y±1, in which case τι = ιτv−1,x. It therefore
suffices to show that elements of 〈Tr∪LInn〉 belong to St(K) Conj(G).

First we show that, as Γ is balanced, 〈Tr∪LInn〉 is generated by
Tr∪ Inn∪LInnT . To see this suppose that y ∈ Dom(Γ), out(y) 6= ∅ and
Cy is the component of Γy⊥ meeting out(y). Let L = X\(Cy ∪ y

⊥∪ [y]), so L
is a union of connected components of Γy⊥ and αL,y ∈ LInnT . Let Dy = [y]\y
and note that, since y ∈ Dom(Γ), we have [y]\y = [y]\y⊥ so Dy is a union
of connected components of Γy⊥. If Dy = ∅ define βy = 1 and otherwise
define βy = αDy,y. Then αCy ,yβyαL,y = γy ∈ Inn(G), so the generators αCy ,y

of this form are contained in the subgroup generated by Inn, LInnT and the
set {βy ∈ LInnW : y ∈ Dom(Γ), out(y) 6= ∅}.

Now suppose that y ∈ Dom(Γ) and [y] 6= {y}. Then for all v ∈ [y], v 6= y,
we have αv,y = τv−1,yτv,y, so βy = αDy,y =

∏

v∈Dy
τv−1,yτv,y. Thus all genera-

tors βy are contained in the subgroup generated by Tr. It follows that every
word on generators Tr∪LInn and their inverses may be replaced by a word on
Tr∪ Inn∪LInnT and their inverses. Thus 〈Tr∪LInn〉 = 〈Tr∪ Inn∪LInnT 〉.
As 〈Inn〉 is normal in Aut(G) it suffices to show that elements of 〈Tr∪LInnT 〉
belong to St(K) Conj(G): and this follows from Proposition 4.18.

For the converse suppose that Γ is not a balanced graph. We shall show
that the obstruction of Example 4.8 is also manifested in Stconj(K). Indeed
the argument is a generalised version of that example. If Γ is not balanced
then there exists a vertex v ∈ Dom(Γ) such that out(v) 6= ∅ and there is
no component C of Γv⊥ such that out(v) ⊆ C. Let v be such a vertex and
let a, b ∈ out(v) such that a and b are in different components C and B,
respectively, of Γv⊥ .

Suppose that a0 ∈ out(v) and a0 <K a. Then a0 <K a implies that
a⊥\a ⊆ a⊥0 and a ∈ out(v) implies that there exists u ∈ a⊥\a such that
u /∈ v⊥. Thus a0 ∈ u⊥, so a0 ∈ C. We may therefore assume that a is K-
minimal among elements of out(v). Similarly we may assume b is K-minimal
among elements of out(v).

Define φ = αC,vτv,aτv,b so

zφ =







z, if z /∈ C ∪ {v}
vba, if z = v
zvba if z ∈ C

.

46



Assume that there exist γ ∈ St(K) and δ ∈ Conj such that φ = γδ.
Note that Z(G(a(v))) is generated by a(v)∩(v⊥\v) (which may be empty).

Let c ∈ a(v)∩(v⊥\v). Then a(c) ⊆ a(v)∩(v⊥\v) and so if z ∈ a(c) there exists
wz ∈ G(a(c)) such that zγ = wz. As Z(G(a(v))) is Abelian so is G(a(c)) and
so wz is cyclically reduced. From Lemma 2.1, there exists g ∈ G such that
zδ = zg, for all z ∈ a(c). Hence, if z ∈ a(c) then z = zφ = zγδ = wzδ = wgz ,
with wz ∈ G(a(c)), so g = 1 and wz = z. Therefore zγ = zδ = z, for all
z ∈ Z(G(a(v))).

As a is K-minimal among elements of out(v) we have a(a)\[a] ⊆ a(v) ∩
(v⊥\v). As δ ∈ Stconj(K), there exists g ∈ G such that G(a(a))δ = G(a(a))g

and we may assume that g has no left divisor in G(a(a)) or G(a(a)⊥). Let
z ∈ [a], so zφ = zvba. We have zγ ∈ G(a(a)) and so zγδ = ugz, for some
uz ∈ G(a(a)). Therefore ugz = zvba and so zvbag

−1

∈ G(a(a)). As neither v nor

b commute with a or z it follows that g = g1 ◦ vba, and then zg
−1
1 ∈ G(a(a)).

This holds for all z ∈ [a], and for any u ∈ a(a)\[a] we have uδ = u, from the
paragraph above, so [u, g] = 1. Since g has no left divisor in G(a(a)∪a(a)⊥),
[20, Corollary 2.5] implies that g1 = 1 and g = vba. Now zδ = zgz , for some

gz ∈ G, so we have zgz = wvbaz , for some wz ∈ G(a(a)). Again z = wvbag
−1
z

z ,
so z ∈ α(wz) and v, b /∈ a(a), so gz = hz ◦ vba, for some hz ∈ G(a(a)), and
wz = zhz . As elements of a(a)\[a] belong to the centre of G(a(a)), moreover
hz ∈ G[a]. Therefore, for all z ∈ [a], zδ = zhzvba, for some hz ∈ G[a].

Similarly, we have a(b)\[b] ⊆ a(v) ∩ (v⊥\v) and there exists g ∈ G such
that G(a(b))δ = G(a(b))g and g has no left divisor in G(a(b)) or G(a(b)⊥).
Let z ∈ [b], so zφ = z. We have zγ ∈ G(a(b)) and so zγδ = ugz, for some
uz ∈ G(a(b)). Therefore ugz = z and zg

−1

∈ G(a(b)). Thus [z, g] = 1, which
implies [[b], g] = 1. For any u ∈ a(b)\[b] we have uδ = u, so [u, g] = 1 and
therefore g = 1. Now zδ = zgz , for some gz ∈ G, so we have zgz = wz, for
some wz ∈ G(a(b)). Thus gz ∈ G(a(b)), and as elements of a(b)\[b] belong to
the centre of G(a(b)), moreover gz ∈ G[b]. Therefore, for all z ∈ [b], zδ = zgz ,
for some gz ∈ G[b].

Now let z ∈ v⊥\v. Then z ∈ CG(a, b) so zδ ∈ CG(a
havba) = CG(a

ha)vba ⊆
CG(a)

vba = G(a⊥)vba and zδ ∈ CG(b
gb) ⊆ CG(b) = G(b⊥). If w ∈ G(b⊥) and

w = uvba, where u ∈ G(a⊥), then a /∈ b⊥ implies a /∈ ν(w) so a, and therefore
also b and v, cancel in reducing uvba to w. Neither b nor v belong to ν(u),
hence [u, b] = [u, v] = 1 and u ∈ G(v⊥\v). Thus uvba = u. It follows that
G(a⊥)vba ∩G(b⊥) = G(v⊥\v) and so zδ ∈ G(v⊥\v), for all z ∈ v⊥\v.

As G(v⊥\v)δ = G(v⊥\v), for all z ∈ a(v), we have zδ ∈ G(a(v)), so
zδ = zgz , for some gz ∈ G(a(v)). Now δ satisfies the following (with w = vb)

1. zδ = z, for all z ∈ a(v) ∩ v⊥\v.
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2. zδ = zgz , with gz ∈ G[b], for all z ∈ [b].

3. zδ = zhzwa, with w = vb or b and hz ∈ G[a], for all z ∈ [a].

4. zδ = zgz , with gz ∈ G(a(v)), for all z ∈ a(v).

Let us call an element of Conj v-unlikely if it satisfies all of these four prop-
erties. Amongst all v-unlikely basis conjugating automorphisms choose one,
which we shall now also call δ, of minimal length. As usual, for each x ∈ X
let gx ∈ G be such that xδ = xgx .

From condition 4, a(v)δ ⊆ G(a(v)) and by direct calculation a(v)φ−1 ⊆
G(a(v)). As γ ∈ St(K) this implies a(v)φ−1γ = a(v)δ−1 ⊆ G(a(v)). Hence δ
restricts to an automorphism of G(a(v)) and, applying Lemma 3.42 to this
restriction, there exist elements x, y ∈ a(v) such that xεgx is a right divisor of
gy. Moreover, x, y ∈ out(v)∪ [v], as the centre of G(a(v)), which is pointwise
fixed by δ, is generated by a(v) ∩ (v⊥\v). Suppose that x, y ∈ C and let
D be the component of Γx⊥ containing y. As x, y ∈ a(v), Lemma 4.14 (ii)
implies that D ⊆ C. Define δ0 = α−ε

D,xδ. For all z ∈ X\D we have zδ0 = zδ
and (applying Lemma 3.42 again) |δ0| < |δ|. If a /∈ D then clearly δ0 is v-
unlikely, contrary to the choice of δ. If a ∈ D then, for all z ∈ [a]∩D, z 6= x,
it follows that xεgx is a right divisor of hzwa, which implies hz = h′zx

εh′′zwa.
Therefore zδ0 = zh

′
zh

′′
zwa, for all z ∈ ([a]∩D)\{x}, and again δ0 is v-unlikely,

a contradiction. We may therefore assume that {x, y} * C.
Assume that y /∈ C and that D is the component of Γx⊥ containing y.

Then D∩C = ∅ and gz = g′zx
εgx, for all z ∈ D. Again set δ0 = α−ε

D,xδ and δ0
is v-unlikely with |δ0| < |δ|. This contradiction shows that we may assume
y ∈ C and x /∈ C. Then C is a component of Γx⊥ and xεgx is a right divisor
of hzwa, for all z ∈ [a], as a, y ∈ C. As ν(hz) ⊆ [a] and x /∈ C this implies
x = v or b. If x = b then gb = a, a contradiction, so we have x = v, w = vb
and gv = ba.

Let δ0 = α−1
C,vδ, so zδ0 = zhzba, for z ∈ [a], and zδ0 = zδ, for z /∈ C.

Again δ0 is v-unlikely, contrary to minimality of the length of δ. In all cases
we obtain a contradiction, so there exists no v-unlikely automorphism δ,
completing the proof that φ /∈ St(K) Conj.
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5 Appendix

5.1 A presentation for the graph automorphisms of G

A presentation for AutΓcomp(G) may be constructed using the wreath product
structure, of the factors of the direct sum, in the decomposition of Proposition
3.9(ii). First we establish presentations for these factors.

Recall from Definition 3.10 that AutΓcomp(Gj,1) has generating set PΓ
comp,j.

By definition AutΓcomp(Gj,1) ∼= Aut(Ωj), and so we may construct a presenta-
tion

〈PΓ
comp,j|R

Γ
comp,j〉 for AutΓcomp(Gj,1).

Also PΓ
symm,j = {ωja,b|1 ≤ a < b ≤ mj} is a generating set for AutΓsymm(Gj,∗),

and so we may choose a presentation

〈PΓ
symm,j|R

Γ
symm,j〉 for AutΓsymm(Gj,∗).

Let

WΓ
j = {[ωja,b, p] : p ∈ PΓ

comp,j, 2 ≤ a < b ≤ mj}

∪ {[p, ωj1,aqω
j
1,a] : p, q ∈ PΓ

comp,j , 2 ≤ a ≤ mj}

∪ {[ωj1,apω
j
1,a, ω

j
1,bqω

j
1,b] : p, q ∈ PΓ

comp,j , 2 ≤ a < b ≤ mj}.

Let
PΓ
j = PΓ

comp,j ∪ PΓ
symm,j and RΓ

j = RΓ
comp,j ∪RΓ

symm,j ∪WΓ
j .

Proposition 5.1.
∏mj

k=1Aut
Γ
comp(Gj,k) ⋊ AutΓsymm(Gj,∗) has presentation

〈PΓ
j |R

Γ
j 〉.

Proof. AutΓcomp(Gj,k) ∼= AutΓcomp(Gj,1), for k = 2, . . . , mj , and AutΓsymm(Gj,∗)

acts on
∏mj

k=1Aut
Γ
comp(Gj,k) by permuting the factors. Hence the group in

question is a wreath product; and the given presentation is obtained from a
standard construction.

As AutΓcomp(G) is a direct sum of the groups of the previous lemma a
presentation can be written down immediately. In order to do so define

DΓ = {[p, q] : p ∈ PΓ
i , q ∈ PΓ

j , 1 ≤ i < j ≤ d}.

From Proposition 3.9(ii) we obtain the next corollary.

Corollary 5.2. AutGcomp(G) has presentation 〈PΓ
comp|R

Γ
comp〉, where PΓ

comp =
∪dj=1P

Γ
j and RΓ

comp = ∪dj=1R
Γ
j ∪ DΓ.

49



Proof of Theorem 3.29

Proof of Proposition 3.29. Let A be the group with presentation 〈P|R〉.
Identifying each generator of P with the elements of the same name in Aut(G)
straightforward computation shows that all the relators in R hold in Aut(G);
giving a canonical homomorphism Θ from A to Aut(G). We shall use the
presentation of Aut(G) given in [24], which we shall call 〈Q|S〉, to construct
an inverse to Θ.

To define 〈Q|S〉 the automorphisms of a free product are divided into
four types, in [24]. The first two types are the permutation and factor au-
tormorphisms. The permutation automorhpisms are those belonging to the
subgroup AutΓsymm(G). The factor automorphisms are those automorphisms
α such that α restricted to G(Γj,k) is an automorphism of G(Γj,k), for all
(j, k) ∈ S ∪ J . Let Ψ be the subgroup generated by the permutation and
factor automorphisms.

The first step in the definition of 〈Q|S〉 is to choose a presentation for Ψ.
In our case we extend the notation of Definition 3.27 to denote by Aut(Gj,k)
the subgroup of automorphisms φ such that xφ = x, if x ∈ X\Xj,k and
Xj,kφ ⊆ G(Γj,k). Then Ψ is generated by the subgroups Aut(Gj,k) and
AutΓsymm(Gj,∗), for 0 ≤ j ≤ d, 1 ≤ k ≤ mj (see Definition 3.7). For fixed
j, with 0 ≤ j ≤ d, let Ψj be the subgroup of Ψ generated by Aut(Gj,k), for
1 ≤ k ≤ mj , and AutΓsymm(Gj,∗). Then

Ψj =

mj
∏

k=1

Aut(Gj,k)⋊AutΓsymm(Gj,∗).

Let

Wj = {[ωja,b, p] : p ∈ Pj , 2 ≤ a < b ≤ mj}

∪ {[p, ωj1,aqω
j
1,a] : p, q ∈ Pj , 2 ≤ a ≤ mj}

∪ {[ωj1,apω
j
1,a, ω

j
1,bqω

j
1,b] : p, q ∈ Pj, 2 ≤ a < b ≤ mj}.

(Thus Wj ⊇ WΓ
j .) Then

Proposition 5.3. Ψj has a presentation

〈Pj ∪ PΓ
symm,j|Rj ∪RΓ

symm,j ∪Wj〉.

Proof. Aut(Gj,k) ∼= Aut(Gj,1), for k = 2, . . . , mj, and AutΓsymm(Gj,∗) acts on
∏mj

k=1Aut(Gj,k) by permuting the factors. The result follows as in the proof
of Proposition 5.1.

As Ψ =
∏d

j=0Ψj we have
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Corollary 5.4. Ψ has presentation 〈QΨ|SΨ〉 where QΨ = Pint ∪ PΓ
comp (see

Definitions 3.10 and 3.24) and SΨ = ∪dj=0(Rj ∪ RΓ
symm,j ∪Wj) ∪ D.

Proof. This follows from Proposition 5.3 as

∪dj=0(Pj ∪ PΓ
symm,j) = ∪dj=0(Pint ∩ Aut(Gj,1)) ∪ ∪dj=0P

Γ
comp,j ∪ ∪dj=0P

Γ
symm,j

= Pint ∪ PΓ
comp.

The generators Q consist of QΨ together with a set QWH of elements
of 〈LInnext ∪ Trext〉, calledWhitehead automorphisms, which we now define.
First, for a ∈ ∪j∈JG(Γj) ∪X

±1
S we define

â =

{

j if a ∈ G(Γj)
x if a = xε, where x ∈ XS, ε = ±1

.

(Thus, in comparison to the notation of page 27, if a ∈ G(Gj) or a ∈ XS

then â = ă, whereas if a ∈ X−1
S then â = ă−1.) For i, j ∈ J with i 6= j,

a ∈ G(Γj) ∪ X±1
S and x ∈ X±1

S , with x±1 6= a, extend the notation for
transvections and locally inner automorphisms to denote by

1. τx,a the automorphism τ such that xτ = xa and yτ = y, for all y ∈ X ,
y 6= x and

2. αXi,a the automorphism α such that uα = ua, for all u ∈ Xi and
zα = z, for all z ∈ X\Xi.

A Whitehead automorphism is an element of 〈LInnext ∪ Trext〉, determined
by an ordered pair (A, a), where A is a subset of J ∪ XS ∪ X−1

S and a ∈
∪j∈JG(Γj) ∪X

±1
S , satisfying the condition that

• â ∈ A and

• if a ∈ X±1
S then a−1 /∈ A.

Partitioning A\{â} as A\{â} = AJ ∪ AS, where AJ = (A ∩ J)\{â} and
AS = (A ∩X±1

S )\{a}, the pair (A, a) determines the automorphism

∏

j∈AJ

αXj ,a

∏

y∈AS

τy,a. (5.1)

The set QWH consists of all Whitehead automorphisms and the set Q of
generators of Aut(G) is the union Q = QΨ ∪ QWH.
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The relators S consist of the relations SΨ together with relators S1–S9
below, for which we need to introduce some terminology. Recall that, for
h ∈ G(Γi), where i ∈ J , we have defined γh(i) to be the automorphism
mapping g to gh, for all g ∈ G(Γi), and fixing all elements of Xj, where
j 6= i. Clearly γh(i) is a product of elements of LInnint ⊆ QΨ. We use the
same sublabelling, J, S, L, of relators as [24] and these relators apply to all
possible Whitehead automorphisms. In particular relators involving elements
of XS are defined only if m0 > 0, in Definition 3.4. Given a set W , subsets
U, V of W and x ∈ W , we write U + V , V + x and V − x to denote U ∪ V ,
V ∪ {x} and V \{x} respectively.

S1

J (A, a)−1 = (A, a−1), if â ∈ J , and

S (A, a)−1 = (A− a+ a−1, a−1), if a ∈ X±1
S .

S2 (A, a)(B, b) = (B, b)(A, a), if A ∩ B = ∅ and either

J â, b̂ ∈ J , or

S a, b ∈ X±1
S , a−1 /∈ B, b−1 /∈ A, or

L â ∈ J , b ∈ X±1
S , b−1 /∈ A.

S3 (A, a)(B, b) = (B, b)(A+B − b, a), if A ∩ B = ∅ and either

S a, b ∈ X±1
S , a−1 /∈ B, b−1 ∈ A, or

L â ∈ J , b ∈ X±1
S , b−1 ∈ A.

S4 (A, a)(B, a) = (A+B, a), if A ∩ B = {a} and a ∈ X±1
S .

S5 If â = b̂ ∈ J and A ∩B = {â} then

(i) (A, a)(B, b) = (B, b)(A, a),

(ii) (A, a)(B, a) = (A+B, a) and

(iii) (A, a)(A, b) = (A, ba).

S6 φ−1(A, a)φ = (Aφ, aφ), for all φ ∈ Ψ, with the natural interpretation of
Aφ.

S7 If a, b ∈ X±1
S , a ∈ X0,s, b ∈ X0,t, s 6= t, b ∈ A, b−1 /∈ A, v is the unique

element of X0,1 and ρ denotes the word ω0
1,sιvω

0
1,sω

0
s,t in the generators

QΨ (so ρ is the cyclic permutation (a, b−1, a−1, b)) then

(A, a)(A− a+ a−1, b) = ρ(A− b+ b−1, a).
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S8 (A, a)(B, b) = (B, b)(A, a), if A ⊆ B and b̂ /∈ A and either

J â ∈ J , or

S a ∈ X±1
S , a−1 ∈ B.

S9 If A ⊆ B, â ∈ J , b ∈ X±1
S and b ∈ A then

(A, a)(B, b) = (B, b)(B − A+ â + b−1, a−1)γa−1(â).

In fact in [24] a larger set of generators is used involving certain products of
Whitehead automorphisms. However these additional generators can all be
removed, using Tietze transformations, to give the presentation 〈Q|S〉 above
for Aut(G).

Now let Φ be the map from Q to A defined as follows. Each element of
QΨ is mapped to the element of the same name in the generators of A. For
i ∈ J and x, y ∈ X±1, with x 6= y, x /∈ X±1

i and y ∈ X±1
S , the Whitehead

automorphisms ({i, x̂}, x) and ({x̂, y}, x) map to αXi,x ∈ LInnext and τy,x ∈
Trext, respectively. To define Φ on general Whitehead automorphisms first
choose a geodesic word representing each element of G(Γi), for each i ∈ J . If
g is represented by the geodesic word a1 · · · am, with ai ∈ X±1

j , j ∈ J , then
the Whitehead automorphisms ({i, j}, g) and ({j, y}, g) map to the words
αXi,am · · ·αXi,a1 and τx,am · · · τx,a1 , over P, which we write as α̃Xi,g and τ̃x,g,
respectively, cf. Definition 4.12. (The˜ indicates that these are words over
P, in the presentation of A, as opposed to elements of Aut(G).) Finally Φ
maps the Whitehead automorphism (A, a) to

∏

j∈AJ

α̃Xj ,a

∏

y∈AS

τ̃y,a (5.2)

(cf. (5.1)). To see that this is a well defined map note that from R1, R4 and
R6 it follows that all terms of the product (5.2) commute with each other: so
the order in which the elements of A appear in this product does not affect
the image (A, a)Φ of (A, a) in A.

We claim that the natural extension of this map to Aut(G) determines a
homomorphism Φ : Aut(G) → A. Clearly all the relators of SΨ map to the
identity of A. To prove the claim we need to check that the same is true of
the relators S1–S9. First we establish a useful consequence of the relators
R10 of A.

R12. Let i, j ∈ J , with i 6= j, and let x ∈ X±1
S . If a1 · · · am = b1 · · · bn are

geodesic words in G(Γi), with ai, bi ∈ X±1
i , then

αXj ,am · · ·αXj ,a1 = αXj ,bn · · ·αXj ,b1 and τx,am · · · τx,a1 = τx,bn · · · τx,b1 ,

(where elements τ−1
x,y of Trext

−1 are written as τx,y−1).
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(Therefore the definition of Φ is in fact independent of the choice of geodesic
word for each element of G(Γi).)

We now check S1–S9 in turn to see that they become relations of A. To
fix notation let us assume that, whenever (A, a) and (B, b) are Whitehead
automorphims we have

(A, a)Φ =
∏

j∈AJ

α̃Xj ,a

∏

y∈AS

τ̃y,a and

(B, b)Φ =
∏

k∈BJ

α̃Xk,b

∏

z∈BS

τ̃z,b.

As the terms of these products are products τ̃.,. and α̃.,. of transvections and
locally inner automorphisms, it useful to establish versions of the relators
R1–R11 for such automorphisms. With this in mind consider the analogues
of these relators where generators τa,s and αXn,s, with a ∈ X±1

S , n ∈ J and
s ∈ X±1

J , are replaced by τ̃a,w and α̃Xn,w, where w may be any element of
G(Γs̆) (and the conditions on the relators remain otherwise unchanged). This
affects y and v in R1; y in R2, R7, R9 and R11; x and y in R4 and R5; y
and z in R6 and R8; and u, y and z in R10.

Denote the˜version of Rj by Rj˜. Then R1˜, R4˜, R6˜, R10˜ and R11˜
follow directly from the original versions. R2˜ follows using R2 and R1.
Similarly, R5˜ follows from R5 and R4; R7˜ follows from R7 and R6; R8˜
follows from R8 and R6. R9˜ follows from R9 and R11. Therefore we may
now assume each relator Rj is in fact the relator Rj̃ (and drop the ˜).

Given the comment following (5.2), we have in A

((A, a)Φ)−1 =
∏

j∈AJ

α̃Xj ,a−1

∏

y∈AS

τ̃y,a−1 .

Therefore the relator S1 follows from R12.
To verify relators S2 we must check that, for all j ∈ AJ , k ∈ BJ , y ∈ AS

and z ∈ BS, we have

[α̃Xj ,a, α̃Xk,b] = [τ̃y,a, α̃Xk,b] = [α̃Xj ,a, τ̃z,b] = [τ̃y,a, τ̃z,b] = 1,

in A. Assume the conditions of S2 hold. As A ∩ B = ∅ we have in all cases
j 6= k and y 6= z; so y = z−1 or y̆ 6= z̆. In case J we have a /∈ G(Γk)
and b /∈ G(Γj), so ă, b̆ /∈ {k, j}, and y, z /∈ {ă, b̆}. In case S we have again

ă, b̆ /∈ {j, k}, y 6= b, and y 6= b−1, as b−1 /∈ A, and similarly z±1 6= a. Hence
y, z /∈ {ă, b̆}. In case L we have ă, b̆ /∈ {j, k} and y, z /∈ {ă, b̆}, as before.
Therefore relationR4 implies that [α̃Xj ,a, α̃Xk,b] = 1; relationR6 implies that
[τ̃y,a, α̃Xk,b] = [α̃Xj ,a, τ̃z,b] = 1 and R1(i) & (ii) imply that [τ̃y,a, τ̃z,b] = 1.
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To see S3 holds let A′ = A\{b−1}, so (A, a)Φ = τ̃b−1,a((A
′, a)Φ). Since

S2 maps to the a relation of A, (A′, a)Φ(B, b)Φ = (B, b)Φ(A′, a)Φ and hence
it suffices to show that

τ̃b−1,a(B, b)Φ = (B, b)Φ(B − b+ a, a)Φτ̃b−1,a,

that is

τ̃b−1,a

(

∏

k∈BJ

α̃Xk ,b

∏

z∈BS

τ̃z,b

)

=

(

∏

k∈BJ

α̃Xk,b

∏

z∈BS

τ̃z,b
∏

k∈BJ

α̃Xk,a

∏

z∈BS

τ̃z,a

)

τ̃b−1,a.

From R7 and the conditions of S3 we have τ̃b−1,aα̃Xk,b = α̃Xk,bα̃Xk,aτ̃b−1,a and
using R4 we obtain

τ̃b−1,a

(

∏

k∈BJ

α̃Xk,b

)

=

(

∏

k∈BJ

α̃Xk ,b

∏

k∈BJ

α̃Xk,a

)

τ̃b−1,a.

Similarly, using R2 and R1 we have

τ̃b−1,a

(

∏

z∈BS

τ̃z,b

)

=

(

∏

z∈BS

τ̃z,b
∏

z∈BS

τ̃z,a

)

τ̃b−1,a.

Finally, R6 may be applied to give the required result.
That S4 holds after mapping to A is another consequence of the the

remarks following (5.2).
If the conditions of S5 hold then, for all y ∈ AS, j ∈ AJ and k ∈ BJ we

have ă, b̆ /∈ {j, k} and y̆ 6= b̆; so from R6, [α̃Xk,b, τ̃y,a] = 1. As also j̆ 6= k̆, R4
applies to give [α̃Xj ,a, α̃Xk,b] = 1. For all y ∈ AS and z ∈ BS we have also

y̆, z̆ /∈ {̆ b̆}, and either y = z−1 or y̆ 6= z̆. Hence, from R1, [τ̃y,a, τ̃ z, b] = 1.
Therefore S5 (i) holds after mapping to A. S5 (ii) is dealt with using the
remarks following 5.2. From the above the conditions of R6 also apply to
give [α̃Xj ,b, τ̃y,a] = 1, so S5 (iii) holds after mapping to A.

If φ is a generator of Ψ then we have, from R11, φ−1α̃Xj ,aφ = α̃Xjφ,aφ and
φ−1τ̃y,aφ = τ̃yφ,aφ. Consequently the equality of S6 holds on mapping to A.

In the case of S7, let A′
S = AS\{b}. Then we must show that

(

∏

j∈AJ

α̃Xj ,a

∏

y∈AS

τ̃y,a

)





∏

j∈AJ

α̃Xj ,b

∏

y∈A′
S

τ̃y,b



 τ̃a−1,b =

ρ





∏

j∈AJ

α̃Xj ,a

∏

y∈A′
S

τ̃y,a



 τ̃b−1,a.
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If the conditions of S7 hold then we may apply R7, R6 R4, R2 and R1 to
the left hand side to obtain

(

∏

j∈AJ

α̃Xj ,a

∏

y∈AS

τ̃y,a

)





∏

j∈AJ

α̃Xj ,b

∏

y∈A′
S

τ̃y,b



 τ̃a−1,b

=





∏

j∈AJ

α̃Xj ,a

∏

y∈A′
S

τ̃y,a



 τ̃b,a





∏

j∈AJ

α̃Xj ,b

∏

y∈A′
S

τ̃y,b



 τ̃a−1,b

=





∏

j∈AJ

α̃Xj ,b

∏

y∈A′
S

τ̃y,b



 τ̃b,aτ̃a−1,b.

From R3 we have τ̃−1
a,b τ̃b,aτ̃a−1,b = ρ, so τ̃b,aτ̃a−1,b = τ̃a,bρ, and from R11 then

τ̃b,aτ̃a−1,b = ρτ̃b−1,a. A final application of R11 then gives the required result.
If the conditions of S8 hold then A ⊆ B and from S4 and S5 it follows

that (B, b) = (A+ b̂, b)(B\A, b). In case S of S8, this means that

(B, b)(A, a) = (A+ b̂, b)(B\A, b)(A, a)

= (A+ b̂, b)(A, a)(B\A+ A− a, b), using S3,

= (A+ b̂, b)(A, a)(B − a, b).

Now S1 implies that (A, a)−1 = (A− a + a−1, a−1) and S3 implies that

({a, b̂}, b)(A− a+ a−1, a−1) = (A− a+ a−1, a−1)(A+ b̂, b),

so
(A+ b̂, b)(A, a) = (A, a)({a, b̂}, b).

Therefore

(B, b)(A, a) = (A, a)({a, b̂}, b)(B − a, b)

= (A, a)(B, b), using S4 and S5.

Thus, case S of S8 follows from S1, S3, S4 and S5. Since the latter all hold
after mapping into A, the same is true of S8, S. Hence it remains to consider
S8, J. In this case we have, from S2, that

(B, b)(A, a) = (A+ b̂)(B\A, b)(A, a)

= (A+ b̂, b)(A, a)(B\A, b).
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As S2 holds in A it therefore suffices to check that

(A+ b̂, b)(A, a) = (A, a)(A+ b̂, b)

holds after mapping to A; that is
(

α̃Xi,b

∏

j∈AJ

α̃Xj ,b

∏

y∈AJ

τ̃y,b

)(

∏

j∈AJ

α̃Xj ,a

∏

y∈AJ

τ̃y,a

)

=

(

∏

j∈AJ

α̃Xj ,a

∏

y∈AJ

τ̃y,a

)(

α̃Xi,b

∏

j∈AJ

α̃Xj ,b

∏

y∈AJ

τ̃y,b

)

,

where i = â ∈ J and b̂ /∈ A. Let w denote the left hand side of the above
expression. From R6, we have [τ̃y,b, α̃j,a] = 1, for y ∈ AS, j ∈ AJ ; from
R4, we have [α̃j1,b, α̃j2,a] = 1, for j1 6= j2 ∈ AJ ; and from R1, we have
[τ̃y1,b, τ̃y2,a] = 1, for y1 6= y2 ∈ AS. Hence

w = α̃Xi,b

∏

j∈AJ

α̃Xj ,bα̃Xj ,a

∏

y∈AJ

τ̃y,bτ̃y,a.

From R5, we have α̃Xi,bα̃Xj ,bα̃Xj ,a = α̃Xj ,aα̃Xi,bα̃Xj ,b and from R4, we have
[α̃Xi,b, α̃Xj ,b] = 1, for j ∈ AJ . Thus

w =

(

∏

j∈AJ

α̃Xj ,a

)(

∏

j∈AJ

α̃Xj ,b

)

α̃Xi,b

(

∏

y∈AJ

τ̃y,bτ̃y,a

)

.

Using R8 and R6 in a similar fashion, we finally obtain

w =

(

∏

j∈AJ

α̃Xj ,a

∏

y∈AJ

τ̃y,a

)(

α̃Xi,b

∏

j∈AJ

α̃Xj ,b

∏

y∈AJ

τ̃y,b

)

,

as required.
To establish that S9 maps to an equality in A, first consider the special

case where â ∈ J , b ∈ X±1
S , â ∈ B and A = {â, b}, in which case S9 reduces

to the statement

({â, b}, a)(B, b) = (B, b)(B − b+ b−1, a−1)γa−1(â),

which we call S9′. Then S9 follows from S9′ and S1–S8. To see this, let
(A, a) and (B, b) be such that the conditions of S9 hold. Then (A, a) =
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({â, b}, a)(A− b, a), from S5, so

(A, a)(B, b) = ({â, b}, a)(A− b, a)(B, b)

= ({â, b}, a)(B, b)(A− b, a), from S8,

= (B, b)(B − b+ b−1, a−1)γa−1(â)(A− b, a), from S9′,

= (B, b)(B − b+ b−1, a−1)(A− b, a)γa−1(â), from S6,

= (B, b)(B − A+ â+ b−1, a−1)(A− b, a−1)(A− b, a)γa−1(â),

from S5,

= (B, b)(B − A+ â+ b−1, a−1)γa−1(â), from S1.

Therefore it suffices to check that S9′ maps to an equality in A. Suppose
then that â ∈ J , b ∈ X±1

S and â ∈ B. From R7, for all k ∈ BJ − â,

τ̃b−1,aα̃k,b−1 = α̃−1
k,aα̃k,b−1 τ̃b−1,a,

so
α̃k,b−1 τ̃b−1,a = α̃k,aτ̃b−1,aα̃k,b−1

and

τ̃−1
b−1,a

α̃k,b = α̃k,bτ̃
−1
b−1,a

α̃−1
k,a

= α̃k,bα̃
−1
k,aτ̃

−1
b−1,a

,

using R10 and R6. Similarly, for all z ∈ BS, R2 implies that

τ̃b−1,aτ̃z,b−1 = τ̃−1
z,a τ̃z,b−1 τ̃b−1,a,

so, using R10 and R1, we obtain

τ̃−1
b−1,a

τ̃z,b = τ̃z,bτ̃
−1
z,a τ̃

−1
b−1,a

.

Then, setting i = â,

({i, b}, a)Φ(B, b)Φ = τ̃b,aα̃i,b

(

∏

k∈BJ−i

α̃k,b
∏

z∈BS

τ̃z,b

)

= α̃i,bτ̃
−1
b−1,a

(

∏

k∈BJ−i

α̃k,b
∏

z∈BS

τ̃z,b

)

γa(i)
−1, from R9 and R11

= α̃i,b

(

∏

k∈BJ−i

α̃k,bα̃
−1
k,a

∏

z∈BS

τ̃z,bτ̃
−1
z,a

)

τ̃−1
b−1,a

γa(i)
−1, using the above,

= α̃i,b

(

∏

k∈BJ−i

α̃k,b
∏

z∈BS

τ̃z,b

)(

∏

k∈BJ−i

α̃−1
k,a

∏

z∈BS

τ̃−1
z,a

)

τ̃−1
b−1,a

γa(i)
−1,

using R4 and R6,

= (B, b)Φ (B + b−1 + b, a−1)Φ γa(i)
−1Φ,
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as required.
This concludes the proof that substitution of qΦ for q in s, for all q ∈ Q

and all s ∈ S results in the trivial element of A; so Φ is a homomorphism.
From the definitions, ΘΦ is the identity of Aut(G) and ΦΘ is the identity of
A, so A ∼= Aut(G) and 〈P|R〉 is a presentation of Aut(G).
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