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ON GROUPS ADMITTING A WORD
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Abstract

Let m,n be positive integers, v a multilinear commutator word and
w = vm. We prove that if G is a residually finite group in which all w-
values are n-Engel, then the verbal subgroup w(G) is locally nilpotent.
We also examine the question whether this is true in the case where G
is locally graded rather than residually finite. We answer the question
affirmatively in the case where m = 1. Moreover, we show that if u is
a non-commutator word and G is a locally graded group in which all
u-values are n-Engel, then the verbal subgroup u(G) is locally nilpo-
tent.

2010 Mathematics Subject Classification: 20F45, 20E26, 20F40
Keywords: Engel elements, residually finite groups

1 Introduction

Let n be a positive integer and let x, y be elements of a group G. The
commutators [x,n y] are defined inductively by the rule

[x,0 y] = x; [x,n y] = [[x,n−1 y], y].

An element x is called a (left) Engel element if, for any g ∈ G, there exists
n = n(x, g) ≥ 1 such that [g,n x] = 1. If n can be chosen independently of g,
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then x is a (left) n-Engel element. A group G is called n-Engel if all elements
of G are n-Engel. It is a long-standing problem whether any n-Engel group
is locally nilpotent. Following Zelmanov’s solution of the restricted Burnside
problem [16, 17], Wilson proved that this is true if G is residually finite [14].
Later the second author showed that if in a residually finite group G all
commutators [x1, . . . , xk] are n-Engel, then the subgroup 〈[x1, . . . , xk] |xi ∈
G〉 is locally nilpotent [10, 11]. This suggests the following conjecture.

Conjecture. Let w be a group-word and n a positive integer. Assume that

G is a residually finite group in which all w-values are n-Engel. Then the

corresponding verbal subgroup w(G) is locally nilpotent.

Recall that if w is a group-word and G is a group, then the verbal sub-
group w(G) of G corresponding to the word w is the subgroup generated by
all w-values in G. Most of the words considered in this paper are multilinear

commutators, also known under the name of outer commutator words. These
are words that have a form of a multilinear Lie monomial, i.e., they are con-
structed by nesting commutators but using always different variables. For
example the word

[[x1, x2], [y1, y2, y5], z]

is a multilinear commutator while the Engel word

[x, y, y, y]

is not.
An important family of multilinear commutators consists of the lower

central words γk, given by

γ1 = x1, γk = [γk−1, xk] = [x1, . . . , xk], for k ≥ 2.

The corresponding verbal subgroups γk(G) are the terms of the lower central
series of G. Another distinguished sequence of outer commutator words are
the derived words δk, on 2k variables, which are defined recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

The verbal subgroup that corresponds to the word δk is the familiar kth
derived subgroup of G usually denoted by G(k).

In the present paper we will prove the following theorem.

Theorem A. Let m,n be positive integers, v a multilinear commutator

word and w = vm. If G is a residually finite group in which all w-values are
n-Engel, then the verbal subgroup w(G) is locally nilpotent.

Similarly to the aforementioned results [14, 10, 11] the proof of the above
theorem is based on the techniques that Zelmanov created in his solution
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of the restricted Burnside problem. In [4], Kim and Rhemtulla extended
Wilson’s theorem by showing that any locally graded n-Engel group is locally
nilpotent. Recall that a group is locally graded if every non-trivial finitely
generated subgroup has a proper subgroup of finite index. The class of locally
graded groups is fairly large and in particular it contains all residually finite
groups. We examine the question whether Theorem A can be extended to
the case where G is locally graded rather than residually finite. We answer
the question affirmatively in the case where w is a multilinear commutator.

Theorem B. Let n be a positive integer and w a multilinear commutator

word. If G is a locally graded group in which all w-values are n-Engel, then
the verbal subgroup w(G) is locally nilpotent.

Recall that a non-commutator word u is a word such that the sum of
the exponents of some variable involved in it is non-zero. Our next result is
about locally graded groups in which all values of a non-commutator word
are n-Engel.

Theorem C. Let n be a positive integer and u a non-commutator word. If

G is a locally graded group in which all u-values are n-Engel, then the verbal

subgroup u(G) is locally nilpotent.

In the next section we collect results of general nature that are later
used in the proofs of our main theorems. In particular we show that if G
is a group having an ascending normal series with locally soluble quotients,
then the set of all Engel elements of G coincides with the Hirsch-Plotkin
radical of G. In Section 3 we describe some important ingredients of what is
often called “Lie methods in group theory”. These are crucial in the proof
of Theorem A. Section 4 contains the proofs of the main results.

2 Preliminary results

Given subgroups X and Y of a group G, we denote by XY the smallest
subgroup of G containing X and normalized by Y .

Lemma 2.1. Let x and y be elements of a group G satisfying [x,n y
m] = 1,

for some n,m ≥ 1. Then 〈x〉〈y〉 is finitely generated.

Proof. Set X = 〈x〉〈y
m〉. Then X is finitely generated by [9, Exercise 12.3.6].

Since 〈x〉〈y〉 = 〈Xyi | i = 0, . . . ,m− 1〉, the lemma follows.

Corollary 2.2. Let y be an element of a group G and H a finitely generated

subgroup. If ym is Engel for some m ≥ 1, then H〈y〉 is finitely generated.

The following lemma is well-known. We supply the proof for the reader’s
convenience.
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Lemma 2.3. If G is a group generated by two elements x and y, then

G′ = 〈[x, y]x
rys | r, s ∈ Z〉.

Proof. Let N = 〈[x, y]x
rys | r, s ∈ Z〉. Of course, Ny and Ny−1

are both
contained in N . Moreover,

[x, y]x
rysx = [x, y]x

r+1ys[ys,x] = [ys, x]−1[x, y]x
r+1ys [ys, x].

We have [ys, x] = [y, x]y
s−1

[y, x]y
s−2

· · · [y, x], for all s ≥ 1. This implies that
Nx ≤ N . Similarly we get Nx−1

≤ N and so N is normal in G. It follows
that G′ = N , as desired.

Lemma 2.4. Let m ≥ 1 and G be a group generated by a finite subset X.

If xm is an Engel element for all x ∈ X, then G′ is finitely generated.

Proof. First assume that X = {x, y}. Then G′ = 〈[x, y]x
rys | r, s ∈ Z〉〉 by

Lemma 2.3 and we are done since (〈[x, y]〉〈x〉)〈y〉 is finitely generated by
Corollary 2.2. Now, let X = {x1, . . . , xd+1} with d ≥ 2, and suppose that
the result is true for subgroups which can be generated by at most d elements
of X. Set Gi = 〈x1, . . . , xi−1, xi+1, . . . , xd+1〉 for any i = 1, . . . , d + 1. The
induction hypothesis yields that G′

i is finitely generated and so is (G′
i)
〈xi〉,

by Corollary 2.2. Straightforward calculation shows that K = 〈(G′
i)
〈xi〉 | i =

1, . . . , d+1〉 is a normal subgroup of G and hence G′ = K. In particular, G′

is finitely generated.

Now, an easy induction gives us the following corollary.

Corollary 2.5. Let m ≥ 1 and X be a normal commutator-closed subset

of a group G. Assume that G is generated by finitely many elements of X.

If xm is Engel for all x ∈ X, then each term of the derived series of G is

finitely generated.

Proof. We know that G′ is finitely generated by Lemma 2.4. Suppose that
G(k) is finitely generated, with k ≥ 1. Since X is normal commutator-closed,
G(k) is generated by finitely many elements of X. Thus, Lemma 2.4 applies
and yields that G(k+1) is finitely generated.

In any group G there is a unique maximal normal locally nilpotent
subgroup (called the Hirsch-Plotkin radical) containing all normal locally
nilpotent subgroups of G [9, 12.1.3]. According to Gruenberg [9, 12.3.3] the
Hirsch-Plotkin radical of a soluble group is precisely the set of all Engel
elements. A straightforward corollary is that the same holds when the group
is locally soluble. Next, we extend this result to the class of groups having
an ascending normal series with locally soluble factors.

Lemma 2.6. Let G be a group generated by a set of Engel elements and H
a locally soluble normal subgroup of G. Then [H,G] is locally nilpotent.
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Proof. Let X be a set of Engel elements such that G = 〈X〉. Let N be
the subgroup generated by all subgroups of the form [H,x], where x ranges
through X. Thus N ≤ H and since [H,x] ≤ N , it follows that every x ∈ X
normalizes N . Since G = 〈X〉, we conclude that N is normal in G and
hence N = [H,G]. The proof of the lemma will be complete once it is shown
that N is locally nilpotent. We remark that each of the subgroups [H,x] is
normal in H. So it is sufficient to show that [H,x] is locally nilpotent for
any x ∈ X. Let us show first that 〈H,x〉 is locally soluble. For any x ∈ X,
let K = 〈h1, . . . , hr, x | hj ∈ H, j = 1, . . . , r〉. By Corollary 2.2, the subgroup
J = 〈hj | j = 1, . . . , r〉〈x〉 of H is finitely generated and thus soluble. As J
is normal in K, the subgroup K is soluble. In particular, 〈H,x〉 is locally
soluble. Therefore, by Gruenberg’s result, x belongs to the Hirsch-Plotkin
radical of 〈H,x〉. It follows that [H,x] is locally nilpotent, as required.

Proposition 2.7. Let G be a group with an ascending normal series whose

factors are locally soluble. Then the set of all Engel elements of G coincides

with the Hirsch-Plotkin radical of G.

Proof. It is enough to prove that the subgroup E generated by all Engel
elements of G is locally nilpotent. Clearly, E has an ascending normal series
with locally soluble factors. Then Lemma 2.6 can be applied to each factor of
the series giving a refined ascending series whose factors are locally nilpotent.
Thus, E is a group having an ascending series with locally nilpotent factors
and the claim follows from [9, Exercise 12.3.7].

3 On Lie Algebras Associated with Groups

Let L be a Lie algebra over a field. We use the left normed notation; thus if
l1, . . . , ln are elements of L then

[l1, . . . , ln] = [. . . [[l1, l2], l3], . . . , ln].

An element a ∈ L is called ad-nilpotent if there exists a positive integer n
such that

[x, a, . . . , a
︸ ︷︷ ︸

n times

] = 0

for all x ∈ L. If n is the least integer with the above property then we
say that a is ad-nilpotent of index n. Let X be any subset of L. By a
commutator in elements of X we mean any element of L that could be
obtained from elements of X by repeated operation of commutation with
an arbitrary system of brackets including the elements of X. Denote by
F the free Lie algebra over the same field as L on countably many free
generators x1, x2, . . . . Let f = f(x1, . . . , xn) be a non-zero element of F .
The algebra L is said to satisfy the identity f ≡ 0 if f(a1, . . . , an) = 0
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for any a1, . . . , an ∈ L. In this case we say that L is PI. We are now in
position to quote a theorem of Zelmanov [18] which has numerous important
applications to group theory.

Theorem 3.1. Let L be a Lie algebra generated by finitely many elements

a1, a2, . . . , am such that all commutators in a1, a2, . . . , am are ad-nilpotent.

If L is PI, then it is nilpotent.

Let G be a group. Given a prime p, a Lie algebra can be associated
with the group G as follows. We denote by Di = Di(G) the ith dimension
subgroup of G in characteristic p (see for example [3, Chap. 8]). These
subgroups form a central series of G known as the Zassenhaus-Jennings-
Lazard series. Set L(G) = ⊕Di/Di+1. Then L(G) can naturally be viewed as
a Lie algebra over the field Fp with p elements. For an element x ∈ Di−Di+1

we denote by x̃ the element xDi+1 ∈ L(G).

Lemma 3.2 (Lazard, [5]). For any x ∈ G we have (ad x̃)p = ad (x̃p).

An important criterion for a Lie algebra to be PI is the following.

Lemma 3.3 (Wilson, Zelmanov, [15]). Let G be any group satisfying a group

law. Then L(G) is PI.

Let Lp(G) be the subalgebra of L(G) generated by D1/D2. Important
information about the group G can very often be deduced from nilpotency
of the Lie algebra Lp(G). In particular, we will require the following result,
due to Lazard [6].

Theorem 3.4. If G is a finitely generated pro-p group such that Lp(G) is

nilpotent, then G is p-adic analytic.

4 Proofs of the main results

The next lemma is taken from [12].

Lemma 4.1. Let G be a group and v a multilinear commutator of weight

k ≥ 1. Then every δk-value in G is a v-value.

The following result is a straightforward corollary of Lemma 2.1 in [14].

Lemma 4.2. Let G be a finitely generated residually finite-nilpotent group.

For each prime p, let Rp be the intersection of all normal subgroups of G of

finite p-power index. If G/Rp is nilpotent for each p, then G is nilpotent.

Now we will deal with Theorem A: Let m,n be positive integers, v a

multilinear commutator word and w = vm. If G is a residually finite group

in which all w-values are n-Engel, then the verbal subgroup w(G) is locally

nilpotent.
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Proposition 4.3. Let G satisfy the hypothesis of Theorem A and assume

additionally that G is generated by finitely many Engel elements. Then G is

nilpotent.

Proof. Since finite groups generated by Engel elements are nilpotent [9,
12.3.7], it follows that G is residually nilpotent. By Lemma 4.2, we can
assume that G is residually-p for some prime p (i.e., for any non-trivial el-
ement x ∈ G there exists a normal subgroup N ≤ G such that x /∈ N
and G/N is a finite p-group). Also, by Lemma 4.1, there exists k such that
every δk-value is a v-value in G. Choose arbitrarily finitely many δk-values
h1, . . . , hd and set H = 〈h1, . . . , hd〉. Notice that if h is an arbitrary commu-
tator in h1, h2, . . . , hd with some system of brackets, then h = δk(x1, . . . , x2k)
for suitably chosen x1, x2, . . . , x2k ∈ G. Let L = Lp(H) be the Lie algebra
associated with the Zassenhaus-Jennings-Lazard series

H = D1 ≥ D2 ≥ · · ·

of H. Then L is generated by h̃i = hiD2, i = 1, 2, . . . , d. Let h̃ be any Lie-
commutator in h̃i and h be the group-commutator in hi having the same
system of brackets as h̃. By Lemma 3.2, we have (ad h̃)m = ad (h̃m). Since
hm is n-Engel, h̃ is ad-nilpotent of index at most mn. Further, H satisfies
the identity

[y,n δ
m
k (x1, . . . , x2k)] ≡ 1

and therefore, by Lemma 3.3, L satisfies some non-trivial polynomial iden-
tity. Now Theorem 3.1 implies that L is nilpotent. Let Ĥ denote the pro-p
completion of H. Then Lp(Ĥ) = L is nilpotent and Ĥ is a p-adic analytic
by Theorem 3.4. Hence, H has a faithful linear representation over the field
of p-adic numbers. Clearly H cannot have a free subgroup of rank 2 and
so, by Tits’ Alternative [13], H has a soluble subgroup of finite index. It
follows that H is soluble ([1, Exercise 9, p. 129]). Since h1, . . . , hd have been
chosen arbitrarily, we now conclude that G(k) is locally soluble. Thus, by
Proposition 2.7, G is nilpotent.

Proof of Theorem A. Let H be a finitely generated subgroup of w(G).
Clearly, there exist finitely many w-values w1, . . . , wd such thatH ≤ 〈w1, . . . ,
wd〉. Set W = 〈w1, . . . , wd〉. Applying Proposition 4.3 to W , we obtain that
W is nilpotent and this yields that w(G) is locally nilpotent.

Our attempts to extend Theorem A to the class of locally graded groups
so far have been successful only in the case where w is a multilinear com-
mutator, that is, m = 1.

Theorem B. Let n be a positive integer and w a multilinear commutator

word. If G is a locally graded group in which all w-values are n-Engel, then
the verbal subgroup w(G) is locally nilpotent.
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Proof. By Lemma 4.1 there exists k such that every δk-value is a w-value.
Denote by X the set of all δk-values in G. Choose finitely many δk-values
h1, . . . , hd and set H = 〈h1, . . . , hd〉. Let R be the intersection of all sub-
groups of H with finite index and suppose R 6= 1. The quotient H/R is resid-
ually finite and, by Proposition 4.3, it is nilpotent. It follows that H(s) ≤ R
for some s. Now, H/H(s+1) is nilpotent, since this is a soluble group gener-
ated by finitely many Engel elements [9, 12.3.3]. In particular, H/H(s+1) is
residually finite. Hence H(s) = H(s+1). On the other hand, X ∩H is a nor-
mal commutator-closed subset of H and therefore, by Corollary 2.5, H(s) is
finitely generated. Since R/H(s) is a subgroup of the finitely generated nilpo-
tent group G/H(s), we conclude that R/H(s) is finitely generated as well.
Thus R is finitely generated, say by r elements. Since G is locally graded,
there exists a proper subgroup of R with finite index t. By [2, Theorem 7.2.9]
the number of subgroups of index t in R is finite and even bounded in terms
of r and t only. This implies that the intersection N of all subgroups of R
with index t has finite index in R. Clearly, N is characteristic and R/N is
finite. We deduce that H/N satisfies the maximal condition. But H/N is
generated by finitely many Engel elements and so it is nilpotent [9, 12.3.7].
Thus H(s+1) is a proper subgroup of H(s), a contradiction. This means that
H is residually finite and, by Proposition 4.3, nilpotent. We have shown that
every subgroup generated by finitely many δk-values is nilpotent and so G(k)

is locally nilpotent. By Proposition 2.7 w(G) is locally nilpotent.

Clearly, a quotient of a locally graded group need not be locally graded.
We will now quote a useful result, due to Longobardi, Maj, Smith [7], that
provides a sufficient condition for a quotient to be locally graded.

Lemma 4.4. Let G be a locally graded group and N a normal locally nilpo-

tent subgroup of G. Then G/N is locally graded.

Remind the reader that, by Zelmanov’s solution of the restricted Burn-
side problem, locally graded groups of finite exponent are locally finite (see
for example [8, Theorem 1]).

Theorem C. Let n be a positive integer and u a non-commutator word. If

G is a locally graded group in which all u-values are n-Engel, then the verbal

subgroup u(G) is locally nilpotent.

Proof. Let u = u(x1, . . . , xr) be a non-commutator word. We may assume
that the sum of the exponents of x1 is m 6= 0. Substitute 1 for x2, . . . , xr and
an arbitrary element g ∈ G for x1. We see that gm is a u-value for every g ∈
G. Thus everymth power is n-Engel in G. Let us show first that Gm is locally
nilpotent. Choose arbitrarily finitely many elements gm1 , . . . , gmd and set H =
〈gm1 , . . . , gmd 〉. We need to show that H is nilpotent. Let R be the intersection
of all subgroups of H with finite index and suppose R 6= 1. Then H/R is
residually finite and, by Proposition 4.3, it is nilpotent. In particular, H(s) ≤
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R for some s. Moreover H(s) is finitely generated by Corollary 2.5. Arguing
as in the proof of Theorem B, we get a contradiction. Thus H is residually
finite and, by Proposition 4.3, nilpotent. Hence, Gm is locally nilpotent. By
Lemma 4.4, it follows that G/Gm is a locally graded group of finite exponent.
Therefore G/Gm is locally finite. This yields that G is locally (nilpotent-
by-finite). Finally, consider a subgroup U of G generated by finitely many
u-values. Then U has a nilpotent normal subgroup N of finite index and, by
the hypothesis, each u-value is Engel. So U/N is nilpotent [9, 12.3.7] and,
consequently, U is soluble. We deduce that U is nilpotent [9, 12.3.3] and
u(G) is locally nilpotent.
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