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Abstract

In this paper we survey recent developments in the theory of groups

acting on Λ-trees. We are trying to unify all significant methods and tech-

niques, both classical and recently developed, in an attempt to present

various faces of the theory and to show how these methods can be used to

solve major problems about finitely presented Λ-free groups. Besides sur-

veying results known up to date we draw many new corollaries concerning

structural and algorithmic properties of such groups.
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1 Introduction

In 2013 the theory of group actions on Λ-trees will be half a century old. There
are three stages in the development of the theory: the initial period when the
basic concepts, methods and open problem were laid down; the period of con-
centration on actions on R-trees; and the recent phase when the focus is mostly
on non-Archimedean actions.

The initial stage takes its roots in several, seemingly independent, areas of
group theory and topology: the study of abstract length functions in groups,
Bass-Serre theory of actions on simplicial trees, Stallings pregroups and free
constructions, and the theory of R-trees with its connections with Thurston’s
Geometrisation Theorem.

In 1963 Lyndon introduced groups G equipped with an abstract length func-
tion l : G→ Z as a tool to carry over Nielsen cancellation theory from free groups
and free products, to a much more general setting [77]. The main idea was to
measure the amount of cancellation that occurs in passing to the reduced form
of a product of two reduced forms in a free group (or a free product of groups)
and describe it in an abstract axiomatic way. To this end Lyndon introduced
a new quantity c(g, h) = 1

2 (l(g) + l(h) − l(g−1h) for elements g, h ∈ G (to be
precise, he considered (c(h−1, g−1), which gives equivalent axioms), thus antic-
ipating the Gromov product in metric spaces, and gave some rather natural
and simple axioms on the length function l, which now could be interpreted as
axioms of 0-hyperbolic Λ-metric spaces. He completely described groups with
free Z-valued length functions (such length functions correspond to actions on
simplicial trees without fixed points and edge inversion), as subgroups of ambi-
ent free groups with induced length. Some initial results for groups with length
functions in Z or R were obtained in 1970s (see [51, 21, 52, 53]), which led to
the general notion of a Lyndon length function l : G → Λ with values in an
ordered abelian group Λ. We refer to the book [78] on the early history of the
subject.

At about the same time Serre laid down fundamentals of the theory of groups
acting on simplicial trees. Serre and Bass described the structure of such groups
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via fundamental groups of graphs of groups. In the following decade their ap-
proach unified several geometric and combinatorial methods of group theory
into a unique tool, known today as Bass-Serre theory. This was one of the
major achievements of combinatorial group theory in 1970s. We refer here to
Serre’s seminal book [120] and more recent books (for example, in [34]).

On the other hand, in 1960s Stallings introduced a notion of a pregroup P
and its universal group U(P ) [123]. Pregroups P provide a very convenient tool
to describe reduced forms of elements of their universal groups U(P ). Precise
connections between pregroups and free constructions (the fundamental groups
of graphs of groups) were established by Rimlinger in [111, 110]. Recently this
technique was invaluable in dealing with infinite non-Archimedean words (see
below).

The first definition of an R-tree appeared in the work of Tits [125] in con-
nection with Bruhat-Tits buildings. One year earlier Chiswell [21] came up
with a crucial construction that shows that a group G with a Lyndon length
function l : G → R has a natural action by isometries on an R-tree (even
though he did not refer to the space as an R-tree), and vice versa. This was
an important result which showed that free (no fixed points) group actions and
free Lyndon length functions are just two equivalent languages describing es-
sentially the same objects. We refer to the book [24] for a detailed discussion
on the subject. In 1984, in their very influential paper [84], Morgan and Shalen
linked group actions on R-trees with Thurston’s Geometrization Theorem. In
the same paper they introduced Λ-trees for an arbitrary ordered abelian group Λ
and established a general form of Chiswell’s construction. Thus, it became clear
that abstract length functions with values in Λ and group actions on Λ-trees
are just two equivalent approaches to the same realm of group theory questions.
In the subsequent papers Morgan and Shalen, and Culler and Morgan further
developed the theory of R-trees and group actions [84, 29, 85, 86], we refer to
surveys [122, 121, 83] for more details and a discussion on these developments.

Alperin and Bass [1] developed much of the initial framework of the theory
of group actions on Λ-trees and stated the fundamental research goal (see also
[4]):

Fundamental Problem: Find the group-theoretic information carried by
a Λ-tree action, analogous to the Bass-Serre theory for the case Λ = Z.

It is not surprising, from the view-point of Bass-Serre theory, that the fol-
lowing problem (from [1]) became of crucial importance:

The Main Problem: Describe groups acting freely on Λ-trees.

Following Bass [4] we refer to such groups as Λ-free groups. They are the
main object of this survey.

Recall that Lyndon himself completely characterized arbitrary Z-free groups
[77]. He showed also that free products of subgroups of R are R-free and con-
jectured (in the language of length functions) that the converse is also true.
It was shown by Aperin and Moss [2], and by Promislow [103] that there are
infinitely generated R-free groups whose length functions are not induced by
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the natural ones on free products of subgroups of R. Furthermore, examples
by Dunwoody[39] and Zastrow [130] show that there are infinitely generated R-
free groups that cannot be decomposed as free products of surface groups and
subgroups of R (see Section 12.1).

It became clear that infinitely generated Λ-free groups are so diverse that
any reasonable description of them was (and still is) out of reach. The problem
was modified by imposing some natural restrictions:

The Main Problem (Restricted): Describe finitely generated (finitely
presented) groups acting freely on Λ-trees.

This ends the first and starts the second stage of the development of the
theory of group actions, where the main effort is focused on group actions on
R-trees.

In 1991 Morgan and Shalen [87] proved that all surface groups (with excep-
tion of non-orientable ones of genus 1, 2 and 3) are R-free. In the same paper
they conjectured the following, thus enlarging the original Lyndon’s statement.

The Morgan-Shalen Conjecture: Show that finitely generated R-free
groups are free products of free abelian groups of finite rank and non-exceptional
surface groups.

This conjecture turned out to be extremely influential and in the years after
much of the research in this area was devoted to proving it. In 1991 Rips came
out with the idea of a solution of the conjecture in the affirmative. Gaboriau,
Levitt and Paulin [40], and independently Bestvina and Feighn [14] published
the solution. The final result that completely characterizes finitely generated R-
free groups is now known as Rips Theorem. Notice, that free actions on R-trees
cover all free Archimedean actions, since every group acting freely on a Λ-tree
for an Archimedean ordered abelian group Λ also acts freely on an R-tree.

In fact, Bestvina and Feighn proved much more, they showed that if a finitely
presented group G admits a nontrivial, stable and minimal action on an R-tree
then it splits into a free construction of a special type. The key ingredient of
their proof is what they called a ”Rips machine”, which is a geometric version of
the Makanin process (algorithm) developed for solving equations in free groups
[80, 105]. The machine (either Rips or Makanin) takes a band complex or a
generalized equation related to the action as an input and then outputs again
a band complex or a generalized equation but in a very specific form, which
allows one to see the splitting of the group. Nowadays, as we will see below,
there are many different variations of the Makanin-Razborov processes (besides
the Rips machine), we will refer to them in all their incarnations as Machines
or Elimination Processes. In fact, there is no any published description of the
original Rips machine, and the machine described by Bestvina and Feighn in
[14] (we refer to it as Bestvina-Feighn machine) seems much more powerful then
was envisioned by Rips. The range of applications of Bestvina-Feighn machines
is quite broad due to a particular construction introduced by Bestvina [12] and
Paulin [101]. This construction shows how a sequence of isometric actions of a
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group G on some “negatively curved spaces” gives rise to an isometric action
of G on the “limit space” (in the Gromov-Hausdorff topology) of the sequence,
which is an R-tree, so the machine applies. We refer to Bestvina’s preprint [13]
for various applications of Rips-Bestvina-Feighn machine.

There are other interesting results on non-free actions on R-trees which we
do not discuss here, since our main focus is on Λ-free groups, but there is one
which we would like to mention now. In [44] Gromov introduced a notion of
an asymptotic cone of a metric space. He showed that an asymptotic cone of
a hyperbolic group G is an R-tree, on which G acts non-trivially. This gives a
powerful tool to study hyperbolic groups.

In 1991 Bass in his pioneering work [4] made inroads into the realm of non-
Archimedean trees (Λ-trees with non-Archimedean Λ) and obtained some struc-
tural results on λ-free groups for specific Λ, thus began the third stage in study
of Λ-trees. To explain, let Λ0 be an ordered abelian group and Λ = Λ0⊕Z with
the right lexicographical order. It was shown in [4] that if G is Λ-free then G
is the fundamental group of a graph of groups where the vertex groups are Λ0-
free, the edge groups are either trivial or maximal abelian in the adjacent vertex
groups, and some other “compatibility conditions” are satisfied. In particular,
since Zn = Zn−1 ⊕ Z one gets by induction on n structural results on Zn-free
groups. This result gave a standard on how to describe algebraic structure of
groups acting freely on Λ-trees.

In 1995 the first two authors of this survey together with Remeslennikov
began a detailed study of Zn-free groups. The starting point was to show that
every finitely generated fully residually free group G is Zn-free for a suitable
n. These groups play an important part in several areas of group theory, where
they occur under different names: freely discriminated groups (see, for example,
[95, 91, 7]) E-free groups (that is, groups with the same existential theory as
free non-abelian groups [108]), limit groups in terms of Sela [117], and limits of
free groups in the Gromov-Hausdorff topology (see [20]). Though the first two
names (for the same definition) occurred much earlier, we use here the term
“limit” as a much shorter one. We describe the main points of our approach to
limit groups here since these techniques became the corner stones for the further
development of the general theory of groups acting on Λ-trees and hyperbolic
Λ-metric spaces.

In 1960 Lyndon introduced a free Z[t]-exponential group F Z[t], where F
is a free non-abelian group, and showed that F Z[t] is freely discriminated by
F , so all finitely generated subgroups of F Z[t] are limit groups [76]. In 1995
Myasnikov and Remeslennikov constructed a free Lyndon length function on
F Z[t] with values in Zω (the direct sum of countably many copies of Z with
the lexicographical order) [89]. To do this we proved first that F Z[t] is the
union of a countable chain of subgroups F = G1 < G2 · · · < Gn < · · · , where
each group Gn+1 is obtained from Gn by an extension of a centralizer [88,
90]; and then showed that if Gn is a Zn-free group then Gn+1 is Zn+1-free
[89]. Two years later Kharlampovich and Myasnikov showed that every finitely
generated fully residually free group embeds into Gn (from the sequence above)
for a suitable n, hence every limit groups is a Zn-free group for a suitable n
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[59, 64]. These results became crucial in the study of limit groups and their
solution to the Tarski problems [62]. A direct application of Bass-Serre theory
to subgroups of the groups Gn gives an algebraic structure of limits groups as
the fundamental groups of graphs of groups induced from the corresponding
graphs for Gn. In [59, 64] a new version of Makanin-Razborov process was
introduced, termed the Elimination process, a.k.a. a general Z-machine (it
works over arbitrary finite sets of usual words in a finite alphabet, that is,
Z-words). Notice that we will further denote systems of equations by S = 1
meaning that S is a set of words, and each of these words is equal to the
identity. Application of such a machine to a finite system S = 1 of equations
(with constants) over F results in finitely many systems U1 = 1, . . . , Un = 1 over
F such that the solution set of S = 1 is the union (up to a change of coordinates)
of the solution sets of Ui, i ∈ [1, n] and each Ui is given in the standard NTQ
(non-degenerate quasi-quadratic) form [64]. This is a precise analog of the
elimination and parametrization theorems from the classical algebraic geometry,
thus Z-machines play the role of the classical resolution method in the case
of algebraic geometry over free groups [91, 7, 59, 64]. At the level of groups
(here limit groups occur as the coordinate groups of systems of equations in
F ) Z-machines give embedings of limit groups into the coordinate groups of
NTQs, which were later also called fully residually free towers [117]. There are
very interesting corollaries from this result along for limit groups (see Section
9.7 for details). Observe, that these Z-machines (accordingly modified) were
successfully used for other classes of groups in similar situations. For example,
Kazachkov and Casals-Ruiz used it to solve equations in free product of groups
[19] and right-angled Artin groups [18].

To study algorithmic properties of limit groups Kharlampovich and Myas-
nikov developed an elimination process (a Zn-machine) which works for arbi-
trary free Lyndon length functions with values in Zn (see [61]), thus giving
a further generalization of the original Z-machines mentioned above. These
Zn-machines can be described in several (equivalent) forms: algorithmic, geo-
metric, group-theoretic, or as dynamical systems. In the group-theoretic lan-
guage the machines provide various splittings of a group as the fundamental
group of a graph of groups with abelian edge groups (abelian splittings). Since
Zn-machines (unlike R-machines mentioned above) are algorithms - one can
use them in solving algorithmic problems. A direct application of such ma-
chines (precisely like in the case of free groups) allows one to solve arbitrary
equations and describe their solution sets in arbitrary limit groups [61]. In
[61] Kharlampovich and Myasnikov used these machines to effectively construct
JSJ-decompositions of limit groups given by their finite presentations (or almost
any other effective way), which allowed them together with Bumagin to solve
the isomorphism problem for limit groups (see [17]). Later these results (fol-
lowing basically the same line of argument) were generalized to arbitrary toral
relatively hyperbolic groups [31].

Zn-machines, while working with Zn-free groups in fact manipulate with the
so-called infinite non-Archimedean words, in this case Zn-words (so the ordinary
words are just Z-words). Discovery of non-Archimedean words turned out to be
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one of the major recent developments in the theory of group actions, it is worth-
while to say a few words about it here. In [92] Myasnikov, Remeslennikov and
Serbin introduced infinite Λ-words for arbitrary Λ and showed that groups ad-
mitting faithful representations by Λ-words act freely on Λ-trees, while Chiswell
proved the converse [25]. This gives another, equivalent, approach to free actions
on Λ-trees, so now one can replace the axiomatic viewpoint of length functions
along with many geometric arguments coming from Λ-trees by the standard
combinatorics on Λ-words. In particular, this approach allows one to naturally
generalize powerful techniques of Nielsen’s method, Stallings’ graph approach to
subgroups, and Makanin-Razborov type of elimination processes (the machines)
from free groups to Λ-free groups (see [92, 93, 61, 62, 63, 67, 35, 69, 68, 97, 98,
119]). In the case when Λ is equal to either Zn or Z∞ all these techniques are
effective, so, for example, one can solve many algorithmic problems for limit
groups or Zn-free groups using these methods.

The technique of infinite Zn-words allowed us to solve many algorithmic
problems for limit groups precisely in the same manner as it was done for free
groups by the standard Stallings graph techniques (we refer to [56] for a survey
on the related results in free groups). We discuss these results in Section 9.7.

In our approach to limit groups (or arbitrary Zn-groups) one more impor-
tant concept transpired. To carry over Nielsen cancellation argument or apply
the machines the length function (or the action) has to satisfy some natural
“completeness” conditions. To this end, given a group G acting on a Λ-tree Γ,
we say that the action is regular with respect to x ∈ Γ (see [67] for details) if for
any g, h ∈ G there exists f ∈ G such that [x, fx] = [x, gx] ∩ [x, hx]. In fact, the
definition above does not depend on x and there exist equivalent formulations
for length functions and Λ-words (see [103, 92]). Roughly speaking, regularity
of action implies that all branch-points of Γ belong to the same G-orbit and
it tells a lot about the structure of G in the case of free actions (see [68, 67]
or Section 8.2). In the language of Λ-words this condition means that for any
given two infinite words representing elements in the group G their common
longest initial segment (which always exists) represents an element in G. The
importance of the regularity condition was not recognized earlier simply because
in the case when Λ is Z, or R every Λ-free group has a regular action. The reg-
ularity axiom appeared first in [89, 92] as a tool to deal with length functions
in Zn (with respect to the lexicographic order). The outcome of this research is
that if a finitely generated group G has a regular free action on a Zn-tree, then
the Nielsen method and Zn-machines work in G. This, as expected, implies a
lot of interesting results for Zn-free groups.

In the paper [67] we described finitely generated groups which admit free
regular actions on Zn-trees, we call such groups finitely generated complete Zn-
free groups.

Suppose Gi is an Zni -free group, i = 1, 2 with a maximal abelian subgroups
A 6 G1, B 6 G2 such that

(a) A and B are cyclically reduced with respect to the corresponding embed-
dings of G1 and G2 into infinite words,
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(b) there exists an isomorphism φ : A → B such that |φ(a)| = |a| for any
a ∈ A.

Then we call the amalgamated free product

〈G1, G2 | A φ
= B〉

the length-preserving amalgam of G1 and G2.
Given a Zn-free group H and non-conjugate maximal abelian subgroups

A,B 6 H such that

(a) A and B are cyclically reduced with respect to the embedding of H into
infinite words,

(b) there exists an isomorphism φ : A→ B such that |φ(a)| = |a| and a is not
conjugate to φ(a)−1 in H for any a ∈ A.

then we call the HNN extension

〈H, t | t−1At = B〉

the length-preserving separated HNN extension of H .
Given a Zn-free group H and a maximal abelian subgroup A, we call the

HNN extension
〈H, t | t−1At = A〉

(here the isomorphism φ : A→ A is identical) the centralizer extension of H .
The following result describes complete Zn-free groups.

Theorem 50. A finitely generated group G is complete Zn-free if and only if
it can be obtained from free groups by finitely many length-preserving separated
HNN extensions and centralizer extensions.

Notice that this is ”if and only if” characterization of finitely generated
complete Zn-free groups.

The following principle theorem allows one to transfer results from complete
Zn-free groups to arbitrary Zn-free groups.

Theorem 49. [70] Every finitely generated Zn-free group G has a length-
preserving embedding into a finitely generated complete Zn-free group H.

As in the case of limit groups, Bass-Serre theory, applied to subgroups
of complete Zn-free groups, immediately gives algebraic structure of arbitrary
finitely generated Zn-free groups:

Theorem 54. A finitely generated group G is Zn-free if and only if it can
be obtained from free groups by a finite sequence of length-preserving amalgams,
length-preserving separated HNN extensions, and centralizer extensions.

Again, we would like to emphasize here that the description above is “if and
only if”.
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Using these techniques we generalized many algorithmic results from limit
groups to arbitrary finitely generated Zn-free groups. We refer to the Section
9.7 for details.

In 2004 Guirardel described the structure of finitely generatedRn-free groups
in a similar fashion [49] (see Theorem 56 in Section 12.2). Since Zn-free groups
are also Rn-free this, of course, generalizes the Bass’ result on Zn-free groups.
Observe that given description of the algebraic structure of finitely generated
Rn-free groups does not “characterize” such groups completely, that is, the
converse of the theorem does not hold. Nevertheless, the result is strong, it
implies several important corollaries: firstly, it shows that finitely generated Rn-
free groups are finitely presented; and secondly, taken together with Dahmani’s
combination theorem [30], it implies that every finitely generated Rn-free group
is hyperbolic relative to its non-cyclic abelian subgroups.

New techniques. The recent developments in the theory of groups acting
freely on Λ-trees are based on several new techniques that occurred after 1995:
infinite Λ-words as an equivalent language for free Λ-actions [92]; regular actions
and regular completions; general Machines (Elimination Processes) for regular
Λ-actions that generalize Rips and Bestvina-Feighn Machines.

The elimination process techniques developed in Section 11 allow one to
prove the following theorems.

Theorem 57. [The Main Structure Theorem [68]] Any finitely presented group
G with a regular free length function in an ordered abelian group Λ can be rep-
resented as a union of a finite series of groups

G1 < G2 < · · · < Gn = G,

where

1. G1 is a free group,

2. Gi+1 is obtained from Gi by finitely many HNN-extensions in which as-
sociated subgroups are maximal abelian, finitely generated, and length iso-
morphic as subgroups of Λ.

Theorem 58. [68] Any finitely presented Λ-free group is Rn-free.
In his book [24] Chiswell (see also [108]) asked the following very important

question (Question 1, p. 250): If G is a finitely generated Λ-free group, is G
Λ0-free for some finitely generated abelian ordered group Λ0? The following
result answers this question in the affirmative in the strongest form. It comes
from the proof of Theorem 58 (not the statement of the theorem itself).

Theorem 59 Let G be a finitely presented group with a free Lyndon length
function l : G → Λ. Then the subgroup Λ0 generated by l(G) in Λ is finitely
generated.

Theorem 60. [68] Any finitely presented group G̃ with a free length function
in an ordered abelian group Λ can be isometrically embedded into a finitely pre-
sented group G that has a free regular length function in Λ.
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The following result automatically follows from Theorem 57 and Theorem
60 by simple application of Bass-Serre Theory.

Theorem 61. Any finitely presented Λ-free group G can be obtained from free
groups by a finite sequence of amalgamated free products and HNN extensions
with maximal abelian associated subgroups, which are free abelain groups of finite
rank.

The following result is about abelian subgroups of Λ-free groups. For Λ = Zn

it follows from the main structural result for Zn-free groups and [66], for Λ = Rn

it was proved in [49]. The statement (1) below answers Question 2, p. 250 in
[24] in the affirmative for finitely presented Λ-free groups.

Theorem 62. Let G be a finitely presented Λ-free group. Then

(1) every abelian subgroup of G is a free abelian group of finite rank uniformly
bounded from above by the rank of the abelianization of G.

(2) G has only finitely many conjugacy classes of maximal non-cyclic abelian
subgroups,

(3) G has a finite classifying space and the cohomological dimension of G is
at most max{2, r} where r is the maximal rank of an abelian subgroup of
G.

Theorem 63. Every finitely presented Λ-free group is hyperbolic relative to its
non-cyclic abelian subgroups.

The following results answers affirmatively in the strongest form to the Prob-
lem (GO3) from the Magnus list of open problems [10] in the case of finitely
presented groups.

Corollary 18. Every finitely presented Λ-free group is biautomatic.

Theorem 64. Every finitely presented Λ-free group G has a quasi-convex hier-
archy.

As a corollary one gets the following result.

Theorem 65. Every finitely presented Λ-free group G is locally undistorted,
that is, every finitely generated subgroup of G is quasi-isometrically embedded
into G.

Since a finitely generated Rn-free group G is hyperbolic relative to to its
non-cyclic abelian subgroups and G admits a quasi-convex hierarchy then recent
results of Wise [129] imply the following.

Corollary 19. Every finitely presented Λ-free group G is virtually special, that
is, some subgroup of finite index in G embeds into a right-angled Artin group.

In his book [24] Chiswell posted Question 3 (p. 250): Is every Λ-free group
orderable, or at least right-orderable? The following result answers this question
in the affirmative in the case of finitely presented groups.

Theorem 66. Every finitely presented Λ-free group is right orderable.
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The following addresses Chiswell’s question whether Λ-free groups are or-
derable or not.

Theorem 67. Every finitely presented Λ-free group is virtually orderable, that
is, it contains an orderable subgroup of finite index.

Since right-angled Artin groups are linear (see [55, 54, 32] and the class of
linear groups is closed under finite extension we get the following

Theorem 68. Every finitely presented Λ-free group is linear.
Since every linear group is residually finite we get the following.

Corollary 20. Every finitely presented Λ-free group is residually finite.
It is known that linear groups are equationally Noetherian (see [7] for dis-

cussion on equationally Noetherian groups), therefore the following result holds.

Corollary 21. Every finitely presented Λ-free group is equationally Noetherian.
The structural results of the previous section give solution to many algorith-

mic problems on finitely presented Λ-free groups.

Theorem 69. [68] Let G be a finitely presented Λ-free group. Then the following
algorithmic problems are decidable in G:

• the Word Problem;

• the Conjugacy Problems;

• the Diophantine Problem (decidability of arbitrary equations in G).

Theorem 63 combined with results of Dahmani and Groves [31] immediately
implies the following two corollaries.

Corollary 22. Let G be a finitely presented Λ-free group. Then:

• G has a non-trivial abelian splitting and one can find such a splitting
effectively,

• G has a non-trivial abelian JSJ-decomposition and one can find such a
decomposition effectively.

Corollary 23. The Isomorphism Problem is decidable in the class of finitely
presented groups that act freely on some Λ-tree.

Theorem 70. The Subgroup Membership Problem is decidable in every finitely
presented Λ-free group.

2 Bass-Serre Theory

In his seminal book [120] J. P. Serre laid down fundamentals of the theory of
groups acting on simplicial trees. In the following decade Serre’s novel approach
unified several geometric, algebraic, and combinatorial methods of group theory
into a unique powerful tool, known today as Bass-Serre Theory. This tool allows
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one to obtain a lot of structural information about the group from its action on
a simplicial tree in terms of stabilizers of vertices and edges. One of the most
important consequences of this approach is the structure of subgroups of the
initial group which inherit the action on the tree and hence can be dealt with
in the same manner as the ambient group.

In this section, following [34] we give basic treatment of Bass-Serre Theory.
The original ideas and results can be found in [120], a more topological treatment
of the theory - in [115].

2.1 G-sets and G-graphs

Let G be a group. X is called a G-set if there is a function G × X → X (left
action of G on X) given by (g, x) → gx such that 1x = x for all x ∈ X and
f(gx) = (fg)x for any f, g ∈ G, x ∈ X .

A function α : X → Y between G-sets is a G-map if α(gx) = gα(x) for any
g ∈ G, x ∈ X . X and Y are G-isomorphic if α is a bijection.

If X is a G-set, then the G-stabilizer of x ∈ X is a subgroup Gx = {g ∈ G |
gx = x} of G. X is G-free if Gx = 1 for any x ∈ X . For x ∈ X , the G-orbit of
x is Gx = {gx | g ∈ G}, a G-subset of X which is G-isomorphic to G/Gx with
gx ∈ Gx corresponding to gGx ∈ G/Gx. The quotient set for the G-set X is
defined as G\X = {Gx | x ∈ X}, the set of G-orbits. A G-transversal in X is a
subset S of X which meets each G-orbit exactly once, so S → G\X is bijective.

A G-graph (X,V (X), E(X), σ, τ) is a non-empty G-set X with a non-empty
G-subset V (X), its complement E(X) = X − V (X), and three maps

σ : E(X) → V (X), τ : E(X) → V (X), − : E(X) → E(X),

which satisfy the following conditions:

σ(ē) = τ(e), τ(ē) = σ(e), ¯̄e = e, ē 6= e.

σ and τ are called incidence maps.
For G-graphs X,Y , a G-graph map α : X → Y is a G-map such that

α(V (X)) ⊆ V (Y ), α(E(X)) ⊆ E(Y ), and α(σ(e)) = σ(α(e)), α(τ(e)) =
τ(α(e)) for any e ∈ E(X).

A path p in a G-graph X is a sequence e1 · · · en of edges such that τ(ei) =
σ(ei+1), i ∈ [1, n − 1]. In this case, σ(e1) is the origin of p and τ(en) is its
terminus. p is closed if σ(e1) = τ(en).

A G-graph X is a G-tree if for any x, y ∈ V (X) there exists a unique path
from x to y, this path is called in this case the X-geodesic from x to y.

Proposition 1 ([34], Prop 2.6). If X is a G-graph and G\X is connected then
there exist subsets Y0 ⊆ Y ⊆ X such that Y is a G-transversal in X, Y0 is a
subtree of X, V (Y ) = V (Y0), and for each e ∈ E(Y ), σ(e) ∈ V (Y ) = V (Y0).

The subset Y from Proposition 1 is called a fundamental G-transversal in
X, with subtree Y0.
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2.2 Graphs of groups

Let G be a class of groups. A graph of groups (G, X) consists of a connected
graphX and an assignment ofG(x) ∈ G to every x ∈ V (X)∪E(X), such that for
every e ∈ E(X), G(e) = G(ē), and there exists a boundary monomorphism ie :
G(e) → G(σ(e)). G(v), v ∈ V (X) and G(e), e ∈ E(X) are called respectively
vertex and edge groups.

Let (G, X) be a graph of groups with a maximal subtree Y0. The fundamental
group π(G, X, Y0) of the graph of groups (G, X) with respect to Y0 is the group
with the following presentation:

〈G(v) (v ∈ V (X)), te (e ∈ E(X)) | rel(G(v)), teie(g)t−1
e = iē(g) (g ∈ G(e)),

tetē = 1, (e ∈ E(X)), te = 1 (e ∈ Y0)〉.
Let X be a G-graph such that G\X is connected, and let Y be a fundamen-

tal G-transversal for X with subtree Y0. For each e ∈ E(Y ) there are unique
σ̃(e), τ̃ (e) ∈ V (Y ) which belong to the same G-orbits as σ(e) and τ(e) respec-
tively, and we can assume σ̃(e) = σ(e). Y equipped with incidence functions
σ̃, τ̃ : E(Y ) → V (Y ) becomes a graph G-isomorphic to G\X , and Y0 is its max-
imal subtree. Observe that for each e ∈ E(Y ), τ(e) and τ̃ (e) are in the same
G-orbit, so we can choose te ∈ G such that teτ̃(e) = τ(e). It is easy to see
that te = 1 if e ∈ E(Y0) since Y0 is a subtree of X and τ̃(e) = τ(e). The set
{te | e ∈ E(Y )} is called a family of connecting elements. Now, Ge ⊆ Gσ(e) and
Ge ⊆ Gτ(e) = teGτ̃(e)t

−1
e , so there is an embedding ie : Ge → Gτ̃(e) defined by

g → tegt
−1
e . This data defines the graph of groups associated to X with respect

to the fundamental G-transversal Y , the maximal subtree Y0, and the family of
connecting elements te. Denote G = {Gv | v ∈ V (Y )} ∪ {Ge | e ∈ E(Y )}.

Theorem 1. [120, Theorem I.13] If X is a G-tree then G is naturally isomor-
phic to π(G, Y, Y0).

Remark 1. From Theorem 1 it follows that if X is G-free then G is isomorphic
to a free group.

On the other hand, given a graph of groups (G, X) with the fundamental
group G = π(G, X,X0), one can construct a G-tree Y which is a universal cover
of X .

Example 1. Let G = A∗C B be a free product of groups A and B with amalga-
mation along a subgroup C. Observe, that G is isomorphic to the fundamental
group π(G, X,X0) of the graph of groups X (see Figure 1), where X0 = X.
Define Y as follows: V (Y ) consists of all cosets gA and gB (g ∈ G), E(Y )
consists of all cosets gC (g ∈ G), the maps σ and τ which give the endpoints of
the edge are defined as σ(gC) = gA, τ(gC) = gB. It is easy to check that Y
is a tree and that G acts on Y without inversions by the left multiplication (see
Figure 2). All vertices gA, g ∈ G are in the same orbit, the same is true about
all vertices gB, g ∈ G and edges gC, g ∈ G, and G\Y = X.
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A B

C

Figure 1: The graph of groups for G = A ∗C B
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a1 Bb2

a1 Cb1

a1 B =b1

a1 Cb2

a1 Ab1 a1 Ab2

Figure 2: The tree Y for A ∗C B : a1, a2 ∈ ArB, b1, b2 ∈ B rA

Example 2. Let G = A∗C = 〈A, t|t−1ct = φ(c)〉 be an HNN extension of
a group A with associated subgroups C and φ(C). Here G is isomorphic to
to the fundamental group π(G, X,X0) of the graph of groups X (see Figure
3), where X0 consists of a single vertex with no edges. Define Y as follows:

A

C

Figure 3: The graph of groups for G = A∗C

V (Y ) = {gA|g ∈ G}, E(Y ) = {gC|g ∈ G}, and σ(gC) = gA, τ(gC) = (gt)A.
Again, it is easy to check that Y is a tree, G acts on Y without inversions by
the left multiplication, and G\Y = X (see Figure 4).

The idea of constructing a covering tree for a given graph of groups given in
the examples above can be generalized as follows.

Given a graph of groups (G, X), A (G, X)-path of length k > 0 from v ∈ V (X)
to v′ ∈ V (X) is a sequence

p = g0, e1, g1, . . . , ek, gk,

where k > 0 is an integer, e1 · · · ek is a path in X from v ∈ V (X) to v′ ∈ V (X),
g0 ∈ G(v), gk ∈ G(v′) and gi ∈ G(τ(ei)) = G(σ(ei+1)), i ∈ [1, k − 1]. If p is
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ACA

a1C a2C

tCtAt
2

a C
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t

At
-1

Ct
-1

a1 At a2 At

1

a At1 a At= 1 a1

a Ct1 a1

a At1 a1t

Figure 4: The tree Y for A∗C : a1, a2 ∈ Ar C

a (G, X)-path from v to v′ and q is a (G, X)-path from v′ to v′′ then one can
define the concatenation pq of p and q in the obvious way.

One can introduce the equivalence relation on the set of all (G, X)-paths
generated by

g, e, iē(c), ē, f ∼ g ie(c) f,

where e ∈ E(X), c ∈ G(e), g, f ∈ G(σ(e)). Observe that if p ∼ q then p and q
have the same initial and terminal vertices in V (X).

Lemma 1. [57] Let (G, X) be a graph of groups and let v0 ∈ V (X). Then

1. the set P (G, X, v0) of “∼”-equivalence classes of (G, X)-loops at v0 is a
group with respect to concatenation of paths,

2. for any spanning tree T of X, P (G, X, v0) is naturally isomorphic to
π(G, X, T ).

Let (G, X) be a graph of groups and let v0 ∈ V (X). For (G, X)-paths p, q
originating at v0 we write p ≈ q if

1. t(p) = t(q),

2. p ∼ qa for some a ∈ G(t(p)).

For (G, X)-path p from v0 to v we denote the “≈”-equivalence class of p by
p G(v).

Now one can define the universal Bass-Serre covering tree TX associated
with (G, X) as follows. The vertices of Y are “≈”-equivalence classes of (G, X)-
paths originating at v0. Two vertices x, x′ ∈ TX are connected by an edge if
and only if x = p G(v), x′ = pae G(v′), where p is a (G, X)-path from v0 to v
and a ∈ G(v), e ∈ E(X) with σ(e) = v, τ(e) = v′.

It is easy to see that TX is indeed a tree with a natural base vertex x0 =
1 G(v0) and G = P (G, X, v0) has a natural simplicial action on TX defined as
follows: if g = q ∈ G, where q is a (G, X)-loop at v0 and u = p G(v), where p
is a (G, X)-path from v0 to v, then g · u = qp G(v).
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2.3 Induced splittings

Let (G, X) be a graph of groups with a base-vertex v0 ∈ V (X). Let G =
P (G, X, v0) and TX be the universal Bass-Serre covering tree associated with
(G, X). If H 6 G then the action of G on TX induces an action of H on TX
and H can be represented as the fundamental group of a graph of groups by
Theorem 1. More precisely, the following result holds.

Theorem 2. [120] Let x0 be the base-vertex of TX mapping to v0 under the
natural quotient map and let TH ⊂ TX be an H-invariant subtree containing x0.
Then H is isomorphic to the fundamental group of a graph of groups (H, Y ),
where Y = H\TH and H = {K ∩H | K ∈ G}.

The graph of groups (H, Y ) from the theorem above is called the induced
splitting of H with respect to TH .

Remark 2. If TX is G-free and H 6 G, then H also acts on TX and TxX
is H-free. Now it follows that any subgroup of a free group is free, which is a
well-known result (see [96, 114])

Example 3. Let G = A ∗ B be a free product of A and B. The amalgamated
subgroup is trivial and G is isomorphic to the fundamental graph of groups X
(see Figure 5). As in Example 1, one can construct a tree Y on which G acts

A B
{1}

Figure 5: The graph of groups for G = A ∗B

so that X = G\Y . Since the amalgamated subgroup is trivial, G(e) is trivial
for every e ∈ E(Y ) and for each v ∈ V (Y ), G(v) is either g−1Ag, or g−1Bg
for some g ∈ G. Now, if H 6 G then by Theorem 2, H is isomorphic to the
fundamental group of a graph of groups (H, X ′), where X ′ = H\YH , YH is an
H-invariant subtree of Y , and H = {K ∩ H | K ∈ G}. In other words, for
each e ∈ E(YH), H(e) = H ∩ G(e) is trivial and for each v ∈ V (YH), H(v) =
H ∩ G(v) is either H ∩ g−1Ag, or H ∩ g−1Bg for some g ∈ G. It follows that
if H is finitely generated then

H ≃ H1 ∗ · · · ∗Hk ∗ F,

where each Hi is conjugate into either A, or B, and F is a finitely generated
free group. This result is known as the Kurosh subgroup theorem (see [72].

In some situations it is possible to construct an induced splitting of H ef-
fectively. Below is an algorithmic version of Theorem 2 which can be applied
when the splitting of the ambient group is “nice”.

Theorem 3. [57, Theorem 1.1] Let (G, X) be a graph of groups such that
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1. G(v) is either locally quasiconvex word-hyperbolic or polycyclic-by-finite
for every v ∈ V (X),

2. G(e) is polycyclic-by-finite for every e ∈ E(X).

Then there is an algorithm which, given a finite subset S ⊂ G, constructs the
induced splitting and a finite presentation for H = 〈S〉 6 G = π(G, X, T ), where
T is a maximal subtree of X.

Recall that the Uniform Membership Problem if solvable in a group G with
a finite generating set S if there is an algorithm which, for any finite family
of words u,w1, w2, . . . , wn over S±1 decides whether or not the element of G
represented by u belongs to the subgroup of G generated by the elements of G
corresponding to w1, w2, . . . , wn. The definition does not depend on the choice
of a finite generating set for G.

In particular, Theorem 3 implies the following result.

Corollary 1. [57, Theorem 1.1] Let (G, X) be a graph of groups with the prop-
erties listed in Theorem 3, and let G = π(G, X, T ), where T is a maximal subtree
of X. Then the uniform membership problem for G is solvable.

The proof of Theorem 3 given in [57] involves the notion of folding, which
are particular transformations of graphs of groups.

3 Stallings’ pregroups and their universal groups

The notions of a pregroup and its universal group were first introduced by J.
Stallings in [123], but the ideas behind these notions go back to B. L. van der
Waerden [128] and R. Baer [3]. A pregroup P provides a convenient tool to
introduce reduced forms for elements of U(P ) and in some cases gives rise to
an integer-valued length function on U(P ) which can be connected with an
action of U(P ) on a simplicial tree. Connections between pregroups and free
constructions in groups were established by F. Rimlinger in [111, 110]. Some
generalizations of pregroups were obtained in [73, 75, 74].

3.1 Definitions and examples

A pregroup P is a set P , with a distinguished element 1, equipped with a partial
multiplication, that is, a function D → P , (x, y) → xy, where D ⊂ P × P , and
an inversion, that is, a function −1 : P → P , x → x−1, satisfying the following
axioms (below xy is defined if (x, y) ∈ D):

(P1) for all u ∈ P , the products u1 and 1u are defined and u1 = 1u = u,

(P2) for all u ∈ P , the products u−1u and uu−1 are defined and u−1u = uu−1 =
1,

(P3) for all u, v ∈ P , if uv is defined, then so is v−1u−1 and (uv)−1 = v−1u−1,



Actions, length functions, and non-archemedian words 19

(P4) for all u, v, w ∈ P , if uv and vw are defined, then (uv)w is defined if and
only if u(vw) is defined, in which case

(uv)w = u(vw),

(P5) for all u, v, w, z ∈ P , if uv, vw, and wz are all defined then either uvw, or
vwz is defined.

It was noticed (see [53]) that (P3) follows from (P1), (P2), and (P4), hence,
it can be omitted.

A finite sequence u1, . . . , un of elements from P is termed a P -product and
it is denoted by u1 · · ·un (one may view it as a word in the alphabet P ). The
P -length of u1 · · ·un is equal to n. A P -product u1 · · ·un is called reduced if for
every i ∈ [1, n− 1] the product uiui+1 is not defined in P .

The following lemma lists some simple implications from the axioms (P1) –
(P5).

Lemma 2. [123] Let P be a pregroup. Then

(1) (x−1)−1 = x for every x ∈ P ,

(2) if ax is defined, then a−1(ax) is defined and a−1(ax) = x,

(3) if xa is defined, then (xa)a−1 is defined and (xa)a−1 = x,

(4) if ax and a−1y are defined, then xy is defined if and only if (xa)(a−1y) is
defined, in which case xy = (xa)(a−1y),

(5) if xa and a−1y are defined, then xyz is a reduced P -product if and only if
(xa)(a−1y)z is reduced; similarly, zxy is reduced if and only if z(xa)(a−1y)
is reduced,

(6) if xy is a reduced P -product and if xa, a−1y, yb are defined then (a−1y)b
is defined,

(7) if xy is a reduced P -product and xa, a−1y, (xa)b and b−1(a−1y) are defined
then ab is defined.

Now, one can define the universal group U(P ) of a pregroup P as follows.
Consider all reduced P -products. Observe that if a product u1 · · ·un is not
reduced, that is, the product uiui+1 is defined in P for some i then uiui+1 =
v ∈ P and one can reduce u1 · · ·un by replacing the pair uiui+1 by v. Now,
given two reduced P -products u1 · · ·un and v1 · · · vm, we write

u1 · · ·un ∼ v1 · · · vm

if and only if m = n and there exist elements a1, . . . , an−1 ∈ P such that
a−1
i−1uiai are defined and vi = a−1

i−1uiai for i ∈ [1, n] (here a0 = an = 1). In this
case we also say that v1 · · · vm can be obtained from u1 · · ·un by interleaving.
From Lemma 2 it follows that “∼” is an equivalence relation on the set of all
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reduced P -products. Now, the group U(P ) can be described as the set U(P )
of “∼”-equivalence classes of reduced P -products, where multiplication is given
by concatenation of representatives and consecutive reduction of the resulting
product. Obviously, P embeds into U(P ) via the canonical map u→ u.

Recall that a mapping φ : P → Q of pregroups is a morphism if for any x, y ∈
P whenever xy is defined in P , φ(x)φ(y) is defined in Q and equal to φ(xy).
Now the group U(P ) can be characterized by the following universal property:
there is a morphism of pregroups λ : P → U(P ), such that, for any morphism
φ : P → G of P into a group G, there is a unique group homomorphism
ψ : U(P ) → G for which ψλ = φ. This shows that U(P ) is a group with a
generating set P and a set of relations xy = z, where x, y ∈ P , xy is defined in
P , and equal to z. If the map ψ : U(P ) → G above is an isomorphism then we
say that P is a pregroup structure for G.

Given a group G one can try to find a pregroup structure for G as a subset
of G. In this case the following lemma helps (this result was used implicitly in
[92, 67] to find certain pregroup structures).

Lemma 3. Let G be a group and let P ⊆ G be a generating set for G such
that P−1 = P . Let D ⊆ (P, P ) be such that (x, y) ∈ D implies xy ∈ P , and
assume that multiplication and inversion are induced on P from G. Then P is
a pregroup structure for G if P satisfies (P5).

Proof. The result follows immediately from the fact that P is a subset of G,
because in this case the axioms (P1) - (P4) are satisfied automatically for P .

There is another way to check if P ⊆ G is a pregroup structure. Again, we
assume that P is a generating set for G such that P−1 = P , D ⊆ (P, P ) is
such that (x, y) ∈ D implies xy ∈ P , and the multiplication and inversion are
induced on P from G. If all reduced P -products representing the same group
element have equal P -length then we say that (P,D) is a reduced word structure
for G.

Theorem 4. [110] If P is a reduced word structure for G then P is a pregroup
structure for G.

The principal examples of pregroups and their universal groups are shown
below.

Example 4. For any group G define P = G, D = (P, P ), and let the multipli-
cation and inversion on P be induced from G. Then U(P ) ≃ G.

Example 5. Let X be a set. Define P = X∪X∪{1}, where X = {x|x ∈ X} and
1 /∈ X. Define the inversion function −1 : P → P as follows: x−1 = x, x−1 = x
for every x ∈ X and the corresponding x ∈ X, and 1−1 = 1. Without loss of
generality we identify X with X−1, the image of X under −1. Next, (x, y) ∈ D
if either y = x−1 (hence, xy = 1 ∈ P ), or either x = 1 (hence, xy = y ∈ P ), or
y = 1 (so, xy = x ∈ P ). It is easy to check that P with the inversion and the
set D is a pregroup, and U(P ) ≃ F (X), a free group on X. The pregroup P is
called the free pregroup on X.
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Example 6. [123] Let A,B and C be groups, and φ : C → A, ψ : C → B
monomorphisms. Identify φ(C) with ψ(C), then A ∩ B = C. Let P = A ∪ B.
The identity 1 and inversion function are obvious. For, x, y ∈ P , the product
xy is defined only if x and y both belong either to A, or to B. One can verify
that P is a pregroup and U(P ) ≃ A ∗C B.

Example 7. [123] Consider A ∗C B. Let P be the subset of all elements that
can be written as the product bab′ for some b, b′ ∈ B, a ∈ A. In particular, P
contains A and B. For, x, y ∈ P , the product xy is defined if xy ∈ P . Using the
structure of A ∗C B, one can prove that P is a pregroup. The universal group
U(P ) is isomorphic to A∗CB, but observe that P is not the same as in Example
6.

Example 8. [123] Let G be a group, H a subgroup of G, and φ : H → G a
monomorphism. For t /∈ G construct four sets in one-to-one correspondence
with G:

G, t−1G, Gt, t−1Gt.

Identify h ∈ H ⊆ G, with t−1φ(h)t ∈ t−1Gt. The multiplication is naturally
defined between G and G, G and Gt, t−1G and G, t−1G and Gt, Gt and
t−1G, Gt and t−1Gt, t−1Gt and t−1G, t−1Gt and t−1Gt, by cancelation of
tt−1 and multiplication in G. By the formulas ht−1 = t−1φ(h) and th = φ(h)t,
the multiplication is defined in all cases when one factor belongs to H. Hence,

P = G ∪ t−1G ∪Gt ∪ t−1Gt

is a pregroup and U(P ) ≃ 〈G, t|t−1ht = φ(h), h ∈ H〉.

From the examples above it follows that a group which splits into an amalga-
mated free product or an HNN-extension has a non-trivial pregroup structure.
The same holds in general: it was proved in [111, Theorem B] that a group
isomorphic to the fundamental group of a finite graph of groups has a pregroup
structure which arises from the graph of groups. The converse, namely, that
the universal group of a pregroup P is isomorphic to the fundamental group
of a graph of groups also holds provided P is of finite height. This property is
explained below.

For x, y ∈ P we write x � y if and only if for any z ∈ P , zx is defined
whenever zy is defined. The relation “�” is a tree ordering on P (see [123]),
that is, there exists a smallest element 1 and

∀ x, y, z ∈ P : (x � z and y � z) ⇒ (x � y or y � x)

Elements x, y ∈ P are comparable if either x � y, or y � x, or both. If both
x � y and y � x then we write x ≈ y, and if x � y but not y � x then we write
x ≺ y.

Lemma 4. [111, Lemma I.2.6] x, y ∈ P are comparable if and only if x−1y ∈ P .
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An element x ∈ P is of finite height n ∈ N if there exist x0, x1, . . . , xn ∈ P
such that 1 = x0 ≺ x1 ≺ · · · ≺ xn = x and for each 0 6 i 6 n− 1, if z ∈ P and
xi � z � xi+1 then z ≈ xi and z ≈ xi+1. P is of finite height if there exists a
natural number N which bounds heights of all elements of P .

Now, if P is of finite height then U(P ) is isomorphic to the fundamental
group of a graph of groups whose vertex and edge groups can be obtained as
the universal groups of certain subpregroups of P (see [111, Theorem A]).

3.2 Connection with length functions

Following the notation from [22] for a pregroup P define

B = {a ∈ P | za and az are defined for all z ∈ P}.

Obviously, B is a subgroup of P . Furthermore, if a reduced P -product contains
an element from B then it consists of a single element.

Below we use the following notation:

(1) if x, y ∈ P then we write xy = x ◦ y if xy is not defined,

(2) if a P -product u = u1 · · ·un is reduced then we put |u| = n. Notice, that
the function u→ |u| induces a well-defined function on U(P ).

Theorem 5. [22] Let P be a pregroup and let | · | : U(P ) → Z be defined by
u→ |u| for each u ∈ U(P ). Then “| · |” is a Lyndon length function (see Section
5) if and only if P satisfies an additional axiom (P6):

(P6) for any x, y ∈ P , if xy is not defined but xa and a−1y are both defined for
some a ∈ P then a ∈ B.

It is known (Theorem 2.7 in [94]) that the axiom (P6) is equivalent in a
pregroup P to the following one:

(P6’) for any x, y ∈ P , if xy is not defined and (ax)y is defined for some a ∈ P
then ax ∈ B.

Remark 3. Suppose P satisfies (P6). If a reduced P -product v1 · · · vn is ob-
tained from u1 · · ·un by interleaving vi = a−1

i−1uiai for i ∈ [1, n], where a0 =
an = 1 then a1, . . . , an−1 ∈ B.

More on the connection of pregroups with length functions and Bass-Serre
theory can be found in [22], [53] and [111].

4 Λ-trees

The theory of Λ-trees (where Λ = R) has its origins in the papers by I. Chiswell
[21] and J. Tits [125]. The first paper contains a construction of a Z-tree starting
from a Lyndon length function on a group (see Section 5), an idea considered
earlier by R. Lyndon in [77].
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Later, in their very influential paper [87] J. Morgan and P. Shalen linked
group actions on R-trees with topology and generalized parts of Thurston’s Ge-
ometrization Theorem. Next, they introduced Λ-trees for an arbitrary ordered
abelian group Λ and the general form of Chiswell’s construction. Thus, it be-
came clear that abstract length functions with values in Λ and group actions on
Λ-trees are just two equivalent approaches to the same realm of group theory
questions (more on this equivalence can be found in Section 7). The unified
theory was further developed in the important paper by R. Alperin and H. Bass
[1], where authors state a fundamental problem in the theory of group actions on
Λ-trees: find the group theoretic information carried by a Λ-tree action (anal-
ogous to Bass-Serre theory), in particular, describe finitely generated groups
acting freely on Λ-trees (Λ-free groups).

Here we introduce basics of the theory of Λ-trees, which can be found in
more detail in [1] and [24].

4.1 Ordered abelian groups

In this section some well-known results on ordered abelian groups are collected.
For proofs and details we refer to the books [43] and [71].

A set A equipped with addition “+” and a partial order “6” is called a
partially ordered abelian group if:

(1) 〈A,+〉 is an abelian group,

(2) 〈A,6〉 is a partially ordered set,

(3) for all a, b, c ∈ A, a 6 b implies a+ c 6 b+ c.

An abelian group A is called orderable if there exists a linear order “6” on A,
satisfying the condition (3) above. In general, the ordering on A is not unique.

Let A and B be ordered abelian groups. Then the direct sum A ⊕ B is
orderable with respect to the right lexicographic order, defined as follows:

(a1, b1) < (a2, b2) ⇔ b1 < b2 or b1 = b2 and a1 < a2.

Similarly, one can define the right lexicographic order on finite direct sums
of ordered abelian groups or even on infinite direct sums if the set of indices is
linearly ordered.

For elements a, b of an ordered group A the closed segment [a, b] is defined
by

[a, b] = {c ∈ A | a 6 c 6 b}.
A subset C ⊂ A is called convex, if for every a, b ∈ C the set C contains

[a, b]. In particular, a subgroup B of A is convex if [0, b] ⊂ B for every positive
b ∈ B. In this event, the quotient A/B is an ordered abelian group with respect
to the order induced from A.

A group A is called archimedean if it has no non-trivial proper convex sub-
groups. It is known that A is archimedean if and only if A can be embedded
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into the ordered abelian group of real numbers R+, or equivalently, for any
0 < a ∈ A and any b ∈ A there exists an integer n such that na > b.

It is not hard to see that the set of convex subgroups of an ordered abelian
group A is linearly ordered by inclusion (see, for example, [43]), it is called the
complete chain of convex subgroups in A. Notice that

En = {f(t) ∈ Z[t] | deg(f(t)) 6 n}

is a convex subgroup of Z[t] (here deg(f(t)) is the degree of f(t)) and

0 < E0 < E1 < · · · < En < · · ·

is the complete chain of convex subgroups of Z[t].
If A is finitely generated then the complete chain of convex subgroups of A

0 = A0 < A1 < · · · < An = A

is finite. The following result (see, for example, [24]) shows that this chain
completely determines the order on A, as well as the structure of A. Namely,
the groups Ai/Ai−1 are archimedean (with respect to the induced order) and A
is isomorphic (as an ordered group) to the direct sum

A1 ⊕A2/A1 ⊕ · · · ⊕An/An−1 (1)

with the right lexicographic order.
An ordered abelian group A is called discretely ordered if A has a non-trivial

minimal positive element (we denote it by 1A). In this event, for any a ∈ A the
following hold:

(1) a+ 1A = min{b | b > a},

(2) a− 1A = max{b | b < a}.

For example, A = Zn with the right lexicographic order is discretely ordered
with 1Zn = (1, 0, . . . , 0). The additive group of integer polynomials Z[t] is
discretely ordered with 1Z[t] = 1.

Lemma 5. [92] A finitely generated discretely ordered archimedean abelian
group is infinite cyclic.

Recall that an ordered abelian group A is hereditary discrete if for any convex
subgroup E 6 A the quotient A/E is discrete with respect to the induced order.

Corollary 2. [92] Let A be a finitely generated hereditary discrete ordered
abelian group. Then A is isomorphic to the direct product of finitely many
copies of Z with the lexicographic order.
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4.2 Λ-metric spaces

Let X be a non-empty set, Λ an ordered abelian group. A Λ-metric on X is a
mapping d : X ×X −→ Λ such that for all x, y, z ∈ X :

(M1) d(x, y) > 0,

(M2) d(x, y) = 0 if and only if x = y,

(M3) d(x, y) = d(y, x),

(M4) d(x, y) 6 d(x, z) + d(y, z).

So a Λ-metric space is a pair (X, d), where X is a non-empty set and d is
a Λ-metric on X . If (X, d) and (X ′, d′) are Λ-metric spaces, an isometry from
(X, d) to (X ′, d′) is a mapping f : X → X ′ such that d(x, y) = d′(f(x), f(y))
for all x, y ∈ X .

A segment in a Λ-metric space is the image of an isometry α : [a, b]Λ → X
for some a, b ∈ Λ and [a, b]Λ is a segment in Λ. The endpoints of the segment
are α(a), α(b).

We call a Λ-metric space (X, d) geodesic if for all x, y ∈ X , there is a segment
in X with endpoints x, y and (X, d) is geodesically linear if for all x, y ∈ X , there
is a unique segment in X whose set of endpoints is {x, y}.

It is not hard to see, for example, that (Λ, d) is a geodesically linear Λ-metric
space, where d(a, b) = |a− b|, and the segment with endpoints a, b is [a, b]Λ.

Let (X, d) be a Λ-metric space. Choose a point v ∈ X , and for x, y ∈ X ,
define

(x · y)v =
1

2
(d(x, v) + d(y, v)− d(x, y)).

Observe, that in general (x · y)v ∈ 1
2Λ.

The following simple result follows immediately

Lemma 6. [24] If (X, d) is a Λ-metric space then the following are equivalent:

1. for some v ∈ X and all x, y ∈ X, (x · y)v ∈ Λ,

2. for all v, x, y ∈ X, (x · y)v ∈ Λ.

Let δ ∈ Λ with δ > 0. Then (X, p) is δ-hyperbolic with respect to v if, for all
x, y, z ∈ X ,

(x · y)v > min{(x · z)v, (z · y)v} − δ.

Lemma 7. [24] If (X, d) is δ-hyperbolic with respect to v, and t is any other
point of X, then (X, d) is 2δ-hyperbolic with respect to t.

A Λ-tree is a Λ-metric space (X, d) such that:

(T1) (X, d) is geodesic,

(T2) if two segments of (X, d) intersect in a single point, which is an endpoint
of both, then their union is a segment,
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(T3) the intersection of two segments with a common endpoint is also a segment.

Example 9. Λ together with the usual metric d(a, b) = |a − b| is a Λ-tree.
Moreover, any convex set of Λ is a Λ-tree.

Example 10. A Z-metric space (X, d) is a Z-tree if and only if there is a
simplicial tree Γ such that X = V (Γ) and p is the path metric of Γ.

Observe that in general a Λ-tree can not be viewed as a simplicial tree with
the path metric like in Example 10.

Lemma 8. [24] Let (X, d) be Λ-tree. Then (X, d) is 0-hyperbolic, and for all
x, y, v ∈ X we have (x · y)v ∈ Λ.

Eventually, we say that a group G acts on a Λ-tree X if any element g ∈ G
defines an isometry g : X → X . An action on X is non-trivial if there is no
point in X fixed by all elements of G. Note, that every group has a trivial action
on any Λ-tree, when all group elements act as identity. An action of G on X is
minimal if X does not contain a non-trivial G-invariant subtree X0.

Let a group G act as isometries on a Λ-tree X . g ∈ G is called elliptic if it
has a fixed point. g ∈ G is called an inversion if it does not have a fixed point,
but g2 does. If g is not elliptic and not an inversion then it is called hyperbolic.

A group G acts freely and without inversions on a Λ-tree X if for all 1 6= g ∈
G, g acts as a hyperbolic isometry. In this case we also say that G is Λ-free.

4.3 Theory of a single isometry

Let (X, d) be a Λ-tree, where Λ is an arbitrary ordered abelian group. Recall
that an isometry g of X is called elliptic if it has a fixed point.

Lemma 9. [24, Lemma 3.1.1] Let g be an elliptic isometry of X and let Xg

denote the set of fixed points of g. Then Xg is a closed non-empty 〈g〉-invariant
subtree of X. If x ∈ X and [x, p] is the bridge between x and Xg, then for any
a ∈ Xg, p = Y (x, a, ga) is the midpoint of [x, gx].

Next, an isometry g of a Λ-tree (X, d) is called an inversion if g2 has a fixed
point, but g does not.

Lemma 10. [24, Lemma 3.1.2] Let g be an isometry of a Λ-tree (X, d). The
following are equivalent:

1. g is an inversion,

2. there is a segment of X invariant under g, and the restriction of g to this
segment has no fixed points,

3. there is a segment [x, y] in X such that gx = y, gy = x and d(x, y) /∈ 2Λ,

4. g2 has a fixed point, and for all x ∈ X, d(x, gx) /∈ 2Λ.
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Figure 6: The characteristic set of g

An isometry g of a Λ-tree (X, d) is called hyperbolic if it is not an inversion
and not elliptic. It follows that an isometry g is hyperbolic if and only if g2 has
no fixed point.

Suppose g is an isometry of a Λ-tree (X, d). The characteristic set of g is
the subset Ag ⊆ X defined by

Ag = {p ∈ X | [g−1p, p] ∩ [p, gp] = {p}}.

By Lemma 9, if g is elliptic then Ag = Xg, and by Lemma 10, if g is an inversion
then Ag = ∅.
Theorem 6. [24, Theorem 3.1.4] Let g be a hyperbolic isometry of a Λ-tree
(X, d). Then Ag is a non-empty closed 〈g〉-invariant subtree of X. Further, Ag
is a linear tree, and g restricted to Ag is equivalent to a translation a→ a+ ‖g‖
for some ‖g‖ ∈ Λ with ‖g‖ > 0. If x ∈ X and [x, p] is the bridge between x and
Ag, then p = Y (g−1x, x, gx), [x, gx] ∩ Ag = [p, gp], [x, gx] = [x, p, gp, gx] and
d(x, gx) = ‖g‖+ 2d(x, p).

If g is hyperbolic then Ag is called the axis and ‖g‖ the translation length of
g which can be defined as follows

‖g‖ =

{
min{d(x, gx) | x ∈ X} if g is not an inversion
0 otherwise

It can be shown that this minimum is always realized. If g is elliptic or an
inversion, then ‖g‖ = 0.

Corollary 3. [24, Corollary 3.1.5] Let g be an isometry of a Λ-tree (X, d).
Then g is an inversion if and only if Ag = ∅. If g is not an inversion then
‖g‖ = min{d(x, gx) | x ∈ X} and Ag = {p ∈ X | d(p, gp) = ‖g‖}.
Corollary 4. [24, Corollary 3.1.6] Let g be an isometry of a Λ-tree (X, d) which
is not an inversion. Then Ag meets every 〈g〉-invariant subtree of X, and Ag
is contained in every 〈g〉-invariant subtree of X with the property that it meets
every 〈g〉-invariant subtree of X.

Lemma 11. [24, Lemma 3.1.7] If g, h are both isometries of a Λ-tree (X, d),
then
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1. Ahgh−1 = hAg and ‖hgh−1‖ = ‖g‖,

2. Ag−1 = Ag,

3. if n ∈ Z then ‖gn‖ = |n|‖g‖, and Ag ⊆ Agn . If ‖g‖ > 0 and n 6= 0 then
Ag = Agn ,

4. if Y is a 〈g〉-invariant subtree of X, then ‖g‖ = ‖g |Y ‖ and Ag|Y = Ag∩Y .

4.4 Λ-free groups

Recall that a group G is called Λ-free if for all 1 6= g ∈ G, g acts as a hyperbolic
isometry. Here we list some known results about Λ-free groups for an arbitrary
ordered abelian group Λ. For all these results the reader can be referred to
[1, 4, 24, 82]

Theorem 7. (a) The class of Λ-free groups is closed under taking subgroups.

(b) If G is Λ-free and Λ embeds (as an ordered abelian group) in Λ′ then G is
Λ′-free.

(c) Any Λ-free group is torsion-free.

(d) Λ-free groups have the CSA property. That is, every maximal abelian
subgroup A is malnormal: Ag ∩ A = 1 for all g /∈ A.

(e) Commutativity is a transitive relation on the set of non-trivial elements
of a Λ-free group.

(f) Solvable subgroups of Λ-free groups are abelian.

(g) If G is Λ-free then any abelian subgroup of G can be embedded in Λ.

(h) Λ-free groups cannot contain Baumslag-Solitar subgroups other than Z×Z.
That is, no group of the form 〈a, t | t−1apt = aq〉 can be a subgroup of a
Λ-free group unless p = q = ±1.

(i) Any two generator subgroup of a Λ-free group is either free, or free abelian.

(j) The class of Λ-free groups is closed under taking free products.

The following result was originally proved in [51] in the case of finitely many
factors and Λ = R. A proof of the result in the general formulation given below
can be found in [24, Proposition 5.1.1].

Theorem 8. If {Gi | i ∈ I} is a collection of Λ-free groups then the free product
∗i∈IGi is Λ-free.

The following result gives a lot of information about the group structure in
the case when Λ = Z× Λ0 with the left lexicographic order.
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Theorem 9. [4, Theorem 4.9] Let a group G act freely and without inversions
on a Λ-tree, where Λ = Z × Λ0. Then there is a graph of groups (Γ, Y ∗) such
that:

(1) G = π1(Γ, Y
∗),

(2) for every vertex x∗ ∈ Y ∗, a vertex group Γx∗ acts freely and without in-
versions on a Λ0-tree,

(3) for every edge e ∈ Y ∗ with an endpoint x∗ an edge group Γe is either
maximal abelian subgroup in Γx∗ or is trivial and Γx∗ is not abelian,

(4) if e1, e2, e3 ∈ Y ∗ are edges with an endpoint x∗ then Γe1 ,Γe2 ,Γe3 are not
all conjugate in Γx∗ .

Conversely, from the existence of a graph (Γ, Y ∗) satisfying conditions (1)–
(4) it follows that G acts freely and without inversions on a Z× Λ0-tree in the
following cases: Y ∗ is a tree, Λ0 ⊂ Q and either Λ0 = Q or Y ∗ is finite.

4.5 R-trees

The case when Λ = R in the theory of groups acting on Λ-trees appears to be
the most well-studied (other than Λ = Z, of course). R-trees are usual metric
spaces with nice properties which makes them very attractive from geometric
point of view. Lots of results were obtained in the last two decades about group
actions on these objects. The most celebrated one is Rips’ Theorem about free
actions and a more general result of M. Bestvina and M. Feighn about stable
actions on R-trees (see [40, 14]). In particular, the main result of Bestvina and
Feighn together with the idea of obtaining a stable action on an R-tree as a
limit of actions on an infinite sequence of Z-trees gives a very powerful tool in
obtaining non-trivial splittings of groups into fundamental groups of graphs of
groups which is known as Rips machine.

An R-tree (X, d) is a Λ-metric space which satisfies the axioms (T1) – (T3)
listed in Subsection 4.2 for Λ = R with usual order. Hence, all the definitions
and notions given in Section 4 hold for R-trees.

The definition of an R-tree was first given by Tits in [125].

Proposition 2. [24, Proposition 2.2.3] Let (X, d) be an R-metric space. Then
the following are equivalent:

1. (X, d) is an R-tree,

2. given two point of X, there is a unique arc having them as endpoints, and
it is a segment,

3. (X, d) is geodesic and it contains no subspace homeomorphic to the circle.
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Example 11. Let Y = R2 be the plane, but with metric p defined by

p((x1, y1), (x2, y2)) =

{
|y1|+ |y2|+ |x1 − x2| if x1 6= x2
|y1 − y2| if x1 = x2

That is, to measure the distance between two points not on the same vertical
line, we take their projections onto the horizontal axis, and add their distances
to these projections and the distance between the projections (distance in the
usual Euclidean sense).

Example 12. [24, Proposition 2.2.5] Given a simplicial tree Γ, one can con-
struct its realization real(Γ) by identifying each non-oriented edge of Γ with the
unit interval. The metric on real(Γ) is induced from Γ.

Example 13. Let G be a δ-hyperbolic group. Then its Cayley graph with respect
to any finite generating set S is a δ-hyperbolic metric space (X, d) (where d
is a word metric) on which G acts by isometries. Now, the asymptotic cone
Coneω(X) of G is a real tree (see [45, 127, 36]) on which G acts by isometries.

An R-tree is called polyhedral if the set of all branch points and endpoints is
closed and discrete. Polyhedral R-trees have strong connection with simplicial
trees as shown below.

Theorem 10. [24, Theorem 2.2.10] An R-tree (X, d) is polyhedral if and only
if it is homeomorphic to real(Γ) (with metric topology) for some simplicial tree
Γ.

Now we briefly recall some known results related to group actions on R-trees.
The first result shows that an action on a Λ-tree always implies an action on an
R-tree.

Theorem 11. [24, Theorem 4.1.2] If a finitely generated group G has a non-
trivial action on a Λ-tree for some ordered abelian group Λ then it has a non-
trivial action on some R-tree.

Observe that in general nice properties of the action on a Λ-tree are not
preserved when passing to the corresponding action on an R-tree above.

Next result was one of the first in the theory of group actions on R-trees.
Later it was generalized to the case of an arbitrary Λ in [126, 23].

Theorem 12. [51] Let G be a group acting freely and without inversions on an
R-tree X, and suppose g, h ∈ G \ {1}. Then 〈g, h〉 is either free of rank two or
abelian.

It is not hard to define an action of a free abelian group on an R-tree.

Example 14. Let A = 〈a, b〉 be a free abelian group. Define an action of A on
R (which is an R-tree) by embedding A into Isom(R) as follows

a→ t1, b→ t√2,
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where tα(x) = x+ α is a translation. It is easy to see that

anbm → tn+m
√
2,

and since 1 and
√
2 are rationally independent it follows that the action is free.

The following result was very important in the direction of classifying finitely
generated R-free groups.

Theorem 13. [87] The fundamental group of a closed surface is R-free, except
for the non-orientable surfaces of genus 1, 2 and 3.

Then, in 1991 E. Rips completely classified finitely generated R-free groups.
The ideas outlined by Rips were further developed by Gaboriau, Levitt and
Paulin who gave a complete proof of this classification in [40].

Theorem 14 (Rips’ Theorem). Let G be a finitely generated group acting freely
and without inversions on an R-tree. Then G can be written as a free product
G = G1 ∗ · · · ∗ Gn for some integer n > 1, where each Gi is either a finitely
generated free abelian group, or the fundamental group of a closed surface.

4.6 Rips-Bestvina-Feighn machine

Suppose G is a finitely presented group acting isometrically on an R-tree Γ. We
assume the action to be non-trivial and minimal. Since G is finitely presented
there is a finite simplicial complex K of dimension at most 2 such that π(K) ≃
G. Moreover, one can assume thatK is a band complex with underlying union of
bands which is a finite simplicial R-tree X with finitely many bands of the type
[0, 1]×α, where α is an arc of the real line, glued toX so that {0}×α and {1}×α
are identified with sub-arcs of edges of X . Following [14] (the construction
originally appears in [85]) one can construct a transversely measured lamination

L on K and an equivariant map φ : K̃ → Γ, where K̃ is the universal cover
of K, which sends leaves of the induced lamination on K̃ to points in Γ. The
complex K together with the lamination L is called a band complex with K̃
resolving the action of G on Γ.

Now, Rips-Bestvina-Feighn machine is a procedure which given a band com-
plex K, transforms it into another band complex K ′ (we still have π(K ′) ≃ G),
whose lamination splits into a disjoint union of finitely many sub-laminations of
several types - simplicial, surface, toral, thin - and these sub-laminations induce
a splitting of K ′ into sub-complexes containing them. K ′ can be thought of as
the “normal form” of the band complex K. Analyzing the structure of K ′ and
its sub-complexes one can obtain some information about the structure of the
group G.

In particular, in the case when the original action of G on Γ is stable one can
obtain a splitting of G. Recall that a non-degenerate (that is, containing more
than one point) subtree S of Γ is stable if for every non-degenerate subtree S′ of
S, we have Fix(S′) = Fix(S) (here, Fix(I) 6 G consists of all elements which
fix I point-wise). The action of G on Γ is stable if every non-degenerate subtree
of T contains a stable subtree.
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Theorem 15. [14, Theorem 9.5] Let G be a finitely presented group with a
nontrivial, stable, and minimal action on an R-tree Γ. Then either

(1) G splits over an extension E-by-cyclic, where E fixes on arc of Γ, or

(2) Γ is a line. In this case, G splits over an extension of the kernel of the
action by a finitely generated free abelian group.

The key ingredient of the Rips-Bestvina-Feighn machine is a set of particular
operations, called moves, on band complexes applied in a certain order. These
operations originate from the work of Makanin [80] and Razborov [105] that
ideas of Rips are built upon.

Observe that the group G in Theorem 15 must be finitely presented. To
obtain a similar result about finitely generated groups acting on R-trees one has
to further restrict the action. An action of a group G on an R-tree Γ satisfies
the ascending chain condition if for every decreasing sequence

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·

of arcs in Γ which converge into a single point, the corresponding sequence

Fix(I1) ⊂ Fix(I2) ⊂ · · · ⊂ Fix(In) ⊂ · · ·

stabilizes.

Theorem 16. [50] Let G be a finitely generated group with a nontrivial minimal
action on an R-tree Γ. If

(1) Γ satisfies the ascending chain condition,

(2) for any unstable arc J of Γ,

(a) Fix(J) is finitely generated,

(b) Fix(J) is not a proper subgroup of any conjugate of itself, that is, if
Fix(J)g ⊂ Fix(J) for some g ∈ G then Fix(J)g = Fix(J).

Then either

(1) G splits over a subgroup H which is an extension of the stabilizer of an
arc of Γ by a cyclic group, or

(2) Γ is a line.

Now, we would like to discuss some applications of the above results which
are based on the construction outlined in [12] and [101] making possible to
obtain isometric group actions on R-trees as Gromov-Hausdorff limits of actions
on hyperbolic spaces. All the details can be found in [13].

Let (X, dX) be a metric space equipped with an isometric action of a group
G which can be viewed as a homomorphism ρ : G → Isom(X). Assume that
X contains a point ε which is not fixed by G. In this case, we call the triple
(X, ε, ρ) a based G-space.
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Observe that given a based G-space (X, ε, ρ) one can define a pseudometric
d = d(X,ε,ρ) on G as follows

d(g, h) = dX(ρ(g) · ε, ρ(h) · ε).

Now, the set D of all non-trivial pseudometrics on G taken up to rescaling by
positive reals forms a topological space and we say that a sequence (Xi, εi, ρi), i ∈
N of based G-spaces converges to the based G-space (X, ε, ρ) and write

lim
i→∞

(Xi, εi, ρi) = (X, ε, ρ)

if d(Xi,εi,ρi) → d(X,ε,ρ) in D. Now, the following result is the main tool in
obtaining isometric group actions on R-trees from actions on Gromov-hyperbolic
spaces.

Theorem 17. [13, Theorem 3.3] Let (Xi, εi, ρi), i ∈ N be a convergent sequence
of based G-spaces. Assume that

(1) there exists δ > 0 such that every Xi is δ-hyperbolic,

(2) there exists g ∈ G such that the sequence dXi
(εi, ρi(g) · εi) is unbounded.

Then there is a based G-space (Γ, ε) which is an R-tree and an isometric action
ρ : G→ Isom(Γ) such that (Xi, εi, ρi) → (Γ, ε, ρ).

In fact, the above theorem does not guarantee that the limiting action of G
on Γ has no global fixed points. But in the case when G is finitely generated
and each Xi is proper (closed metric balls are compact), it is possible to choose
base-points in εi ∈ Xi to make the action of G on Γ non-trivial (see [13, Propo-
sition 3.8, Theorem 3.9]). Moreover, one can retrieve some information about
stabilizers of arcs in Γ (see [13, Proposition 3.10]).

Note that Theorem 17 can also be interpreted in terms of asymptotic cones
(see [36, 37] for details).

The power of Theorem 17 becomes obvious in particular when a finitely
generated group G has infinitely many pairwise non-conjugate homomorphisms
φi : G → H into a word-hyperbolic group H . In this case, each φi defines an
action of G on the Cayley graph X of H with respect to some finite generating
set. Now, one can define Xi to be X with a word metric rescaled so that the
sequence of (Xi, εi, ρi), i ∈ N satisfies the requirements of Theorem 17 and thus
obtain a non-trivial isometric action of G on an R-tree. Many results about
word-hyperbolic groups were obtained according to this scheme, for example,
the following classical result.

Theorem 18. [102] Let G be a word-hyperbolic group such that the group of its
outer automorphisms Out(G) is infinite. Then G splits over a virtually cyclic
group.

Combined with the shortening argument due to Rips and Sela [112] this
scheme gives many other results about word-hyperbolic groups, for example,
the theorems below.
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Theorem 19. [112] Let G be a torsion-free freely indecomposable word-hyperbolic
group. Then the internal automorphism group Inn(G) of G has finite index in
Aut(G).

Theorem 20. [44, 116] Let G be a finitely presented torsion-free freely inde-
composable group and let H be a word-hyperbolic group. Then there are only
finitely many conjugacy classes of subgroups of G isomorphic to H.

For more detailed account of applications of the Rips-Bestvina-Feighn ma-
chine please refer to [13].

5 Lyndon length functions

In 1963, R. Lyndon (see [77]) introduced a notion of length function on a group
in an attempt to axiomatize cancelation arguments in free groups as well as free
products with amalgamation and HNN extensions, and to generalize them to a
wider class of groups. The main idea was to measure the amount of cancellation
in passing to the reduced form of a product of reduced words in a free group
and free constructions, and it turned out that the cancelation process could
be described by rather simple axioms. Using simple combinatorial techniques
Lyndon described groups with free Z-valued length functions and conjectured
(see [78]) that any finitely generated group with a free R-valued length function
can be embedded into a free product of finitely many copies of R. The con-
jectures eventually was proved wrong (counterexamples were initially given in
[2] and [103]) but the idea of using length functions became quite popular (see,
for example, [51, 21, 52]), and then it turned out that the language of length
functions described the same class of groups as the language of actions on trees
(see Section 7 for more details).

Below we give the axioms of (Lyndon) length function and recall the main
results in this field.

Let G be a group and Λ be an ordered abelian group. Then a function
l : G → Λ is called a (Lyndon) length function on G if the following conditions
hold:

(L1) ∀ g ∈ G : l(g) > 0 and l(1) = 0,

(L2) ∀ g ∈ G : l(g) = l(g−1),

(L3) ∀ f, g, h ∈ G : c(f, g) > c(f, h) → c(f, h) = c(g, h),

where c(f, g) = 1
2 (l(f) + l(g)− l(f−1g)).

Observe that in general c(f, g) /∈ Λ, but c(f, g) ∈ ΛQ = Λ ⊗Z Q, where Q is
the additive group of rational numbers, so, in the axiom (L3) we view Λ as a
subgroup of ΛQ. But in some cases the requirement c(f, g) ∈ Λ is crucial so we
state it as a separate axiom

(L4) ∀ f, g ∈ G : c(f, g) ∈ Λ.
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It is not difficult to derive the following two properties of Lyndon length
functions from the axioms (L1) – (L3):

• ∀ f, g ∈ G : l(fg) 6 l(f) + l(g),

• ∀ f, g ∈ G : 0 6 c(f, g) 6 min{l(f), l(g)}.

The following examples motivated the whole theory of groups with length
functions.

Example 15. Given a free group F (X) on the set X one can define a (Lyndon)
length function on F as follows

w(X) → |w(X)|,

where | · | is the length of the reduced word in X ∪X±1 representing w.

Example 16. Given two groups G1 and G2 with length functions L1 : G1 → Λ
and L2 : G2 → Λ for some ordered abelian group Λ one can construct a length
function on G1∗G2 as follows (see [24, Proposition 5.1.1]). For any g ∈ G1∗G2

such that
g = f1g1 · · · fkgkfk+1,

where fi ∈ G1, i ∈ [1, k + 1], fi 6= 1, i ∈ [2, k] and 1 6= gi ∈ G2, i ∈ [1, k],
define

L(g) =

k+1∑

i=1

L1(fi) +

k∑

j=1

L2(gj) ∈ Λ.

A length function l : G→ Λ is called free, if it satisfies

(L5) ∀ g ∈ G : g 6= 1 → l(g2) > l(g).

Obviously, the Z-valued length function constructed in Example 15 is free.
The converse is shown below (see also [52] for another proof of this result).

Theorem 21. [77] Any group G with a length function L : G → Z can be
embedded into a free group F of finite rank whose natural length function extends
L.

Example 17. Given two groups G1 and G2 with free length functions L1 :
G1 → Λ and L2 : G2 → Λ for some ordered abelian group Λ, the length function
on G1 ∗G2 constructed in Example 16 is free.

Observe that if a group G acts on a Λ-tree (X, d) then we can fix a point
x ∈ X and consider a function lx : G → Λ defined as lx(g) = d(x, gx). Such a
function lx on G we call a length function based at x. It is easy to check that
lx satisfies all the axioms (L1) – (L4) of Lyndon length function. Now if ‖ · ‖ is
the translation length function associated with the action of G on (X, d) then
the following axioms show the connection between lx and ‖ · ‖.

(i) lx(g) = ‖g‖+ 2d(x,Ag) if g is not an inversion.
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(ii) ‖g‖ = max{0, lx(g2)− lx(g)}.

Here, it should be noted that for points x /∈ Ag, there is a unique closest point of
Ag to x. The distance between these points is the one referred to in (i). While
Ag = Agn for all n 6= 0 in the case where g is hyperbolic, if g fixes a point, it
is possible that Ag ⊂ Ag2 . We may have lx(g

22) − lx(g) < 0 in this case. Free
actions are characterized, in the language of length functions, by the facts (a)
‖g‖ > 0 for all g 6= 1, and (b) lx(g

2) > lx(g) for all g 6= 1. The latter follows
from the fact that ‖g‖ = n‖g‖ for all g. We note that there are axioms for the
translation length function which were shown to essentially characterize actions
on Λ-trees, up to equivariant isometry, by W. Parry, [100].

6 Infinite words

The notion of Lyndon length function provides a very nice tool to study prop-
erties of groups but unfortunately its applications are quite limited due to very
abstract axiomatic approach. Even in the case of free length functions meth-
ods are close in a sense to free group cancelation techniques but necessity to
use axioms makes everything cumbersome. Introduction of infinite words was
first of all motivated by the idea that working with elements of group with
Lyndon length function should be exactly as in free group. It is not surpris-
ing that the first group which the method of infinite words was applied to
was Lyndon’s free group F Z[t] (see [92]) which shares many properties with
free group. Later the infinite words techniques were extensively applied in
[93, 65, 58, 97, 69, 70, 68, 67, 98, 81].

Below we follow the construction given in [92].

6.1 Definition and preliminaries

Let Λ be a discretely ordered abelian group with the minimal positive element
1. It is going to be clear from the context if we are using 1 as an element of Λ,
or as an integer. Let X = {xi | i ∈ I} be a set. Put X−1 = {x−1

i | i ∈ I} and
X± = X ∪X−1. A Λ-word is a function of the type

w : [1, αw] → X±,

where αw ∈ Λ, αw > 0. The element αw is called the length |w| of w.
By W (Λ, X) we denote the set of all Λ-words. Observe, that W (Λ, X)

contains an empty Λ-word which we denote by ε.
Concatenation uv of two Λ-words u, v ∈ W (Λ, X) is an Λ-word of length

|u|+ |v| and such that:

(uv)(a) =

{
u(a) if 1 6 a 6 |u|
v(a− |u|) if |u| < a 6 |u|+ |v|
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Next, for any Λ-word w we define an inverse w−1 as an Λ-word of the length
|w| and such that

w−1(β) = w(|w| + 1− β)−1 (β ∈ [1, |w|]).

A Λ-word w is reduced if w(β + 1) 6= w(β)−1 for each 1 6 β < |w|. We
denote by R(Λ, X) the set of all reduced Λ-words. Clearly, ε ∈ R(Λ, X). If the
concatenation uv of two reduced Λ-words u and v is also reduced then we write
uv = u ◦ v.

For u ∈ W (Λ, X) and β ∈ [1, αu] by uβ we denote the restriction of u on
[1, β]. If u ∈ R(Λ, X) and β ∈ [1, αu] then

u = uβ ◦ ũβ,

for some uniquely defined ũβ .
An element com(u, v) ∈ R(Λ, X) is called the (longest) common initial seg-

ment of Λ-words u and v if

u = com(u, v) ◦ ũ, v = com(u, v) ◦ ṽ

for some (uniquely defined) Λ-words ũ, ṽ such that ũ(1) 6= ṽ(1).
Now, we can define the product of two Λ-words. Let u, v ∈ R(Λ, X). If

com(u−1, v) is defined then

u−1 = com(u−1, v) ◦ ũ, v = com(u−1, v) ◦ ṽ,

for some uniquely defined ũ and ṽ. In this event put

u ∗ v = ũ−1 ◦ ṽ.

The product ∗ is a partial binary operation on R(Λ, X).

Example 18. Let Λ = Z2 with the right lexicographic order (in this case 1 =
(1, 0)). Put

w(β) =

{
x if β = (s, 0) and s > 1
x−1 if β = (s, 1) and s 6 0

Then
w : [1, (0, 1)] → X±

is a reduced Λ-word. Clearly, w−1 = w so w ∗ w = ε. In particular, R(Λ, X)
has 2-torsion with respect to ∗.

Theorem 22. [92, Theorem 3.4] Let Λ be a discretely ordered abelian group and
X be a set. Then the set of reduced Λ-words R(Λ, X) with the partial binary
operation ∗ satisfies the axioms (P1) – (P4) of a pregroup.

An element v ∈ R(Λ, X) is termed cyclically reduced if v(1)−1 6= v(|v|).
We say that an element v ∈ R(Λ, X) admits a cyclic decomposition if v =
c−1 ◦ u ◦ c, where c, u ∈ R(Λ, X) and u is cyclically reduced. Observe that a
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cyclic decomposition is unique (whenever it exists). We denote by CR(Λ, X)
the set of all cyclically reduced words in R(Λ, X) and by CDR(Λ, X) the set of
all words from R(Λ, X) which admit a cyclic decomposition.

Below we refer to Λ-words as infinite words usually omitting Λ whenever it
does not produce any ambiguity.

A subset G 6 R(Λ, X) is called a subgroup of R(Λ, X) if G is a group with
respect to ∗. We say that a subset Y ⊂ R(Λ, X) generates a subgroup 〈Y 〉 in
R(Λ, X) if the product y1 ∗ · · · ∗ yn is defined for any finite sequence of elements
y1, . . . , yn ∈ Y ±1.

Example 19. Let Λ be a direct sum of copies of Z with the right lexicographic
order. Then the set of all elements of finite length in R(Λ, X) forms a subgroup
which is isomorphic to a free group with basis X.

6.2 Commutation in infinite words

Let G be a subgroup of CDR(Λ, X), where Λ is a discretely ordered abelian
group. We fix G for the rest of the subsection.

Let IΛ index the set of all convex subgroups of Λ. IΛ is linearly ordered (see,
for example, [24]): i < j if and only if Λi < Λj , and

Λ =
⋃

i∈IΛ
Λi.

We say that g ∈ G has the height i ∈ IΛ and denote ht(g) = i if |g| ∈ Λi and
|g| /∈ Λj for any j < i. Observe that this definition depends only on G since the
complete chain of convex subgroups of Λ is unique.

It is easy to see that

ht(g1g2) 6 max{ht(g1), ht(g2)},

hence, if G = 〈g1, . . . , gk〉 then we define

ht(G) = max{ht(g1), . . . , ht(gk)}.

Using the characteristics of elements of G introduced above we prove several
technical results we are used, for example, in Sections 8 and 10.

The first result is an analog of Harrison’s Theorem (see [51]) in the case of
cyclically reduced elements.

Lemma 12. [67, Lemma 5] Let f, h ∈ G be cyclically reduced. If c(fm, hn) >
|f |+ |h| for some m,n > 0 then [f, h] = ε.

The next lemma shows that commutation implies similar cyclic decomposi-
tions.

Lemma 13. [67, Lemma 6] For any two g1, g2 ∈ G if [g1, g2] = ε and g1 =
c−1 ◦ h1 ◦ c, g2 = d−1 ◦ h2 ◦ d are their cyclic decompositions then c = d.
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In particular, it follows that if g ∈ G is cyclically reduced then all elements
of CG(g) are cyclically reduced as well.

Lemma 14. [67, Lemma 7] Let f, h ∈ G be such that h is cyclically reduced and
ht(f) > ht(h). If ht(f−1∗h∗f) < ht(f) then for every n ∈ N either f = hn◦fn,
or f = h−n ◦ fn for some fn ∈ G.

Here is another special case of Harrison’s Theorem.

Lemma 15. [67, Lemma 8] Let f, h1, h2 ∈ G be such that ht(h1), ht(h2) < ht(f)
and ht(f−1 ∗ h1 ∗ f), ht(f−1 ∗ h2 ∗ f) < ht(f). Then [h1, h2] = ε.

Lemma 16. [67, Lemma 9] Let f, h1 6= ǫ ∈ G be such that f is cyclically reduced
and ht(h1) < ht(f). If ht(f−1 ∗h1 ∗f) < ht(f) and [h1, h2] = ε, where ht(h2) <
ht(f), then ht(f−1 ∗ h2 ∗ f) < ht(f).

Using the lemmas above one can easily prove the following well=known
result.

Proposition 3. [1] If G < CDR(Λ, X) then for any g ∈ G, its centralizer
CG(g) is a subgroup of A. In particular, if Λ = Zn then CG(g) is a free abelian
group of rank not more than n.

7 Equivalence

Here we show that all three approaches, namely, free actions on Λ-trees (see
Section 4), free Lyndon Λ-valued length functions (see Section 5), and Λ-words
(see Section 6) describe the same class of groups which is called Λ-free groups.

7.1 From actions to length functions

The following theorem is one of the most important results in the theory of
length functions.

Theorem 23. [21] Let G be a group and l : G → Λ a Lyndon length function
satisfying the following condition:

(L4) ∀ f, g ∈ G : c(f, g) ∈ Λ.

Then there are a Λ-tree (X, d), an action of G on X, and a point x ∈ X such
that l = lx.

The proof is constructive, that is, one can define a Λ-metric space out of G
and l, and then prove that this space is in fact a Λ-tree on which G acts by
isometries (see [24, Subsection 2.4] for details).
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7.2 From length functions to infinite words

The following results show the connection between groups with Lyndon length
functions and groups of infinite words.

Theorem 24. [92, Theorem 4.1] Let Λ be a discretely ordered abelian group
and X be a set. Then any subgroup G of CDR(Λ, X) has a free Lyndon length
function with values in Λ – the restriction | · |G on G of the standard length
function | · | on CDR(Λ, X).

The converse of Theorem 24 was obtained by Chiswell in [25].

Theorem 25. [25, Theorem 3.9] Let G have a free Lyndon length function
L : G → Λ, where Λ is a discretely ordered abelian group. Then there exists a
length preserving embedding φ : G→ CDR(Λ, X), that is, |φ(g)| = L(g) for any
g ∈ G.

Corollary 5. [25, Corollary 3.10] Let G have a free Lyndon length function
L : G→ Λ, where Λ is an arbitrary ordered abelian group. Then there exists an
embedding φ : G → CDR(Λ′, X), where Λ′ = Z ⊕ Λ is discretely ordered with
respect to the right lexicographic order and X is some set, such that, |φ(g)| =
(0, L(g)) for any g ∈ G.

7.3 From infinite words to actions

Below we follow the construction given in [69].

7.3.1 Universal trees

Let G be a subgroup of CDR(Λ, X) for some discretely ordered abelian group
Λ and a set X . We assume G, Λ, and X to be fixed for the rest of this section.

Every element g ∈ G is a function

g : [1, |g|] → X±,

with the domain [1, |g|] which a closed segment in Λ. Since Λ can be viewed
as a Λ-metric space then [1, |g|] is a geodesic connecting 1 and |g|, and every
α ∈ [1, |g|] we view as a pair (α, g). We would like to identify initial subsegments
of the geodesics corresponding to all elements of G as follows.

Let
SG = {(α, g) | g ∈ G,α ∈ [0, |g|]}.

Since for every f, g ∈ G the word com(f, g) is defined, we can introduce an
equivalence relation on SG as follows: (α, f) ∼ (β, g) if and only if α = β ∈
[0, c(f, g)]. Obviously, it is symmetric and reflexive. For transitivity observe
that if (α, f) ∼ (β, g) and (β, g) ∼ (γ, h) then 0 6 α = β = γ 6 c(f, g), c(g, h).
Since c(f, h) > min{c(f, g), c(g, h)} then α = γ 6 c(f, h).

Let ΓG = SG/ ∼ and ǫ = 〈0, 1〉, where 〈α, f〉 is the equivalence class of
(α, f).
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Proposition 4. [69] ΓG is a Λ-tree,

Proof. At first we show that ΓG is a Λ-metric space. Define the metric by

d(〈α, f〉, 〈β, g〉) = α+ β − 2min{α, β, c(f, g)}.

Let us check if it is well-defined. Indeed, c(f, g) ∈ Λ is defined for every f, g ∈ G.
Moreover, let (α, f) ∼ (γ, u) and (β, g) ∼ (δ, v), we want to prove

d(〈α, f〉, 〈β, g〉) = d(〈γ, u〉, 〈δ, v〉)

which is equivalent to

min{α, β, c(f, g)} = min{α, β, c(u, v)}

since α = γ, β = δ. Consider the following cases.

(a) min{α, β} 6 c(u, v)

Hence, min{α, β, c(u, v)} = min{α, β} and it is enough to prove min{α, β}
= min{α, β, c(f, g)}. From length function axioms for G we have

c(f, g) > min{c(u, f), c(u, g)}, c(u, g) > min{c(u, v), c(v, g)}.

Hence,

c(f, g) > min{c(u, f), c(u, g)} > min{c(u, f),min{c(u, v), c(v, g)}}

= min{c(u, f), c(u, v), c(v, g)}.
Now, from (α, f) ∼ (γ, u), (β, g) ∼ (δ, v) it follows that α 6 c(u, f), β 6

c(v, g) and combining it with the assumption min{α, β} 6 c(u, v) we have

c(f, g) > min{c(u, f), c(u, v), c(v, g)} > min{α, β},

or, in other words,

min{α, β, c(f, g)} = min{α, β}.

(b) min{α, β} > c(u, v)

Hence, min{α, β, c(u, v)} = c(u, v) and it is enough to prove c(f, g) =
c(u, v).

Since
c(u, f) > α > c(u, v), c(v, g) > β > c(u, v),

then min{c(u, f), c(u, v), c(v, g)} = c(u, v) and

c(f, g) > min{c(u, f), c(u, v), c(v, g)} = c(u, v).

Now we prove that c(f, g) 6 c(u, v). From length function axioms for G
we have

c(u, v) > min{c(v, g), c(u, g)} = c(u, g) > min{c(v, g), c(u, v)} = c(u, v),
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that is, c(u, v) = c(u, g). Now,

c(u, v) = c(u, g) > min{c(u, f), c(f, g)},

where min{c(u, f), c(f, g)} = c(f, g) since otherwise we have c(u, v) >

c(u, f) > α - a contradiction. Hence, c(u, v) > c(f, g) and we have
c(f, g) = c(u, v).

By definition of d, for any 〈α, f〉, 〈β, g〉 we have

d(〈α, f〉, 〈β, g〉) = d(〈β, g〉, 〈α, f〉) > 0,

d(〈α, f〉, 〈α, f〉) = 0.

If
d(〈α, f〉, 〈β, g〉) = α+ β − 2min{α, β, c(f, g)} = 0

then α + β = 2min{α, β, c(f, g)}. It is possible only if α = β 6 c(f, g) which
implies 〈α, f〉 = 〈β, g〉. Finally, we have to prove the triangle inequality

d(〈α, f〉, 〈β, g〉) 6 d(〈α, f〉, 〈γ, h〉) + d(〈β, g〉, 〈γ, h〉)

for every 〈α, f〉, 〈β, g〉, 〈γ, h〉 ∈ ΓG. The inequality above is equivalent to

α+ β − 2min{α, β, c(f, g)} 6 α+ γ

−2min{α, γ, c(f, h) + β + γ − 2min{β, γ, c(g, h)}}
which comes down to

min{α, γ, c(f, h)}+min{β, γ, c(g, h)} 6 min{α, β, c(f, g)}+ γ.

First of all, observe that for any α, β, γ ∈ Λ the triple (min{α, β}, min{α, γ},
min{β, γ}) is isosceles. Hence, by Lemma 1.2.7(1) [24], the triple

(min{α, β, c(f, g)}, min{α, γ, c(f, h)}, min{β, γ, c(g, h)})

is isosceles too. In particular,

min{α, β, c(f, g)} > min{min{α, γ, c(f, h)}, min{β, γ, c(g, h)}}

= min{α, β, γ, c(f, h), c(g, h)}.
Now, if

min{α, β, γ, c(f, h), c(g, h)} = min{α, γ, c(f, h)}
then min{β, γ, c(g, h)} = γ and

min{α, γ, c(f, h)}+min{β, γ, c(g, h)} 6 min{α, β, c(f, g)}+ γ

holds. If
min{α, β, γ, c(f, h), c(g, h)} = min{β, γ, c(g, h)}
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then min{α, γ, c(f, h)} = γ and

min{α, γ, c(f, h)}+min{β, γ, c(g, h)} 6 min{α, β, c(f, g)}+ γ

holds again. So, d is a Λ-metric.

Finally, we want to prove that ΓG is 0-hyperbolic with respect to ǫ = 〈0, 1〉
(and, hence, with respect to any other point in ΓG). It is enough to prove that
the triple

((〈α, f〉 · 〈β, g〉)ǫ, (〈α, f〉 · 〈γ, h〉)ǫ, (〈β, g〉 · 〈γ, h〉)ǫ)
is isosceles for every 〈α, f〉, 〈β, g〉, 〈γ, h〉 ∈ ΓG. But by definition of d the above
triple is isosceles if and only if

(min{α, β, c(f, g)}, min{α, γ, c(f, h)}, min{β, γ, c(g, h)})

is isosceles which holds.

So, ΓG is a Λ-tree.

Since G is a subset of CDR(Λ, X) and every element g ∈ G is a function
defined on [1A, |g|] with values in X± then we can define a function

ξ : (ΓG − {ǫ}) → X±, ξ(〈α, g〉) = g(α).

It is easy to see that ξ is well-defined. Indeed, if (α, g) ∼ (α1, g1) then α =
α1 6 c(g, g1), so g(α) = g1(α1). Moreover, since every g ∈ G is reduced then
ξ(p) 6= ξ(q)−1 whenever d(p, q) = 1.

ξ can be extended to a function

Ξ : geod(ΓG)ǫ → R(Λ, X),

where geod(ΓG)ǫ = {(ǫ, p] | p ∈ ΓG}, so that

Ξ( (ǫ, 〈α, g〉] )(t) = g(t), t ∈ [1A, α].

That is, Ξ( (ǫ, 〈α, g〉] ) is the initial subword of g of length α, and

Ξ( (ǫ, 〈|g|, g〉] ) = g.

On the other hand, if g ∈ G and α ∈ [1A, |g|] then the initial subword of g
of length α uniquely corresponds to Ξ( (ǫ, 〈α, g〉] ). If (α, g) ∼ (α1, g1) then
α = α1 6 c(g, g1), and since g(t) = g1(t) for any t ∈ [1A, c(g, g1)] then

Ξ( (ǫ, 〈α, g〉] ) = Ξ( (ǫ, 〈α1, g1〉] ).

Lemma 17. [69] Let u, v ∈ R(Λ, X). If u∗v is defined then u∗a is also defined,
where v = a ◦ b. Moreover, u ∗ a is an initial subword of either u or u ∗ v.

Proof. The proof follows from Figure 7.
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Figure 7: Possible cancelation diagrams in Lemma 17.

Now, since for every 〈α, g〉 ∈ ΓG, Ξ( (ǫ, 〈α, g〉] ) is an initial subword of
g ∈ G then by Lemma 17, f ∗Ξ( (ǫ, 〈α, g〉] ) is defined for any f ∈ G. Moreover,
again by Lemma 17, f ∗Ξ( (ǫ, 〈α, g〉] ) is an initial subword of either f or f ∗ g.
More precisely,

f ∗ Ξ( (ǫ, 〈α, g〉] ) = Ξ( (ǫ, 〈|f | − α, f〉] )
if f ∗ Ξ( (ǫ, 〈α, g〉] ) is an initial subword of f , and

f ∗ Ξ( (ǫ, 〈α, g〉] ) = Ξ( (ǫ, 〈|f |+ α− 2c(f−1, g), f ∗ g〉] )

if f ∗ Ξ( (ǫ, 〈α, g〉] ) is an initial subword of f ∗ g.
Hence, we define a (left) action of G on ΓG as follows:

f · 〈α, g〉 = 〈|f |+ α− 2min{α, c(f−1, g)}, f〉

if α 6 c(f−1, g), and

f · 〈α, g〉 = 〈|f |+ α− 2min{α, c(f−1, g)}, f ∗ g〉

if α > c(f−1, g).

The action is well-defined. Indeed, it is easy to see that f ·〈α, g〉 = f ·〈α1, g1〉
whenever (α, g) ∼ (α1, g1).

Lemma 18. [69] The action of G on ΓG defined above is isometric.

Proof. Observe that it is enough to prove

d(ǫ, 〈α, g〉) = d(f · ǫ, f · 〈α, g〉)

for every f, g ∈ G. Indeed, from the statement above it is going to follow that
the geodesic tripod (ǫ, 〈|g|, g〉, 〈|h|, h〉) is isometrically mapped to the geodesic
tripod (〈|f |, f〉, f · 〈|g|, g〉, f · 〈|h|, h〉) and isometricity follows.
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We have

d(ǫ, 〈α, g〉) = d(〈0, 1〉, 〈α, g〉) = 0 + α− 2min{0, α, c(1, g)} = α,

d(f · ǫ, f · 〈α, g〉) = d(〈|f |, f〉, f · 〈α, g〉).
Consider two cases.

(a) α 6 c(f−1, g)

Hence,
d(〈|f |, f〉, f · 〈α, g〉) = d(〈|f |, f〉, 〈|f | − α, f〉)

= |f |+ |f |−α−2min{|f |, |f |−α, c(f, f)} = |f |+ |f |−α−2(|f |−α) = α.

(b) α > c(f−1, g)

Hence,

d(〈|f |, f〉, f · 〈α, g〉) = d(〈|f |, f〉, 〈|f |+ α− 2c(f−1, g), f ∗ g〉)

= |f |+ |f |+ α− 2c(f−1, g)− 2min{|f |, |f |+ α− 2c(f−1, g), c(f, f ∗ g})
= 2|f |+ α− 2c(f−1, g)− 2min{|f |+ α− 2c(f−1, g), c(f, f ∗ g)}.

Let f = f1 ◦ c−1, g = c ◦ g1, |c| = c(f−1, g). Then |f |+ α− 2c(f−1, g) =
|f1|+α−c(f−1, g) > |f1|. At the same time, c(f, f ∗g) = |f1|, so min{|f |+
α− 2c(f−1, g), c(f, f ∗ g)} = |f1| and

d(〈|f |, f〉, f ·〈α, g〉) = 2|f |+α−2c(f−1, g)−2|f1| = 2|f |+α−2|c|−2|f1| = α

.

Proposition 5. [69] The action of G on ΓG defined above is free and Lǫ(g) =
|g|. Moreover, ΓG is minimal with respect to this action if and only if G contains
a cyclically reduced element h ∈ G, that is, |h2| = 2|h|.

Proof. Cialm 1. The stabilizer of every x ∈ ΓG is trivial.

Next, suppose f · 〈α, g〉 = 〈α, g〉. First of all, if α = 0 then |f | + α −
2min{α, c(f−1, g)} = |f | then |f | = α = 0. Also, if c(f−1, g) = 0 then |f |+α−
2min{α, c(f−1, g)} = |f |+ α which has to be equal to α form our assumption.
In both cases f = 1 follows.

Assume f 6= 1 (which implies α, c(f−1, g) 6= 0) and consider the following
cases.

(a) α < c(f−1, g)

Hence, from
〈α, g〉 = 〈|f | − α, f〉

we get α = |f | − α 6 c(f, g). In particular, |f | = 2α.
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Consider the product f ∗ g. We have

f = f1 ◦ com(f−1, g)−1, g = com(f−1, g) ◦ g1.

Since α < c(f−1, g) then we have com(f−1, g) = cα ◦ c, |cα| = α. Hence,

f = f1 ◦ c−1 ◦ c−1
α , g = cα ◦ c ◦ g1.

On the other hand, from |f | = 2α we get |f1| + |c| = α 6 c(f, g), so,
com(f, g) has f1 ◦ c as initial subword. That is, g = f1 ◦ c ◦ g2, but
now comparing two representations of g above we get cα = f1 ◦ c−1 and
cα ∗ c 6= cα ◦ c - a contradiction.

(b) α = c(f−1, g)

We have f = f1 ◦ c−1
α , g = cα ◦ g1, |cα| = α. From 〈α, g〉 = 〈|f | − α, f〉

we get α = |f | − α 6 c(f, g), so |f | = 2α and |f1| = α. Since |f1| =
α 6 c(f, g) then g = f1 ◦ g2 from which it follows that f1 = cα. But then
f1 ∗ c−1

α 6= f1 ◦ c−1
α - contradiction.

(c) α > c(f−1, g)

Hence, from
〈α, g〉 = 〈|f |+ α− 2c(f−1, g), f ∗ g〉

we get α = |f |+α−2c(f−1, g) 6 c(g, f ∗g). In particular, |f | = 2c(f−1, g).

Consider the product f ∗ g. We have

f = f1 ◦ c−1, g = c ◦ g1,

where c = com(f−1, g). Hence, |f1| = |c| < α 6 c(g, f ∗ g) = c(g, f1 ◦ g1).
It follows that g = f1 ◦ g2 and, hence, c = f1 which is impossible.

Cialm 2. Lǫ(g) = |g|
We have Lǫ(g) = d(ǫ, g · ǫ). Hence, by definition of d

d(〈0, 1〉, g · 〈0, 1〉) = d(〈0, 1〉, 〈|g|, g〉) = 0 + |g| − 2min{0, |g|, c(1, g)} = |g|.

Cialm 3. ΓG is minimal with respect to the action if and only if G contains
a cyclically reduced element h ∈ G, that is, |h2| = 2|h|.

Suppose there exists a cyclically reduced element h ∈ G. Let ∆ ⊂ ΓG be a
G-invariant subtree.

First of all, observe that ǫ /∈ ∆. Indeed, if ǫ ∈ ∆ then f · ǫ ∈ ∆ for every
f ∈ G and since ∆ is a tree then [ǫ, f · ǫ] ∈ ∆ for every f ∈ G. At the same
time, ΓG is spanned by [ǫ, f · ǫ], f ∈ G, so, ∆ = ΓG - a contradiction.

Let u ∈ ∆. By definition of ΓG there exists g ∈ G such that u ∈ [ǫ, g · ǫ].
Observe that Ag ⊆ ∆. Indeed, for example by Theorem 1.4 [24], if [u, p] is the
bridge between u and Ag then p = Y (g−1 · u, u, g · u). In particular, p ∈ ∆
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and since for every v ∈ Ag there exist g1, g2 ∈ CG(g) such that v ∈ [g1 · p, g2 · p]
then Ag ⊆ ∆.

Observe that if g is cyclically reduced then ǫ ∈ Ag, that is, ǫ ∈ ∆ - a
contradiction. More generally, ∆ ∩ Af = ∅ for every cyclically reduced f ∈ G.
Hence, let [p, q] be the bridge between Ag and Ah so that p ∈ Ag, q ∈ Ah.
Then by Lemma 2.2 [24], [p, q] ⊂ Agh, in particular, p, q ∈ Agh. It follows that
Agh ⊆ ∆, q ∈ Agh ∩Ah, and ∆ ∩Ah 6= ∅ - a contradiction.

Hence, there can be no proper G-invariant subtree ∆.

Now, suppose G contains no cyclically reduced element. Hence, ǫ /∈ Af
for every f ∈ G. Let ∆ be spanned by Af , f ∈ G. Obviously, ∆ is G-
invariant. Indeed, let u ∈ [p, q], where p ∈ Af , q ∈ Ag for some f, g ∈ G. Then
h · u ∈ [h · p, h · q], where h · p ∈ h · Af = Ahfh−1 , h · q ∈ h · Ag = Ahgh−1 , that
is, h ∈ ∆.

Finally, ǫ ∈ ΓG −∆.

Proposition 6. [69] If (Z, d′) is a Λ-tree on which G acts freely as isometries,
and w ∈ Z is such that Lw(g) = |g|, g ∈ G then there is a unique G-equivariant
isometry µ : ΓG → Z such that µ(ǫ) = w, whose image is the subtree of Z
spanned by the orbit G · w of w.

Proof. Define a mapping µ : ΓG → Z as follows

µ(〈α, f〉) = x if d′(w, x) = α, d′(f · w, x) = |f | − α.

Observe that µ(ǫ) = µ(〈0, 1〉) = w

Claim 1. µ is an isometry.

Let 〈α, f〉, 〈β, g〉 ∈ ΓG. Then by definition of d we have

d(〈α, f〉, 〈β, g〉) = α+ β − 2min{α, β, c(f, g)}.
Let x = µ(〈α, f〉), y = µ(〈β, g〉). Then By Lemma 1.2 [24] in (Z, d′) we have

d′(x, y) = d(w, x) + d(w, y)− 2min{d(w, x), d(w, y), d(w, z)},
where z = Y (w, f · w, g · w). Observe that d(w, x) = α, d(w, y) = β. At the
same time, since Lw(g) = |g|, g ∈ G then

d(w, z) =
1

2
(d(w, f ·w)+d(w, g·w)−d(f ·w, g·w)) = 1

2
(|f |+|g|−|f−1g|) = c(f, g),

and

d(µ(〈α, f〉), µ(〈β, g〉)) = d′(x, y) = α+β−2min{α, β, c(f, g)} = d(〈α, f〉, 〈β, g〉).

Claim 1. µ is equivariant.

We have to prove
µ(f · 〈α, g〉) = f · µ(〈α, g〉).

Let x = µ(〈α, g〉), y = µ(f · 〈α, g〉). By definition of µ we have d′(w, x) =
α, d′(g · w, x) = |g| − α.
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(a) α 6 c(f−1, g)

Hence,
f · 〈α, g〉 = 〈|f | − α, f〉.

and to prove y = f · x it is enough to show that d′(w, f · x) = |f | − α and
d′(f · w, f · x) = α.

Observe that the latter equality holds since d′(f ·w, f · x) = d′(w, x) = α.
To prove the former one, by Lemma 1.2 [24] we have

d(w, f · x) = d′(w, f · w) + d′(f · x, f · w)

−2min{d′(w, f · w), d′(f · x, f · w), d′(f · w, z)},
where z = Y (w, f · w, (fg) · w). Also,

d′(f · w, z) = 1

2
(d′(f · w,w) + d′(f · w, (fg) · w)− d′(w, (fg) · w))

=
1

2
(|f |+ |g| − |f−1g|) = c(f−1, g).

Since, d′(w, f · w) = |f |, d′(f · x, f · w) = α then min{d′(w, f · w), d′(f ·
x, f · w), d′(f · w, z)} = α, and

d′(w, f · x) = |f |+ α− 2α = |f | − α.

(b) α > c(f−1, g)

Hence,
f · 〈α, g〉 = 〈|f |+ α− 2c(f−1, g), f ∗ g〉.

and to prove y = f · x it is enough to show that d′(w, f · x) = |f | + α −
2c(f−1, g) and d′(f · x, (fg) · w) = |fg| − (|f |+ α− 2c(f−1, g)).

Observe that d′(f · x, (fg) · w) = d′(x, gw) = |g| − α = |fg| − (|f | + α −
2c(f−1, g)), so the latter equality holds.

By Lemma 1.2 [24] we have

d(w, f · x) = d′(w, f · w) + d′(f · x, f · w)

−2min{d′(w, f · w), d′(f · x, f · w), d′(f · w, z)},
where z = Y (w, f · w, (fg) · w). Also,

d′(f · w, z) = 1

2
(d′(f · w,w) + d′(f · w, (fg) · w)− d′(w, (fg) · w))

=
1

2
(|f |+ |g| − |f−1g|) = c(f−1, g).

d′(w, f ·w) = |f |, d′(f ·x, f ·w) = α, so min{d′(w, f ·w), d′(f ·x, f ·w), d′(f ·
w, z)} = d′(f · w, z) = c(f−1, g), and

d(w, f · x) = |f |+ α− 2c(f−1, g).
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Claim 1. µ is unique.

Observe that if µ′ : ΓG → Z is another equivariant isometry such that
µ′(ǫ) = w then for every g ∈ G we have

µ′(〈|g|, g〉) = µ′(g · 〈0, 1〉) = g · µ′(〈0, 1〉) = g · w.

That is, µ′ agrees with µ on G ·ǫ, hence µ = µ′ because isometries preserve
geodesic segments.

Thus, µ is unique. Moreover, µ(ΓG) is the subtree of Z spanned by G ·w.

The discussion above can be summarized in the following theorem.

Theorem 26. [69] Let G be a subgroup of CDR(Λ, X) for some discretely
ordered abelian group Λ and a set X. Let | · | : G → Λ be the length function
on G induced from CDR(Λ, X). Then there are a Λ-tree (ΓG, p), an action
of G on ΓG and a point x ∈ ΓG such that |g| = lx(g) for any g ∈ G, where
lx(g) = p(x, g · x). Moreover, If (Y, d) is a Λ-tree on which G acts freely by
isometries, and y ∈ Y is such that ly(g) = |g|, g ∈ G, then there is a unique
G-equivariant isometry µ : ΓG → Y such that µ(x) = y, whose image is the
subtree of Y spanned by the orbit G · y of y.

7.3.2 Examples

Below we consider two examples of subgroups of CDR(Λ, X), where Λ = Z2 and
X an arbitrary alphabet, and explicitly construct the corresponding universal
trees for these groups.

Γ1

g h

G

Figure 8: ΓG as a Z-tree of Z-trees.

Example 20. Let F = F (X) be a free group with basis X and the standard
length function | · |, and let u ∈ F a cyclically reduced element which is not



Actions, length functions, and non-archemedian words 50

a proper power. If we assume that Z2 = 〈1, t〉 is the additive group of linear
polynomials in t ordered lexicographically then the HNN-extension

G = 〈F, s | us = u〉

embeds into CDR(Z2, X) under the following map φ:

φ(x) = x, ∀ x ∈ X,

φ(s)(β) =

{
u(α), if β = m|u|+ α,m > 0, 1 6 α 6 |u|,
u(α), if β = t−m|u|+ α,m > 0, 1 6 α 6 |u|.

It is easy to see that |φ(s)| = t and φ(s) commutes with u in CDR(Z2, X).
To simplify the notation we identify G with its image φ(G).

Every element g of G can be represented as the following reduced Z2-word

g = g1 ◦ sδ1 ◦ g2 ◦ · · · ◦ gk ◦ sδk ◦ gk+1,

where [gi, u] 6= 1. Now, according to the construction described in Subsection
7.3.1, the universal tree ΓG consists of the segments in Z2 labeled by elements
from G which are glued together along their common initial subwords.

g

g Axis(u).

h Axis(u).'

1

h

h'

Figure 9: Adjacent Z-subtrees in ΓG.

Thus, ΓG can be viewed as a Z-tree of Z-trees which are Cayley graphs of
F (X) and every vertex Z-subtree can be associated with a right representative
in G by F . The end-points of the segments [1, |g|] and [1, |h|] labeled respectively
by g and h belong to the same vertex Z-subtree if and only if h−1g ∈ F (see
Figure 8).

In other words, ΓG is a “more detailed” version of the Bass-Serre tree T for
G, in which every vertex is replaced by the Cayley graph of the base group F
and the adjacent Z-subtrees of ΓG corresponding to the representatives g and h
are “connected” by means of s± which extends g ·Axis(u) to h′ ·Axis(u), where
h′−1h ∈ F and g−1h ∈ s±F (see Figure 9).
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g

g Axis(u).

h Axis(v).'

1

h

h'

Figure 10: Adjacent Z-subtrees in ΓH .

The following example is a generalization of the previous one.

Example 21. Let F = F (X) be a free group with basis X and the standard
length function | · |, and let u, v ∈ F be cyclically reduced elements which is not
a proper powers and such that |u| = |v|. The HNN-extension

H = 〈F, s | us = v〉

embeds into CDR(Z2, X) under the following map ψ:

ψ(x) = x, ∀ x ∈ X,

ψ(s)(β) =

{
u(α), if β = m|u|+ α,m > 0, 1 6 α 6 |u|,
v(α), if β = t−m|v|+ α,m > 0, 1 6 α 6 |v|.

It is easy to see that |ψ(s)| = t and u ◦ ψ(s) = ψ(s) ◦ v in CDR(Z2, X). Again,
to simplify the notation we identify H with its image ψ(H).

The structure of ΓH is basically the same as the structure of ΓG in Example
20. The only difference is that the adjacent Z-subtrees of ΓH corresponding
to the representatives g and h are “connected” by means of s± which extends
g ·Axis(u) to h′ ·Axis(v), where h′−1h ∈ F and g−1h ∈ s±F (see Figure 10).

7.3.3 Labeling of “edges” and “paths” in universal trees

Let G be a subgroup of CDR(Λ, X) for some discretely ordered abelian group Λ
and a set X , and let ΓG be its universal Λ-tree constructed in Subsection 7.3.1.
Recall that there exists a labeling function

ξ : (ΓG − {ǫ}) → X±, ξ(〈α, g〉) = g(α)

on all points of ΓG except the base-point ǫ.
It is easy to see that the labeling ξ is not equivariant, that is, ξ(v) 6= ξ(g · v)

in general (even if both v and g ·v are in ΓG−{ε}, which is not stable under the
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action of G). In the present paper we are going to introduce another labeling
function for ΓG defined not on vertices but on “edges”, stable under the action
of G. With this new labeling ΓG becomes an extremely useful combinatorial
object in the case Λ = Zn, but in general such a labeling can be defined for
every discretely ordered Λ.

First of all, for every v0, v1 ∈ ΓG such that d(v0, v1) = 1 we call the ordered
pair (v0, v1) the edge from v0 to v1. Here, if e = (v0, v1) then denote v0 =
o(e), v1 = t(e) which are respectively the origin and terminus of e. Now, if
the vertex v1 ∈ ΓG − {ε} is fixed then, since ΓG is a Λ-tree, there is exactly
one point v0 such that d(ε, v1) = d(ε, v0) + 1. Hence, there exists a natural
orientation, with respect to ε, of edges in ΓG, where an edge (v0, v1) is positive
if d(ε, v1) = d(ε, v0) + 1, and negative otherwise. Denote by E(ΓG) the set of
edges in ΓG. If e ∈ E(ΓG) and e = (v0, v1) then the pair (v1, v0) is also an edge
and denote e−1 = (v1, v0). Obviously, o(e) = t(e−1). Because of the orientation,
we have a natural splitting

E(ΓG) = E(ΓG)
+ ∪ E(ΓG)

−,

where E(ΓG)
+ and E(ΓG)

− denote respectively the sets of positive and negative
edges. Now, we can define a function µ : E(ΓG)

+ → X± as follows: if e =
(v0, v1) ∈ E(ΓG)

+ then µ(e) = ξ(v1). Next, µ can be extended to E(ΓG)
− (and

hence to E(ΓG)) by setting µ(f) = µ(f−1)−1 for every f ∈ E(ΓG)
−.

Example 22. Let F = F (X) be a free group on X. Hence, F embeds into
(coincides with) CDR(Z, X) and ΓF with the labeling µ defined above is just a
Cayley graph of F with respect to X. That is, ΓF is a labeled simplicial tree.

The action of G on ΓG induces the action on E(ΓG) as follows g · (v0, v1) =
(g ·v0, g ·v1) for each g ∈ G and (v0, v1) ∈ E(ΓG). It is easy to see that E(ΓG)

+ is
not closed under the action of G but the labeling is equivariant as the following
lemma shows.

Lemma 19. If e, f ∈ E(ΓG) belong to one G-orbit then µ(e) = µ(f).

Proof. Let e = (v0, v1) ∈ E(ΓG)
+. Hence, there exists g ∈ G such that v0 =

〈α, g〉, v1 = 〈α+ 1, g〉. Let f ∈ G and consider the following cases.

Case 1. c(f−1, g) = 0
Then f ∗ g = f ◦ g. If α = 0 then f · v0 = 〈|f |, f〉 = 〈|f |, f ◦ g〉, and

f · v1 = 〈|f |+ 1, f ◦ g〉. Hence, f · e ∈ E(ΓG)
+ and µ(f · e) = ξ(f · v1) = g(1) =

ξ(v1) = µ(e).

Case 2. c(f−1, g) > 0

(a) α+ 1 6 c(f−1, g)

Then f · v0 = 〈|f |+α− 2α, f〉 = 〈|f |−α, f〉 and f · v1 = 〈|f |− (α+1), f〉.
So, d(ε, f · v1) < d(ε, f · v0) and f · e ∈ E(ΓG)

−. Now,

µ(f · e) = µ((f · e)−1)−1 = µ((f · v1, f · v0))−1 = ξ(f · v0)−1 = f(|f |−α)−1

= g(α+ 1) = ξ(v1) = µ(e).
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(b) α = c(f−1, g)

We have f · v0 = 〈|f | − α, f〉 and f · v1 = 〈|f | + (α + 1) − 2c(f−1, g), f ∗
g〉 = 〈|f | − α + 1, f ∗ g〉. It follows that f · e ∈ E(ΓG)

+ and µ(f · e) =
ξ(f · v1) = (f ∗ g)(|f | − α + 1). At the same time, f ∗ g = f1 ◦ g1, where
|f1| = |f |−c(f−1, g) = |f |−α, g = g0◦g1, |g0| = α, so, (f∗g)(|f |−α+1) =
g1(1) = g(α+ 1) and µ(f · e) = g(α+ 1) = ξ(〈α + 1, g〉) = ξ(v1) = µ(e).

(c) α > c(f−1, g)

Hence, f · v0 = 〈|f | + α − 2c(f−1, g), f ∗ g〉 and f · v1 = 〈|f | + α + 1 −
2c(f−1, g), f ∗ g〉. Obviously, f · e ∈ E(ΓG)

+ and

µ(f ·e) = ξ(f ·v1) = (f ∗g)(|f |+α+1−2c(f−1, g)) = g1(α+1−c(f−1, g))

= g(α+ 1) = ξ(v1) = µ(e),

where f ∗g = f1 ◦g1, |f1| = |f |−c(f−1, g) = |f |−α, g = g0 ◦g1, |g0| = α.

Thus, in all possible cases we got µ(f · e) = µ(e) and the required statement
follows.

Let v, w be two points of ΓG. Since ΓG is a Λ-tree there exists a unique
geodesic connecting v to w, which can be viewed as a “path” is the following
sense. A path from v to w is a sequence of edges p = {eα}, α ∈ [1, d(v, w)] such
that o(e1) = v, t(ed(v,w)) = w and t(eα) = o(eα+1) for every α ∈ [1, d(v, w)−1].
In other words, a path is an “edge” counter-part of a geodesic and usually, for
the path from v to w (which is unique since ΓG is a Λ-tree) we are going to use
the same notation as for the geodesic between these points, that is, p = [v, w].
In the case when v = w the path p is empty. The length of p we denote by
|p| and set |p| = d(v, w). Now, the path label µ(p) for a path p = {eα} is the
function µ : {eα} → X±, where µ(eα) is the label of the edge eα.

Lemma 20. Let v, w be points of ΓG and p the path from v to w. Then µ(p) ∈
R(Λ, X).

Proof. From the definition of ΓG it follows that the statement is true when v = ε.
Let v0 = Y (ε, v, w) and let pv and pw be the paths from ε respectively to v and
w. Also, let p1 and p2 be the paths from v0 to v and w. Since µ(pv), µ(pw) ∈
R(Λ, X) then µ(p1), µ(p2) ∈ R(Λ, X) as subwords. Hence, µ(p) /∈ R(Λ, X)
implies that the first edges e1 and e2 correspondingly of p1 and p2 have the same
label. But this contradicts the definition of ΓG because in this case t(e1) ∼ t(e2),
but t(e1) 6= t(e2).

As usual, if p is a path from v to w then its inverse denoted p−1 is a path
from w back to v. In this case, the label of p−1 is µ(p)−1, which is again an
element of R(Λ, X).

Define
VG = {v ∈ ΓG | ∃ g ∈ G : v = 〈|g|, g〉},
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which is a subset of points in ΓG corresponding to the elements of G. Also, for
every v ∈ ΓG let

pathG(v) = {µ(p) | p = [v, w] where w ∈ VG}.

The following lemma follows immediately.

Lemma 21. Let v ∈ VG. Then pathG(v) = G ⊂ CDR(Λ, X).

The action of G on E(ΓG) extends to the action on all paths in ΓG, hence,
Lemma 19 extends to the case when e and f are two G-equivalent paths in ΓG.

8 Regular length functions and actions

Regularity of Lyndon length function, or of the underlying action turns out to
be an important property in the theory of Λ-free groups. By imposing this
restriction on the length function or action one gains a lot of information about
the group through inner combinatorics of group elements viewed as Λ-words.

8.1 Regular length functions

In this section we define regular length functions and show some examples of
groups with regular length functions.

A length function l : G → Λ is called regular if it satisfies the regularity
axiom:

(L6) ∀ g, f ∈ G, ∃ u, g1, f1 ∈ G :

g = u ◦ g1 & f = u ◦ f1 & l(u) = c(g, f).

Observe that a regular length function does not have to be free, as well as,
freeness does not imply regularity.

Here are several examples of groups with regular free length functions.

Example 23. Let F = F (X) be a free group on X. The length function

| · | : F → Z,

where |f | is a the length of f ∈ F as a word in X±1, is regular.

The following is a more general example.

Example 24. [67] Let F = F (X) be a free group on X, H a finitely generated
subgroup of H, and lH the restriction to H of the length function in F relative
to X. Then lH is a regular length function on H if and only if there exists a
basis U of H such that every two non-equal elements from U±1 have different
initial letters.

Example 25. [92] Lyndon’s free Z[t]-group F Z[t] has a regular free length func-
tion with values in Z[t].
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Example 26. [67] Let F = F (X) be a free group with basis X, | · | the standard
length function on F relative to X, and u, v ∈ F such that |u| = |v| and u is
not conjugate to v−1. Then the HNN-extension

G = 〈F, s | us = v〉,

has a regular free length function l : G→ Z2 which extends | · |.

Example 27. [67] For any n > 1 the orientable surface group

G = 〈x1, x2, . . . , x2n−1, x2n | [x1, x2] · · · [x2n−1, x2n] = 1〉

has a regular free length function l : G→ Z2.

Proof. It suffices to represent G as an HNN extension from Example 26. The
word

R(X) = x1 · · ·x2nx−1
1 · · ·x−1

2n .

is quadratic, so there exists an automorphism φ of F = F (x1, . . . , x2n) such that

R(X)φ = [x1, x2] · · · [x2n−1, x2n]

(see, for example, Proposition 7.6 [78]). It follows that G is isomorphic to

G′ = 〈x1, . . . , x2n | x1 · · ·x2nx−1
1 · · ·x−1

2n = 1〉,

which can be represented as an HNN-extension of the required form

G′ = 〈F (x2, . . . , x2n), x1 | x1(x2 · · ·x2n)x−1
1 = x2nx2n−1 · · ·x2〉,

since |x2 · · ·x2n| = |x2nx2n−1 · · ·x2|.

Example 28. [67] For any n, n > 3 the non-orientable surface group

G = 〈x1, x2, . . . , xn | x21x22 . . . x2n = 1〉

has a regular free length function l : G→ Z2.

Proof. Again, it suffices to represent G as an HNN extension from Example 26.
An argument similar to the one in the proof of Example 27 shows that the group
G is isomorphic to

G′ = 〈x1, x2, . . . , xn | x1 . . . xn−1xnx
−1
1 · · ·x−1

n−1xn〉

and the result follows, since the presentation above can be written as

G′ = 〈x1, x2, . . . , xn | x1(x2 . . . xn−1xn)x
−1
1 = x−1

n xn−1 · · ·x2〉

Example 29. [67] A free abelian group of rank n has a free regular length
function in Zn.
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Proof. Let G = Zn be a free abelian group of rank n. Then G is an ordered
abelian group relative to the right lexicographic order “6”. The absolute value
|u| of an element u ∈ G, defined as |u| = max{u,−u}, gives a free length
function l : G→ Zn. It is easy to see that l is regular.

Example 30. [67] Let Gi, i = 1, 2 be a group with a free regular length function
li : Gi → Zn. Then the free product G = G1 ∗ G2 has a free regular length
function in l : G→ Zn that extends the functions l1 and l2.

Proof. Let g ∈ G given in the reduced form g = u1v1 . . . ukvk, where u1, . . . , uk ∈
G1 and v1, . . . , vk ∈ G2. Define l : G→ Zn by

l(g) =

k∑

i=1

(l1(ui) + l2(vi)).

l is a free length function (see, for example, [24]). Also, note that c(g, h) = 0
if g ∈ G1 and h ∈ G2. Next, l is regular. Indeed, let g = g1 · · · gk, h =
h1 · · ·hn ∈ G, where the products g1 · · · gk, h1 · · ·hn are reduced and k 6 n. Let
m = max{i | gi = hi}. If m = k then h = g ◦ (hm+1 · · ·hn) and c(g, h) = l(g),
so the regularity axiom holds for the pair g, h. If m = n then necessarily
m = k and h = g, so the the axiom holds again. Now assume that m < k.
If we denote c = g1 . . . gm then g = c ◦ gm+1 ◦ g′, h = c ◦ hm+1 ◦ h′, where
g′ = gm+2 · · · gk, h′ = hm+2 · · ·hn (g′ is trivial if k = m+ 1, and h′ is trivial if
n = m+ 1). Hence, g−1h = (g′)−1 ◦ (g−1

m+1hm+1) ◦ h′ and

c(g, h) =
1

2
(l(g)+l(h)−l(g−1h)) =

1

2
(l(c)+l(gm+1)+l(g

′)+l(c)+l(hm+1)+l(h
′)

−(l(g′) + l(g−1
m+1hm+1) + l(h′))) = l(c) + c(gm+1, hm+1).

Since both gm+1 and hm+1 belong to the same factor Gi and the length func-
tion on Gi is regular, it follows that there exists u ∈ Gi such that l(u) =
c(gm+1, hm+1), gm+1 = u ◦ v, hm+1 = u ◦ w for some v, w ∈ Gi. Hence,
g = (c u) ◦ v ◦ g′, h = (c u) ◦ w ◦ h′, where c(g, h) = l(c u) and c u ∈ G.

Example 31. Let G be a finitely generated R-free group. Then G has a free reg-
ular length function in Zn, where n is the maximal rank of free abelian subgroups
(centralizers) of G.

Proof. By Rips’ Theorem every finitely generated R-free group is a free product
of groups described in Examples 27, 28, 29, hence the result.

Theorem 27. Let G have a free regular Lyndon length function L : G → Λ,
where Λ is an arbitrary ordered abelian group. Then there exists an embedding
φ : G→ R(Λ′, X), where Λ′ is a discretely ordered abelian group and X is some
set, such that, the Lyndon length function on φ(G) induced from R(Λ′, X) is
regular.
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Proof. Since L is regular then for any g, f ∈ G there exist u, g1, f1 ∈ G such
that

g = u ◦ g1 & f = u ◦ f1 & L(u) = c(g, f)

By Corollary 5 it follows that

|φ(g)| = |φ(u)|+ |φ(g1)|, |φ(f)| = |φ(u)|+ |φ(f1)|.

Indeed, if for example |φ(g)| < |φ(u)| + |φ(g1)| then L(g) < L(u) + L(g1) – a
contradiction. So, we have

2c(φ(g), φ(f)) = |φ(g)|+|φ(f)|−|φ(g−1f)| = |φ(g)|+|φ(f)|−|φ(g−1
1 ◦f1)| = 2|φ(u)|.

Hence, c(φ(g), φ(f)) = |φ(u)| and the length function on φ(G) induced from
R(A,X) is regular.

Notice that the converse of the theorem above is obviously true.

8.2 Regular actions

In this section we give a geometric characterization of group actions that come
from regular length functions.

Let G act on a Λ-tree Γ. The action is regular with respect to x ∈ Γ if for
any g, h ∈ G there exists f ∈ G such that [x, fx] = [x, gx] ∩ [x, hx].

The next lemma shows that regular actions exactly correspond to regular
length functions (hence the term).

Lemma 22. [67] Let G act on a Λ-tree Γ. Then the action of G is regular with
respect to x ∈ Γ if and only if the length function Lx : G → Λ based at x is
regular.

Proof. Let d be the Λ-metric on Γ. By definition, the length function Lx is
regular if for every g, h ∈ G there exists f ∈ G such that g = fg1, h = fh1,
where Lx(f) = c(g, h) and Lx(g) = Lx(f) + Lx(g1), Lx(h) = Lx(f) + Lx(h1).

Suppose the action of G is regular with respect to x. Then for g, h ∈ G
there exists f ∈ G such that [x, fx] = [x, gx] ∩ [x, hx]. We have [x, gx] =
[x, fx] ∪ [fx, gx], [x, hx] = [x, fx] ∪ [fx, hx] and d(fx, gx) = d(x, (f−1g)x) =
Lx(f

−1g), d(fx, hx) = d(x, (f−1h)x) = Lx(f
−1h). Taking g1 = f−1g, h1 =

f−1h we have Lx(g) = Lx(f) + Lx(g1), Lx(h) = Lx(f) + Lx(h1). Finally,
since c(g, h) = 1

2 (Lx(g) + Lx(h) − Lx(g
−1h)) and Lx(g

−1h) = d(x, (g−1h)x) =
d(gx, hx) = d(fx, gx) + d(fx, hx) we get Lx(f) = c(g, h).

Suppose that Lx is regular. Then from g = fg1, h = fh1, where Lx(g) =
Lx(f) + Lx(g1), Lx(h) = Lx(f) + Lx(h1) it follows that [x, gx] = [x, fx] ∪
[fx, gx], [x, hx] = [x, fx]∪ [fx, hx]. Now, Lx(f) = c(g, h) = 1

2 (Lx(g) +Lx(h)−
Lx(g

−1h)), so 2d(x, fx) = d(x, gx) + d(x, hx) − d(x, (g−1h)x) = d(x, gx) +
d(x, hx) − d(gx, hx). In other words,

d(gx, hx) = d(x, gx) + d(x, hx) − 2d(x, fx) = (d(x, gx) − d(x, fx))+
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(d(x, hx) − d(x, fx)) = d(fx, gx) + d(fx, hx)

which is equivalent to [x, fx] = [x, gx] ∩ [x, hx].

Lemma 23. [67] Let G act minimally on a Λ-tree Γ. If the action of G is
regular with respect to x ∈ Γ then all branch points of Γ are G-equivalent.

Proof. From minimality of the action it follows that Γ is spanned by the set of
points Gx = {gx | g ∈ G}.

Now let y be a branch point in Γ. It follows that there exist (not unique
in general) g, h ∈ G such that [x, y] = [x, gx] ∩ [x, hx]. From regularity of the
action it follows that there exists f ∈ G such that y = fx. Hence, every branch
point is G-equivalent to x and the statement of the lemma follows.

Lemma 24. [67] Let G act on a Λ-tree Γ. If the action of G is regular with
respect to x ∈ Γ then it is regular with respect to any y ∈ Gx.

Proof. We have to show that for every g, h ∈ G there exists f ∈ G such that
[y, fy] = [y, gy] ∩ [y, hy]. Since y = tx for some t ∈ G then we have to prove
that [tx, (ft)x] = [tx, (gt)x] ∩ [tx, (ht)x]. The latter equality is equivalent to
[x, (t−1ft)x] = [x, (t−1gt)x] ∩ [x, (t−1ht)x] which follows from regularity of the
action with respect to x.

Lemma 25. [67] Let G act freely on a Λ-tree Γ so that all branch points of Γ
are G-equivalent. Then the action of G is regular with respect to any branch
point in Γ.

Proof. Let x be a branch point in Γ and g, h ∈ G. If g = h then [x, gx]∩[x, hx] =
[x, gx] and g is the required element. Suppose g 6= h. Since the action is
free then gx 6= hx and we consider the tripod formed by x, gx, hx. Hence,
y = Y (x, gx, hx) is a branch point in Γ and by the assumption there exists
f ∈ G such that y = fx.
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Figure 11: Γ in Example 32.
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Example 32. Let Γ′ be the Cayley graph of a free group F (x, y) with the base-
point ε. Let Γ be obtained from Γ′ by adding an edge labeled by z 6= x±1, y±1

at every vertex of Γ′. F (x, y) has a natural action on Γ′ which we can extend
to the action on Γ. The edge at ε labeled by z has an endpoint not equal to ε
and we denote it by ε′. Observe that the action of F (x, y) on Γ is regular with
respect to ε but is not regular with respect to ε′.

8.3 Merzlyakov’s Theorem for Λ-free groups with regular
actions

Here are the results which show that groups with regular free Lyndon length
functions generalize free groups in the following sense.

Theorem 28. [58] Every finitely generated non-abelian group G with a regular
free Lyndon length function freely lifts every positive sentence of the language
LG which holds in G, that is, G freely lifts its positive theory Th+(G) (the set
of all positive sentences that are true in G).

Theorem 29. [58] Let G be a finitely generated non-abelian group with a regular
free Lyndon length function. Then every positive sentence in the language LG
which holds in G has term-definable Skolem functions in G. Moreover, if G has
a decidable word problem then such Skolem functions can be found effectively.

9 Limit groups

These numerous characterizations of limit groups make them into a very robust
tool linking group theory, topology and logic.

Limit groups play an important part in modern group theory. They appear in
many different situations: in combinatorial group theory as groups discriminated
by G (ω-residually G-groups or fully residually G-groups) [6, 5, 91, 8, 9], in the
algebraic geometry over groups as the coordinate groups of irreducible varieties
over G [7, 59, 64, 60, 117], groups universally equivalent to G [108, 41, 91], limit
groups of G in the Gromov-Hausdorff topology [20], in the theory of equations
in groups [76, 104, 106, 59, 64, 60, 46], in group actions [14, 40, 92, 47, 49], in
the solutions of Tarski problems [62, 118], etc.

Recall, that a group G is called fully residually free if for any non-trivial
g1, . . . , gn ∈ G there exists a homomorphism φ of G into a free group such that
φ(g1), . . . , φ(gn) are non-trivial.

It is a crucial result that every limit group admits a free action on a Zn-tree
for an appropriate n ∈ N, where Zn is ordered lexicographically (see [64]). The
proof comes in several steps. The initial breakthrough is due to Lyndon, who
introduced a construction of the free Z[t]-completion F Z[t] of a free group F
(nowadays it is called Lyndon’s free Z[t]-group) and showed that this group, as
well as all its subgroups, is fully residually free [76]. Much later Remeslennikov
proved that every finitely generated fully residually free group has a free Lyndon
length function with values in Zn (but not necessarily ordered lexicographically)
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[108]. That was a first link between limit groups and free actions on Zn-trees. In
1995 Myasnikov and Remeslennikov showed that Lyndon free exponential group
F Z[t] has a free Lyndon length function with values in Zn with lexicographical
ordering [89] and stated a conjecture that every limit group embeds into F Z[t].
Finally, Kharlampovich and Myasnikov proved that every limit group G embeds
into F Z[t] [64].

Below, following [92] we construct a free Z[t]-valued length function on F Z[t]

which combined with the result of Kharlampovich and Myasnikov mentioned
above gives a free Zn-valued length function on a given limit group G. Then
we discuss various algorithmic applications of these results which are based on
the technique of infinite words and Stallings foldings techniques for subgroups
of F Z[t] (see [93, 65, 97]).

We fix a set X , a free group F = F (X), and consider the additive group of
the polynomial ring Z[t] as a free abelian group (with basis 1, t, t2, . . .) ordered
lexicographically.

9.1 Lyndon’s free group F Z[t]

Let A be an associative unitary ring. A group G is termed an A-group if it is
equipped with a function (exponentiation) G×A→ G:

(g, α) → gα

satisfying the following conditions for arbitrary g, h ∈ G and α, β ∈ A:

(Exp1) g1 = g, gα+β = gαgβ , gαβ = (gα)β ,

(Exp2) g−1hαg = (g−1hg)α,

(Exp3) if g and h commute, then (gh)α = gαhα.

The axioms (Exp1) and (Exp2) were introduced originally by R. Lyndon in [76],
the axiom (Exp3) was added later in [88]. A homomorphism φ : G→ H between
two A-groups is termed an A-homomorphism if φ(gα) = φ(g)α for every g ∈ G
and α ∈ A. It is not hard to prove (see, [88]) that for every group G there exists
an A-group H (which is unique up to an A-isomorphism) and a homomorphism
µ : G −→ H such that for every A-group K and every A-homomorphism θ :
G −→ K, there exists a unique A-homomorphism φ : H −→ K such that
φµ = θ. We denote H by GA and call it the A-completion of G.

In [90] an effective construction of F Z[t] was given in terms of extensions of
centralizers. For a group G let S = {Ci | i ∈ I} be a set of representatives of
conjugacy classes of proper cyclic centralizers in G, that is, every proper cyclic
centralizer in G is conjugate to one from S, and no two centralizers from S are
conjugate. Then the HNN-extension

H = 〈G, si,j (i ∈ I, j ∈ N) | [si,j , ui] = [si,j , si,k] = 1 (ui ∈ Ci, i ∈ I, j, k ∈ N) 〉,
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is termed an extension of cyclic centralizers in G. Now the group F Z[t] is iso-
morphic to the direct limit of the following infinite chain of groups:

F = G0 < G1 < · · · < Gn < · · · < · · · , (2)

where Gi+1 is obtained from Gi by extension of all cyclic centralizers in Gi.

9.2 Z[t]-exponentiation on CR(Z[t], X)

Define t-exponentiation on CR(Z[t], X) as follows.

(1) Let u ∈ CR(Z[t], X) be not a proper power and such that

|u| = f(t) = ant
n + an−1t

n−1 + · · · a1t+ a0.

Observe that for every β ∈ [1, tn+1] there exists m > 0 such that either
β ∈ [m|u|+1, (m+1)|u|], or β ∈ [t|u|− (m+1)|u|+1, t|u|−m|u|]. Hence,
define ut to be an element of CR(Z[t], X) with length tn+1 as follows

ut(β) =

{
u(α), if β = m|u|+ α,m > 0, 1 6 α 6 |u|,
u(α), if β = t|u| −m|u|+ α,m > 0, 1 6 α 6 |u|.

(2) If v ∈ CR(Z[t], X) is such that v = uk for some u ∈ CR(Z[t], X) then we
set vt = (ut)k.

Thus we have defined an exponent vt for a given v ∈ CR(Z[t], X). Notice
that it follows from the construction that vt starts with v and ends with
v. In particular, vt ∈ CR(Z[t], X). It follows that vt ∗v = vt ◦v = v ◦vt =
v ∗ vt, hence, [vt, v] = ε.

(3) Now for v ∈ CR(Z[t], X) we define exponents vt
k

by induction. Since
vt ∈ CR(Z[t], X) one can repeat the construction from (1) and define

vt
k+1

= (vt
k

)t.

(4) Now we define vf(t), where f(t) ∈ Z[t], by linearity, that is, if f(t) =
m0 +m1t+ . . .+mkt

k then

vf(t) = vm0 ∗ (vt)m1 ∗ · · · ∗ (vtk)mk .

Observe that the product above is defined because vt
m+1

is cyclically
reduced, and starts and ends with vt

m
.

Lemma 26. Let v ∈ CR(Z[t], X), f(t) ∈ Z[t]. Then vf(t) ∈ CR(Z[t], X) and
[vf(t), v] = ε, v−f(t) = (v−1)f(t).

Proof. Follows directly from the definition of Z[t]-exponentiation.
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Remark 4. Observe that under the above definition we loose the property
|uf(t)| = |u||f(t)| for u ∈ F Z[t], f(t) ∈ Z[t]. But, at the same time, we obtain
computational advantages which will be clear later.

Lemma 27. Let u, v ∈ CR(Z[t], X) and u = c−1 ∗v ∗c for some c ∈ R(Z[t], X).
Then for every f(t) ∈ Z[t] we have

uf(t) = c−1 ∗ vf(t) ∗ c.

Proof. Since u and v are cyclically reduced and u = c−1∗v∗c then v = v1◦v2, u =
v2 ◦ v1, c = v1.

In view of (4) in the definition of Z[t]-exponentiation above it suffices to
prove the lemma for f(t) = tn. For f(t) = t we immediately get

(v2 ◦ v1)t = v−1
1 ∗ (v1 ◦ v2)t ∗ v1

from the definition. This implies that vt and ut are cyclic permutations of each
other and both belong to CR(Z[t], X), therefore one can apply the induction on
deg f(t) and the lemma follows.

Lemma 28. Let u, v ∈ CR(Z[t], X) and f(t), g(t) ∈ Z[t] be such that uf(t) =
vg(t). Then [u, v] is defined and is equal to ε.

Proof. Since [u, uf(t)] = ε and [v, vg(t)] = ε then [u, vg(t)] = ε and [v, uf(t)] = ε.
Now we are going to derive the required statement from these equalities.

Observe that if |u| = |v| then it follows automatically that u = v±1. Indeed,
by the definition of exponents uf(t) and vg(t) have correspondingly u±1 and v±1

as initial segments. Since uf(t) = vg(t) then initial segments of length |u| in
both coincide.

We can assume |u| < |v| and consider [u, vg(t)] = ε (if |u| > |v| then we
consider [v, uf(t)] = ε and apply the same arguments). Also, g(t) > 1, otherwise
we have nothing to prove.

Thus we have u ∗ vg(t) = vg(t) ∗ u. Since u and v are cyclically reduced and
equal Z[t]-words have equal initial and terminal segments of the same length
then [u, v] is defined and we have two cases.

(a) Suppose u ∗ v = u ◦ v.
Thus, automatically we have v ∗ u = v ◦ u. Next, u ◦ vg(t) and vg(t) ◦ u
have the same initial segment of length 2|v|. So v = u ◦ v1 = v1 ◦ v2 and
|u| = |v2|. Comparing terminal segments of u ◦ vg(t) and vg(t) ◦u of length
|u| we have u = v2 and from u ◦ v1 = v1 ◦ u it follows that [u, v] = ε.

(b) Suppose there is a cancellation in u ∗ v.
Then, from uf(t) = vg(t) it follows that v−1 = v−1

1 ◦ u and so v = u−1 ◦ v1.
Using the same arguments as in (a) we obtain v = u−1 ◦ v1 = v1 ◦ v2,
|u| = |v2| and u−1 = v2. It follows immediately that [u, v] = ε.
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9.3 Z[t]-exponentiation on CDR(Z[t], X)

Let v ∈ CDR(Z[t], X) have a cyclic decomposition v = c−1◦u◦c and f(t) ∈ Z[t].
We define vf(t) as follows

vf(t) = c−1 ◦ uf(t) ◦ c. (3)

Observe that the product above is well defined since uf(t) starts and ends on u
if f(t) > 0, and starts and ends on u−1 if f(t) < 0.

Thus we have defined Z[t]-exponentiation function

exp : CDR(Z[t], X)× Z[t] → CDR(Z[t], X)

on the whole set CDR(Z[t], X).
There are other ways of defining Z[t]-exponentiation on CDR(Z[t], X) but

from now on we fix the exponentiation described above.

Lemma 29. Let u, v ∈ CDR(Z[t], X) be such that h(u) = h(v) and [u, v] = ε.
Then [uf(t), v] = ε for any f(t) ∈ Z[t] provided [uf(t), v] is defined.

Proof. We can assume that either u or v is cyclically reduced. This is always
possible because both elements belong to CDR(Z[t], X). Suppose we have v−1∗
u ∗ v = u, where u is cyclically reduced.

(a) Suppose |u| < |v|.
Since u is cyclically reduced either v−1 ∗ u = v−1 ◦ u or u ∗ v = u ◦ v.
Assume the former. Then v has to cancel completely in v−1 ∗u∗v because
this product is equal to u which is cyclically reduced. So v has the form
v = uk ◦w, where k < 0 is the smallest possible and w does not have u as
an initial segment. We have then

v−1 ∗ u ∗ v = w−1 ∗ u ∗ w = w−1 ∗ (u ◦ w) = u.

and w−1 cancels completely. In this case the only possibility is that |w| <
|u| (otherwise we have a contradiction with the choice of k) and [u,w] = ε.
So now we reduced everything to the case (b) because clearly [uf(t), uk] = ε
for any f(t) ∈ Z[t].

(b) Suppose |u| > |v|.
We have v−1 ∗ u ∗ v = u. u is cyclically reduced, moreover, u is a cyclic
permutation of itself that is v−1 ∗ u ∗ v = u. Finally, since [uf(t), v] is
defined then

v−1 ∗ uf(t) ∗ v = uf(t)

follows from Lemma 27.

We summarize the properties of the exponentiation exp in the following
theorem.



Actions, length functions, and non-archemedian words 64

Theorem 30. The Z[t]-exponentiation function

exp : (u, f(t)) 7→ uf(t)

defined in (3) satisfies the following axioms:

(E1) u1 = u, ufg = (uf )g, uf+g = uf ∗ ug,

(E2) (v−1∗u∗v)f = v−1∗uf ∗v provided [u, v] = ε and h(u) = h(v), or u = v◦w,
or u = wα, v = wβ for some w ∈ CDR(Z[t], X) and α, β ∈ Z[t],

(E3) if [u, v] = ε and u = wα, v = wβ for some w ∈ CDR(Z[t], X) and
α, β ∈ Z[t] then

(u ∗ v)f = uf ∗ vf

Proof. Let u ∈ CDR(Z[t], X) and α, β ∈ Z[t].

(E1) The equalities u1 = u and (uf )g = ufg follow directly from the definition
of exponentiation. We need to prove only that uf+g = uf ∗ ug. Let

u = c−1 ◦ uk1 ◦ c

be a cyclic decomposition of u. Then

uf = c−1 ◦ (uf1 )k ◦ c, ug = c−1 ◦ (ug1)k ◦ c.

Now

uf+g = c−1 ◦ (uf+g1 )k ◦ c = (c−1 ◦ (uf1 )k ◦ c) ∗ (c−1 ◦ (ug1)k ◦ c),

as required.

(E2) If u = wα, v = wβ for some w ∈ CDR(Z[t], X) and α, β ∈ Z[t], then
the result follows from the definition of exponentiation. If [u, v] = ε and
h(u) = h(v) then result follows from Lemma 29. If u = v ◦ w then the
result follows from Lemma 4.

(E3) We have (u ∗ v)f = (wα+β)f = w(α+β)f = wαf ∗ wβf = (wα)f ∗ (wβ)f =
uf ∗ vf .

9.4 Extension of centralizers in CDR(Z[t], X)

Below we recall some of the definitions given in [92] and state a few lemmas and
theorems needed for extension of centralizers in CDR(Z[t], X). The proofs are
exactly the same as in the case of Z[t]-exponentiation introduced in [92], so we
only give references.
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u, v ∈ CDR(Z[t], X) are called separated if um∗vn is defined for any n,m ∈ N

and there exists r = r(u, v) ∈ N such that for all m,n > r

um ∗ vn = um−r ◦δ (ur ∗ vr) ◦δ vn−r.

A subset M ⊆ CDR(Z[t], X) is called an S-set if any two non-commuting
elements of M with cyclic centralizers are separated. For example, it is easy to
see that the free group F is an S-subgroup of CDR(Z[t], X).

Next, let M ⊆ CDR(Z[t], X). A subset RM ⊆ CR(Z[t], X) is called a set of
representatives of M if RM satisfies the following conditions:

(1) RM does not contain proper powers,

(2) for any u, v ∈ RM , u 6= v−1,

3) for each u ∈ M there exist v ∈ RM , k ∈ Z, c ∈ R(Z[t], X), and a cyclic
permutation π(v) of v such that

u = c−1 ◦ π(v)k ◦ c,

moreover, such v, c, k, π(v) are unique.

In [92] it was shown that a set of representatives RM exists for any M ⊆
CDR(Z[t], X). Observe that RM does not have to be a subset of M .

The next definition we also borrow from [92] but here we restate it with
respect to the Z[t]-exponentiation we introduced in Subsection 9.3.

Let G be a subgroup of CDR(Z[t], X) and let

K(G) = {v ∈ G | CG(v) = 〈v〉}.

A Lyndon’s set of G is a set R = RK(G) of representatives of K(G) which
satisfies the following conditions:

(1) R ⊂ G,

(2) for any g ∈ G, u ∈ R, and α ∈ Z[t] the inner product c(uα, g) exists and
c(uα, g) < k|u| for some k ∈ N,

(3) no word from G contains a subword uα, where u ∈ R and α ∈ Z[t] with
deg(α) > 0.

Lemma 30. Let G be an S-subgroup of CDR(Z[t], X) and let R be a Lyndon’s
set of G. If u, v ∈ R±1 and g ∈ G are such that either [u, v] 6= ε or [u, g] 6= ε
then there exists r ∈ N such that for all m,n > r the following holds:

um ∗ g ∗ vn = um−r ◦ (ur ∗ g ∗ vr) ◦ vn−r.

Proof. See the proof of Lemma 6.9 in [92].
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Lemma 31. Let G be an S-subgroup of CDR(Z[t], X) and R a Lyndon’s set of
G. If u1, . . . , un ∈ R±1 and g1, . . . , gn+1 ∈ G are such that for any i = 2, . . . , n
either [ui−1, ui] 6= ε, or [ui, gi] 6= ε then there exists r ∈ N such that

g1 ∗ um1

1 ∗ g2 ∗ · · · ∗ umn
n ∗ gn+1

= (g1 ∗ ur1) ◦ um1−2r
1 ◦ (ur1 ∗ g2 ∗ ur2) ◦ um2−2r

2 ◦ · · · ◦ umn−2r
n ◦ (urn ∗ gn+1)

for all mi ∈ N, mi > 2r, i ∈ [1, n].

Proof. See the proof of Lemma 6.10 in [92].

Let G be a subgroup of CDR(Z[t], X) with a Lyndon’s set R. A sequence

p = (g1, u
α1

1 , g2, . . . , gn, u
αn
n , gn+1), (4)

where gi ∈ G, ui ∈ R, αi ∈ Z[t], n > 1 is called an R-form over G. An R-form
(4) is reduced if deg(αi) > 0, i ∈ [1, n], and if ui = ui−1 then [ui, gi] 6= ε.

Denote by P(G,R) the set of all R-forms overG. We define a partial function
w : P(G,R) → R(Z[t], X) as follows. If

p = (g1, u
α1

1 , g2, . . . , gn, u
αn
n , gn+1)

then
w(p) = (· · · (g1 ∗ uα1

1 ) ∗ g2) ∗ · · · ∗ gn) ∗ uαn
n ) ∗ gn+1

if it is defined.
An R-form p = (g1, u

α1

1 , g2, . . . , gn, u
αn
n , gn+1) over G is called normal if it is

reduced and the following conditions hold:

(1) w(p) = g1 ◦ uα1

1 ◦ g2 ◦ · · · ◦ gn ◦ uαn
n ◦ gn+1,

(2) gi does not have u
±1
i as a terminal segment for any i ∈ [1, n] and gi ◦ uαi

i

does not have u±1
i−1 as an initial segment for any i ∈ [2, n].

Lemma 32. Let G be an S-subgroup of CDR(Z[t], X) with a Lyndon’s set R.
Then for every R-form p over G the following holds:

(1) the product w(p) is defined and it does not depend on the placement of
parentheses,

(2) there exists a reduced R-form q over G such that w(q) = w(p),

(3) there exists a unique normal R-form q over G such that w(p) = w(q),

(4) w(p) ∈ CDR(Z[t], X).

Proof. See the proof of Lemma 6.13 in [92].
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Let G and R be as above. By Lemma 32 for every g, h ∈ G, u ∈ R, α ∈ Z[t]
the product g ∗ uα ∗ h is defined and belongs to CDR(Z[t], X). Put

P = P (G,R) = {g ∗ uα ∗ h | g, h ∈ G, u ∈ R,α ∈ Z[t]}.
Multiplication ∗ induces a partial multiplication (which we again denote by ∗)
on P so that for p, q ∈ P the product p ∗ q is defined in P if and only if p ∗ q
is defined in R(Z[t], X) and p ∗ q ∈ P . Now we are ready to prove the main
technical result of this subsection.

Lemma 33. Let G be an S-subgroup of CDR(Z[t], X) and let R be a Lyndon’s
set for G. Then the set P forms a pregroup with respect to the multiplication ∗.
Proof. See the proof of Proposition 6.14 in [92].

The next two results reveal the structure of the universal group U(P ) of P .

Theorem 31. P generates a subgroup 〈P 〉 in CDR(Z[t], X), which is isomor-
phic to U(P ).

Proof. See the proof of Theorem 6.15 in [92].

Let R = {ci | i ∈ I}. Put S = {si,j | i ∈ I, j ∈ N}. Then the group

G(R,S) = 〈G,S | [ci, si,j ] = [si,j , sk,j ] = 1, i ∈ I, j, k ∈ N〉
is an extension of all cyclic centralizers of G by a direct sum of countably many
copies of an infinite cyclic group. Sometimes, we will refer to G(R,S) as an
extension of all cyclic centralizers of G by Z[t].

Theorem 32. 〈P 〉 ≃ G(R,S).

Proof. Define φ : P → G(R,S) as follows. Let gi ∗ cαi ∗ hi ∈ P and α =
ant

n + an−1t
n−1 + · · ·+ a1t+ a0. Put

gi ∗ cαi ∗ hi φ→ gi s
an
i,n s

an−1

i,n−1 · · · sa1i,1 ca0i hi.

It is easy to see that φ is a morphism of pregroups. Since 〈P 〉 ≃ U(P ), the
morphism φ extends to a unique homomorphism ψ : 〈P 〉 → G(R,S). We claim
that ψ is bijective. Indeed, observe first that G(R,S) is generated by G ∪ S.
Now, since ψ(ct

j

i ) = si,j and ψ is identical on G, it follows that ψ is onto. To
see that ψ is one-to-one it suffices to notice that if

y = (g1 ∗ cα1

1 ∗ h1, g2 ∗ cα2

2 ∗ h2, . . . , gm ∗ cαm
m ∗ hm).

is a reduced R-form then yψ 6= 1 by Britton’s Lemma (see, for example, [79]).
This proves that ψ is an isomorphism, as required.

Lemma 34. If G is subwords-closed then so is 〈P 〉.
Proof. See the proof of Lemma 6.18 in [92].

Lemma 35. If G is subwords-closed then H is an S-subgroup.

Proof. See the proof of Lemma 6.19 in [92].
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9.5 Embedding of F Z[t] into CDR(Z[t], X)

Let F be a free non-abelian group. Recall that one can view the group F Z[t] as
a union of the following infinite chain of groups:

F = G0 < G1 < G2 < · · · < Gn < · · · , (5)

where Gn is obtained from Gn−1 by extension of all cyclic centralizers of Gn−1.
For each n ∈ N we construct by induction an embedding

ψn : Gn → CDR(Z[t], X)

such that ψn−1 is the restriction of ψn to Gn−1. To this end, let H0 be the set
of all words of finite length in CDR(Z[t], X). Clearly, F = H0. We denote by
ψ0 : F → H0 the identity isomorphism. It is obvious that H0 is subwords-closed.
Moreover, H0 is an S-subgroup and it has a Lyndon’s set.

Suppose by induction that there exists an embedding

ψn−1 : Gn−1 → CDR(Z[t], X)

such that the image Hn−1 = ψn−1(Gn−1) is an S-subgroup, it is subwords-
closed, and there exists a Lyndon’s set, say Rn−1, in Hn−1. Then by Proposition
33 and Theorem 31, there exists an embedding ψn : Gn → CDR(Z[t], X).
Moreover, in this case, the imageHn = ψn(Gn) is the subgroup of CDR(Z[t], X)
generated by the pregroup

P (Hn−1, Rn−1) = {f ∗ uα ∗ h | f, h ∈ Hn−1, u ∈ Rn−1, α ∈ Z[t]}.

Notice that by Lemma 35, the group Hn is an S-subgroup of CDR(Z[t], X),
and by Lemma 34, Hn is subwords-closed. So to finish the proof one needs to
show that Hn has a Lyndon’s set.

Lemma 36. Let Hn−1 from the series (5) be a subwords-closed S-subgroup of
CDR(Z[t], X) with a Lyndon’s set Rn−1. Then there exists a Lyndon’s set Rn
in Hn.

Proof. Recall that K = K(Hn) ⊂ Hn is the subset consisting of all elements
v ∈ Hn such that CHn

(v) = 〈v〉. Denote by R a set of representatives for K.
Since Hn is subwords-closed then we may assume that R ⊂ Hn. The same

argument shows that an element f ∈ Hn does not contain a subword uα, where
u ∈ R and α ∈ Z[t] is infinite. Indeed, in this case it would imply that uα ∈ Hn,
hence, [uα, u] = ε, so the centralizer of u in Hn is not cyclic – a contradiction
with u ∈ R. Finally, let u ∈ R, g ∈ Hn. Observe that u /∈ Hn−1, so u has a
unique normal form

u = f1 ◦ uα1

1 ◦ f2 ◦ · · · ◦ uαk

k ◦ fk+1,

where fi ∈ Hn−1, ui ∈ Rn−1, and αi ∈ Z[t] is infinite for any i ∈ [1, k]. If
g ∈ Hn−1 then

(g ∗ um) ∗ u = (g ∗ um) ◦ u, u ∗ (um ∗ g) = u ◦ (um ∗ g) (6)
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holds for m = 1, since Rn−1 is a Lyndon’s set for Hn−1. If g /∈ Hn−1 then

g = g1 ◦ vβ1

1 ◦ g2 ◦ · · · ◦ vβl

l ◦ gp+1,

where gj ∈ Hn−1, vj ∈ Rn−1 and βj ∈ Z[t] is infinite for any j ∈ [1, p]. In this
case (6) holds for any m > p.

It follows that the set Rn = R is a Lyndon’s set for Hn.

9.6 Limit groups embed into F Z[t]

The following results illustrate the connection of limit groups and finitely gen-
erated subgroups of F Z[t].

Theorem 33. [64] Given a finite presentation of a finitely generated fully resid-
ually free group G one can effectively construct an embedding φ : G→ F Z[t] (by
specifying the images of the generators of G).

Combining Theorem 33 with the result on the representation of F Z[t] as
a union of a sequence of extensions of centralizers one can get the following
theorem.

Theorem 34. [61] Given a finite presentation of a finitely generated fully resid-
ually free group G one can effectively construct a finite sequence of extension of
centralizers

F < G1 < · · · < Gn,

where Gi+1 is an extension of the centralizer of some element ui ∈ Gi by an
infinite cyclic group Z, and an embedding ψ∗ : G→ Gn (by specifying the images
of the generators of G).

Now Theorem 34 implies the following important corollaries.

Corollary 6. [61] For every freely indecomposable non-abelian finitely generated
fully residually free group one can effectively find a non-trivial splitting (as an
amalgamated product or HNN extension) over a cyclic subgroup.

Corollary 7. [61] Every finitely generated fully residually free group is finitely
presented. There is an algorithm that, given a presentation of a finitely generated
fully residually free group G and generators of the subgroup H, finds a finite
presentation for H.

Corollary 8. [61] Every finitely generated residually free group G is a subgroup
of a direct product of finitely many fully residually free groups; hence, G is
embeddable into F Z[t]×· · ·×F Z[t]. If G is given as a coordinate group of a finite
system of equations, then this embedding can be found effectively.

Let K be an HNN-extension of a group G with associated subgroups A and
B. K is called a separated HNN-extension if for any g ∈ G, Ag ∩B = 1.
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Corollary 9. [61] Let a group G be obtained from a free group F by finitely
many centralizer extensions. Then every finitely generated subgroup H of G can
be obtained from free abelian groups of finite rank by finitely many operations
of the following type: free products, free products with abelian amalgamated
subgroups at least one of which is a maximal abelian subgroup in its factor,
free extensions of centralizers, separated HNN-extensions with abelian associated
subgroups at least one of which is maximal.

Corollary 10. [61, 48] One can enumerate all finite presentations of finitely
generated fully residually free groups.

Corollary 11. [64] Every finitely generated fully residually free group acts freely
on some Zn-tree with lexicographic order for a suitable n.

Finally, combining Theorem 33 with the result on the effective embedding
of F Z[t] into R(Z[t], X) obtained in [92] one can get the following theorem.

Theorem 35. Given a finite presentation of a finitely generated fully residually
free group G one can effectively construct an embedding ψ : G→ R(Z[t], X) (by
specifying the images of the generators of G).

9.7 Algorithmic problems for limit groups

Existence of a free length function on F Z[t] becomes a very powerful tool in
solving various algorithmic problems for subgroups of F Z[t] (which are precisely
limit groups). Using the length function one can introduce unique normal forms
for elements of F Z[t] and then work with them pretty puch in the same way as
in free groups. In the seminal paper [124] J. Stallings introduced an extremely
useful notion of a folding of graphs and initiated the study of subgroups (and
automorphisms) of free groups via folded directed labeled graphs. This ap-
proach turned out to be very influential and allowed researches to prove many
new results and simplify old proofs (see [56]). In [93] Stallings techniques were
generalized in order to effectively solve the Membership Problem for finitely gen-
erated subgroups of F Z[t] and this result can be reformulated for limit groups.

Theorem 36. [93] Let G be a limit group and G →֒ F Z[t] the effective embed-
ding. For any f.g. subgroup H ≤ G one can effectively construct a finite labeled
graph ΓH that in the group F Z[t] accepts precisely the normal forms of elements
from H.

Now, that the graph ΓH is constructed for H , one can use it to solve a lot
of algorithmic problems almost as in free groups. Recall that limit groups are
finitely presented.

Theorem 37. Let G be a limit group given by a finite presentation with addi-
tional information that it is a limit group or given as a subgroup of F Z[t], and
H,K f.g. subgroups of G given by their generators. Then

• H ∩K is f.g (Howson Property) and can be found effectively ([65]),
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• up to conjugation by elements from K there are only finitely many sub-
groups of G of the type Hg ∩K, where g ∈ G ([65]),

• it can be decided effectively if H is malnormal in G ([65]),

• it can be decided if Hg = K (and Hg ≤ K) for some g ∈ G and if yes
such g can be found effectively ([65]),

• for any g ∈ G, its centralizer CG(g) in G can be found effectively ([65]),

• homological and cohomological dimensions of G can be computed effectively
([66]),

• it can be decided if |G : H | <∞ ([97]),

• CommG(H) can be found effectively, hence it is possible to find effectively
n(H) ∈ N such that for any P ≤ G if |P : H | < ∞ then |P : H | < n(H)
([97]).

The following theorems use the elimination process for limit groups. For a
limit group G, two homomorphisms φi : G → F, i = 1, 2 are automorphically
equivalent if φ1 is obtained by pre-composing φ2 with an automorphism of G and
post-composing with conjugation. The quotient group of G over the intersection
of the kernels of all homomorphisms minimal in their equivalence classes is called
the maximal standard quotient of G (or the shortening quotient).

Theorem 38. ([61, Theorem 13.1], [62, Theorem 35]) Let G be a freely in-
decomposable limit group and K1, . . . ,Km be finitely generated subgroups of G.
There exists an algorithm to obtain an abelian JSJ-decomposition of G with
subgroups K1, . . . ,Km being elliptic, and to find the maximal standard quotient
(or shortening quotient) with respect to this decomposition.

Theorem 39. [17] Let G ∼= 〈SG | RG〉 and H ∼= 〈SH | RH〉 be finite presenta-
tions of limit groups. There exists an algorithm that determines whether or not
G and H are isomorphic. If the groups are isomorphic, then the algorithm finds
an isomorphism G→ H.

Theorem 40. [61] The universal theory of a limit group G in the language
with coefficients from G is decidable (in the language without coefficients the
universal theory of G is the same as the universal theory of a free group [108]).

10 Zn-free groups

In this section we consider in detail the situation when Λ = Zn with the right
lexicographic order. The structure of Zn-free groups is very clear and the ma-
chinery of infinite words plays a significant role in all proofs.
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10.1 Complete Zn-free groups

In this section we fix a finitely generated group G which has a free regular
length function with values in Zn, n ∈ Z (with the right lexicographic order).
In other words, G is a complete Zn-free group (see [67]). Due to Theorem 27 we
may and will view G as a subgroup of CDR(Zn, X) for an appropriate set X .
Therefore, elements of G are infinite words from CDR(Zn, X), multiplication
in G is the multiplication “∗” of infinite words, and the regular length function
is the standard length | · | of infinite words. That is, G is complete in the sense
that it is closed under the operation of taking common initial subwords of its
elements.

In the ordered group Zn = 〈a1〉 ⊕ . . . ⊕ 〈an〉 with basis a1, . . . , an the sub-
groups Ek = 〈a1, . . . , ak〉 are convex, and every non-trivial convex subgroup is
equal to Ek for some k, so

0 = E0 < E1 < · · · < En,

is the complete chain of convex subgroups of Zn. Recall, that the height ht(g)
of a word g ∈ G is equal to k if |g| ∈ Ek−Ek−1 (see [58]). Since |g ∗h| 6 |g|+ |h|
and |g−1| = |g| one has for any f, g ∈ G:

1. ht(f ∗ g) 6 max{ht(f), ht(g)},

2. ht(g) = ht(g−1).

We will assume that there is an element g ∈ G with ht(g) = n, otherwise, the
length function on G has values in Zn−1, in which case we replace Zn with Zn−1.
For any k ∈ [1, n]

Gk = {g ∈ G | ht(g) 6 k}
is a subgroup of G and

1 = G0 < G1 < · · · < Gn = G.

Observe, that if l : G → Λ is a Lyndon length function with values in some
ordered abelian group Λ and µ : Λ → Λ′ is a homomorphism of ordered abelian
groups then the composition l′ = µ◦l gives a Lyndon length function l′ : G→ Λ′.
In particular, since En−1 is a convex subgroup of Zn then the canonical pro-
jection πn : Zn → Z such that πn(x1, x2, . . . , xn) = xn is an ordered homomor-
phism, so the composition πn ◦ | · | gives a Lyndon length function λ : G → Z

such that λ(g) = πn(|g|). Notice also that if u = g ◦ h then λ(u) = λ(g) + λ(h)
for any g, h, u ∈ G.

All the proofs and details can be found in [67].

10.1.1 Elementary transformations of infinite words

In this section we describe an analog of Nielsen reduction in the group G. Since
G is complete the Nielsen reduced sets have much stronger non-cancelation prop-
erties then usual and the transformations are simpler. On the other hand, since
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Zn is non-Archimedean (for n > 1) the reduction process is more cumbersome,
it goes in stages along the complete series of convex subgroups in Zn.

For a finite subset Y of G define its λ-length as

|Y |λ =
∑

g∈Y
λ(g).

If Y is a generating set of G then |Y |λ > 0, otherwise G = Gn−1. It follows that

Y = Y+ ∪ Y0,

where
Y+ = {g ∈ Y | λ(g) > 0}, Y0 = {g ∈ Y | λ(g) = 0}.

Obviously, |Y |λ = |Y+|λ and 〈Y0〉 is a finitely generated subgroup of Gn−1.
Let Y be a finite generating set for G. Assuming Y = Y −1 we define three

types of elementary transformations of Y .

Transformation µ. Let f, g ∈ Y+, f 6= g, h ∈ 〈Y0〉, u = com(f, h ∗ g), and
λ(u) > 0. Then f = u ◦ w1, h ∗ g = u ◦ w2 for some u,w1, w2 from G (since G
is complete). Put

µf,g,h(Y ) = (Y − {f±1, g±1})
⋃

{w±1
1 , w±1

2 , u±1}
⋃

{(f−1 ∗ h ∗ g)±1 | if λ(f−1 ∗ h ∗ g) = 0}

if f 6= g−1, and

µf,g,h(Y ) = (Y − {g±1})
⋃

{u±1, (w2 ∗ u)±1}

if f = g−1.

Lemma 37. [67] In the notation above

(1) 〈Y 〉 = 〈µf,g,h(Y )〉,

(2) |µf,g,h(Y )|λ < |Y |λ.

Transformation η. Let f ∈ Y+ be such that λ(f) > λ(com(f, h ∗ f)) > 0
for some h ∈ 〈Y0〉. Then f = u ◦ f1, h ∗ f = u ◦ f2, λ(u) > 0. Define

ηf,h(Y ) = (Y − {f±1})
⋃

{f±1
1 , u±1, (u−1 ∗ h ∗ u)±1}.

Notice, that f = (h−1 ∗ u) ◦ f2 = u ◦ f1 hence λ(f2) = λ(f1) > 0. On the other
hand f2 = (u−1 ∗ h ∗ u) ∗ f1 and it follows that λ(u−1 ∗ h ∗ u) = 0.

Lemma 38. [67] In the notation above

(1) 〈Y 〉 = 〈ηf,h(Y )〉,
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(2) either |ηf,h(Y )|λ < |Y |λ, or |ηf,h(Y )|λ = |Y |λ but then |ηf,h(Y )+| > |Y+|.

Transformation ν. Let f ∈ Y+ be not cyclically reduced. Then f = c−1 ◦
f ◦ c, where c 6= 1 and f is cyclically reduced. In this case c−1 = com(f, f−1),
hence (since G is complete) c, f ∈ G. Put

νf (Y ) = (Y − {f±1})
⋃

{c±1, f
±1}.

Lemma 39. [67] In the notation above

(1) 〈Y 〉 = 〈νf (Y )〉,

(2) either |νf (Y )|λ < |Y |λ, or |νf (Y )|λ = |Y |λ but then |νf (Y )+| = |Y+|.

We write Y → Y ′ (Y →∗ Y ′) if Y ′ is obtained from Y by a single (finitely
many) elementary transformation, that is, →∗ is the transitive closure of the
relation →. We call a generating set Y of G transformation-reduced if none of
the transformations µ, η, ν can be applied to Y . Recall that the binary relation
→∗ is called terminating if there is no an infinite sequence of finite subsets
Yi, i ∈ N, of G such that Yi → Yi+1 for every i ∈ N, i.e., every rewriting system
Y1 → Y2 → . . . is finite. We say that →∗ is uniformly terminating if for every
finite set Y of G there is a natural number nY such that every rewriting system
starting at Y terminates in at most nY steps.

Proposition 7. [67] The following hold:

1) The relation →∗ is uniformly terminating. Moreover, for any finite sub-
set Y of G one has nY 6 (|Y |λ)3. In particular, there exists a finite
transformation-reduced Z ⊂ G which can be obtained from Y in not more
than (|Y |λ)3 steps.

(2) If Z is a transformation-reduced finite subset of G then:

(a) all elements of Z+ are cyclically reduced;

(b) if f, g ∈ Z±1
+ , f 6= g then λ(com(f, h ∗ g)) = 0 for any h ∈ 〈Z0〉;

(c) if f ∈ Z±1
+ and λ(com(f, h ∗ f)) > 0 for some h ∈ 〈Z0〉 then

λ(com(f, h ∗ f)) = λ(f).

(3) If Z is a transformation-reduced finite subset of G then one can add to Z
finitely many elements h1, . . . , hm ∈ Gn−1 such that T = Z∪{h1, . . . , hm}
is transformation-reduced and satisfies the following condition

(d) if f ∈ T±1
+ and λ(com(f, h ∗ f)) > 0 for some h ∈ 〈T0〉 then

λ(com(f, h ∗ f)) = λ(f) and f−1 ∗ h ∗ f ∈ 〈T0〉.

A finite set Y of G is called reduced if it satisfies the conditions (a) - (d)
from Proposition 7.
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10.1.2 Minimal sets of generators and pregroups

Let Z be a finite reduced generating set of G. Put

PZ = {g ∗ f ∗ h | f ∈ Z±1
+ , g, h ∈ 〈Z0〉} ∪ 〈Z0〉.

Multiplication ∗ induces a partial multiplication (which we again denote by ∗)
on PZ so that for p, q ∈ PZ the product p ∗ q is defined in PZ if and only if
p ∗ q ∈ PZ . Notice, that PZ is closed under inversion.

Lemma 40. [67] Let x = h1(x) ∗ fx ∗ h2(x), y = h1(y) ∗ fy ∗ h2(y) ∈ PZ , where
hi(x), hi(y) ∈ 〈Z0〉, i = 1, 2 and fx, fy ∈ Z±1

+ . Then x ∗ y ∈ PZ if and only if
fx = f−1

y and fx ∗ (h2(x) ∗ h1(y)) ∗ f−1
x ∈ 〈Z0〉.

Now we are ready to prove the main technical result of this section.

Theorem 41. [67] Let G be a finitely generated complete Zn-free group. Then:

(1) PZ forms a pregroup with respect to the multiplication ∗ and inversion;

(2) the inclusion PZ → G extends to the group isomorphism U(PZ) → G,
where U(P ) is the universal group of PZ ;

(3) if (g1, . . . , gk) is a reduced PZ-sequence for an element g ∈ G then

λ(g) =

k∑

i=1

λ(gi).

Proof. Observe that PZ = P−1
Z ⊂ G generates G and every g ∈ G corresponds

to a finite reduced PZ -sequence

(u1, u2, . . . , uk),

where ui ∈ PZ , i ∈ [1, k], ui ∗ ui+1 /∈ PZ , i ∈ [1, k− 1] and g = u1 ∗ u2 ∗ · · · ∗ uk
in G. By Theorem 2, [110], to prove that PZ is a pregroup and the inclusion
PZ → G extends to the isomorphism U(PZ) → G it is enough to show that all
reduced PZ -sequences representing the same element have the same PZ -length.

Suppose two reduced PZ -sequences

(u1, u2, . . . , uk), (v1, v2, . . . , vn)

represent the same element g ∈ G. That is,

(u1 ∗ · · · ∗ uk) ∗ (v1 ∗ · · · ∗ vn)−1 = ε.

We use induction on k + n to show that k = n. If the PZ-sequence

(u1, . . . , uk, v
−1
n , . . . , v−1

1 )

is reduced then
u1 ∗ . . . ∗ uk ∗ v−1

n ∗ . . . ∗ v−1
1 6= ε



Actions, length functions, and non-archemedian words 76

because Z is a reduced set. Hence,

(u1, . . . , uk, v
−1
n , . . . , v−1

1 )

is not reduced and uk ∗ v−1
n ∈ PZ . If uk = h1 ∗ f1 ∗ g1, vn = h2 ∗ f2 ∗ g2,

where hi, gi ∈ 〈Z0〉 and fi ∈ Z±1
+ , i = 1, 2 then by Lemma 40 f1 = f2 and

f1 ∗ (g1 ∗ g−1
2 ) ∗ f−1

2 = c ∈ 〈Z0〉. It follows that

(u1, u2, . . . , uk−1 ∗ (h1 ∗ c ∗ h−1
2 )), (v1, v2, . . . , vn−1)

represent the same element g ∗v−1
n ∈ G and the sum of their lengths is less than

k + n, so the result follows by induction. Hence, (1) and (2) follow.

Finally we prove (3).
If gi = h1(gi)∗fgi ∗h2(gi), i ∈ [1, k] then λ(gi) = λ(fgi) because λ(h1(gi)) =

λ(h2(gi)) = 0. On the other hand, since Z is reduced and (g1, . . . , gk) is a
reduced PZ -sequence then λ(com(g−1

i , gi+1)) = 0 for i ∈ [1, k − 1]. In other
words λ(gi ∗ gi+1) = λ(gi) + λ(gi+1) and the result follows.

Corollary 12. [67] Gn−1 = 〈Z0〉.

10.1.3 Algebraic structure of complete Zn-free groups

Theorem 42. [67] Let G be a finitely generated complete Zn-free group and let
Z be a reduced generating set for G. Then G has the following presentation

G = 〈H,Y | t−1
i CH(uti)ti = CH(vti), ti ∈ Y ±1〉,

where Y = Z+ is finite, H = Gn−1 = 〈Z0〉 is finitely generated and CH(uti)
CH(vti) are either trivial or finitely generated free abelian subgroups of H. More-
over, H has a regular free Lyndon length function in Zn−1.

Proof. From Theorem 41 it follows that G = U(PZ), where

PZ = {g ∗ f ∗ h | f ∈ Z±1
+ , g, h ∈ 〈Z0〉} ∪ 〈Z0〉.

It follows that every element g of G can be represented as a reduced PZ -sequence
g = (g1, . . . , gk), where gi ∈ PZ − 〈Z0〉 for any i ∈ [1, k] and gi ∗ gi+1 /∈ PZ for
any i ∈ [1, k − 1] if k > 1 (if k = 1 then g1 may be in 〈Z0〉). In fact (see [111]),
we have

G = U(G) = 〈PZ | xy = z, (x, y, z ∈ PZ and x ∗ y = z)〉.

Denote H = 〈Z0〉 and Y = Z+. By Corollary 12 we have H = Gn−1.
At first observe that PZ is infinite but for each p ∈ PZ either p ∈ H or

p = h1(p) ∗ fp ∗ h2(p), where fp ∈ Y ±1 and hi(p) ∈ H, i = 1, 2. Hence, every
p ∈ PZ can rewritten in terms of Y ± and finitely many generators of H . On the
other hand, if x, y, z ∈ PZ and x∗y = z then one of the three of them is in H and
without loss of generality we can assume z ∈ H . Hence, either x, y are in H too,
or x, y /∈ H and assuming x = h1(x) ∗ fx ∗ h2(x), y = h1(y) ∗ fy ∗ h2(y), where
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hi(x), hi(y) ∈ H, i = 1, 2, fx, fy ∈ Y ±1 by Lemma 40 we get fx = f−1
y and

fx ∗ (h2(x) ∗ h1(y)) ∗ f−1
x ∈ H . Hence, every relator xy = z, where x, y, z ∈ PZ

and x ∗ y = z can be rewritten as

fx ∗ ux,y ∗ f−1
x = vx,y,z,

where fx ∈ Y ±1 and ux,y, vx,y,z ∈ H . By Lemma 16, for each q ∈ Y ±1 there
exists uq ∈ H such that for each u ∈ H we have q ∗ u ∗ q−1 ∈ H if and only if
u ∈ CH(uq). Since Z is reduced it follows that for each q ∈ Y ±1 both CH(uq)
and q ∗CH(uq)∗ q−1 are in H and also note that q ∗CH(uq)∗ q−1 is a centralizer
of some element in H . Hence, every

fx ∗ ux,y ∗ f−1
x = vx,y,z,

is a consequence of
fx ∗ CH(ux) ∗ f−1

x = CH(vx),

where ux, vx depend only on fx. Thus,

G = 〈Y,H | t−1
i CH(uti)ti = CH(vti), ti ∈ Y ±1〉,

where Y is finite, H is finitely generated and CH(uy), CH(vy) are finitely gen-
erated abelian (see Proposition 3).

Finally, we have to show that H has a regular free Lyndon length function
in Zn−1. Indeed, since H = Gn−1 < G then the free Lyndon length function
with values in Zn−1 is automatically induced on H . We just have to check if it
is regular.

Take g, h ∈ H and consider com(g, h). Since the length function on G is
regular then com(g, h) ∈ G = U(PZ) and com(g, h) can be represented by the
reduced PZ -sequence (g1, . . . , gk). By Theorem 41, (3) it follows that

λ(com(g, h)) =

k∑

i=1

λ(gi).

But if λ(com(g, h)) > 0 then λ(g), λ(h) > 0 - contradiction with the choice
of g and h. Hence, λ(gi) = 0, i ∈ [1, k] and it follows that k = 1. Thus,
com(g, h) = g1 ∈ H . This completes the proof of the theorem.

Theorem 43. [67] Let G be a finitely generated complete Zn-free group. Then
G can be represented as a union of a finite series of groups

G1 < G2 < · · · < Gn = G,

where G1 is a free group of finite rank, and

Gi+1 = 〈Gi, si,1, . . . , si,ki | s−1
i,j Ci,j si,j = φi,j(Ci,j)〉,

where for each j ∈ [1, ki], Ci,j and φi,j(Ci,j) are cyclically reduced centralizers
of Gi, φi,j is an isomorphism, and the following conditions are satisfied:
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(1) Ci,j = 〈c(i,j)1 , . . . , c
(i,j)
mi,j 〉, φi,j(Ci,j) = 〈d(i,j)1 , . . . , d

(i,j)
mi,j 〉, where φi,j(c(i,j)k ) =

d
(i,j)
k , k ∈ [1,mi,j ] and

ht(c
(i,j)
k ) = ht(d

(i,j)
k ) < ht(d

(i,j)
k+1 ) = ht(c

(i,j)
k+1 ), k ∈ [1,mi,j − 1],

ht(si,j) > ht(c
(i,j)
k ),

(2) |φi,j(w)| = |w| for any w ∈ Ci,j ,

(3) w is not conjugate to φi,j(w)
−1 in Gi for any non-trivial w ∈ Ci,j,

(4) if A,B ∈ {Ci,1, φi,1(Ci,1), . . . , Ci,ki , φi,ki(Ci,ki )} then either A = B, or A
and B are not conjugate in Gi,

(5) Ci,j can appear in the list

{Ci,k, φi,k(Ci,k) | k 6= j}

not more than twice.

Proof. Existence of the series

G1 < G2 < · · · < Gn = G,

where Gi+1, i ∈ [1, n − 1] can be obtained from Gi by finitely many HNN-
extensions in which associated subgroups are maximal abelian of finite rank
follows by induction applying Theorem 42. Also, observe that G1 has a free
length function with values in Z, hence, by the result of Lyndon [77] it follows
that G1 is a free group. Moreover, G1 is of finite rank by Theorem 42.

Now, consider Gi+1. By Theorem 42 we can assume that

Gi+1 = 〈Gi, t1, t2, . . . , tp | t−1
j CGi

(utj )tj = CGi
(vtj )〉, (7)

where

(a) all tj are cyclically reduced,

(b) Gi = 〈Y 〉, ht(tj) > ht(Gi) and

Y ∪ {t1, t2, . . . , tp}

is a reduced generating set for Gi+1.

In particular, Y ∪ {t1, t2, . . . , tp} is reduced, that is, it has the properties listed
in Proposition 7.

At first, we can assume that all CGi
(utj ), CGi

(vtj ) are cyclically reduced.
Indeed, if not then by Lemma 13 we have CGi

(utj ) = c−1 ◦ B ◦ c, where B is
cyclically reduced, c ∈ Gi by regularity of the length function on Gi, and

(t−1
j ∗ c−1) ∗B ∗ (c ∗ tj) = CGi

(vtj ).
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Thus, we can substitute tj by c ∗ tj , CGi
(utj ) by B, and the same can be done

for CGi
(vtj ).

Observe that conjugation by tj induces an isomorphism between CGi
(utj )

and CGi
(vtj ), and since we can assume both centralizers to be cyclically reduced

then from
t−1
j ∗ CGi

(utj ) ∗ tj = CGi
(vtj )

it follows that for a ∈ CGi
(utj ), b ∈ CGi

(vtj ) if t
−1
j ∗ a ∗ tj = b then |a| = |b|. In

particular, if

CGi
(utj ) = 〈c(i,j)1 , . . . , c(i,j)mi,j

〉,

where we can assume ht(c
(i,j)
k ) < ht(c

(i,j)
k+1 ) for k ∈ [1,mi,j − 1], then all d

(i,j)
k =

t−1
j ∗ c(i,j)k ∗ tj generate CGi

(vtj ) and |c(i,j)k | = |d(i,j)k |. This proves (1) and (2).

Suppose there exist w1 ∈ CGi
(utj ) and g ∈ Gi such that g−1 ∗w1 ∗ g = w−1

2 ,
where w2 = φi(w1) ∈ CGi

(vtj ). Observe that either ht(g) 6 ht(w1) = ht(w2)

and in this case w1 is a cyclic permutation of w−1
2 , or ht(g) > ht(w1). In the

latter case, g has any positive power of wδ1, δ ∈ {1,−1} as an initial subword and
any positive power of w−δ

2 as a terminal subword. Without loss of generality we
can assume δ = 1. Hence, tj ∗ g−1 = tj ◦ g−1 and

(tj ◦ g−1)−1 ∗ w1 ∗ (tj ◦ g−1) = w−1
1 .

Consider h = com(tj◦g−1, (tj◦g−1)−1). Observe that h ∈ Gi and |h−1∗w1∗h| =
|w1|. Indeed, w1 is cyclically reduced, so either (tj◦g−1)−1∗w1 = (tj◦g−1)−1◦w1,
or w1 ∗(tj ◦g−1) = w1 ◦(tj ◦g−1). Assuming the latter (the other case is similar)
we have

(tj ◦ g−1)−1 ∗w1 ∗ (tj ◦ g−1) = (tj ◦ g−1)−1 ∗ (w1 ◦ (tj ◦ g−1))

and from |(tj ◦ g−1)−1 ∗w1 ∗ (tj ◦ g−1)| = |w1| it follows that (tj ◦ g−1)−1 cancels
completely in the product (tj ◦ g−1)−1 ∗w1 ∗ (tj ◦ g−1). Eventually, since h is an
initial subword of tj ◦ g−1, it follows that h−1 cancels completely in the product
h−1∗(w1◦h), so |h−1∗w1∗h| = |w1|. Thus, if w3 = h−1∗w1∗h then h ends with
any positive power of w3. We have tj ◦ g−1 = h ◦ f ◦ h−1, where f is cyclically
reduced. But at the same time we have f−1 ∗w3 ∗ f = w−1

3 and this produces a
contradiction. Indeed, if ht(f) 6 ht(w3) then w3 is a cyclic permutation of w−1

3

which is impossible. On the other hand, if ht(f) > ht(w3) then f has any power
of wα3 , α ∈ {1,−1} as an initial subword, and any power of w−α

3 as a terminal
subword - a contradiction with the fact that f is cyclically reduced. This proves
(3).

To prove (4), assume that two centralizers from the list

CGi
(ut1), . . . , CGi

(utp)

are conjugate in Gi. Denote C1 = CGi
(ut1), C2 = CGi

(ut2) and let C1 =
h−1 ∗C2 ∗h for some h ∈ Gi. Hence, in (7) every entry of C1 can be substituted
by h−1∗C2∗h and some of the elements t1, t2, . . . , tp can be changed accordingly.
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Finally, assume that there exists tk 6= tj such that t−1
k ∗ CGi

(utj ) ∗ tk 6

Gi. Suppose c(tj , tk) > 0 and denote z = com(tj , tk). Observe that ht(z) >
ht(CGi

(utj )). If ht(z) < ht(tj) then z conjugates CGi
(utj ) into a cyclically

reduced centralizer A of Gi and z has any positive power of some a ∈ A, ht(a) =
ht(A) as a terminal subword. But then ht(z−1 ∗ tj) = ht(z−1 ∗ tk) = ht(tj) and
since both z−1 ∗ tj and z−1 ∗ tk conjugate A into a cyclically reduced centralizer
of Gi it follows that z−1 ∗ tj and z−1 ∗ tk have a±1 as an initial subword. If
z−1 ∗ tj has a as an initial subword and z−1 ∗ tk has a−1 as an initial subword
then z ∗ (z−1 ∗ tk) 6= z ◦ (z−1 ∗ tk), and we have a contradiction. If both z−1 ∗ tj
and z−1 ∗ tk have a as an initial subword then z cannot be com(tj , tk) and
again we have a contradiction. Thus, ht(z) = ht(tj), but it is possible only if
tj = tk since Y ∪{t1, t2, . . . , tp} is a minimal generating set, and again we have a
contradiction with our choice of tk. It follows that c(tj , tk) = 0 and if tj begins
with c ∈ CGi

(utj ) then tk begins with c−1. It also follows that there can be

only one tk 6= tj such that t−1
k ∗ CGi

(utj ) ∗ tk 6 Gi.
This completes the proof of the theorem.

10.2 HNN-extensions of complete Zn-free groups

Let H be a finitely generated complete Zn-free group. Observe that Zn ≃⊕n−1
i=0 〈ti〉 which is a subgroup of Z[t], so we can always assume that H has a

regular free length function with values in Z[t]. On the other hand, observe that
for a finitely generated complete Zn-free group there exists n ∈ N such that the
length function takes values in Zn.

The main goal of this section is to prove the following result.

Theorem 44. [67] Let H be a finitely generated complete Zn-free group. Let A
and B be centralizers in H whose elements are cyclically reduced and such that
there exists an isomorphism φ : A→ B with the following properties

1. a is not conjugate to φ(a)−1 in H for any a ∈ A,

2. |φ(a)| = |a| for any a ∈ A.

Then the group
G = 〈H, z | z−1Az = B〉, (8)

is a finitely generated complete Z[t]-free group and the length function on G
extends the one on H.

10.2.1 Cyclically reduced centralizers and attached elements

From Theorem 43, H is union of the chain

F (X) = H1 < H2 < · · · < Hn = H,

where
Hi+1 = 〈Hi, si,1, . . . , si,ki | s−1

i,j Ci,jsi,j = Di,j〉,
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Ci,j , Di,j are maximal abelian subgroups of Hi, and ht(si,j) > ht(Hi) for any
i ∈ [1, n− 1], j ∈ [1, ki].

Let K be a cyclically reduced centralizer in H . It is easy to see that either
ht(K) = ht(H) = n, or ht(K) < ht(H) and K is a centralizer from Hn−1.

For a cyclically reduced centralizer K of H we define

C(K) = {Ci,j , Di,j} ∩ {cyclically reduced centralizers conjugate to K in H}.

Lemma 41. [67] Let K be a cyclically reduced centralizer of H, and let C(K) be
empty. Let a be a generator of K of maximal height. Then there is no element
in H which has any positive power of a±1 as an initial subword.

If C(K) 6= ∅ then for C ∈ C(K) we call w from the list si,j , i ∈ [1, n−1], j ∈
[1, ki] attached to C if ht(w) > ht(C) and ht(w−1 ∗ C ∗ w) = ht(C). Observe
that by Theorem 43, C can have at most two attached elements of the same
height, and if w1, w2, w1 6= w2 are attached to C and ht(w1) = ht(w2) then
w−1

1 ∗ w2 = w−1
1 ◦ w2.

Below we are going to distinguish attached elements in the following way.
Suppose C ∈ C(K), and let w be an element attached to C. If c is a generator
of C of maximal height then we call w left-attached to C with respect to c
if c−1 ∗ w = c−1 ◦ w, and we call w right-attached to C with respect to c if
c ∗ w = c ◦ w.
Lemma 42. [67] Let K be a cyclically reduced centralizer of H, and let C ∈
C(K). Let c be a generator of C of maximal height. If there exists a right(left)-
attached to C with respect to c element, then there exists D ∈ C(K) and its
generator d of maximal height such that c is conjugate to d in H and D does
not have right(left)-attached with respect to d elements.

Lemma 43. [67] Let K be a cyclically reduced centralizer of H, and let C ∈
C(K). Let c be a generator of C of maximal height. If there exists no right(left)-
attached to C with respect to c element, then there is no element g ∈ H which
has any positive power of c as an initial (terminal) subword.

10.2.2 Connecting elements

We call a pair of elements u, v ∈ CDR(Z[t], X) an admissible pair if

1. u, v are cyclically reduced,

2. u, v are not proper powers,

3. |u| = |v|,
4. u is not conjugate to v−1 (in particular, u 6= v−1).

For an admissible pair {u, v} we define an infinite word su,v ∈ R(Z[t], X),
which we call the connecting element for the pair {u, v}, in the following way

su,v(β) =

{
u(α) if β = (k|u|+ α, 0), k > 0, 1 6 α 6 |u|,
v(α) if β = (−k|v|+ α, 1), k > 1, 1 6 α 6 |v|.
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Since there exists m > 0 such that u, v ∈ CDR(Zm, X)−CDR(Zm−1, X) then
it is easy to see that su,v ∈ R(Zm+1, X)− R(Zm, X). Also s−1

u,v = sv−1,u−1 and
u ◦ su,v = su,v ◦ v - both follow directly from the definition.

Notice that any two connecting elements su1,v1 , su2,v2 have the same length
whenever u1, v1, u2, v2 ∈ CDR(Zm, X) − CDR(Zm−1, X). In this event we
have

|su1,v1 | = |su2,v2 | = (0, . . . , 0, 1) ∈ Zm+1.

Lemma 44. [67] Let u, v be elements of a group H ⊂ CDR(Z[t], X). If the
pair {u, v} is admissible then su,v ∈ CDR(Z[t], X).

10.3 Main construction

Now, let A,B be cyclically reduced centralizers in H such that there exists an
isomorphism φ : A→ B satisfying the following conditions

1. a is not conjugate to φi(a)
−1 in H for any a ∈ A,

2. |φ(a)| = |a| for any a ∈ A.

In particular, it follows that ht(A) = ht(B).

Remark 5. Observe that if C is conjugate to A and D is conjugate to B then

〈H, z | z−1Az = B〉 ≃ 〈H, z′ | z′−1Cz′ = D〉.

Hence, it is always possible to consider A and B up to taking conjugates.

Let u be a generator of A of maximal height, and let v = φ(u) ∈ B. Then
v is a generator of B of maximal height and |u| = |v|. Observe that from the
conditions imposed on φ it follows that the pair u, v is admissible. We fix u and
v for the rest of the paper.

Remark 6. Observe that if C(A) = ∅ then by Lemma 41, H does not contain
an element which has any positive power of u±1 as an initial subword (similar
statement for B and v if C(B) = ∅). If C(A) 6= ∅ then by Lemma 42 we
can assume A to have no right-attached elements with respect to u. Hence, by
Lemma 43, H does not contain an element which has any positive power of u
as an initial subword. Similarly, if C(B) 6= ∅ then by Lemma 42 we can assume
B to have no left-attached elements with respect to v. Again, by Lemma 43, H
does not contain an element which has any positive power of v as a terminal
subword.

Now, we are in position to define s ∈ R(Zn+1, X) which is going to be an
infinite word representing z from the presentation (8). Since Z[t]-exponentiation
is defined on CR(Z[t], X) (see [92] for details) then for any f(t) ∈ Z[t] we can
define vf(t), uf(t) ∈ CR(Z[t], X) so that

|vf(t)| = |v||f(t)|, |uf(t)| = |u||f(t)|
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and
[vf(t), v] = ε, [uf(t), u] = ε.

Thus, if α = tn−ht(A) then |uα| = |vα| = |u||α| and ht(uα) = ht(vα) = ht(u) +
(n− ht(A)) = n. Hence, we define

s = suα,vα ∈ CDR(Zn+1, X).

Observe that ht(s) = n+ 1 = ht(G) + 1.

Remark 7. It is easy to see that no element of H has s±1 as a subword.

Lemma 45. [67] For any h ∈ A we have s−1 ∗ h ∗ s = φ(h) ∈ B.

Now, our goal is to prove that a pairH, s generates a group in CDR(Z[t], X).

Lemma 46. [67] For any g ∈ H there exists N = N(g) > 0 such that

g ∗ uk = (g ∗ uN ) ◦ uk−N , vk ∗ g = vk−N ◦ (vN ∗ g).

for any k > N .

Lemma 47. [67]

(i) For any g ∈ H −A there exists N = N(g) > 0 such that for any k > N

u−k ∗ g ∗ uk = u−k+N ◦ (u−N ∗ g ∗ uN) ◦ uk−N .

(ii) For any g ∈ H there exists N = N(g) > 0 such that for any k > N

vk ∗ g ∗ uk = vk−N ◦ (vN ∗ g ∗ uN) ◦ uk−N .

(iii) For any g ∈ H −B there exists N = N(g) > 0 such that for any k > N

vk ∗ g ∗ v−k = vk−N ◦ (vN ∗ g ∗ v−N ) ◦ u−k+N .

A sequence
p = (g1, s

ǫ1 , g2, . . . , gk, s
ǫk , gk+1), (9)

where gj ∈ H, ǫj ∈ {−1, 1}, k > 1, is called an s-form over H .
An s-form (9) is reduced if subsequences

{s−1, c, s}, {s, d, s−1}

where c ∈ A, d ∈ B, do not occur in it.
Denote by P(H, s) the set of all s-forms over H . We define a partial function

w : P(H, s) → R(Z[t], X) as follows. If

p = (g1, s
ǫ1 , g2, . . . , gk, s

ǫk , gk+1)

then
w(p) = (· · · (g1 ∗ sǫ1) ∗ g2) ∗ · · · ∗ gk) ∗ sǫk) ∗ gk+1)

if it is defined.
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Lemma 48. [67] Let p = (g1, s
ǫ1 , g2, . . . , gk, s

ǫk , gk+1) be an s-form over H.
Then the following hold.

(1) The product w(p) is defined and it does not depend on the placement of
parentheses.

(2) There exists a reduced s-form q over H such that w(q) = w(p).

(3) If p is reduced then there exists a unique representation for w(p) of the
following type

w(p) = (g1 ∗ uN1

1 ) ◦ (u−N1

1 ∗ sǫ1 ∗ v−M1

1 ) ◦ (vM1

1 ∗ g2 ∗ uN2

2 ) ◦ · · ·

· · · ◦ (u−Nk

k ∗ sǫk ∗ v−Mk

k ) ◦ (vMk

k ∗ gk+1),

where Nj ,Mj > 0, uj = u, vj = v if ǫj = 1, and Nj ,Mj 6 0, uj =

v, vj = u if ǫj = −1 for j ∈ [1, k]. Moreover, g1 ∗ uN1

1 does not have u±1
1

as a terminal subword, v
Mj−1

j−1 ∗ gj ∗ uNj

j does not have u±1
j as a terminal

subword for every j ∈ [2, k], and v
Mj−1

j−1 ∗ gj ∗ sǫji does not have v±1
j−1 as an

initial subword for every j ∈ [2, k], vMk

k ∗ gk+1 does not have v±1
k as an

initial subword.

(4) w(p) ∈ CDR(Z[t], X).

Proof. Let
p = (g1, s

ǫ1 , g2, . . . , gk, s
ǫk , gk+1)

be an s-form over H .
We show first that (1) implies (2). Suppose that w(p) is defined for every

placement of parentheses and all such products are equal. If p is not reduced
then there exists j ∈ [2, k] such that either gj ∈ A, ǫj−1 = −1, ǫj = 1, or
gj ∈ B, ǫj−1 = 1, ǫj = −1. Without loss of generality we can assume the
former. Thus, we have

s−1 ∗ gj ∗ s = g′j ∈ B ⊆ H

and we obtain a new s-form

p1 = (g1, s
ǫ1 , g2, . . . , gj−1 ∗ g′j ∗ gj+1, s

ǫj+1 , . . . , gk, s
ǫk , gk+1)

which is shorter then p and w(p) = w(p1). Proceeding this way (or by induction)
in a finite number of steps we obtain a reduced s-form

q = (f1, s
δ1 , f2, . . . , s

δl , fl+1),

such that w(q) = w(p), as required.

Now we show that (1) implies (3). Assume that

p = (g1, s
ǫ1 , g2, . . . , gk, s

ǫk , gk+1)

is reduced.
By Lemma 46 and Lemma 47 there exists r ∈ N such that for any α > r
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(a) g1 ∗ uα = (g1 ∗ ur) ◦ uα−r, g1 ∗ v−α = (g1 ∗ u−r) ◦ u−α+r,

(b) vα ∗ gk+1 = vα−r ◦ (vr ∗ gk+1), u
−α ∗ gk+1 = u−α+r ◦ (u−r ∗ gk+1),

(c) u−α ∗ gj ∗ uα = u−(α−r) ◦ (u−r ∗ gj ∗ ur) ◦ uα−r for all j ∈ [2, k] such that
gj /∈ A,

(d) vα ∗ gj ∗ uα = vα−r ◦ (vr ∗ gj ∗ ur) ◦ uα−r for all j ∈ [2, k],

(e) vα ∗ gj ∗ v−α = vα−r ◦ (vr ∗ gj ∗ v−r) ◦ u−(α−r) for all j ∈ [2, k] such that
gj /∈ B.

Since p is reduced, that is, it does not contain neither a subsequence {s−1, gj ,
s}, where gj ∈ A, nor a subsequence {s, gj, s−1}, where gj ∈ B, and s has any
power of u as an initial subword and any power of v as a terminal subword then
we have

w(p) = g1 ∗ sǫ1 ∗ g2 ∗ · · · ∗ gk ∗ sǫk ∗ gk+1 =

= (g1 ∗ ur1) ◦ (u−r1 ∗ sǫ1 ∗ v−r1 ) ◦ (vr1 ∗ g2 ∗ ur2) ◦ · · · ◦ (u−rk ∗ sǫk ∗ v−rk ) ◦ (vrk ∗ gk+1),

where uj = u, vj = v if ǫj = 1 and uj = v−1, vj = u−1 if ǫj = −1 for every
j ∈ [1, k].

Now, if g1 ∗ ur1 has uγ11 , γ1 ∈ Z (with γ1 maximal possible) as a terminal
subword then we denote N1 = r − γ1 and rewrite w(p) as follows

w(p) = (g1 ∗ uN1

1 ) ◦ (u−N1

1 ∗ sǫ1 ∗ v−r1 ) ◦ (vr1 ∗ g2 ∗ ur2) ◦ · · ·

· · · ◦ (u−rk ∗ sǫk ∗ v−rk ) ◦ (vrk ∗ gk+1).

Now, if vr1 ∗ g2 ∗ur2 contains vδ11 , δ1 ∈ Z (with δ1 maximal possible) as an initial
subword then we denote M1 = r − δ1 and again rewrite w(p)

w(p) = (g1 ∗ uN1

1 ) ◦ (u−N1

1 ∗ sǫ1 ∗ v−M1

1 ) ◦ (vM1

1 ∗ g2 ∗ ur2) ◦ · · ·

· · · ◦ (u−rk ∗ sǫk ∗ v−rk ) ◦ (vrk ∗ gk+1).

In a finite number of steps we obtain the required result. Observe that by the
choice of Ni,Mi the representation of w(p) is unique.

Now we prove (1) by induction on k. If k = 1 then by Lemma 46 there exists
r ∈ N such that

g1 ∗ uα = (g1 ∗ ur) ◦ uα−r, g1 ∗ v−α = (g1 ∗ v−r) ◦ v−α+r,

vβ ∗ g2 = uβ−r ◦ (ur ∗ g2), u−β ∗ g2 = u−β+r ◦ (v−r ∗ g2)
for any α, β > r. Hence,

(g1 ∗ sǫ1) ∗ g2 = ((g1 ∗ ur1) ◦ (u−r1 ∗ sǫ1)) ∗ g2 =

= ((g1 ∗ ur1) ◦ (u−r1 ∗ sǫ1 ∗ v−r1 )) ◦ (vr1 ∗ g2),
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where u1 = u, v1 = v if ǫ1 = 1 and u1 = v−1, v1 = u−1 if ǫ1 = −1. By
Theorem 3.4 [92], the product (g1 ∗ sǫ1) ∗ g2 does not depend on the placement
of parentheses. So (1) holds for k = 1.

Now, consider an initial s-subsequence of p

p1 = (g1, s
ǫ1 , g2, . . . , gk−1, s

ǫk−1 , gk).

By induction w(p1) is defined and it does not depend on the placement of
parentheses. By the argument above there exists a unique representation of
w(p1)

w(p1) = (g1 ∗ uN1

1 ) ◦ (u−N1

1 ∗ sǫ1 ∗ v−M1

1 ) ◦ (vM1

1 ∗ g2 ∗ uN2

2 ) ◦ · · ·

· · · ◦ (u−Nk−1

k−1 ∗ sǫk−1 ∗ v−Mk−1

k−1 ) ◦ (vMk−1

k−1 ∗ gk),
where Nj,Mj > 0, uj = u, vj = v if ǫj = 1, and Nj ,Mj ≤ 0, uj = v, vj = u if
ǫj = −1 for j ∈ [1, k − 1]. To prove that p satisfies (1) it suffices to show that

w(p1) ∗ (sǫk ∗ gk+1)

is defined and does not depend on the placement of parentheses.
Without loss of generality we assume ǫk−1 = 1, ǫk = 1 - other combinations

of ǫk−1 and ǫk are considered similarly.
By Lemma 47

((u−Nk−1 ∗ s ∗ v−Mk−1 ) ◦ (vMk−1 ∗ gk)) ∗ (s ∗ gk+1) = (u−Nk−1 ∗ s ∗ v−Mk−1−r)

◦(vMk−1+r ∗ gk ∗ um1) ◦ (u−m1 ∗ s ∗ v−m2) ◦ (vm2 ∗ gk+1)

for some m1,m2, r ∈ N. Thus w(p1) ∗ (s ∗ gk+1) is defined and does not depend
on the placement of parentheses.

Now we prove (4). By (3) there exists a unique representation of w(p)

w(p) = (g1 ∗ uN1

1 ) ◦ (u−N1

1 ∗ sǫ1 ∗ v−M1

1 ) ◦ (vM1

1 ∗ g2 ∗ uN2

2 ) ◦ · · ·

· · · ◦ (u−Nk

k ∗ sǫk ∗ v−Mk

k ) ◦ (vMk

k ∗ gk+1),

where Nj,Mj > 0, uj = u, vj = v if ǫj = 1, and Nj ,Mj 6 0, uj = v, vj = u if
ǫj = −1 for j ∈ [1, k]. By Lemma 3.8 [92], to prove that w(p) ∈ CDR(Z[t], X)
it suffices to show that

g−1 ∗ w(p) ∗ g ∈ CDR(Z[t], X)

for some g ∈ R(Z[t], X).
Without loss of generality we assume ǫk = 1 and consider two cases.

(i) gk+1 ∗ g1 ∗ uN1

1 /∈ B or gk+1 ∗ g1 ∗ uN1

1 ∈ B but ǫ1 = 1.

Without loss of generality we assume the former and ǫ1 = 1. That is,
u1 = u, v1 = v. By Lemma 47 there exists N ∈ N such that

(u−m ∗ (g1 ∗ uN1)−1) ∗w(p) ∗ ((g1 ∗ uN1) ∗ um) = (u−N1−m ∗ s ∗ v−M1)
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◦(vM1∗g2∗uN2

2 )◦· · ·◦(u−Nk∗s∗v−Mk−m)◦(vMk+m∗gk+1∗g1∗uN1+N)◦um−N

for any m > N . Thus,

(u−m∗(g1∗uN1)−1)∗w(p)∗((g1∗uN1)∗um) ∈ CR(Z[t], X) ⊂ CDR(Z[t], X).

(ii) gk+1 ∗ g1 ∈ B and ǫ1 = −1.

Thus, a = s ∗ (gk+1 ∗ g1) ∗ s−1 ∈ A and we have

(g1 ∗ s)−1 ∗ w(p) ∗ (g1 ∗ s) =
(
(g2 ∗ uN2

2 ) ◦ (u−N2

2 ∗ sǫ2 ∗ v−M2

2 ) ◦ · · ·

· · · ◦ (u−Nk−1

k−1 ∗ sǫk−1 ∗ v−Mk−1

k−1 ) ◦ (vMk−1

k−1 ∗ gk)
)
∗ a = (g2 ∗ uN2

2 )

◦(u−N2

2 ∗ sǫ2 ∗ v−M2

2 ) ◦ · · · ◦ (u−Nk−1

k−1 ∗ sǫk−1 ∗ v−M
′

k−1

k−1 ) ◦ (vM
′

k−1

k−1 ∗ (gk ∗ a)),
where M ′

k−1 ∈ Z is the power which works for gk ∗ a. So the number of
s±1 is reduced by two and we can use induction.

Now we are ready to prove the main results of this subsection from which
Theorem 44 follows.

Theorem 45. [67] Put

P = P (H, s) = {g ∗ sǫ ∗ h | g, h ∈ H, ǫ ∈ {−1, 0, 1}} ⊆ CDR(Z[t], X).

Then the following hold.

(1) P generates a subgroup H∗ in CDR(Z[t], X).

(2) P , with the multiplication ∗ induced from R(Z[t], X), is a pregroup and
H∗ is isomorphic to U(P ).

(3) H∗ is isomorphic to G = 〈H, z | z−1Az = B〉.

Proof. We need the following claims.

Claim 1. Let gj ∗ sǫj ∗ hj ∈ P j = 1, 2. If

g1 ∗ sǫ1 ∗ h1 = g2 ∗ sǫ2 ∗ h2

then ǫ1 = ǫ2 and h1 ∗ h−1
2 ∈ A if ǫ1 = −1, and h1 ∗ h−1

2 ∈ B if ǫ1 = 1.

To prove the claim consider an s-form

a = (g1, s
ǫ1 , h1 ∗ h−1

2 , s−ǫ2 , g−1
2 ).

By Lemma 48, w(a) is defined and

g1 ∗ sǫ1 ∗ h1 ∗ h−1
2 ∗ s−ǫ2 ∗ g−1

2 = ε.
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Hence, a is not reduced and the claim follows.

For every p ∈ P we fix now a representation p = gp ∗ sǫp ∗hp, where gp, hp ∈
H, ǫp ∈ {−1, 0, 1}.

Claim 2. Let p = gp ∗ sǫp ∗ hp, q = gq ∗ sǫq ∗ hq be in P . If p ∗ q ∈ P then
either ǫpǫq = 0, or ǫp = −ǫq 6= 0 and hp ∗ gq ∈ A if ǫp = −1, and hp ∗ gq ∈ B if
ǫq = 1.

Let x−1 = p ∗ q ∈ P and x = gx ∗ sǫx ∗ hx. Assume that ǫpǫq 6= 0.

(a) ǫx 6= 0

Consider an s-form

a = (gp, s
ǫp , hp ∗ gq, sǫq , hq ∗ gx, sǫx , hx).

By Lemma 48, w(a) is defined and

w(a) = gp ∗ sǫp ∗ hp ∗ gq ∗ sǫq ∗ hq ∗ gx ∗ sǫx ∗ hx = ε.

Hence, a is not reduced and either a subsequence

{sǫp , hp ∗ gq, sǫq},

or a subsequence
{sǫq , hq ∗ gx, sǫx}

is reducible. In the former case we are done, so assume that {sǫq , hq ∗
gx, s

ǫx} can be reduced. Without loss of generality we can assume that
ǫq = −1, ǫx = 1, hq ∗ gx ∈ A. Hence,

sǫq ∗ hq ∗ gx ∗ sǫx = g ∈ B

and we have
w(a) = gp ∗ sǫp ∗ hp ∗ gq ∗ g ∗ hx = ε.

Now, it follows ǫp = 0 - a contradiction with our assumption.

(b) ǫx = 0

Hence, x = g ∈ H and we consider an s-form

a = (gp, s
ǫp , hp ∗ gq, sǫq , hq ∗ g).

By Lemma 48, w(a) is defined and

w(a) = gp ∗ sǫp ∗ hp ∗ gq ∗ sǫq ∗ hq ∗ g = ε.

Now, the claim follows automatically.

Below we call a tuple y = (y1, . . . , yk) ∈ P k a reduced P -sequence if yj∗yj+1 /∈
P for j ∈ [1, k − 1]. Observe, that if y = (y1, . . . , yk) is a reduced P -sequence
and yj = gj ∗ sǫji ∗ hj then either k 6 1 or y has the following properties which
follow from Claim 2:
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(a) ǫj 6= 0 for all j ∈ [1, k],

(b) if ǫj = −1, ǫj+1 = 1 then hj ∗ gj+1 /∈ A for j ∈ [1, k − 1],

(c) if ǫj = 1, ǫj+1 = −1 then hj ∗ gj+1 /∈ B for j ∈ [1, k − 1].

In particular, the s-form over H

py = (g1, s
ǫ1 , h1 ∗ g2, sǫ2 , . . . , hn−1 ∗ gn, sǫk , hn),

is reduced.

To prove (1) observe first that P−1 = P . Now if y1, . . . , yk ∈ P then
y1 ∗ · · · ∗ yk = w(py), where y = (y1, . . . , yk). Hence, by Lemma 48, the product
y1 ∗ y2 ∗ · · · ∗ yk is defined in CDR(Z[t], X) and it belongs to CDR(Z[t], X).
It follows that H∗ = 〈P 〉 is a subgroup of CDR(Z[t], X) which consists of all
words w(p), where p ranges through all possible s-forms over H . Hence, (1) is
proved.

Now we prove (2). By Theorem 2, [110], to prove that P is a pregroup and
the inclusion P → H∗ extends to an isomorphism U(P ) ≃ H∗ it is enough to
show that all reduced P -sequences representing the same element have the same
P -length.

Suppose two reduced P -sequences

(u1, u2, . . . , uk), (v1, v2, . . . , vn)

represent the same element g ∈ H∗. That is,

(u1 ∗ · · · ∗ uk) ∗ (v1 ∗ · · · ∗ vn)−1 = ε.

We use induction on k + n to show that k = n. Observe that k = 0 implies
n = 0, otherwise we get a contradiction with Lemma 48 (3). Hence, we can
assume k, n > 0, that is, k + n > 2. If the P -sequence

a = (u1, . . . , uk, v
−1
n , . . . , v−1

1 )

is reduced then the underlying s-form is reduced and hence, by Lemma 48 (3)

w(a) = u1 ∗ . . . ∗ uk ∗ v−1
n ∗ . . . ∗ v−1

1 6= ε.

Hence,
(u1, . . . , uk, v

−1
n , . . . , v−1

1 )

is not reduced and uk ∗ v−1
n ∈ P . If uk = g1 ∗ sǫ1 ∗ h1, vn = g2 ∗ sǫ2 ∗ h2, where

gi, hi ∈ H and ǫi ∈ {−1, 0, 1}, i = 1, 2 then by Claim 2 either ǫ1ǫ2 = 0, or
ǫ1 = ǫ2 6= 0 and h1 ∗ h−1

2 ∈ A if ǫ1 = −1, and h1 ∗ h−1
2 ∈ B if ǫ1 = 1. In the

former case, for example, if ǫ2 = 0 then n = 1, vn ∈ H and b = (u1, . . . , uk∗v−1
n )

is a reduced P -sequence such that w(b) = ε - a contradiction with Lemma 48
(3) unless k = 1, u1 ∈ H . In the latter case, uk ∗ v−1

n ∈ H and it follows that

(u1, u2, . . . , uk−1 ∗ (uk ∗ v−1
n )), (v1, v2, . . . , vn−1)
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represent the same element in H∗ while the sum of their lengths is less than
k + n, so the result follows by induction.

Finally, to prove (3) observe first that H embeds into G. We denote this
embedding by θ. Now we define a map φ : P → G as follows. For g ∗ sǫ ∗ h ∈ P
put

g ∗ sǫ ∗ h φ→ θ(g) zǫ θ(h).

It follows from Claim 2 that φ is a morphism of pregroups. Since H∗ ≃ U(P ),
the morphism φ extends to a unique homomorphism ψ : H∗ → G. We claim
that ψ is bijective. Indeed, observe first that G = 〈H, z〉. Now, since ψ(sǫ) = zǫ

and ψ = φ = θ on H , it follows that ψ is onto. To see that ψ is one-to-one it
suffices to notice that if

(g1 ∗ sǫ1 ∗ h1, g2 ∗ sǫ2 ∗ h2, . . . , gm ∗ sǫm ∗ hm)

is a reduced P -sequence then

y = (g1, s
ǫ1 , h1 ∗ g2, sǫ2 , . . . , sǫm , hm)

is a reduced s-form and w(y)ψ 6= 1 by Britton’s Lemma (see, for example, [79]).
This proves that ψ is an isomorphism, as required.

Theorem 46. [67] Let G = 〈H, z | z−1Az = B〉. Then, in the notation
above, the free length function on L : G → Zn+1 induced by the isomorphism
ψ : H∗ → G is regular.

Proof. Observe that is is enough to show that the length function induced on
H∗ = 〈P 〉 from CDR(Z[t], X) is regular.

Let g, h ∈ H∗. Then g and h can be written in the unique normal forms

g = g1 ◦ (u−N1

1 ∗ sǫ1 ∗ v−M1

1 ) ◦ g2 ◦ · · · ◦ (u−Nk

k ∗ sǫk ∗ v−Mk

k ) ◦ gk+1,

h = h1 ◦ (w−L1

1 ∗ sδ1 ∗ x−P1

1 ) ◦ h2 ◦ · · · ◦ (w−Lm
m ∗ sδm ∗ x−Pm

m ) ◦ hm+1,

where Nj,Mj > 0, uj = u, vj = v if ǫj = 1, and Nj ,Mj 6 0, uj = v, vj = u if
ǫj = −1 for j ∈ [1, k]; Li, Pi > 0, wi = u, xi = v if δi = 1, and Li, Pi 6 0, wi =
v, xi = u if δi = −1 for i ∈ [1,m]. Moreover, g1 does not have u±1

1 as a terminal
subword, gj does not have u±1

j as a terminal subword for every j ∈ [2, k], and

gj does not have v±1
j−1 as an initial subword for every j ∈ [2, k], gk+1 does not

have v±1
k as an initial subword; h1 does not have w±1

1 as a terminal subword, hi
does not have w±1

i as a terminal subword for every i ∈ [2,m], and hi does not
have x±1

j−1 as an initial subword for every i ∈ [2,m], hm+1 does not have x±1
m as

an initial subword.

If there exist k1, k2 > 0 such that

c = c(g, h) 6 min{|g1 ◦ uk11 |, |h1 ◦ wk21 |}
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then com(g, h) = com(g1 ◦ uk11 , h1 ◦ wk21 ) ∈ H . Now, assume that r ∈ [1, k] is
the minimal natural number such that com(g, h) is an initial subword of

f1 = g1 ◦ (u−N1

1 ∗ sǫ1 ∗ v−M1

1 ) ◦ g2 ◦ · · · ◦ (u−Nr
r ∗ sǫr ∗ v−Mr

r ) ◦ gr+1 ◦ up1r ,

where p1 ∈ Z. Similarly, assume that q ∈ [1,m] is the minimal natural number
such that com(g, h) is an initial subword of

f2 = h1 ◦ (w−L1

1 ∗ sδ1 ∗ x−P1

1 ) ◦ h2 ◦ · · · ◦ (w−Lq
q ∗ sδq ∗ x−Pq

q ) ◦ hq+1 ◦ wp2q ,

where p2 ∈ Z. From uniqueness of normal forms it follows that r = q and we
have gi = hi, ui = wi, vi = xi, Ni = Li, ǫi = δi, i ∈ [1, r] and Mi = Pi, i ∈
[1, r − 1].

Without loss of generality we can assume ǫr = 1. Hence, vr = xr = v.
Observe that com(g, h) can be represented as a concatenation com(g, h) =

c1 ◦ c2, where

c1 = g1 ◦ (u−N1

1 ∗ sǫ1 ∗ v−M1

1 ) ◦ g2 ◦ · · · ◦ (u−Nr ∗ s ∗ v−l)

and l > max{Mr, Pr}, and

c2 = com(vl−Mr ◦ gr+1 ◦ up1r , vl−Pr ◦ hr+1 ◦ wp2r ).

Obviously, c1 ∈ H∗. Also, c2 ∈ H since vl−Mr ◦gr+1◦up1r , vl−Pr ◦hr+1◦wp2r ∈ H
and the length function on H is regular. Hence, com(g, h) ∈ H∗.

10.4 Completions of Zn-free groups

Let G be a finitely generated subgroup of CDR(Zn, X), where Zn is ordered
with respect to the right lexicographic order. Here we do not assume X to be
finite. We are going to construct a finite alphabet Y and a finitely generated
group H which is subgroup of CDR(Zn, Y ) such that the length function on H
induced from CDR(Zn, Y ) is regular and G embeds into H so that the length
is preserved by the embedding. In other words, we are going to construct a
finitely generated Zn-completion of G (see [69]). All the proofs and details can
be found in [70].

Consider a finitely generated Zn-free group G, where n ∈ N. Suppose n > 1
and consider the Zn-tree (ΓG, d) which arises from the embedding of G into
CDR(Zn, X).

We say that p, q ∈ ΓG are Zn−1-equivalent (p ∼ q) if d(p, q) ∈ Zn−1, that is,
d(p, q) = (a1, . . . , an), an = 0. From metric axioms it follows that “∼” is an
equivalence relation and every equivalence class defines a Zn−1-subtree of ΓG.

Let ∆G = ΓG/ ∼ and denote by ρ the mapping ΓG → ΓG/ ∼. It is easy to

see that ∆G is a simplicial tree. Indeed, define d̃ : ∆G → Z as follows:

∀ p̃, q̃ ∈ ∆G : d̃(p̃, q̃) = k iff d(p, q) = (a1, . . . , an) and an = k. (10)
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From metric properties of d it follows that d̃ is a well-defined metric.
Since G acts on ΓG by isometries then p ∼ q implies g · p ∼ g · q for every

g ∈ G. Moreover, if d(p, q) = (a1, . . . , an) then d(g · p, g · q) = (a1, . . . , an).

Hence, d̃(g · p̃, g · q̃) = d̃(p̃, q̃), that is, G acts on ∆G by isometries, but the action
is not free in general. From Bass-Serre theory it follows that ΨG = ∆G/G is a
graph in which vertices and edges correspond to G-orbits of vertices and edges
in ∆G.

Lemma 49. [70] ΨG is a finite graph.

From Lemma 49 it follows that the number of G-orbits of Zn−1-subtrees in
ΓG is finite and equal to |V (ΨG)|. So, let |V (ΨG)| = m and T1, . . . , Tm be these
G-orbits.

Consider ΨG. The set of vertices and edges of ΨG we denote correspondingly
by V (ΨG) and E(ΨG) so that

σ : E(ΨG) → V (ΨG), τ : E(ΨG) → V (ΨG),
− : E(ΨG) → E(ΨG)

satisfy the following conditions:

σ(ē) = τ(e), τ(ē) = σ(e), ¯̄e = e, ē 6= e.

Let T be a maximal subtree of ΨG and let π : ∆G → ∆G/G = ΨG be the
canonical projection of ∆G onto its quotient, so π(v) = Gv and π(e) = Ge for
every v ∈ V (∆G), e ∈ E(∆G). There exists an injective morphism of graphs
η : T → ∆G such that π ◦ η = idT (see Section 8.4 of [28]), in particular η(T )
is a subtree of ∆G. One can extend η to a map (which we again denote by η)
η : ΨG → ∆G such that η maps vertices to vertices, edges to edges, and so that
π ◦ η = idΨG

. Notice, that in general η is not a graph morphism. To this end
choose an orientation O of the graph ΨG. Let e ∈ O − T . Then there exists an
edge e′ ∈ ∆G such that π(e′) = e. Clearly, σ(e′) and η(σ(e)) are in the same
G-orbit. Hence g · σ(e′) = η(σ(e)) for some g ∈ G. Define η(e) = g · e′ and
η(ē) = η(e). Notice that vertices η(τ(e)) and τ(η(e)) are in the same G-orbit.
Hence there exists an element γe ∈ G such that γe · τ(η(e)) = η(τ(e)).

Put
Gv = StabG(η(v)), Ge = StabG(η(e))

and define boundary monomorphisms as inclusion maps ie : Ge →֒ Gσ(e) for
edges e ∈ T ∪O and as conjugations by γē for edges e /∈ T ∪O, that is,

ie(g) =

{
g, if e ∈ T ∪O,
γēgγ

−1
ē , if e /∈ T ∪O.

According to the Bass-Serre structure theorem we have

G ≃ π(G,ΨG, T ) = 〈Gv (v ∈ V (ΨG)), γe (e ∈ E(ΨG)) | rel(Gv), (11)

γeie(g)γ
−1
e = iē(g) (g ∈ Ge), γeγē = 1, γe = 1 (e ∈ T )〉.
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Let K = ρ−1(η(T )), K = ρ−1(η(ΨG)), hence, K, K are subtrees of ΓG such
that K ⊆ K. Obviously T0 ⊆ K. Moreover, both K and K contain finitely many
Zn−1-subtrees, and meet every G-orbit of Zn−1-subtrees of ΓG.

For every v ∈ ΨG we have StabG(η(v)) = StabG(Tη(v)), where η(v) =
ρ(Tη(v)). Denote by T0 the Zn−1-subtree containing ε. Obviously, StabG(T0) is
a subgroup of CDR(Zn−1, X).

Lemma 50. [70] Let T be a Zn−1-subtree of K. Then

StabG(T ) = fT ∗KT ∗ f−1
T ,

where KT is a subgroup of CDR(Zn−1, X) (possibly trivial) and fT = µ([ε, xT ]) ∈
CDR(Zn, X). Moreover, is StabG(T ) is not trivial then xT ∈ Axis(g) ∩ T for
some g ∈ StabG(T ).

Let e be an edge of ΨG such that e ∈ O, e /∈ T . Let v = σ(η(e)) =
η(σ(e)), w = τ(η(e)) and u = η(τ(e)) = γe ·w. We have u, v ∈ η(T ), w /∈ η(T ).
Hence,

γe StabG(w) γ
−1
e = StabG(u).

By definition we have ie(Ge) ⊆ Gv = StabG(T ), where T = ρ−1(v) and iē(Ge) =
γeGeγ

−1
e ⊆ Gu = StabG(S), where S = ρ−1(u). Thus, we have ie(Ge) =

fT ∗A∗ f−1
T , iē(Ge) = fS ∗B ∗ f−1

S , where A 6 KT and B 6 KS are isomorphic
abelian subgroups of CDR(Zn−1, X). So,

γe ∗ (fT ∗A ∗ f−1
T ) ∗ γ−1

e = fS ∗B ∗ f−1
S

and it follows that f−1
S ∗ γe ∗ fT = re ∈ CDR(Zn, X) so that re ∗A ∗ r−1

e = B.
Thus, we have

γe = fS ∗ re ∗ f−1
T .

Observe that re ∈ CDR(Zn, X)−CDR(Zn−1, X) because otherwise γe ·T = S,
that is, u = v, S = T and thus γe ∈ StabG(T ) - a contradiction.

10.4.1 Simplicial case

Let G be a finitely generated subgroup of CDR(Z, X). Hence, ΓG is a simplicial
tree and ∆ = ΓG/G is a folded X-labeled digraph (see [56]) with labeling
induced from ΓG. ∆ is finite which follows from the fact that G is finitely
generated and from the construction of ΓG. Moreover, ∆ recognizes G with
respect to some vertex v (the image of ε) in the sense that g ∈ CDR(Z, X)
belongs to G if and only if there exists a loop in ∆ at v such that its label is
exactly g.

The following lemma provides the required result.

Lemma 51. [70] Let G be a finitely generated subgroup of CDR(Z, X). Then
there exists a finite alphabet Y and an embedding φ : G→ H, where H = F (Y ),
inducing an embedding ψ : ΓG → ΓH such that

(i) |g|G = |φ(g)|H for every g ∈ G,
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(ii) if A is a maximal abelian subgroup of G then φ(A) is a maximal abelian
subgroup of H,

(iii) if a and b are non-G-equivalent ends of ΓG then ψ(a) and ψ(b) are non-
H-equivalent ends of ΓH ,

(iv) if A and B are maximal abelian subgroups of G which are not conjugate
in G then φ(A) and φ(B) are not conjugate in H.

Lemma 51 can be generalized to the following result.

Corollary 13. [70] Let G be a finitely generated subgroup of CDR(Z, X). As-
sume that ΓG is embedded into a Z-tree T whose edges are labeled by X± so
that the action of G on ΓG extends to an action of G on T , and there are only
finitely many G-orbits of ends of T which belong to T − ΓG. Then there exists
a finite alphabet Y , a Z-tree T ′ whose edges are labeled by Y ±, and a finitely
generated subgroup H ⊆ CDR(Z, Y ) such that ΓH is embedded into T ′ so that
the action of H on ΓH extends to a regular action of H on T ′. Also, there
is an embedding θ : T → T ′, where θ(ΓG) ⊆ ΓH , which indices an embedding
φ : G→ H such that

(i) |g|G = |φ(g)|H for every g ∈ G,

(ii) if A ia a maximal abelian subgroup of G then φ(A) is a maximal abelian
subgroup of H,

(iii) if a and b are non-G-equivalent ends of T then θ(a) and θ(b) are non-H-
equivalent ends of T ′.

10.4.2 General case

Let G be a finitely generated subgroup of CDR(Zn, X) for some alphabet X .
We are going to use the notations introduced in Subsection 10.4, that is, we
assume that K, ΨG, ∆G etc. are defined for G as well as the presentation (11).

First of all, we relabel ΓG so that non-G-equivalent Zn−1-subtrees are labeled
by disjoint alphabets.

Recall that every edge e in ΓG is labeled by a letter µ(e) ∈ X±. Let T be
a Zn−1-subtree of K and XT a copy of X (disjoint from X) so that we have a
bijection πT : X → XT , where πT (x

−1) = πT (x)
−1 for every x ∈ X . We assume

XS ∩ XT = ∅ for distinct S, T ∈ K. Let Γ′ be a copy of ΓG and ν : Γ′ → ΓG
a natural bijection (the bijection on points naturally induces the bijection on
edges). Denote ε′ = ν−1(ε).

Let X ′ =
⋃{XT | T ∈ K}. We introduce a labeling function µ′ : E(Γ′) →

X ′± as follows: µ′(e) = πT (µ(ν(e))) if ν(e) ∈ T . µ′ naturally extends to the
labeling of paths in Γ′. Now, if V ′ = ν−1(VG) then define

G′ = {µ′(p) | p = [ε′, v′] for some v′ ∈ V ′}.
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Lemma 52. [70] G′ is a subgroup of CDR(Zn, X ′) which acts freely on Γ′ and
there exists an isomorphism φ : G→ G′ such that Lε(g) = Lε′(φ(g)).

According to Lemma 52 we have Γ′ = ΓG′ . Observe that the structure of
Zn−1-trees in ΓG′ is the same as in ΓG. Hence, if “∼” is a Zn−1-equivalence of
points of ΓG′ then ∆G′ = ΓG′/ ∼ and ΨG′ = ∆G′/G′ are naturally isomorphic
respectively to ∆G = ΓG/ ∼ and ΨG = ∆G/G. So, with a slight abuse of
notation let X = X ′, G = G′.

Next, we would like to refine the labeling so as to make the alphabet X
finite. To do this we have to analyze the structure of the Zn−1-subtrees of K.

Lemma 53. [70] Let T be a Zn−1-subtree of K such that StabG(T ) is trivial.
Then T contains only finitely many branch-points and each branch-point of T
is of the form Y (ε, x, y), where x, y ∈ {xS (S ∈ K), γ±1

e · ε (e ∈ ΨG)}.

In particular, from Lemma 53 it follows that every Zn−1-subtree T of K
with trivial stabilizer can be relabeled by a finite alphabet. Indeed, T may be
cut at its branch-points into finitely many closed segments and half-open rays
which do not contain any branch-points. Then all these segments and rays can
be labeled by different letters (all points in each piece is labeled by one letter).

In the case of non-trivial stabilizer the situation is a little more complicated.

Lemma 54. [70] Let T be a Zn−1-subtree of K such that StabG(T ) = fT ∗KT ∗
f−1
T is non-trivial. Then ΓKT

embeds into T (the base-point of ΓKT
is identified

with xT ), the action of KT on ΓKT
extends to the action of KT on T and the

following hold

(a) every end of T which does not belong to ΓKT
is KT -equivalent to one of

the ends of a finite subtree which is the intersection of T and the segments
[ε, xS ], S ∈ K,

(b) every end a of T which does not belong to ΓKT
extends the axis of some

centralizer Ca of KT ,

(c) there are only finitely many KT -orbits of branch-points of T which do not
belong to ΓKT

,

(d) if KT ⊂ CDR(Zn−1, Y ) for some finite alphabet Y then the labeling of
ΓKT

by Y can be KT -equivariantly extended to a labeling of T by a finite
extension Y ′ of Y .

Corollary 14. [70] If G is a finitely generated subgroup of CDR(Zn, X) then
X can be taken to be finite.

Proof. Follows from Lemma 53 and Lemma 54.

For a non-linear Zn−1-subtree T of K with a non-trivial stabilizer let B(T )
be the set of representatives of branch-points of T − ΓKT

. By Lemma 54,
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B(T ) is finite and every branch-point of T which does not belong to ΓKT
is

KT -equivalent to a branch-point from B(T ). Let

D(T ) = {µ([xT , y]) | y ∈ B(T )}.

Observe that D(T ) is a finite subset of CDR(Zn−1, X).

Let g ∈ G. Hence, [ε, g · ε] meets finitely many Zn−1-subtrees T0, T1, . . . , Tk,
where T (g)0 = T0 and Ti is adjacent to Ti−1 for each i ∈ [1, k]. Observe that
T0 is Zn−1-subtree of K. We have

[ε, g · ε] ⊆ [xT0
, xT1

] ∪ · · · ∪ [xTk−1
, xTk

] ∪ [xTk
, g · ε].

Now, there exists g0 ∈ StabG(T0) and a Zn−1-subtree S1 of K adjacent to
T0 such that T1 = g0 · S1. Next, there exists g1 ∈ StabG(T1) and a Zn−1-
subtree S2 of K adjacent to S1 such that T2 = (g1g0) · S2, and so on. After k
steps we find a sequence of Zn−1-subtrees S0, S1, . . . , Sk from K, where S0 =
T0, Si is adjacent to Si−1, i ∈ [1, k] and Ti = (gi−1 · · · g0) · Si, where gi ∈
StabG(Ti). Hence,

[ε, g · ε] ⊆ [xT0
, g0 · xT0

] ∪ [g0 · xT0
, g0 · xS1

] ∪ [g0 · xS1
, xT1

] ∪ [xT1
, (g1g0) · xS1

]

∪[(g1g0) · xS1
, (g1g0) · xS2

] ∪ · · · ∪ [(gk−1 · · · g0) · xSk−1
, (gk−1 · · · g0) · xSk

]

∪[(gk−1 · · · g0) · xSk
, xTk

] ∪ [xTk
, (gk · · · g0) · xSk

],

where (gk · · · g0) · xSk
= g · ε.

Since
µ([p, q]) = µ(g · [p, q]) = µ([g · p, g · q])

and

[(gi−1 · · · g0) · xSi−1
, (gi−1 · · · g0) · xSi

] = (gi−1 · · · g0) · [xSi−1
, xSi

]

for i ∈ [1, k], then

µ([(gi−1 · · · g0) · xSi−1
, (gi−1 · · · g0) · xSi

]) = µ([xSi−1
, xSi

]).

Also, observe that for any i ∈ [1, k]

[(gi−1 · · · g0) · xSi
, xTi

] ∪ [xTi
, (gi · · · g0) · xSi

]

is a path in Ti, where (gi−1 · · · g0) · xSi
and (gi · · · g0) · xSi

are StabG(Ti)-
equivalent to xTi

. So, it follows that

µ([xTi
, (gi−1 · · · g0) · xSi

]) = fi ∈ KTi
, µ([xTi

, (gi · · · g0) · xSi
]) = hi ∈ KTi

.

Also, observe that g0 = µ([xT0
, g0 · xT0

]). Eventually, we have

g = g0 ∗ cS0,S1
∗ (f−1

1 ∗ h1) ∗ cS1,S2
∗ · · · ∗ cSk−1,Sk

∗ (f−1
k ∗ hk),

where cSi−1,Si
is the label of the path [xSi−1

, xSi
] and the product on the right-

hand side is defined in CDR(Zn, X).

Now we are ready to perform the inductive step.
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Theorem 47. [70] Let G be a finitely generated subgroup of CDR(Zn, X) (as-
sume that K, ΨG, ∆G etc. are defined for G as above). Suppose that for every
non-linear Zn−1-subtree T of K with a non-trivial stabilizer there exists

(a) an alphabet Y (T ),

(b) a Zn−1-tree T ′ whose edges are labeled by Y (T ),

(c) a finitely generated group HT ⊂ CDR(Zn−1, Y (T ))

such that ΓHT
is embedded into T ′ and the action of HT on ΓHT

extends to a
regular action of HT on T ′. Moreover, assume that there is an embedding ψT :
T → T ′, where ψT (ΓKT

) ⊆ ΓHT
, which induces an embedding φT : KT → HT ,

and such that if a and b are non-KT -equivalent ends of T then ψT (a) and ψT (b)
are non-HT -equivalent ends of ψT (T ).

Then there exists an embedding of D(T ), T ∈ K into CDR(Zn, Y ), where
Y is a finite alphabet containing

⋃
T∈K Y (T ) such that

(i) {H(T ), D(T ), {cxT ,xS
| S is adjacent to T in K} | T ∈ K} generates a

group H of CDR(Zn, Y ) which acts regularly on ΓH with respect to εH ,

(ii) there exists an embedding ψ : ΓG → ΓH , ψ(εG) = εH which induces an
embedding φ : G → H, such that if a and b are non-G-equivalent ends of
ΓG then ψ(a) and ψ(b) are non-H-equivalent ends of ψ(ΓG).

Proof. First of all, by Corollary 14 we can assume X to be finite. Hence, we can
assume that any two distinct Zn−1-subtrees S and T of K are labeled distinct
alphabets X(S) and X(T ). Next, by Lemma 53, in each Zn−1-subtree S of K
with trivial stabilizer there are only finitely many branch-points, so we can cut S
along these branch-points, obtain finitely many closed and half-open segments,
and relabel them by a finite alphabet. Thus we can assume all this to be done
already.

Let T be a non-linear Zn−1-subtree of K with a non-trivial stabilizer. Ob-
serve that by Lemma 54 every end a of T either is an end of ΓKT

, or a = g · b,
where b is from a finite list of representatives of orbits of ends of T − ΓKT

.
By the assumption, T embeds into T ′ labeled by Y (T ), while ΓKT

embeds
into ΓH(T ), where H(T ) acts regularly on T ′. It follows that for every branch-
point b of T the label of ψT ([xT , b]) defines an element of H(T ). In particular,
the label of ψT (d) belongs to H(T ) for every d ∈ D(T ). Moreover, if S1, S2 are
Zn−1-subtrees of K adjacent to T and aS1

, aS2
are the corresponding ends of

T then aS1
is not H(T )-equivalent to aS2

. So, by the assumption, aS1
is not

H(T )-equivalent to aS2
and it follows that

(h1 · θ([xT , xS1
] ∩ T )) ∩ (h2 · θ([xT , xS2

] ∩ T ))

is a closed segment of T ′, hence,

com(h1 ∗ cxT ,xS1
, h2 ∗ cxT ,xS2

),



Actions, length functions, and non-archemedian words 98

is defined in CDR(Zn−1, Y (T )). Since X(T ) ∩ X(S) = ∅ then h ∗ c−1
xT ,xS

=
h ◦ c−1

xT ,xS
for every Zn−1-subtree S of K adjacent to T . Thus,

{H(T ), D(T ), {cxT ,xS
| S is adjacent to T in K}},

which is finite, generates a subgroup H ′(T ) in CDR(Zn, Q), where

Q =
⋃

T∈K
Y (T ),

so that T embeds into ΓH′(T ). Moreover, H ′(T ) acts regularly on ΓH′(T ).
Now, from the fact that alphabet X(T ) is disjoint from X(S) if T is not

G-equivalent to S it follows that {H ′(T ) | T ∈ K} generates a subgroup H of
CDR(Zn, Y ), where Y is a finite alphabet containing Q. Observe that ΓH′(T )

embeds into ΓH for each T ∈ K. Moreover, for every f, g ∈ H we have w =
Y (εH , f ·εH , g ·εH) belongs to one of the subtrees ΓH′(T ), hence [εH , w] defines
an element of H ′(T ) ⊂ H . That is, H acts regularly on ΓH .

Next, since
G 6 〈KT , {D(T ) | T ∈ K}〉 6 H

then G embeds into H .
Finally, every end a of ΓG uniquely corresponds to an end in ∆G. Every

end of ∆G can be viewed as a reduced infinite path pa in ∆G originating at
v ∈ ∆G which is the image of ε ∈ ΓG. Observe that two ends a and b of ΓG are
G-equivalent if and only if π(pa) = π(pb) in ΨG.

Denote ∆H = ΓH/ ∼, where “∼” is the equivalence of Zn−1-close points.
Since ψ : ΓG → ΓH is an embedding then ∆G embeds into ∆H and with an
abuse of notation we are going to denote this embedding by ψ. Let w = ψ(v).

Let a and b be non-G-equivalent ends of ΓG and let

pa = v v1 v2 · · · , pb = v u1 u2 · · · .

Assume that ψ(a) and ψ(b) are H-equivalent in ΓH , that is, there exists h ∈ H
such that h · pψ(a) = pψ(b). Since pψ(a) and pψ(b) have the same origin w then
h ·w = w, that is, h ∈ StabH(T

′
0), where T

′
0 is a Zn−1-subtree of ΓH containing

ψ(T0). Moreover, if e1 = (w,ψ(v1)), f1 = (w,ψ(u1)) then h · e1 = f1 and it
follows that h · a1 = b1, where a1 and b1 are ends of ψ(T0) corresponding to e1
and f1. By the assumption of the theorem there exists φ(g1) ∈ Stabφ(G)(ψ(T0))
such that φ(g1) · a1 = b1, so, φ(g1) · ψ(v1) = ψ(u1). Since φ : G → H and
ψ : ΓG → ΓH are embeddings, it follows that g1 · v1 = u1 and the images of
π(u1) = π(v1) in ∆G.

Continuing in the same way we obtain π(ui) = π(vi), i > 1 in ∆G, so, a and
b are G-equivalent which gives a contradiction with the assumption that ψ(a)
and ψ(b) are H-equivalent in ΓH .

Theorem 48. [70] Let G be a finitely generated subgroup of CDR(Zn, X),
where X is arbitrary. Then there exists a finite alphabet Y and an embedding
φ : G → H, where H is a finitely generated subgroup of CDR(Zn, Y ) with a
regular length function, such that
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(a) |g|G = |φ(g)|H for every g ∈ G,

(b) if A ia a maximal abelian subgroup of G then φ(A) is a maximal abelian
subgroup of H,

(c) if A and B are maximal abelian subgroups of G which are non-conjugate
in G then φ(A) and φ(B) are non-conjugate in H.

Proof. We use the induction on n. If n = 1 then the result follows from Lemma
51. Finally, the induction step follows from Theorem 47.

As a simple corollary of the above theorem we get the following result.

Theorem 49. [70] Every finitely generated Zn-free group G has a length-
preserving embedding into a finitely generated complete Zn-free group H.

10.5 Description of Zn-free groups

Given two Z[t]-free groupsG1, G2 and maximal abelian subgroupsA 6 G1, B 6

G2 such that

(a) A and B are cyclically reduced with respect to the corresponding embed-
dings of G1 and G2 into infinite words,

(b) there exists an isomorphism φ : A → B such that |φ(a)| = |a| for any
a ∈ A.

Then we call the amalgamated free product

〈G1, G2 | A φ
= B〉

the length-preserving amalgam of G1 and G2.
Given a Z[t]-free group H and non-conjugate maximal abelian subgroups

A,B 6 H such that

(a) A and B are cyclically reduced with respect to the embedding of H into
infinite words,

(b) there exists an isomorphism φ : A→ B such that |φ(a)| = |a| and a is not
conjugate to φ(a)−1 in H for any a ∈ A.

Then we call the HNN extension

〈H, t | t−1At = B〉

the length-preserving separated HNN extension of H .
As a corollary of Theorem 43 and Theorem 44 we get the description of

complete Zn-free groups in the following form.

Theorem 50. A finitely generated group G is complete Zn-free if and only if
it can be obtained from free groups by finitely many length-preserving separated
HNN extensions and centralizer extensions.
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Using the results of previous Subsection 10.4 we can prove a theorem similar
to Theorem 50 for the class of finitely generated Z[t]-free groups (not necessarily
complete). For that we need the following theorems.

Theorem 51. Let G1 and G2 be finitely generated Zn-free groups. Then the
length-preserving amalgam

G = 〈G1, G2 | A φ
= B〉

of G1 and G2 is a finitely generated Zn
′

-free group and the length function on
G extends the ones on G1 and G2.

Proof. Both G1 and G2 a finitely generated Z[t]-free. Hence, the free product
P = G1 ∗G2 is also finitely generated Z[t]-free (see Example 16 and [24, Propo-
sition 5.1.1]) and canonical embeddings of G1 and G2 into P preserve length.
Note that A and B are non-conjugate maximal abelian subgroups of P .

Next, by Theorem 48, there exists a finitely generated complete Z[t]-free
groupH such that P embeds intoH and the embedding preserves length. More-
over, A and B stay non-conjugate maximal abelian in H .

By Theorem 44, the HNN extension K = 〈H, t | t−1At = B〉 is a finitely
generated complete Z[t]-free group. Observe that K contains a subgroup K0 =

〈t−1Ĝ1t, Ĝ2〉, where Ĝi denotes the copy of Gi through the embedding Gi →֒
P →֒ K. Finally, it is easy to see that K0 is isomorphic to G.

Theorem 52. Let H be a finitely generated Zn-free group. Then the length-
preserving separated HNN extension

G = 〈H, t | t−1At = B〉

of H is a finitely generated Zn
′

-free group and the length function on G extends
the one on H.

Proof. The proof is very similar to the one of Theorem 51.
By Theorem 48, there exists a finitely generated complete Z[t]-free group P

and an embedding ψ : H → P such that ψ preserves length and ψ(A), ψ(B)
are non-conjugate maximal abelian in P . Observe that since ψ(A) and ψ(B)
are isomorphic to the original subgroups A and B, and φ : A → B is an
isomorphism, there exists a natural isomorphism from ψ(A) to ψ(B) which we
also denote by φ. Since ψ preserves length, we have |φ(a)| = |a| for any a ∈ ψ(A).
Next, if there exists g ∈ P such that g−1ag = φ(a) for some a ∈ ψ(A) then from
the CSA property of P we get g−1ψ(A)g = ψ(B), that is, ψ(A) and ψ(B) are
conjugate - a contradiction. It follows that both conditions (a) and (b) hold for
ψ(A) and ψ(B).

By Theorem 44, the HNN extension K = 〈P, t | t−1ψ(A)t = ψ(B)〉 is a
finitely generated complete Z[t]-free group. Observe that K contains a subgroup
K0 = 〈ψ(H), t〉 which is isomorphic to G.



Actions, length functions, and non-archemedian words 101

Theorem 53. Let H be a finitely generated Zn-free group and let A be a max-
imal abelian subgroup of H. Then the centralizer extension

G = 〈H, t | t−1At = A〉

is a finitely generated Zn
′

-free group and the length function on G extends the
one on H.

Proof. By Theorem 48, there exists a finitely generated complete Z[t]-free group
P and an embedding ψ : H → P such that ψ preserves length and ψ(A) is
maximal abelian in P .

By Theorem 44, the HNN extension K = 〈P, t | t−1ψ(A)t = ψ(A)〉 is a
finitely generated complete Z[t]-free group. Observe that K contains a subgroup
K0 = 〈ψ(H), t〉 which is isomorphic to G.

Theorem 54. A finitely generated group G is Zn-free if and only if it can be
obtained from free groups by a finite sequence of length-preserving amalgams,
length-preserving separated HNN extensions, and centralizer extensions.

Proof. Since every finitely generated Z[t]-free group embeds into a finitely gener-
ated complete Z[t]-free group, from Bass-Serre Theory we get the required.

11 Elimination process over finitely presented
Λ-free groups

In this section we will describe the Elimination process over finitely presented
Λ-free groups which we will use in Section 12 to prove Theorems 57, 58, 43.
From now on we assume that G = 〈X | R〉 is a finitely presented group which
acts freely and regularly on a Λ-tree, where Λ is a discretely ordered abelian
group, or, equivalently, G can be represented by Λ-words over some alphabet
Z and the length function on G induced from CDR(Λ, Z) is regular. Let us
fix the embedding ξ : G →֒ CDR(Λ, Z) for the rest of this section. For all the
details please refer to [68].

11.1 The notion of a generalized equation

Definition 1. A combinatorial generalized equation Ω (which is convenient to
visualize as shown on the picture below) consists of the following objects.

1. A finite set of bases M = BS(Ω). The set of bases M consists of 2n ele-
ments M = {µ1, . . . , µ2n}. The set M comes equipped with two functions:
a function ε : M → {1,−1} and an involution ∆ : M → M (that is, ∆
is a bijection such that ∆2 is an identity on M). Bases µ and µ = ∆(µ)
are called dual bases. We denote bases by letters µ, λ, etc.

2. A set of boundaries BD = BD(Ω) = {1, 2, . . . , ρ + 1}, that is, integer
points of the interval I = [1, ρ+1]. We use letters i, j, etc. for boundaries.
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Figure 12: A typical generalized equation.

3. Two functions α : BS → BD and β : BS → BD. We call α(µ) and
β(µ) the initial and terminal boundaries of the base µ (or endpoints of µ).
These functions satisfy the following conditions: for every base µ ∈ BS:
α(µ) < β(µ) if ε(µ) = 1 and α(µ) > β(µ) if ε(µ) = −1.

4. A set of boundary connections (p, λ, q), where p is a boundary on λ (that
is a number between α(λ) and β(λ)) and q on λ̄. In this case we say that
p and q are λ-tied. If (p, λ, q) is a boundary connection then (q, λ, p) is
also a boundary connection. (The meaning of boundary connections will
be explained in the transformation (ET5)).

With a combinatorial generalized equation Ω one can canonically associate
a system of equations in variables h = (h1, . . . , hρ) (variables hi are also called
items). This system is called a generalized equation, and (slightly abusing the
terminology) we denote it by the same symbol Ω, or Ω(h) specifying the variables
it depends on. The generalized equation Ω consists of the following two types
of equations.

1. Each pair of dual bases (λ, λ) provides an equation

[hα(λ)hα(λ)+1 . . . hβ(λ)−1]
ε(λ) = [hα(λ)hα(λ)+1 . . . hβ(λ)−1]

ε(λ).

These equations are called basic equations.

2. Every boundary connection (p, λ, q) gives rise to a boundary equation

[hα(λ)hα(λ)+1 · · ·hp−1] = [hα(λ)hα(λ)+1 · · ·hq−1],

if ε(λ) = ε(λ) and

[hα(λ)hα(λ)+1 · · ·hp−1] = [hqhq+1 · · ·hα(λ)−1]
−1,

if ε(λ) = −ε(λ).

Remark 8. We assume that every generalized equation comes from a combi-
natorial one.
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Given a generalized equation Ω(h) one can define the group of Ω(h)

GΩ = 〈h | Ω(h)〉.

Definition 2. Let Ω(h) = {L1(h) = R1(h), . . . , Ls(h) = Rs(h)} be a generalized
equation in variables h = (h1, . . . , hρ). A set U = (u1, . . . , uρ) ⊆ R(Λ, Z) of
nonempty Λ-words is called a solution of Ω if:

1. all words Li(U), Ri(U) are reduced,

2. Li(U) = Ri(U), i ∈ [1, s].

Observe that a solution U of Ω(h) defines a homomorphism ξU : GΩ →
R(Λ, Z) induced by the mapping hi → ui, i ∈ [1, ρ] since after this substitution
all the equations of Ω(h) turn into identities in R(Λ, Z).

If we specify a particular solution U of a generalized equation Ω then we use
a pair (Ω, U).

Definition 3. A cancelation table C(U) of a solution U = (u1, . . . , uρ) is defined
as follows

C(U) = {hǫihσj | there is cancelation in the product uǫi ∗ uσj , where ǫ, σ = ±1}.

Definition 4. A solution U+ of a generalized equation Ω is called consistent
with a solution U if C(U+) ⊆ C(U).

11.2 From a finitely presented group to a generalized equa-
tion

Recall that G = 〈X | R〉 is finitely presented and let X = {x1, . . . , xn} and
R = {r1(X), . . . , rm(X)}. Adding, if necessary, auxiliary generators, we can
assume that every relator involves at most three generators.

Since ξ is a homomorphism it follows that after the substitution xi →
ξ(xi), i ∈ [1, n] all products ri(ξ(X)), i ∈ [1,m] cancel out. Hence, we have
finitely many cancelation diagrams over CDR(Λ, Z), which give rise to a gener-
alized equation Ω corresponding to the embedding ξ : G →֒ CDR(Λ, Z).

The precise definition and all the details concerning cancelation diagrams
overCDR(Λ, Z) can be found in [58]. Briefly, a cancelation diagram for ri(ξ(X))
can be viewed as a finite directed tree Ti in which every positive edge e has a
label λe so that every occurrence xδ, δ ∈ {−1, 1} of x ∈ X in ri corresponds to
a reduced path eǫ11 · · · eǫkk , where ǫi ∈ {−1, 1}, in Ti and ξ(xδ) = λǫ1e1 ◦ . . . ◦ λǫkek .
In other words, each λe is a piece of some generator of G viewed as a Λ-word.
Moreover, we assume that |λe| is known (since we know the homomorphism ξ).

Now we would like to construct a generalized equation Ωi corresponding to
Ti. Denote by X(Ti) all generators of G which appear in ri. Next, consider a
segment J in Λ of length ∑

x∈X(Ti)

|ξ(x)|
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Figure 13: From the cancelation diagram for the relation [x, y] = 1 to the
generalized equation.

which is naturally divided by the lengths of ξ(x), x ∈ X(Ti) into subsegments
with respect to any given order onX(Ti). Since every ξ(x), x ∈ X(Ti) splits into
at least one reduced product λǫ1e1◦. . .◦λǫkek , every such splitting gives a subdivision
of the corresponding subsegment of J . Hence, we subdivide J using all product
representations of all ξ(x), x ∈ X(Ti). As a result we obtain a subdivision of J
into ρi items whose endpoints become boundaries of Ωi. Observe that each λe
appears exactly twice in the products representing some ξ(x), x ∈ X(Ti) and
each such entry covers several adjacent items of J . This pair of entries defines
a pair of dual bases (λe, λe). Hence,

Mi = BS(Ωi) = {λe, λe | e ∈ E(Ti)}.
ǫ(λe) depends on the sign of λe in the corresponding product representing a
variable from X(Ti) (similarly for λe).

In the same way one can construct Ti and the corresponding Ωi for each
ri, i ∈ [1,m]. Combining all combinatorial generalized equations Ωi, i ∈ [1,m]
we obtain the equation Ω with items h1, . . . , hρ and bases M = ∪iMi. By
definition

GΩ = 〈h1, . . . , hρ | Ω(h1, . . . , hρ)〉.
At the same time, since each item can be obtained in the form

(λǫ1i1 ◦ . . . ◦ λǫkik ) ∗ (λ
δ1
j1

◦ . . . ◦ λδljl )
−1,

it follows that GΩ can be generated byM with the relators obtained by rewriting
Ω(h1, . . . , hρ) in terms of M.
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It is possible to transform the presentation 〈h1, . . . , hρ | Ω〉 into 〈X | R〉 using
Tietze transformations as follows. From the cancelation diagrams constructed
for each relator in R it follows that xi = wi(h1, . . . , hρ) = wi(h), i ∈ [1, n].
Hence

〈h1, . . . , hρ | Ω〉 ≃ 〈h1, . . . , hρ, X | Ω ∪ {xi = wi(h), i ∈ [1, n]}〉.
Next, from the cancelation diagrams it follows that R is a set of consequences
of Ω ∪ {xi = wi(h), i ∈ [1, n]}, hence,

〈h1, . . . , hρ | Ω〉 ≃ 〈h1, . . . , hρ, X | Ω ∪ {xi = wi(h), i ∈ [1, n]} ∪R〉.

Finally, since the length function on G is regular, for each hi there exists a word
ui(X) such that hi = ui(ξ(X)) and all the equations in Ω ∪ {xi = wi(h), i ∈
[1, n]} follow from R after we substitute hi by ui(X) for each i. It follows that

〈h1, . . . , hρ, X | Ω ∪ {xi = wi(h), i ∈ [1, n]} ∪R〉
≃ 〈h1, . . . , hρ, X | Ω ∪ {xi = wi(h), i ∈ [1, n]} ∪R ∪ {hj = uj(X), j ∈ [1, ρ]}〉

≃ 〈X | R〉.
It follows that G ≃ GΩ.

Let G̃ be a finitely presented group with a free length function in Λ (not

necessary regular). It can be embedded isometrically in the group Ĝ with a free
regular length function in Λ by [27]. That group can be embedded in R(Λ′, X).

When we make a generalized equation Ω for G̃, we have to add only finite
number of elements from Ĝ. Let G be a subgroup generated in Ĝ by G̃ and
these elements. Then G is the quotient of GΩ containing G̃ as a subgroup.

11.3 Elementary transformations

In this subsection we describe elementary transformations of generalized equa-
tions. Let (Ω, U) be a generalized equation together with a solution U . An
elementary transformation (ET) associates to a generalized equation (Ω, U) a
generalized equation (Ω1, U1) and an epimorphism π : GΩ → GΩ1

such that for
the solution U1 the following diagram commutes

GΩ GΩ1

R(Λ, Z)

✲π

❄

ξU

�
�

��✠
ξU1

One can view (ET) as a mapping ET : (Ω, U) → (Ω1, U1).

(ET1) (Cutting a base (see Fig. 14)). Let λ be a base in Ω and p an inter-
nal boundary of λ (that is, p 6= α(λ), β(λ)) with a boundary connection
(p, λ, q). Then we cut the base λ at p into two new bases λ1 and λ2, and
cut λ at q into the bases λ1 and λ2.



Actions, length functions, and non-archemedian words 106

2
1

1
2

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

λ

λ

λ
λ

λ
λ

Figure 14: Elementary transformation (ET1).

(ET2) (Transfering a base (see Fig. 15)). If a base λ of Ω contains a base µ
(that is, α(λ) 6 α(µ) < β(µ) 6 β(λ)) and all boundaries on µ are λ-tied
by boundary some connections then we transfer µ from its location on the
base λ to the corresponding location on the base λ.

01 2 3 4 5 6 7 8 9 1 01 2 3 4 5 6 7 8 9 1

λ

µ

µ

µ

λ

µ

λ

λ

Figure 15: Elementary transformation (ET2).

(ET3) (Removal of a pair of matched bases (see Fig. 16)). If the bases λ and λ
are matched (that is, α(λ) = α(λ), β(λ) = β(λ)) then we remove λ, λ from
Ω.

01 2 3 4 5 6 7 8 9 1 01 2 3 4 5 6 7 8 9 1

µ

λ

λ

µ µ

µ

Figure 16: Elementary transformation (ET3).

Remark 9. Observe, that Ω and Ω1, where Ω1 = ETi(Ω) for i ∈ {1, 2, 3}
have the same set of variables h and the bijection hi → hi, i ∈ [1, ρ]
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induces an isomorphism GΩ → GΩ1
. Moreover, U is a solution of Ω if

and only if U is a solution of Ω1.

(ET4) (Removal of a lone base (see Fig. 17)). Suppose, a base λ in Ω does not
intersect any other base, that is, the items hα(λ), . . . , hβ(λ)−1 are contained
only inside of the base λ.

01 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6

µ

λ

µ µ

µ

λ

Figure 17: Elementary transformation (ET4).

Suppose also that all boundaries in λ are λ-tied, that is, for every i (α(λ) <
i 6 β(λ)−1) there exists a boundary b(i) such that (i, λ, b(i)) is a boundary
connection in Ω. Then we remove the pair of bases λ and λ together with
all the boundaries α(λ)+1, . . . , β(λ)−1 (and rename the rest β(λ)−α(λ)−1
of the boundaries correspondingly).

We define the isomorphism π : GΩ → GΩ1
as follows:

π(hj) = hj if j < α(λ) or j > β(λ)

π(hi) =

{
hb(i) · · ·hb(i)−1, if ε(λ) = ε(λ),

hb(i) · · ·hb(i−1)−1, if ε(λ) = −ε(λ)
for α+ 1 6 i 6 β(λ) − 1.

(ET5) (Introduction of a boundary (see Fig. 18)). Suppose a point p in a base
λ is not λ-tied. The transformation (ET5) λ-ties it. To this end, denote
by uλ the element of CDR(Λ, Z) corresponding to λ and let u′λ be the
beginning of this word ending at p. Then we perform one of the following
two transformations according to where the end of u′λ on λ is situated:

(a) If the end of u′λ on λ is situated on the boundary q then we in-
troduce the boundary connection (p, λ, q). In this case the corre-
sponding isomorphism π : GΩ → GΩ1

is induced by the bijection
hi → hi, i ∈ [1, ρ]. (If we began with the group G̃ with non-regular
length function, this is the only place where π : GΩ → GΩ1

may be a
proper epimorphism, but its restriction on G̃ is still an isomorphism.)

(b) If the end of u′λ on λ is situated between q and q + 1 then we in-
troduce a new boundary q′ between q and q + 1 (and rename all the
boundaries), and also introduce a new boundary connection (p, λ, q′).
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01 2 3 4 5 6 7 8 9 1 1

λ

01 2 3 4 5 6 7 8 9 1 1

101 2 3 4 5 6 7 8 9 1 101 2 3 4 5 6 7 8 9 1

λ

λ

λ

λ

λ

λ

λ

Figure 18: Elementary transformation (ET5).

In this case the corresponding isomorphism π : GΩ → GΩ1
is induced

by the map π(h) = h, if h 6= hq, and π(hq) = hq′hq′+1.

11.4 Derived transformations and auxiliary transforma-
tions

In this section we define complexity of a generalized equation and describe
several useful “derived” transformations of generalized equations. Some of them
can be realized as finite sequences of elementary transformations, others result
in equivalent generalized equations but cannot be realized by finite sequences
of elementary moves.

A boundary is open if it is an internal boundary of some base, otherwise it
is closed. A section σ = [i, . . . , i+ k] is said to be closed if the boundaries i and
i+ k are closed and all the boundaries between them are open.

Sometimes it will be convenient to subdivide all sections of Ω into active
(denoted AΣΩ) and non-active sections. For an item h denote by γ(h) the
number of bases containing h. An item h is called free is it meets no base, that
is, if γ(h) = 0. Free variables are transported to the very end of the interval
behind all items in Ω and they become non-active.

(D1) (Closing a section). Let σ be a section of Ω. The transformation (D1)
makes the section σ closed. Namely, (D1) cuts all bases in Ω through the
end-points of σ.

(D2) (Transporting a closed section). Let σ be a closed section of a generalized
equation Ω. We cut σ out of the interval [1, ρΩ] together with all the bases
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on σ and put σ at the end of the interval or between any two consecutive
closed sections of Ω. After that we correspondingly re-enumerate all the
items and boundaries of the latter equation to bring it to the proper form.
Clearly, the original equation Ω and the new one Ω′ have the same solution
sets and their coordinate groups are isomorphic

(D3) (Moving free variables to the right). Suppose that Ω contains a free vari-
able hq in an active section. Here we close the section [q, q+1] using (D1),
transport it to the very end of the interval behind all items in Ω using
(D2). In the resulting generalized equation Ω′ the transported section
becomes a non-active section.

(D4) (Deleting a complete base). A base µ of Ω is called complete if there exists
a closed section σ in Ω such that σ = [α(µ), β(µ)].

Suppose µ is an active complete base of Ω and σ is a closed section such
that σ = [α(µ), β(µ)]. In this case using (ET5), we transfer all bases from
µ to µ, then using (ET4) we remove the lone base µ together with the
section σ.

(D5) (Linear elimination).

We first explain how to find the kernel of the generalized equation. We will
give a definition of eliminable base for an equation Ω that does not have
any boundary connections. An active base µ ∈ AΣΩ is called eliminable
if at least one of the following holds

(a) µ contains an item hi with γ(hi) = 1,

(b) at least one of the boundaries α(µ), β(µ) is different from 1, ρ+1 and
does not touch any other base (except for µ).

The process of finding the kernel works as follows. We cut the bases of Ω
along all the boundary connections thus obtaining the equation without
boundary connections, then consequently remove eliminable bases until no
eliminable base is left in the equation. The resulting generalized equation
is called the kernel of Ω and we denote it by Ker(Ω). One can show that
it does not depend on a particular removal process. We say that an item
hi belongs to the kernel (hi ∈ Ker(Ω)), if hi belongs to at least one base
in the kernel. Notice that the kernel can be empty.

Lemma 55. [68] If Ω is a generalized equation, then

GΩ ≃ GKer(Ω) ∗ F (K)

where F (K) is a free group on K. The set K can be empty.

Suppose that in Ω there is hi in an active section with γ(hi) = 1 and such
that |hi| is comparable with the length of the active section. In this case
we say that Ω is linear in hi.



Actions, length functions, and non-archemedian words 110

If Ω is linear in hi in an active section such that both boundaries i and
i + 1 are closed then we remove the closed section [i, i+ 1] together with
the lone base using (ET4).

If there is no such hi but Ω is linear in some hi in an active section such
that one of the boundaries i, i + 1 is open, say i + 1, and the other is
closed, then we perform (ET5) and µ-tie i+ 1 through the only base µ it
intersects. Next, using (ET1) we cut µ in i + 1 and then we delete the
closed section [i, i+ 1] by (ET4).

Suppose there is no hi as above but Ω is linear in some hi in an active
section such that both boundaries i and i+1 are open. In addition, assume
that there is a closed section σ containing exactly two (not matched) bases

µ1 and µ2, such that σ = σ(µ1) = σ(µ2) and in the generalized equation Ω̃
(see the derived transformation (D3)) all the bases obtained from µ1, µ2

by (ET1) in constructing Ω̃ from Ω, do not belong to the kernel of Ω̃.
Here, using (ET5), we µ1-tie all the boundaries inside of µ1, then using
(ET2) we transfer µ2 onto µ1, and remove µ1 together with the closed
section σ using (ET4).

Suppose now that Ω satisfies the first assumption of the previous para-
graph and does not satisfy the second one. In this event we close the
section [i, i+ 1] using (D1) and remove it using (ET4).

Lemma 56. [68] Suppose that the process of linear elimination continues
infinitely and there is a corresponding sequence of generalized equations

Ω → Ω1 → · · · → Ωk → · · · .

Then

(a) ([64, Lemma 15]) The number of different generalized equations that
appear in the process is finite. Therefore some generalized equation
appears in this process infinitely many times.

(b) ([64, Lemma 15]) If Ωj = Ωk, j < k then π(j, k) is an isomorphism,
invariant with respect to the kernel, namely π(j, k)(hi) = hi for any
variable hi that belongs to some base in Ker(Ω).

(c) ([68, Lemma 7])The interval for the equation Ωj can be divided into
two disjoint parts, each being the union of closed sections, such that
one part is a generalized equation Ker(Ω) and the other part is non-
empty and corresponds to a generalized equation Ω′, such that GΩ′ =
F (K) is a free group on variables K and GΩ = GKer(Ω) ∗ F (K).

(D6) (Tietze cleaning). Suppose that in Ω is linear in some hi in an active sec-
tion such that |hi| is comparable with the length of the active section. This
transformation consists of four transformations performed consecutively

(a) linear elimination: if the process of linear elimination goes infinitely
we replace the equation by its kernel,
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(b) deleting all pairs of matched bases,

(c) deleting all complete bases,

(d) moving all free variables to the right.

(D7) (Entire transformation). We need a few definitions. A base µ of the
equation Ω is called a leading base if α(µ) = 1. A leading base is said to
be maximal (or a carrier base) if β(λ) 6 β(µ) for any other leading base
λ. Let µ be a carrier base of Ω. Any active base λ 6= µ with β(λ) 6 β(µ)
is called a transfer base (with respect to µ).

Suppose now that Ω is a generalized equation with γ(hi) > 2 for each hi
in the active part of Ω and such that |hi| is comparable with the length
of the active part. Entire transformation is a sequence of elementary
transformations which are performed as follows. We fix a carrier base µ of
Ω. We transfer all transfer bases from µ onto µ. Now, there exists some
i < β(µ) such that h1, . . . , hi belong to only one base µ, while hi+1 belongs
to at least two bases. Applying (ET1) we cut µ along the boundary i+1.
Finally, applying (ET4) we delete the section [1, i+ 1].

11.5 Complexity of a generalized equation and Delzant-
Potyagailo complexity c(G) of a group G

Denote by ρA the number of variables hi in all active sections of Ω, by nA =
nA(Ω) the number of bases in all active sections of Ω, by ν′ the number of open
boundaries in the active sections, and by σ′ the number of closed boundaries in
the active sections.

For a closed section σ ∈ ΣΩ denote by n(σ), ρ(σ) the number of bases and,
respectively, variables in σ.

ρA = ρA(Ω) =
∑

σ∈AΣΩ

ρ(σ),

nA = nA(Ω) =
∑

σ∈AΣΩ

n(σ).

The complexity of the generalized equation Ω is the number

τ = τ(Ω) =
∑

σ∈AΣΩ

max{0, n(σ)− 2}.

Notice that the entire transformation (D7) as well as the cleaning process
(D4) do not increase complexity of equations.

Below we recall Delzant-Potyagailo’s result (see [33]). A family C of sub-
groups of a torsion-free group G is called elementary if

(a) C is closed under taking subgroups and conjugation,

(b) every C ∈ C is contained in a maximal subgroup C ∈ C,
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(c) every C ∈ C is small (does not contain F2 as a subgroup),

(d) all maximal subgroups from C are malnormal.

G admits a hierarchy over C if the process of decomposing G into an amalga-
mated product or an HNN-extension over a subgroup from C, then decomposing
factors ofG into amalgamated products and/or HNN-extensions over a subgroup
from C etc. eventually stops.

Proposition 8. ([33]) If G is a finitely presented group without 2-torsion and
C is a family of elementary subgroups of G then G admits a hierarchy over C.

Corollary 15. [68] If G is a finitely presented Λ-free group then G admits a
hierarchy over the family of all abelian subgroups.

There is a notion of complexity of a group G defined in [33] and denoted by
c(G). We will only use the following statement that follows from there.

Proposition 9. ([33]) If G is a non-trivial free product of finitely presented
groups G1 and G2. Then c(Gi) < c(G), i = 1, 2. Let G be a finitely presented
freely indecomposable Λ-free group (therefore CSA). Let Γ be an abelian decom-
position of G as a fundamental group of a graph of groups with at least two
vertices with non-cyclic vertex groups, maximal abelian subgroups being elliptic,
and with each edge group being maximal abelian at least in one of its vertex
groups. Then for each vertex group Gv, c(Gv) < c(G).

11.6 Rewriting process for Ω

In this section we describe a rewriting process (elimination process) for a gener-
alized equation Ω and its solution corresponding to G . Performing the elimina-
tion process we eventually detect a decomposition of G as a free product or (if
it is freely indecomposable) as the fundamental group of a graph of groups with
vertex groups of three types: QH vertex groups, abelian vertex groups (corre-
sponding to periodic structures, see below), non-QH, non-abelian vertex groups
(we will call them weakly rigid meaning that we do not split them in this par-
ticular decomposition). We also can detect splitting of G as an HNN-extension
with stable letter infinitely longer than generators of the abelian associated
subgroups. After obtaining such a decomposition we continue the elimination
process with the generalized equation corresponding to free factors of G or to
weakly rigid subgroups of G (we will show that this generalized equation can be
naturally obtained from the generalized equation Ω.) The Delzant-Potyagailo
complexity of factors in a free decomposition and complexity of weakly rigid sub-
groups is smaller than the complexity of G. In the case of an HNN extension
we will show that the complexity τ of the generalized equation corresponding
to a weakly rigid subgroup is smaller that the complexity of Ω.

We assume that Ω is in standard form, namely, that transformations (ET3),
(D3) and (D4) have been applied to Ω and that on each step we apply them to
the generalized equation before applying any other transformation.



Actions, length functions, and non-archemedian words 113

Let Ω be a generalized equation. We construct a path T (Ω) (with associated
structures), as a directed path oriented from the root v0, starting at v0 and
proceeding by induction on the distance n from the root.

We start with a general description of the path T (Ω). For each vertex v
in T (Ω) there exists a unique generalized equation Ωv associated with v. The
initial equation Ω is associated with the root v0, Ωv0 = Ω. In addition there
is a homogeneous system of linear equations Σv with integer coefficients on the
lengths of variables of Ωv. We take Σv0 to be empty. For each edge v → v′ (here
v and v′ are the origin and the terminus of the edge) there exists an epimorphism
π(v, v′) : GΩv

→ GΩ′

v
associated with v → v′. If Ω was constructed for the group

G with regular free length function, then π(v, v′) is an isomorphism. If Ω was
constructed for the group G̃ with free but not regular length function, then
π(v, v′) is a monomorphism on G̃.

If
v0 → v1 → · · · → vs → u

is a subpath of T (Ω), then by π(v, u) we denote composition of corresponding
isomorphisms

π(v, u) = π(v, v1) ◦ · · · ◦ π(vs, u).
If v → v′ is an edge then there exists a finite sequence of elementary or

derived transformations from Ωv to Ωv′ and the isomorphism π(v, v′) is a com-
position of the isomorphisms corresponding to these transformations. We also
assume that active (and non-active) sections in Ωv′ are naturally inherited from
Ωv, if not said otherwise. Recall that initially all sections are active.

Suppose the path T (Ω) is constructed by induction up to level n and suppose
v is a vertex at distance n from the root v0. We describe now how to extend
the path from v. The construction of the outgoing edge at v depends on which
case described below takes place at vertex v. We say that two elements are
comparable (or their lengths are comparable) if they have the same height.
There are three possible cases.

• Linear case: there exists hi in the active part such that |hi| is comparable
with the length of the active part and γ(hi) = 1.

• Quadratic and almost quadratic case: γ(hi) = 2 for all hi in the
active part such that |hi| is comparable with the length of the active part.

• General JSJ case: γ(hi) > 2 for all hi in the active part such that |hi|
is comparable with the length of the active part, and there exists such hi
that γ(hi) > 2.

11.6.1 Linear case

We apply Tietze cleaning (D6) at the vertex vn if it is possible. We re-write the
system of linear equations Σvn in new variables and obtain a new system Σvn+1

.
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If Ωvn+1
splits into two parts, Ω

(1)
vn+1 = Ker(Ωvn) and Ω

(2)
vn+1 that corresponds

to a free group F (K), then when we put the free group section Ω
(2)
vn+1 into a non-

active part we decrease both complexities τ and Delzant-Potyagailo’s complexity
c. It may happen that the kernel is empty, then the process terminates.

If it is impossible to apply Tietze cleaning (that is γ(hi) > 2 for any hi in
the active part of Ωv comparable to the length of the active part), we apply the
entire transformation.

Termination condition: Ωv does not contain active sections. In this case
the vertex v is called a leaf or an end vertex.

11.6.2 Quadratic and almost quadratic case

Suppose that γi = 2 for each hi in the active part comparable with the length
of the active part of Ωv. First of all, we fill in all the h′is in the active part such
that γi = 1 by new (infinitely short) bases µ such that µ covers a new variable
that we add to the non-active part.

We apply the entire transformation (D7), then apply Tietze cleaning (D6),
if possible, then again apply entire transformation, etc. In this process we,
maybe, will remove some pairs of matching bases decreasing the complexity τ .
Eventually we either end up with empty active part or the process will continue
infinitely, and the number of bases in the active part will be constant.

Lemma 57. [68] If a closed section σ has quadratic-coefficient bases, and the
entire transformation goes infinitely, then after a finite number of steps there
will be quadratic bases belonging to σ that have length infinitely larger than all
participating quadratic coefficient bases on σ.

If σ does not have quadratic-coefficient bases then GR(Ωv) splits as a free
product with one factor being a closed surface group or a free group. We move
σ into a non-active part and thus decrease the complexity τ .

We repeat the described transformation until there is no quadratic base on
the active part that has length comparable with the length of the remaining
active part. Then we consider the remaining generalized equation in the active
part. We remove from the active part doubles of all quadratic coefficient bases
that belong to non-active part (doing this we may create new boundaries).
We will remember the relations corresponding to these pairs of bases. In this
case the remaining generalized equation has smaller complexity τ . Relations
corresponding to the quadratic sections that we made non-active show that
GΩ is an HNN-extension of the subgroup generated by the variables in the
active part and (maybe) a free group. Removing these double bases we have to
add equations to Σvi+1

that guarantee that the associated cyclic subgroups are
generated by elements of the same length.

11.6.3 General JSJ-case

Generalized equation Ωv satisfies the condition γi > 2 for each hi in the active
part such that |hi| is comparable with the length of the active part, and γi > 2
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for at least one such hi. First of all, we fill in all the h′is in the active part such
that γi = 1 by new (infinitely short) bases with doubles corresponding to free
variables in the non-active part. We apply the transformation (D1) to close the
quadratic part and put it in front of the interval.

(a) QH-subgroup case. Suppose that the entire transformation of the quadratic
part (D7) goes infinitely. Then the quadratic part of Ωv (or the initial section
from the beginning of the quadratic part until the first base on the quadratic
part that does not participate in the entire transformation) corresponds to a
QH-vertex or to the representation of GΩ as an HNN-extension, and there is a
quadratic base (on this section) that is infinitely longer than all the quadratic
coefficient bases (on this section). We work with the quadratic part the same
way as in the quadratic case until there is no quadratic base satisfying the con-
dition above. Then we make the quadratic section non-active, and consider the
remaining generalized equation where we remove doubles of all the quadratic
coefficient bases. We certainly have to remember that the bases that we re-
moved express some variables in the quadratic part (that became non-active)
in the variables in the active part. We have to add an equation to Σvi+1

that
guarantees that the associated cyclic subgroups are generated by elements of
the same length. In this case the subgroup of GΩ that is isomorphic to the co-
ordinate group of the new generalized equation in active part is a vertex group
in an abelian splitting of GΩ and has smaller Delzant–Potyagailo complexity.

(b) QH-shortening

Lemma 58. [68] Suppose that the quadratic part of Ω does not correspond to the
HNN-splitting of GΩ (there are only quadratic coefficient bases), or, we cannot
apply the entire transformation to the quadratic part infinitely. In this case
either GΩ is a non-trivial free product or, applying the automorphism of GΩ,
one can replace the words corresponding to the quadratic bases in the quadratic
part by their automorphic images such that in the new solution H+ of Ω the
length of the quadratic part is bounded by some function f1(Ω) times the length
of the non-quadratic part. Solution H+ can be chosen consistent with H.

If there is a matching pair, we replaceGΩ by the group obtained by removing
a cyclic free factor corresponding to a matching pair. We also replace Ω by the
generalized equation obtained by removing the matching pair. The Delzant–
Potyagailo complexity decreases.

(c) Abelian splitting: short shift.

Proposition 10. [68] Suppose Ωv satisfies the following condition: the carrier
base µ of the equation Ωv intersects with its dual µ (form an overlapping pair)
and is at least twice longer than |α(µ) − α(µ)|. Then GΩv

either splits as a
fundamental group of a graph of groups that has a free abelian vertex group or
splits as an HNN-extension with abelian associated subgroups.
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The proof is given in [68], it uses the technique of so-called periodic structures
introduced by Razborov in his Ph.D thesis and almost repeats the proof given
in [64] to show that the coordinate group of a generalized equation splits in this
case as a fundamental group of a graph of groups that has a free abelian vertex
group or splits as an HNN-extension with abelian associated subgroups. In the
HNN-extension case, the base group is the coordinate group of the generalized
equation obtained from the original by removing the corresponding stable letter.
This reduces the complexity τ of the generalized equation.

(d) Abelian splitting: long shift. If Ω does not satisfy the conditions of
(a)–(c), we perform QH-shortening, then apply the entire transformation and
then, if possible, the transformation (D6).

Lemma 59. [68] Let
v1 → v2 → · · · → vr → · · ·

be an infinite path in T (Ω). Then there exists a natural number N such that all
the generalized equations in vertices vn, n > N satisfy the general JSJ-case (d).

Proof. Indeed, the Tietze cleaning either replaces the group by its proper free
factor or decreases the complexity. Every time when the case (a) holds we
replace G by some vertex group in a non-trivial abelian splitting of G. This can
be done only finitely many times [33]. Every time when case (c) takes place, we
decrease the complexity τ .

Proposition 11. [68] The general JSJ case (d) cannot be repeated infinitely
many times.

12 Structure theorems for Λ-free groups

12.1 Finitely generated R-free groups (Rips’ Theorem)

R. Lyndon in [78] conjectured that any group acting freely on an R-tree can be
embedded into a free product of finitely many copies of R. Counterexamples
were initially given in [2] and [103].

Later, J. Morgan and P. Shalen in [87] showed that the fundamental groups
of closed surfaces (except non-orientable of genus 1, 2 and 3) are R-free. Since
such groups are not free products of subgroups of R this gives a wide class of
counterexamples to Lyndon’s Conjecture.

In 1991 I. Rips came with an idea of a proof of the Morgan and Shalen
conjecture about finitely generated R-free groups. This result can be formulated
as follows.

Theorem 55. [40],[14] (Rips’ Theorem) Let G be a finitely generated group
acting freely and without inversions on an R-tree. Then G can be written as a
free product G = G1 ∗ · · · ∗Gn for some integer n > 1, where each Gi is either
a finitely generated free abelian group, or the fundamental group of a closed
surface.
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Proof. To prove the theorem we are going to use the techniques of Section 11.
In this case Λ = R. Suppose G is a finitely presented group with free Lyndon
length function L in R. By Theorem 60, G can be embedded into a finitely
presented group with a free regular length function in R, so we assume from the
beginning that G has a free regular length function in R. By Corollary 5 there
exists an embedding ψ : G → CDR(Z ⊕ R, X) such that |ψ(g)| = (0, L(g)) for
any g ∈ G.

We construct the generalized equation Ω for G and apply the elimination
process Ω. Linear case always splits off free factors of G. Quadratic case, almost
quadratic case, general JSJ case 11.6.3 (a) will produce closed surface groups
factors. Indeed, in these cases, by Lemma 57, the height of some quadratic
bases is higher that the height of quadratic coefficient bases. Since all the
bases have length (0, r), r ∈ R, there are no quadratic coefficient bases in these
cases. General JSJ case (c) for Λ produces abelian vertex groups corresponding
to periodic structures and HNN-extensions with stable letter infinitely longer
than the generators of associated abelian subgroups. Since Λ = R, we do not
have such HNN-extensions. If the edge group were non-trivial, then applying
automorphisms of G we could shorten generators of the abelian vertex group.
Namely, there exists a number N depending only on Ω such that the carrier base
µ of the current equation Ωv intersects with its double and in no longer than
N |α(µ) − α(µ)|. This situation is similar to the general JSJ case (d), because
the length of µ is bounded in terms of |α(µ) − α(µ)|. One can similarly prove
that it cannot be repeated infinitely many times. Therefore, the edge group of
the abelian vertex group is trivial.

We have shown that G is a free product of free abelian groups and closed
surface groups (notice that a free group is also a free product of free abelian
(cyclic) groups). Therefore any subgroup of G has the same structure. Since
there is no proper infinite chain of quotients of G that are also free products of
free abelian groups and closed surface groups, we can prove the theorem for a
finitely generated group Ḡ by adding relations of G one-by-one and considering
the chain of finitely presented quotients.

Rips’ Theorem does not hold for infinitely generated groups. Counterexam-
ples were given in [39] and [130]. In particular, Dunwoody showed that both
groups

G1 = 〈a1, b1, a2, b2, . . . | b1 = [a2, b2], b2 = [a3, b3], . . .〉
and

G2 = 〈a1, b1, a2, b2, . . . | b1 = a22b
2
2, b2 = a23b

2
3, . . .〉

are R-free but cannot be decomposed as free products of surface groups and
subgroups of R.

Recently, Berestovskii and Plaut gave a new method to construct R-free
groups [11]. In particular, they provide new examples of R-free groups that
are not free products of free abelian and surface groups. In fact, some of these
groups are locally free but not free (so, obviously, not subgroups of free products
of free abelian and surface groups).
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12.2 Finitely generated Rn-free groups

In 2004 Guirardel proved the following result that reveals the structure of finitely
generated Rn-free groups, which is reminiscent of the Bass’ structural theorem
for Zn-free groups. This is not by chance, since every Zn-free group is also
Rn-free, and ordered abelian groups Zn and Rn have a similar convex subgroup
structure. However, it is worth to point out that the original Bass argument for
Λ = Z⊕ Λ0 does not work in the case of Λ = R⊕ Λ0.

Theorem 56. [49] Let G be a finitely generated, freely indecomposable Rn-free
group. Then G can be represented as the fundamental group of a finite graph of
groups, where edge groups are cyclic and each vertex group is a finitely generated
Rn−1-free.

In fact, there is a more detailed version of this result, Theorem 7.2 in [49],
which is rather technical, but gives more for applications. Observe also that
neither Theorem 56 nor the more detailed version of it, does not ”characterize”
finitely generated Rn-free groups, i.e. the converse of the theorem does not hold.
Nevertheless, the result is very powerful and gives several important corollaries.

Corollary 16. [49] Every finitely generated Rn-free group is finitely presented.

This comes from Theorem 56 and elementary properties of free constructions
by induction on n.

Theorem 56 and the Combination Theorem for relatively hyperbolic groups
proved by F. Dahmani in [30] imply the following.

Corollary 17. Every finitely generated Rn-free group is hyperbolic relative to
its non-cyclic abelian subgroups.

A lot is known about groups which are hyperbolic relative to its maximal
abelian subgroups (toral relatively hyperbolic groups), so all of this applies to Rn-
free groups. We do not mention any of these results here, because we discuss
their much more general versions in the next section in the context of Λ-free
groups for arbitrary Λ.

12.3 Finitely presented Λ-free groups

In this section we discuss recent results obtained on finitely presented Λ-free
groups for an arbitrary abelian ordered group Λ. Notice that finitely generated
Rn-free (or Zn-free) groups are finitely presented, so all the results below apply
to arbitrary finitely generated Rn-free (or Zn-free) groups.

The elimination process (the Λ-Machine) developed in Section 11 allows one
to prove the following theorems.

Theorem 57 (The Main Structure Theorem [68]). Any finitely presented group
G with a regular free length function in an ordered abelian group Λ can be rep-
resented as a union of a finite series of groups

G1 < G2 < · · · < Gn = G,
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where

1. G1 is a free group,

2. Gi+1 is obtained from Gi by finitely many HNN-extensions in which as-
sociated subgroups are maximal abelian, finitely generated, and length iso-
morphic as subgroups of Λ.

Theorem 58. [68] Any finitely presented Λ-free groups is Rn-free.

In his book [24] Chiswell (see also [108]) asked the following principal ques-
tion (Question 1, page 250): If G is a finitely generated Λ-free group, is G
Λ0-free for some finitely generated abelian ordered group Λ0? The following
result answers this question in the affirmative in the strongest form. It comes
from the proof of Theorem 58 (not the statement of the theorem itself).

Theorem 59. Let G be a finitely presented group with a free Lyndon length
function l : G → Λ. Then the subgroup Λ0 generated by l(G) in Λ is finitely
generated.

Theorem 60. [68] Any finitely presented group G̃ with a free length function
in an ordered abelian group Λ can be isometrically embedded into a finitely pre-
sented group G that has a free regular length function in Λ.

The following result automatically follows from Theorem 57 and Theorem
60 by simple application of Bass-Serre Theory.

Theorem 61. Any finitely presented Λ-free group G can be obtained from free
groups by a finite sequence of amalgamated free products and HNN extensions
along maximal abelian subgroups, which are free abelain groups of finite rank.

This theorem would have another proof provided Delzant-Potyagailo’s proof
of hierarchical accessibility [33] were correct (it has a gap in the case of HNN
extension). Indeed, a finitely presented group acting freely on a Λ-tree has a
stable action on an R-tree. The proof is the same as the proof of Fact 5.1 in [49].
Therefore G splits over a finitely generated abelian group [14]. Then we could
apply the result about hierarchical accessibility if it was available. Starting with
this hierarhy one could obtain the one with edge groups maximal abelian.

The following result concerns with abelian subgroups of Λ-free groups. For
Λ = Zn it follows from the main structural result for Zn-free groups and [66],
for Λ = Rn it was proved in [49]. The statement 1) below answers to Question
2 (page 250) from [24] in the affirmative for finitely presented Λ-free groups.

Theorem 62. Let G be a finitely presented Λ-free group. Then:

1) every abelian subgroup of G is a free abelian group of finite rank, which is
uniformly bounded from above by the rank of the abelianization of G.

2) G has only finitely many conjugacy classes of maximal non-cyclic abelian
subgroups,



Actions, length functions, and non-archemedian words 120

3) G has a finite classifying space and the cohomological dimension of G is
at most max{2, r} where r is the maximal rank of an abelian subgroup of
G.

Proof. It comes from Theorem 57 by the standard properties of free product
with amalgamation and HNN-extensions. Another way to prove the theorem
is to notice that finitely presented Λ-free groups are Rn-free (Theorem 58) and
then apply the corresponding results for Rn-free groups from [49].

Theorem 63. Every finitely presented Λ-free group is hyperbolic relative to its
non-cyclic abelian subgroups.

Proof. It follows from Theorem 58 and Corollary 17 on Rn-free groups, or di-
rectly from the structural Theorem 57 and the Combination Theorem for rela-
tively hyperbolic groups [30].

The following results answers affirmatively in the strongest form to the Prob-
lem (GO3) from the Magnus list of open problems [10] in the case of finitely
presented groups.

Corollary 18. Every finitely presented Λ-free group is biautomatic.

Proof. It follows from Theorem 63 and Rebbechi’s result [107].

Theorem 64. Every finitely presented Λ-free group G has a quasi-convex hier-
archy.

Proof. By Theorem 61, G can be obtained by a finite sequence S of amalgamated
free products and HNN extensions along maximal abelian subgroups starting
from free groups. Hence, each groupH in this sequence is either an amalgamated
free product of H1 ∗A=B H2, or an HNN extension K∗At=B, where the groups
H1, H2,K are constructed on previous steps. To prove the corollary we assume
that all groups involved in the construction of H have quasi-convex hierarchies
and we have to show that A is quasi-convex in H both when H = H1 ∗A=B H2

and H = K∗At=B.
Note that each group in the list {H1, H2,K} is Λ-free, hence, biautomatic by

Corollary 18, and from [15] it follows that all their maximal abelian subgroups
are regular and quasi-convex in the corresponding groups.

Consider these cases.

Case I. H = 〈K, t | t−1At = B〉, where A and B are maximal abelian
subgroups of K.

Suppose A and B are not conjugate in K. Then by [42, Lemma 2] both are
maximal abelian in H and therefore quasi-convex there.

If Ag = B for some g ∈ K, then we have

H ≃ 〈K, s | s−1As = A〉,

where s represents tg−1 ∈ H and A embeds into a maximal free abelian subgroup
C = 〈A, s〉 as a direct factor (see [66, Lemma 3]). Hence, A is quasi-convex in
C and, hence, in H .
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Case II. H = H1 ∗A=B H2, where A and B are maximal abelian subgroups
respectively of H1 and H2.

From [79, Theorem 4.5] it follows that both A and B are maximal abelian
in H and therefore quasi-convex there.

Theorems 64 and 63 imply the following result (the argument is straightfor-
ward but rather technical and we omit it, see also Lemma 17.10 in [129], though
there is no proof there neither).

Theorem 65. Every finitely presented Λ-free group G is locally undistorted,
that is, every finitely generated subgroup of G is quasi-isometrically embedded
into G.

Since a finitely generated Rn-free group G is hyperbolic relative to to its
non-cyclic abelian subgroups and G admits a quasi-convex hierarchy then recent
results of D. Wise [129] imply the following.

Corollary 19. Every finitely presented Λ-free group G is virtually special, that
is, some subgroup of finite index in G embeds into a right-angled Artin group.

In his book [24] Chiswell posted Question 3 (page 250): Is every Λ-free
group orderable, or at least right-orderable? The following result answers in the
affirmative to Question 3 (page 250) from [24] in the case of finitely presented
groups.

Theorem 66. Every finitely presented Λ-free group is right orderable.

Proof. I.Chiswell proved that every finitely generated Rn-free group is right
orderable [26], so the result now follows from Theorem 58.

The following addresses Chiswell’s question whether Λ-free groups are or-
derable or not.

Theorem 67. Every finitely presented Λ-free group is virtually orderable, that
is, it contains an orderable subgroup of finite index.

Proof. Indeed, in [38], G. Duchamp and D. Krob show that right-angled Artin
groups are residually torsion free nilpotent. Hence, right-angled Artin groups
are residually p-groups for any p, so, they are orderable (see [109]). Now the
result follows form Corollary 19.

Note that one cannot remove “virtually” in the formulation of Theorem 67
since S. Rourke recently showed that there are finitely presented Λ-free (even
Zn-free) groups which are not orderable (see [113]).

Since right-angled Artin groups are linear (see [55, 54, 32] and the class of
linear groups is closed under finite extension we get the following

Theorem 68. Every finitely presented Λ-free group is linear.
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Since every linear group is residually finite we get the following.

Corollary 20. Every finitely presented Λ-free group is residually finite.

It is known that linear groups are equationally Noetherian (see [7] for dis-
cussion on equationally Noetherian groups), therefore the following result holds.

Corollary 21. Every finitely presented Λ-free group is equationally Noetherian.

Hint of the proof of Theorem 57. We perform the elimination process
for the generalized equation Ω = Ωv0 corresponding to G. If the process goes
infinitely we obtain one of the following:

• free splitting ofG with at least on non-trivial free factor 11.6.1 and, maybe,
some surface group factor 11.6.2,

• a decomposition of G as the fundamental group of a graph of groups with
QH-vertex groups corresponding to quadratic sections 11.6.3 (a),

• decomposition of G as the fundamental group of a graph of groups with
abelian vertex groups corresponding to periodic structures (see Propo-
sition 10 in 11.6.3 (c) and HNN-extensions with stable letters infinitely
longer than the generators of the abelian associated subgroups 11.6.3 (c).

Then we continue the elimination process with the generalized equation Ωv1
where the active part corresponds to weakly rigid subgroups. In the case of an
HNN-extension, Ωv1 is obtained from Ωv0 by removing a pair of bases from the
generalized equation corresponding to the periodic structure (and this equation
has the same complexity as Ωv0 . This means that the complexity τ(Ωv1) is
smaller than τ(Ωv0). In the other cases the Delzant–Potyagailo complexity of
weakly rigid subgroups is smaller by Proposition 9 (which follows from the
correct part of the paper 9. Therefore this procedure stops. At the end we
obtain some generalized equation Ωvfin

with all non-active sections. Continuing
the elimination process till the end, we obtain, in addition, a complete system
of linear equations with integer coefficients Σcomplete on the lengths of items
hi’s that is automatically satisfied and guarantees that the associated maximal
abelian subgroups are length-isomorphic.

This completes the proof of Theorem 57.

Remark 10. If we begin with the group G̃ with free but not necessary regular
length function in Λ then in the Elimination process we work with the generalized
equation Ω and add a finite number of elements from Ĝ (see the end of Section

11.2). Thus we got an embedding of G̃ in a group that can be represented as a
union of a finite series of groups

G1 < G2 < · · · < Gn = G,

where

1. G1 is a free group,
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2. Gi+1 is obtained from Gi by finitely many HNN-extensions in which as-
sociated subgroups are maximal abelian, finitely generated, and length iso-
morphic as subgroups of Λ.

Remark 11. As a result of the Elimination process, the equation Ωvfin
(we

will denote it Ωfin) is defined on the multi-interval I, that is, a union of closed
sections which have a natural hierarchy: a section σ1 is smaller than a section
σ2 if the largest base on σ2 is infinitely larger than the largest base on σ1.

The lengths of bases satisfy the system of linear equations Σcomplete.

Hint of the Proof of Theorem 58. Suppose G, as above, is a finitely pre-
sented Λ-free group. By Theorem 60 we may assume that the action of G is reg-
ular. Let Ω be a generalized equation for G corresponding to the union of closed
sections I, G = 〈M | Ω(M)〉. Consider the Cayley graph X = Cay(G,M) of G
with respect to the generators M. Assign to edges of Cay(G,M) their lengths
in Λ (and infinite words that represent the generators) and consider edges as
closed intervals in Λ of the corresponding length. For each relation between
bases of Ω, λi1 · · ·λik = λj1 · · ·λjm (without cancelation) there is a loop in X
labeled by this relation. Then the path labeled by λi1 · · ·λik has the same length
in Λ as the path labeled by λj1 · · ·λjm . If x is a point on the path λi1 · · ·λik
at the distance d ∈ Λ from the beginning of the path, and x′ is a point on the
path λj1 · · ·λjm at the distance d from the beginning, then we say that x and
x′ are in the same leaf. In other words, after we substitute generators in M by
their infinite word representations, we “fold” loops into segments. We consider
the equivalence relation between points on the edges of X generated by all such
pairs x ∼ x′. Equivalence classes of this relation are called leaves. We also glue
an arc isometric to a unit interval between each x and x′. Let F be the foliation
(the set of leaves). One can define a foliated complex Σ = Σ(X,F) associated
to X as a pair (X,F). The paths in Σ can travel vertically (along the leaves)
and horizontally (along the intervals in Λ). The length of a path γ in Σ(X,F)
(denoted ‖γ‖) is the sum of the lengths of horizontal intervals in γ. Therefore
Σ is a graph with points on horizontal intervals being vertices. We now identify
all points of Σ that belong to the same leaf (identify vertices in the leaf and
points on the vertical edges of this leaf in Σ). We denote by T the obtained
graph. A reduced path in T is a path without backtracking. We call removing
of a backtracking in T a reduction of a path.

Lemma 60. [68] The image of a loop in Σ can be reduced to a point in T .

Indeed, a loop in Σ is a composition of vertical and horizontal subpaths.
If a vertical path of length one connects two points of Σ, then they are also
connected in Σ by a horizontal path that is mapped to a path of the form rr−1

in T . Then a loop in Σ can be transformed into a loop where all paths are
horizontal. Therefore any simple loop in Σ is mapped into a path with back-
tracking in T , and if we reduce this loop in T we get a point. This implies
that there is a unique reduced path between any two points of T . A distance
between two points in T is the length of the reduced path between them. We
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extend naturally the left action of G on X to the action on T . The following
lemma holds.

Lemma 61. [68]

(1) T is a Λ-tree.

(2) The left action of G on T is free.

Similarly, we can construct a Λ-tree where G acts freely beginning not with
the original generalized equation Ω but with a generalized equation obtained
from Ω by the application of the Elimination process. In this case we may
have closed sections with some items hi with γ(hi) = 1. Then to construct the
Cayley graph of G in the new generators we cover items hi with γ(hi) = 1 by
bases without doubles (these bases were previously removed at some stages of
the Elimination process as matching pairs).

We begin by considering the union of the closed sections of the minimal
height in the hierarchy introduced in Remark 11. Denote the union of these
sections by σ. The group H of the generalized equation corresponding to their
union is a free product of free groups, free abelian groups and closed surface
groups because for these groups we stop the Elimination process. Notice that for
those sections for which γ(hi) = 1 for some maximal height items, these items
hi are also products of some bases because initially every item is a product of
bases. We can assume the following:

1. For all closed sections of σ such that γ(hi) = 2 for all items of the maximal
height, the number of bases of maximal height cannot be decreased using
entire transformation or similar transformation applied from the right of
the section (right entire transformation).

2. For all closed sections of σ where we apply linear elimination, the number
of bases of maximal height cannot be decreased using the transformations
as above as well as transformation (E2) (transfer) preceded by creation
of necessary boundary connections as in (E5) (denote it (E25)), (E3) and
first two types of linear elimination (D5) (denote it (D51,2)).

Indeed, if we can decrease the number of bases of maximal height using the
transformations described above then we just do this and continue. Since these
transformations do not change the total number of bases we can also assume
that they do not decrease the number of bases of second maximal height etc.
We now re-define the lengths of bases belonging to σ in Rk. We are going to
show that all components of the length of every base can be made zeros except
for the components which appear to be maximal in the lengths of bases from σ.

Let Ωσ be the generalized equation corresponding to the sections from σ.
Let H be the group of the equation H = 〈Mσ | Ωσ(M)〉.

Denote by Λ1 the minimal convex subgroup of Λ containing lengths of all
bases in σ, and by Λ′ a maximal convex subgroup of Λ1 not containing lengths
of maximal height bases in σ (it exists by Zorn’s lemma). Then the quotient
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Λ1/Λ
′ is a subgroup of R. Denote by ℓ̂ the length function in R on this quotient

induced from ℓ. We consider elements of Λ′ as infinitesimals. Denote by T̂
the R-tree constructed from T by identifying points at zero distance (see [24],

Theorem 2.4.7). Then H acts on T̂ . Denote by ‖γ‖R the induced length of the

path γ in T̂ , and by dR(x̄, ȳ) the induced distance.

However, the action of H on T̂ is not free. The action is minimal, that
is, there is no non-empty proper invariant subtree. Notice that the canonical
projection f : T → T̂ preserves alignment, and the pre-image of the convex set
is convex. The pre-image of a point in T̂ is an infinitesimal subtree of T .

Lemma 62. [68] The action of H on T̂ is superstable: for every non-degenerate

arc J ⊂ T̂ with non-trivial fixator, and for every non degenerate subarc S ⊂ J ,
one has Stab(S) = Stab(J).

The proof is the same as the proof of Fact 5.1 in [49].

Proposition 12. [68] One can define the lengths of bases in σ in Rk.

We will show how to prove the proposition only for the case of a closed
section σ1 on the lowest level corresponding to a closed surface group.

Lemma 63. [68] Let σ1 be a closed section on the lowest level corresponding to
a closed surface group and the lengths of the bases satisfy some system of linear
equations Σ. Then one can define the lengths of bases in σ1 in Rk.

Proof. Denote by Mσ+ the set of bases (on all the steps of the process of entire
transformation applied to the lowest level) with non-zero oldest component and

by Mσ0 the rest of the bases (infinitesimals). Denote by ℓ̂ the projection of the

length function ℓ to Λ1/Λ
′ as before. Then λ ∈ Mσ+ if and only if ℓ̂(λ) > 0. We

apply the entire transformation to σ1. If we obtain an overlapping pair or an
infinitesimal section, where the process goes infinitely, we declare it non-active
and move to the right. This either decreases, or does not change the number
of bases in the active part. Therefore, we can assume that the process goes
infinitely and the number of bases in Mσ+ never decreases. Therefore bases
from Mσ0 are only used as transfer bases.

We will show that the stabilizer of a pre-image of a point, an infinitesimal
subtree T0 of T is generated by some elements in Mσ0. An element h from H
belongs to such a stabilizer if ℓ̂(h) = 0. If some product of bases not only from
Mσ0 has infinitesimal length (denote this product by g), then by Lemma 61, the
identity and g belong to leaves at the infinitesimal distance δ in Σ. Therefore
using elementary operations we can obtain a base of length δ. Denote by Λ′′

the minimal convex subgroup of Λ containing all elements of the same height
as bases from Mσ0.

This implies the following lemma which we need to finish the proof of Lemma
63.

Lemma 64. [68] Let σ1 be the projection of the quadratic section σ1 to Λ1/(Λ
′′∩

Λ1). Suppose the process of entire transformation for σ1 goes infinitely and the
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number of bases in Mσ+ never decreases. Then the process of entire trans-
formation for σ1 goes infinitely too and the number of bases in Mσ+ never
decreases.

If ℓ(g) ∈ Λ′ then g is a product of bases in Mσ0 and ℓ(g) ∈ Λ′′.

This lemma implies that there is no element in H infinitely larger than all
bases in Mσ0, but infinitely smaller than all bases in Mσ+.

Therefore, we can make all components of the lengths of bases in M zeros
except for those which are maximal components of some bases in M. Since M
is a finite set, the number of such components is finite, and the length is defined
in Rk for some k not larger than the number of pairs of bases.

Similarly we can prove the Proposition for sections corresponding to the
linear case and the case of an abelian vertex group. Using induction on the
number of levels obtained in the Elimination process, we prove the statement
of Theorem 58.

The points of an Rn-tree, where G acts freely are the leaves in the foliation
corresponding to the new length of bases in Rn. The new lengths of bases are
exactly their Lyndon lengths. �

Hint of the Proof of Theorem 60. Notice that in the case when G̃ is a
finitely presented group with a free length function in Λ (not necessary regular)
it can be embedded in the group with a free regular length function in Λ. That
group can be embedded in R(Λ′, X). When we make a generalized equation

for G̃, we have to add only a finite number of elements from R(Λ′, X). We run
the elimination process for this generalized equation as we did in the proof of
Theorem 57 and obtain a group G as in Remark 10, where G̃ is embedded, and
then redefine the length of elements of G in Rn as above. Therefore G acts
freely and regularly on a Rn-tree. The theorem is proved.

Moreover, one shows by induction that the length function in Rn and in Λ
defined on G is regular. This proves Theorem 60.

12.4 Algorithmic problems for finitely presented Λ-free
groups

The structural results of the previous section give solution to many algorithmic
problems on finitely presented Λ-free groups.

Theorem 69. [68] Let G be a finitely presented Λ-free group. Then the following
algorithmic problems are decidable in G:

• the Word Problem;

• the Conjugacy Problems;

• the Diophantine Problem (decidability of arbitrary equations in G).

Proof. By Theorem 63 a finitely presented Λ-free group G is hyperbolic relative
to its non-cyclic abelian subgroups. Decidability of the Conjugacy Problem for
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such groups is known - it was done by Bumagin [16] and Osin [99]. Decidability
of the Diophantine Problems in such groups was proved by Dahmani [30].

Theorem 63 combined with results of Dahmani and Groves [31] immediately
implies the following two corollaries.

Corollary 22. Let G be a finitely presented Λ-free group. Then:

• G has a non-trivial abelian splitting and one can find such a splitting
effectively,

• G has a non-trivial abelian JSJ-decomposition and one can find such a
decomposition effectively.

Corollary 23. The Isomorphism Problem is decidable in the class of finitely
presented groups that act freely on some Λ-tree.

Theorem 70. The Subgroup Membership Problem is decidable in every finitely
presented Λ-free group.

Proof. By Theorem 65 every finitely generated subgroup of a finitely presented
Λ-tree group G is quasi-isometrically embedded into G. Obviously, the Mem-
bership Problem for every fixed quasi-isometrically embedded subgroup in a
finitely generated group with decidable Word Problem is decidable.
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