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A SUPERCHARACTER TABLE DECOMPOSITION VIA

POWER-SUM SYMMETRIC FUNCTIONS

N. BERGERON AND N. THIEM

Abstract. We give an LU -decomposition of the supercharacter table of the group of n×n unipotent upper
triangular matrices over Fq, into a lower-triangular matrix with entries in Z[q] and an upper-triangular
matrix with entries in Z[q−1]. To this end we introduce a q deformation of a new power-sum basis of the
Hopf algebra of symmetric functions in noncommuting variables. The decomposition is obtained from the
transition matrices between the supercharacter basis, the q-power-sum basis and the superclass basis. This
is similar to the decomposition of the character table of the symmetric group Sn given by the transition
matrices between Schur functions, monomials and power-sums.

We deduce some combinatorial results associated to this decomposition. In particular we compute the

determinant of the supercharacter table.

À mon ami Christophe Reutenauer et aux bons moments passés ensemble.

1. Introduction

It is well known (see [7]) that the representation theory of the symmetric groups is nicely encoded by
the space of symmetric functions (in countably many commuting variables). In fact the interplay between
the character theory of the symmetric groups and symmetric functions has enriched both theories with very
interesting combinatorics. The space of symmetric functions has several algebraic operations (in particular
it is a Hopf algebra) and many interesting bases (Schur, power-sum, monomial, and homogeneous symmetric
functions). The algebraic operations and bases can be lifted to the characters of the symmetric groups, and
as such are meaningful representation theoretic operations and bases. The character table of the symmetric
group is known to be the transition matrix between the Schur basis and the power-sum basis. A natural
factorization of this matrix is obtained by using a third basis (the monomial basis). The transition matrix
between Schur functions and monomials is unipotent lower triangular and the transition matrix between
monomials and power-sums is upper triangular.

In a recent workshop at AIM [1], we showed that the supercharacter theory of the group of unipotent
upper triangular matrices over a finite field Fq is related to the Hopf algebra NCSym(X) of symmetric
functions in noncommutative variables [4, 5, 8]. For q = 2, the algebraic operations of NCSym(X) can be
lifted to the supercharacter theory and have a representation theoretic meaning. This inspired us to seek a
new basis of NCSym(X) that will allow a natural decomposition of the supercharacter table.

To this end, we recall in Section 2 some of the results of [1], and then adapt it to a coarser supercharacter
theory that allows us to have an isomorphism to NCSym(X) valid for all q. The supercharacter table is
given by the transition matrix between the supercharacter basis and the superclass basis. In Section 3 we
introduce a q-deformation of a new power-sum basis (these power-sums were first introduced in [2]). For
each q, this will give us our desired factorization of the supercharacter table. In subsequent sections, we
explore the sum of the consequences and related combinatorics. In particular we compute the determinant
of the character table.

2. Preliminaries

2.1. Supercharacters. A supercharacter theory of a finite group G is a pair (K,X ) where K is a partition
of G such that

C-span

{

∑

g∈K

g | K ∈ K

}
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is a dimension |K| subalgebra of Z(CG) under usual group algebra multiplication and X is a partition of the
irreducible characters of G such that |X | = |K| and

SC(G) =

{

f : G→ C

∣

∣

∣

∣

f constant on
the parts of K

}

= C-span

{

∑

ψ∈X

ψ(1)ψ | X ∈ X

}

(2.1)

We will refer to the parts K ∈ K as superclasses ; we fix a basis of SC(G) consisting of characters
orthogonal with respect to the usual inner product on class functions, and refer to the elements of this basis
as supercharacters.

There are various natural supercharacter theories for the group

UTn(q) =

{

n× n unipotent upper triangular
matrices over Fq

}

,

but for this paper, we are interested in the following theory. Let u, v ∈ UTn(q) be equivalent, if there exist
x, y ∈ UTn(q) and t ∈ Tn(q) such that u = xt(v − 1)t−1y + 1. Here Tn(q) ⊆ GLn(Fq) denotes the set of
diagonal matrices with non-zero entries on the diagonal. We will let K be the set of equivalence classes of
this relation, giving half of our supercharacter theory.

It turns out that these superclasses are indexed by

Sn = {set partitions of {1, 2, . . . , n}},

where a set partition λ of {1, 2, . . . , n} is a subset λ ⊆ {i⌢j | 1 ≤ i < j ≤ n} such that

i⌢k ∈ λ implies i⌢j, j⌢k /∈ λ for i < j < k.

Instead of finding the corresponding partition X of the irreducible characters of UTn(q) (which is uniquely
determined by K via (2.1)), we will give our chosen set of supercharacters. Note that since the supercharacters
form a basis for SC(UTn(q)), we have that they are also indexed by Sn. Given λ, µ ∈ Sn with uµ in the
superclass corresponding to µ, define χλ ∈ SC(UTn(q)) by

χλ(uµ) =







(q − 1)|λ|−|λ∩µ|qdim(λ)−|λ|(−1)|λ∩µ|

qnst
λ
µ

if i < j < k with i⌢k ∈ λ
implies i⌢j, j⌢k /∈ µ,

0 otherwise,

(2.2)

where

dim(λ) =
∑

i⌢j∈λ

j − i,

nstλµ = #{i < j < k < l | i⌢l ∈ λ, j⌢k ∈ µ}.

These superclass functions are characters, and they form a basis for SC(UTn(q)) in this case.

Remark. The supercharacter theory defined in this paper is slightly coarser than the usual supercharacter
theory used for UTn(q) (for example, [3, 6]). In the finer theory, we discard the conjugation action of T in
our equivalence relation. However, these two supercharacter theories coincide when q = 2.
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Example 2.1. For n = 4, if t = q − 1, then the supercharacter table is

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• • • • t −1 t t −1 −1 t −1 t t t −1 t t t

• • • • t t −1 t −1 t −1 −1 t t t t t t −1

• • • • t t t −1 t −1 −1 −1 t t t −1 t t t

• • • • t2 −t −t t2 1 −t −t 1 t2 t2 −t t2 t2 t2 −t

• • • • t2 −t t2 −t −t 1 −t 1 t2 t2 −t −t t2 t2 t2

• • • • t2 t2 −t −t −t −t 1 1 t2 t2 t2 −t t2 t2 −t

• • • • t3 −t2 −t2 −t2 t t t −1 t3 t3 −t2 −t2 t3 t3 −t2

• • • • tq 0 0 tq 0 0 0 0 −q tq 0 −q −q tq 0

• • • • tq tq 0 0 0 0 0 0 tq −q −q 0 −q tq 0

• • • • t2q −tq 0 0 0 0 0 0 t2q −tq q 0 −tq t2q 0

• • • • t2q 0 0 −tq 0 0 0 0 −tq t2q 0 q −tq t2q 0

• • • • t2q2 0 0 0 0 0 0 0 −tq2 −tq2 0 0 q2 t2q2 0

• • • • tq2 0 tq 0 0 0 0 0 0 0 0 0 0 −q2 −q

• • • • t2q2 0 −tq 0 0 0 0 0 0 0 0 0 0 −tq2 q

2.2. Hopf algebra of supercharacters. Let

SC(q) =
⊕

n≥0

SC(UTn(q)),

where by convention we let

SC(UT0(q)) = C-span{χ∅0},

where ∅0 is the empty set partition of the set with 0 elements. Define a product on SC(q) by

χm · χn = Inf
UTm+n(q)
UTm(q)×UTn(q)

(χm × χn) = (χm × χn) ◦ π,

where χm ∈ SC(UTm(q)), χn ∈ SC(UTn(q)), and Inf is the inflation functor coming from the quotient map

π : UTm+n(q) −→

[

UTm(q) 0
0 UTn(q)

]

∼= UTm(q)×UTn(q).

Define a coproduct on SC(q) by

∆(χn) =
∑

{1,2,...,n}=J⊔K

Res
UTn(q)
UTJ (q)

(χn)⊗ Res
UTn(q)
UTK(q)(χn),

where UTJ(q) is the subgroup of UTn(q) with nonzero entries above the diagonal only in rows and columns
in J . We make use of the isomorphism UTJ (q) ∼= UT|J|(q) in this definition.

This product and coproduct give rise to a graded Hopf algebra, and this algebra comes equipped with
two distinguished bases:

SC(q) = C-span{χλ | λ ∈ Sn, n ∈ Z≥0}

= C-span{κµ | µ ∈ Sn, n ∈ Z≥0},

where for u ∈ UTn(q),

κµ(u) =

{

1 if u is in the superclass indexed by µ,
0 otherwise.

An American Institute of Mathematics workshop showed that we are already familiar with this Hopf
algebra.

Theorem 2.1 ([1]). The Hopf algebra SC(q) is isomorphic to the Hopf algebra of symmetric functions in

non-commuting variables NCSym(X).

Remark. The paper [1] actually only addresses the case when q = 2 since that paper was using a finer
supercharacter theory, but the proof for arbitrary q in our current supercharacter theory follows by the same
argument. In fact, if we work purely combinatorially and ignore the representation theory, then SC(q) makes
sense for arbitrary q. In particular, we also get an interesting isomorphism in the case when q = 1.
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Given an infinite set X = {X1, X2, . . .} of noncommuting variables, the algebra NCSym(X) has a distin-
guished basis of monomial symmetric functions given by

{mµ =
∑

(i1,i2,...,in)∈Oµ

Xi1Xi2 · · ·Xin | µ ∈ Sn, n ∈ Z≥0},

where
Oµ = {(i1, . . . , in) ∈ Z

n
≥1 | ik = il if and only if k and l are in the same part of µ},

and the parts of µ are given by the transitive closure of the relation i ∼ j if i⌢j ∈ µ or j⌢i ∈ µ.
We will be interested in a second natural basis of NCSym(X), which is a slight variation on what is usual

in the literature [5, 8]. Consider the power-sum symmetric functions,

pν =
∑

µ⊇ν

mµ.

The usual definition of pν uses the refinement order on set partitions rather than the subset relation in our
definition. There are several consequences from the fact that we have a different order:

(a) The sums of monomial symmetric functions have fewer terms,
(b) If we consider the function NCSym(X) → Sym(X) induced by allowing the variables to commute,

not all the pν get sent to the corresponding power-sum symmetric functions (as the usual ones do).
However, if ν satisfies i⌢j ∈ ν implies j − i = 1, then pν will be sent to the appropriate symmetric
function. That is, in the usual construction the image of pν depends on the sequence of part sizes,
and in ours each pν gets sent to something different.

The isomorphism
ch : SC(q) −→ NCSym(X)

given in [1] sends κµ to mµ, but there is no representation theoretic interpretation for the power-sum
symmetric functions. This paper finds a representation theoretic approach by tweaking the definition of the
power-sum symmetric functions.

3. Transition matrices

This section defines a q-analogue of the power-sum symmetric functions, and studies its transition matrices
to the superclass function basis and the supercharacter basis.

3.1. q-deformations of power-sums in SC(q). For ν ∈ Sn, define

ρν(q) =
∑

µ⊇ν

1

qnst
ν
µ−ν

κµ,

so that formally ch(ρν(1)) = pν .

Example 3.1. The transition matrix from the ρ-basis to the κ-basis is given by

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• • • • 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0

• • • • 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1

• • • • 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0

• • • • 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

• • • • 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

• • • • 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

• • • • 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

• • • • 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

• • • • 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

• • • • 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

• • • • 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

• • • • 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

• • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 1 q−1

• • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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The following proposition computes the inverse of this matrix.

Proposition 3.1.

κµ =
∑

ν⊇µ

(−1)|ν−µ|

qnst
ν
ν−µ

ρν(q).

Proof. We wish to show that

ρν(q) =
∑

µ⊇ν

1

qnst
ν
µ−ν

∑

λ⊇µ

(−1)|λ−µ|

qnst
λ
λ−µ

ρλ(q)

=
∑

λ⊇µ⊇ν

(−1)|λ−µ|

qnst
ν
µ−ν qnst

λ
λ−µ

ρλ(q).

In other words,
∑

λ⊇µ⊇ν

(−1)|λ−µ|

qnst
ν
µ−ν qnst

λ
λ−µ

=

{

1 if λ = ν,
0 otherwise.

If λ = ν, then the sum has one term which is

1

qnst
ν
∅qnst

ν
∅
= 1.

Assume λ 6= ν. To establish
∑

λ⊇µ⊇ν

(−1)|λ−µ|

qnst
ν
µ−ν qnst

λ
λ−µ

= 0

we define an involution ι on the set {ν ⊆ µ ⊆ λ} such that

(a) (−1)|λ−ι(µ)| = −(−1)|λ−µ|,

(b) qnst
ν
ι(µ)−ν qnst

λ
λ−ι(µ) = qnst

ν
µ−ν qnst

λ
λ−µ .

Let α = i ⌢ l ∈ λ − ν be maximal with respect to the statistic l − i (the particular choice is irrelevant).
Define the involution by

ι(µ) =

{

µ ∪ {α} if α /∈ µ,
µ− {α} if α ∈ µ.

Clearly (a) holds under this involution. For (b), suppose α ∈ µ. then

qnst
ν
ι(µ)−ν = qnst

ν
µ−ν+#{i′<i<l<l′|i′⌢l′∈ν}

= qnst
ν
µ−ν+#{i′<i<l<l′|i′⌢l′∈λ}

by the maximality in the choice of α. On the other hand,

qnst
λ
λ−ι(µ) = qnst

λ
λ−µ−#{i′<i<l<l′|i′⌢l′∈λ}.

Condition (b) follows. �

Let χλµ denote the value of the supercharacter χλ on the superclass indexed by µ. By Proposition 3.1,

χλ =
∑

µ

χλµκµ

=
∑

µ

χλµ
∑

ν⊇µ

(−1)|ν−µ|

qnst
ν
ν−µ

ρν(q)

=
∑

ν

(

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

)

ρν(q).

We are interested in these coefficients of the ρν(q).
For λ, µ ∈ Sn, let

cflt(µ) = {j⌢k | there exists i⌢l ∈ µ with i = j < k < l or i < j < k = l}

snstλµ = #{i < j < k < l | i⌢l ∈ λ, j⌢k ∈ µ− cflt(λ)}
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be the sets of arcs conflicting with µ and the set of strictly nested pairs, respectively.

Theorem 3.2. For λ, ν ∈ Sn,

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

=
(−1)|ν|qdim(λ)(q − 1)|λ−ν|

q|λ|+snstλν+nstνν

(

∏

i⌢j∈ν∩λ

(q − 1)qnst
λ
i⌢j + qnst

ν
i⌢j

)(

∏

i⌢j∈ν−λ
i⌢j/∈cflt(λ)

qnst
λ
i⌢j − qnst

ν
i⌢j

)

.

Proof. For the purpose of this proof, let t = q − 1. First note that by (2.2) we have that

χλµ = qdim(λ)−|λ|

(

∏

i⌢j∈λ−µ

t

)(

∏

i⌢j∈λ∩µ

−1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j/∈cflt(λ)

1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j∈cflt(λ)

0

)

,

Plug into the coefficient formula to get

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

=
qdim(λ)

q|λ|

∑

µ⊆ν

(

∏

i⌢j∈λ−µ

t

)(

∏

i⌢j∈λ∩µ

−1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j/∈cflt(λ)

1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j∈cflt(λ)

0

)

(−1)|ν−µ|

qnst
ν
ν−µ

=
qdim(λ)

q|λ|

∑

µ⊆ν

(

∏

i⌢j∈λ−µ

t

)(

∏

i⌢j∈λ∩µ

−1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j/∈cflt(λ)

1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j∈cflt(λ)

0

)(

∏

i⌢j∈ν−µ

−1

qnst
ν
i⌢j

)

=
qdim(λ)t|λ−ν|

q|λ|

·
∑

µ⊆ν

(

∏

i⌢j∈(λ∩ν)−µ

t

)(

∏

i⌢j∈λ∩µ

−1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j/∈cflt(λ)

1

qnst
λ
i⌢j

)(

∏

i⌢j∈µ−λ
i⌢j∈cflt(λ)

0

)(

∏

i⌢j∈ν−µ

−1

qnst
ν
i⌢j

)

Thus,

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

=
qdim(λ)t|λ−ν|

q|λ|

∑

µ⊆ν

∏

i⌢j∈ν

valλµ(i⌢j),

where

valλµ(i⌢j) =



























−q−nstλi⌢j if i⌢j ∈ λ ∩ µ,

q−nstµi⌢j if i⌢j ∈ µ− λ, i⌢j /∈ cflt(λ),
0 if i⌢j ∈ µ− λ, i⌢j ∈ cflt(λ),

−tq−nstνi⌢j if i ⌢ j ∈ λ− µ,

−q−nstνi⌢j if i ⌢ j /∈ λ ∪ µ,

(3.1)

Fix k⌢l ∈ ν. Then

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

= qdim(λ)−|λ|

(

∑

µ⊆ν
k⌢l∈µ

∏

i⌢j∈ν

valλµ(i⌢j) +
∑

µ⊆ν
k⌢l/∈µ

∏

i⌢j∈ν

valλµ(i⌢j)

)

= qdim(λ)−|λ|

(

∑

µ⊆ν
k⌢l∈µ

valλµ(k⌢l)
∏

i⌢j∈ν
i⌢j 6=k⌢l

valλµ(i⌢j) +
∑

µ⊆ν
k⌢l∈µ

valλµ(k⌢l)
∏

i⌢j∈ν
i⌢j 6=k⌢l

valλµ(i⌢j)

)

= qdim(λ)−|λ|

(

∑

µ⊆ν
k⌢l∈µ

valλν (k⌢l)
∏

i⌢j∈ν
i⌢j 6=k⌢l

valλµ(i⌢j) +
∑

µ⊆ν
k⌢l∈µ

valλ∅(k⌢l)
∏

i⌢j∈ν
i⌢j 6=k⌢l

valλµ(i⌢j)

)

.
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Note that
∑

µ⊆ν
k⌢l∈µ

∏

i⌢j∈ν
i⌢j 6=k⌢l

valλµ(i⌢j) =
∑

µ⊆ν
k⌢l∈µ

∏

i⌢j∈ν
i⌢j 6=k⌢l

valλµ(i⌢j),

=
∑

µ⊆ν−{k⌢l}

∏

i⌢j∈ν−{k⌢l}

valλµ(i⌢j),

Thus,

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

= qdim(λ)−|λ|(valλν (k⌢l) + valλ∅ (k⌢l))

(

∑

µ⊆ν−{k⌢l}

∏

i⌢j∈ν−{k⌢l}

valλµ(i⌢j)

)

= qdim(λ)−|λ|
∏

i⌢j∈ν

(valλν (i⌢j) + valλ∅(i⌢j)),

where the second equality is obtained by iterating (ie. fix k′⌢l′ ∈ ν − {k⌢l}, etc.).
By separating into the cases given by (3.1), we obtain

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

=
qdim(λ)t|λ−ν|

q|λ|

(

∏

i⌢j∈ν∩λ

−1

qnst
λ
i⌢j

+
−t

qnst
ν
i⌢j

)(

∏

i⌢j∈ν−λ
i⌢j/∈cflt(λ)

1

qnst
λ
i⌢j

+
−1

qnst
ν
i⌢j

)(

∏

i⌢j∈ν−λ
i⌢j∈cflt(λ)

−1

qnst
ν
i⌢j

)

=
(−1)|ν|qdim(λ)t|λ−ν|

q|λ|+snstλν+nstνν

(

∏

i⌢j∈ν∩λ

tqnst
λ
i⌢j + qnst

ν
i⌢j

)(

∏

i⌢j∈ν−λ
i⌢j/∈cflt(λ)

qnst
λ
i⌢j − qnst

ν
i⌢j

)

,

as desired. �

Example 3.2. The transition matrix from the χ-basis to the ρ-basis is therefore

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• • • • t −q 0 0 0 0 0 0 0 0 0 0 0 0 0

• • • • t 0 −q 0 0 0 0 0 0 0 0 0 0 0 0

• • • • t 0 0 −q 0 0 0 0 0 0 0 0 0 0 0

• • • • t2 −tq −tq 0 q2 0 0 0 0 0 0 0 0 0 0

• • • • t2 −tq 0 −tq 0 q2 0 0 0 0 0 0 0 0 0

• • • • t2 0 −tq −tq 0 0 q2 0 0 0 0 0 0 0 0

• • • • t3 −t2q −t2q −t2q tq2 tq2 tq2 −q3 0 0 0 0 0 0 0

• • • • tq 0 0 0 0 0 0 0 −q2 0 0 0 0 0 0

• • • • tq 0 0 0 0 0 0 0 0 −q2 0 0 0 0 0

• • • • t2q −tq2 0 0 0 0 0 0 0 −tq2 q3 0 0 0 0

• • • • t2q 0 0 −tq2 0 0 0 0 −tq2 0 0 q3 0 0 0

• • • • t2q2 0 0 0 0 0 0 0 −tq3 −tq3 0 0 q4 0 0

• • • • tq2 0 −t2q 0 0 0 0 0 0 0 0 0 0 −q3 0

• • • • t2q2 0 t(q3 − q2 + q) 0 0 0 0 0 0 0 0 0 0 −tq3 q3

As we can see in the above example, the matrix appears to be lower-triangular. The following defines a
total order on Sn that makes this clear, while respecting our poset of set partition inclusion.

For λ, µ ∈ Sn, let dimv(λ) be the integer partition given by the multiset {l − i | i⌢l ∈ λ} and rnode(λ)
be the integer partition given by the set {l | i⌢l ∈ λ}. For example,

dimv





• • • • • •



 = (4, 2, 1, 1) and rnode





• • • • • •



 = (6, 5, 4, 3).

Note that dim(λ) = |dimv(λ)| or the size of the corresponding integer partition.
Define a total order ≤ on Sn by
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(a) λ ≥ µ if dimv(λ) ≥lex dimv(µ), where ≥lex is the biggest part to smallest part lexicographic order
on integer partitions, and

(b) If dimv(λ) = dimv(µ), then rnode(λ) ≥lex rnode(µ).

For example, for n = 4 we have in increasing order,

λ • • • • • • • • • • • • • • •
dimv(λ) ∅ (1) (1) (1, 1) (2)
rnode(λ) ∅ (2) (3) (3, 2) (3)

This is also the order used in all of our n = 4 transition matrices above.

Remark. For our purposes any poset that respects the poset obtained by using (a) above is sufficient. We
add (b) only to get a total order.

Corollary 3.3. Let ν, λ ∈ Sn. If ν > λ, then

∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

= 0.

Proof. Suppose there exists j⌢k ∈ ν − (λ ∪ cflt(λ)) such that nstλj⌢k = 0. Pick such an arc maximal with

respect to k − j. If nstνj⌢k 6= 0, then by the maximality of j⌢k there would exist i ⌢ l ∈ ν ∩ cflt(λ) such

that i < j < k < l. However, if i ⌢ l ∈ cflt(λ), then there exists i′ ⌢ l′ ∈ λ such that i′ = i < l < l′ or
i′ < i < l = l′, contradicting nstλj⌢k = 0. Thus, nstνj⌢k = 0. We can conclude that

qnst
λ
i⌢j − qnst

ν
i⌢j = 0,

so our sum is zero if there exists j⌢k ∈ ν − (λ ∪ cflt(λ)) such that nstλj⌢k = 0.

Suppose ν > λ. Then there exists j⌢k ∈ ν − λ maximal with respect to k− j. If nstλj⌢k 6= 0, then there
would exist i⌢ l ∈ λ with i < j < k < l. However, the maximality of our choice now contradicts λ > µ.
Thus, nstλj⌢k = 0, and our coefficient is 0, as desired. �

Furthermore, the nonzero coefficients are polynomials in q with integer coefficients.

Corollary 3.4. For ν, λ ∈ Sn,
∑

µ⊆ν

χλµ
(−1)|ν−µ|

qnst
ν
ν−µ

∈ Z[q].

Proof. By Theorem 3.2, it suffices to show that

qdim(λ)

q|λ|+snstλν+nstνν
∈ Z[q].

Note that any arc i⌢l can have at most ⌊ l−i−1
2 ⌋ arcs nested in it, so

snstλν ≤
∑

i⌢l∈λ

⌊
l − i− 1

2
⌋ ≤

dim(λ) − |λ|

2
and nstνν ≤

∑

i⌢l∈ν

⌊
l − i− 1

2
⌋ ≤

dim(ν) − |ν|

2
.

However, the coefficient is zero if ν > λ, so

snstλν + nstνν + |λ| ≤
dim(λ)− |λ|

2
+

dim(ν) − |ν|

2
+ |λ| ≤ dim(λ),

as desired. �

There are many specializations of Theorem 3.2. For example, as entries of a |Sn| × |Sn| matrix, we could
consider the diagonal entries, as in the following corollary.

Corollary 3.5. For λ ∈ Sn,
∑

µ⊆λ

χλµ
(−1)|λ−µ|

qnst
λ
λ−µ

= (−1)|λ|qdim(λ)−nstλλ .

Proof. This follows directly from Theorem 3.2 and the observation that
∏

i⌢j∈λ∩ν

(q − 1)qnst
λ
i⌢j + qnst

ν
i⌢j =

∏

i⌢j∈λ

(q − 1)qnst
λ
i⌢j + qnst

λ
i⌢j = qnst

λ
λ+|λ|. �
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4. Consequences

One of the most immediate consequences of Theorem 3.2 is that the ρ basis gives an LU -decomposition of
the supercharacter table of UTn(q) (That is, a product of an upper-triangular matrix and a lower triangular
matrix).

Corollary 4.1. The supercharacter table C of UTn(q) has a factorization

C = AB

where A is a lower-triangular matrix with entries in Z[q] and B is an upper-triangular with entries in Z[q−1].

We expect that interesting applications will come from such a result. For now, we have a combinatorial
formula for the determinant of the supercharacter table.

Corollary 4.2. The supercharacter table C of UTn(q) has a determinant

det(C) = (−1)
∑

λ∈Sn
|λ|q

∑
λ∈Sn

dim(λ)−nstλλ .

It is somewhat of a surprise that the sequences (which we have added to Sloane)

dim(n) =
∑

λ∈Sn

dim(λ) [Sloane A200580]

arcs(n) =
∑

λ∈Sn

|λ| [Sloane A200660]

nst(n) =
∑

λ∈Sn

nstλλ [Sloane A200673]

did not appear to be in the literature (or at least not in the Sloane integer sequences database). However,
the first two at least do appear to be related to the recursive two-variable array (Sloane A011971), known
as Aitken’s array, given by

b[n, k] =

{

#{λ ∈ Sn | k⌢n ∈ λ} if 1 ≤ k < n,
#{λ ∈ Sn | j⌢n /∈ λ, 1 ≤ j < n}, if k = n.

This sequence satisfies the recursion

b[1, 1] = 1

b[n, 1] = b[n− 1, n− 1]

b[n, k] = b[n, k − 1] + b[n− 1, k − 1],

and looks like
1

1 2
2 3 5

5 7 10 15
15 20 27 37 52

Note that the Bell numbers appear on the boundary of this triangle.

Proposition 4.3. For n ∈ Z≥1,

arcs(n) =

n−1
∑

k=1

k · b[n, k]

dim(n) =

n−1
∑

k=1

k(n− k) · b[n, k].

Proof. Consider first

arcs(n) =
∑

λ∈Sn

|λ| =
∑

1≤i<j≤n

#{λ ∈ Sn | i⌢j ∈ Sn}.

However,
#{λ ∈ Sn | i⌢j ∈ Sn} = b[n, n− j + i],
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so

arcs(n) =
∑

1≤i<j≤n

b[n, n− j + i] =

n−1
∑

k=1

kb[n, k].

The argument for dim(n) is similar, but as we enumerate the arcs i⌢j, we add the statistic j − i. �

To understand the sequence nst(n) in a similar way, we need to define a slight variation of the sequence
b[n, k] given by

b[n, k, j] =

{

#{λ ∈ Sn | j⌢n, k⌢n− 1 ∈ λ} if j < k < n− 1,
#{λ ∈ Sn | j⌢n ∈ λ, i⌢n− 1 /∈ λ, 1 ≤ i < n− 1} if j < k = n− 1.

These numbers also satisfy a recursion given by

b[3, 2, 1] = 1

b[n, 2, 1] = b[n− 1, n− 2, 1]

b[n, j + 1, j] = b[n, j + 1, j − 1] + b[n− 1, j, j − 1]

b[n, k, j] = b[n, k − 1, j] + b[n− 1, k − 1, j]

Proposition 4.4. For n ∈ Z≥1,

nst(n) =
n−3
∑

j=1

n−2
∑

k=j+1

j(k − j)b[n, k, j].
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