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ON FINITE p-GROUPS WITH ABELIAN AUTOMORPHISM GROUP

VIVEK K. JAIN, PRADEEP K. RAI, AND MANOJ K. YADAV

Abstract. We construct, for the first time, various types of specific non-special finite p-groups
having abelian automorphism group. More specifically, we construct groups G with abelian
automorphism group such that γ2(G) < Z(G) < Φ(G), where γ2(G), Z(G) and Φ(G) denote the
commutator subgroup, the center and the Frattini subgroup of G respectively. For a finite p-group
G with elementary abelian automorphism group, we show that at least one of the following two
conditions holds true: (i) Z(G) = Φ(G) is elementary abelian; (ii) γ2(G) = Φ(G) is elementary
abelian, where p is an odd prime. We construct examples to show the existence of groups G

with elementary abelian automorphism group for which exactly one of the above two conditions
holds true.

1. Introduction

Let G be a finite group. An automorphism α of G is called central if x−1α(x) ∈ Z(G) for

all x ∈ G, where Z(G) denotes the center of G. The set of all central automorphisms of G is

a normal subgroup of Aut(G), the group of all automorphisms of G. We denote this group by

Autcent(G). Notice that Autcent(G) = CAut(G)(Inn(G)), the centralizer of Inn(G) in Aut(G), and

Autcent(G) = Aut(G) if Aut(G) is abelian. We denote the commutator and Frattini subgroup

of G with γ2(G) and Φ(G), respectively. Let Gpi

=
〈

xpi

| x ∈ G
〉

and Gpi =
〈

x ∈ G | xpi

= 1
〉

,

where i ≥ 1 is an integer. For finite abelian groups H and K, Hom(H,K) denotes the group of all

homomorphisms from H to K. If H is a subgroup (proper subgroup) of G, then we write H ≤ G

(H < G). A group G is said to be purely non-abelian if it does not have a non-trivial abelian direct

factor. Throughout the paper, any unexplained p always denotes an odd prime.

In this paper we construct, for the first time, various types of non-special finite p-groups G such

that Aut(G) is abelian. The story began in 1908 with the following question of H. Hilton [10]:

Whether a non-abelian group can have an abelian group of isomorphisms (automorphisms). In 1913,

G. A. Miller [17] constructed a non-abelian group G of order 64 such that Aut(G) is an elementary

abelian group of order 128. More examples of such 2-groups were constructed in [4, 14, 20]. For an

odd prime p, the first example of a finite p-group G such that Aut(G) is abelian was constructed

by H. Heineken and H. Liebeck [8] in 1974. In 1975, D. Jonah and M. Konvisser [15] constructed

4-generated groups of order p8 such that Aut(G) is an elementary abelian group of order p16, where

p is any prime. In 1975, by generalizing the constructions of Jonah and Konvisser, B. Earnley [5,

Section 4.2] constructed n-generated special p-groups G such that Aut(G) is abelian, where n ≥ 4

is an integer and p is any prime number. Among other things, Earnley also proved that there is

no p-group G of order p5 or less such that Aut(G) is abelian. On the way to constructing finite

p-groups of class 2 such that all normal subgroups of G are characteristic, in 1979 H. Heineken [9]

produced groups G such that Aut(G) is abelian. In 1994, M. Morigi [18] proved that there exists
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no group of order p6 whose group of automorphisms is abelian and constructed groups G of order

pn
2+3n+3 such that Aut(G) is abelian, where n is a positive integer. In particular, for n = 1, it

provides a group of order p7 having an abelian automorphism group.

There have also been attempts to get structural information of finite groups having abelian

automorphism group. In 1927, C. Hopkins [11], among other things, proved that a finite p-group

G such that Aut(G) is abelian, can not have a non-trivial abelian direct factor. In 1995, M. Morigi

[19] proved that the minimal number of generators for a p-group with abelian automorphism group

is 4. In 1995, P. Hegarty [7] proved that if G is a non-abelian p-group such that Aut(G) is abelian,

then |Aut(G)| ≥ p12, and the minimum is obtained by the group of order p7 constructed by M.

Morigi. Moreover, in 1998, G. Ban and S. Yu [2] obtained independently the same result and

proved that if G is a group of order p7 such that Aut(G) is abelian, then |Aut(G)| = p12.

We remark here that all the examples (for an odd prime p) mentioned above are special p-

groups. In 2008, A. Mahalanobis [16] published the following conjecture: For an odd prime p,

any finite p-group having abelian automorphism group is special. The first and third authors [13]

provided counter examples to this conjecture by constructing a class of non-special finite p-groups

G such that Aut(G) is abelian. These counter examples, constructed in [13], enjoy the following

properties: (i) |G| = pn+5, where p is an odd prime and n is an integer ≥ 3; (ii) γ2(G) is a proper

subgroup of Z(G) = Φ(G); (iii) exponents of Z(G) and G/γ2(G) are same and it is equal to pn−1;

(iv) Aut(G) is abelian of exponent pn−1.

Having all this information in hands, one might expect that some weaker form of the conjecture

of Mahalanobis still holds true. Two obvious weaker forms of the conjecture are: (WC1) For a

finite p-group G with Aut(G) abelian, Z(G) = Φ(G) always holds true; (WC2) For a finite p-group

G with Aut(G) abelian and Z(G) 6= Φ(G), γ2(G) = Z(G) always holds true. So, on the way to

exploring some general structure on the class of such groups G, it is natural to ask the following

question:

Question. Does there exist a finite p-group G such that γ2(G) ≤ Z(G) < Φ(G) and Aut(G) is

abelian?

Disproving (WC1) and (WC2), we provide affirmative answer to this question, in the following

theorem, which we prove in Section 3:

Theorem A. For every positive integer n ≥ 4 and every odd prime p, there exists a group G of

order pn+10 and exponent pn such that

(1) for n = 4, γ2(G) = Z(G) < Φ(G) and Aut(G) is abelian;

(2) for n ≥ 5, γ2(G) < Z(G) < Φ(G) and Aut(G) is abelian.

Moreover, the order of Aut(G) is pn+20.

One more weaker form of the above said conjecture is: (WC3) If Aut(G) is an elementary

abelian p-group, then G is special. As remarked above, all p-groups G (except the ones in [13])

available in the literature and having abelian automorphism group are special p-groups. Thus it

follows that Aut(G), for all such groups G, is elementary abelian. Y. Berkovich and Z. Janko [3,

Problem 722] published the following long standing problem: (Old problem) Study the p-groups G

with elementary abelian Aut(G).



ON FINITE p-GROUPS WITH ABELIAN AUTOMORPHISM GROUP 3

Let G be an arbitrary finite p-group such that Aut(G) is elementary abelian. Then it follows

from Theorem 4.1 (proved in Section 4 below) that one of the following two conditions necessarily

holds true: (C1) Z(G) = Φ(G) is elementary abelian; (C2) γ2(G) = Φ(G) is elementary abelian.

So one might expect that for such groups G both of the conditions (C1) and (C2) hold true, i.e.,

WC(3) holds true, or, a little less ambitiously, (C1) always holds true or (C2) always holds true.

In the following two theorems, which we prove in Section 4, we show that none of the statements

in the preceding sentence holds true.

Theorem B. There exists a group G of order p9 such that Aut(G) is elementary abelian of order

p20, Φ(G) < Z(G) and γ2(G) = Φ(G) is elementary abelian.

Theorem C. There exists a group G of order p8 such that Aut(G) is elementary abelian of order

p16, γ2(G) < Φ(G) and Z(G) = Φ(G) is elementary abelian.

Now we review non-special 2-groups having abelian automorphism group. In contrast to p-

groups for odd primes, there do exist finite 2-groups G with Aut(G) abelian and G satisfies either

of the following two properties: (P1) G is 3-generated; (P2) G has a non-trivial abelian direct

factor. The first 2-group having abelian automorphism group was constructed by G. A. Miller [17]

in 1913. This is a 3-generated group and, as mentioned above, it has order 64 with elementary

abelian automorphism group of order 128. B. Earnley [5] showed that there are two more groups

of order 64 having elementary abelian automorphism group. These groups are also 3-generated.

Further B. Earnley [5, Theorem 2.3] gave a complete description of 2-groups satisfying (P2) and

having abelian automorphism group and established the existence of such groups.

Let G be a purely non-abelian finite 2-group such that Aut(G) is elementary abelian. Thus

Aut(G) = Autcent(G). Then G satisfies one of the three conditions of Theorem 2.2. We here

record that there exist groups G which satisfy exactly one condition of this theorem. It is easy

to show that the 2-group G2 constructed in (4.1) satisfies only the first condition of Theorem 2.2

and the 2-group G3 constructed in (4.7) satisfies only the second condition of Theorem 2.2. That

Aut(G2) and Aut(G3) are elementary abelian, can be checked using GAP [6]. The examples of

2-groups G satisfying only the third condition of Theorem 2.2 with Aut(G) elementary abelian

were constructed by A. Miller [17] and M. J. Curran [4].

The examples constructed in Theorems A, B and C indicate that it is difficult to put an obvious

structure on the class of groups G such that Aut(G) is abelian or even elementary abelian. We

hope that this paper will be helpful in giving a direction to the research area under consideration.

We remark that many non-isomorphic groups, satisfying the conditions of the above theorems, can

be obtained by making suitable changes in the presentations given in (3.1), (4.1) and (4.7) below.

We conclude this section with a further remark that the kind of examples constructed here may

be useful in cryptography (see [16] for more details).

2. Some prerequisites and basic results

We start with the following two theorems of M. H. Jafari [12].
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Theorem 2.1 (Theorem 3.4). Let G be a finite purely nonabelian p-group, p odd, then Autcent(G)

is an elementary abelian p-group if and only if the exponent of Z(G) is p or exponent of G/γ2(G)

is p.

A finite abelian p-group G is said to be ce-group if G can be written as a direct product of a

cyclic group A of order pn, n > 1 and an elementary abelian p-group B.

Theorem 2.2 (Theorem 3.5). Let G be a purely nonabelian 2-group. Then Autcent(G) is elemen-

tary abelian if and only if one of the following conditions holds:

(1) the exponent of G/γ2(G) is 2;

(2) the exponent of Z(G) is 2;

(3) the greatest common divisor of the exponents of G/γ2(G) and Z(G) is 4 and G/γ2(G),

Z(G) are ce-groups having the properties that an elementary part of Z(G) is contained in

γ2(G) and there exists an element z of order 4 in a cyclic part of Z(G) with zγ2(G) lying

in a cyclic part of G/γ2(G) such that twice of the order of zγ2(G) is equal to the exponent

of G/γ2(G).

The next result is by B. Earnley [5, Corollary 3.3].

Theorem 2.3. Let G be a non-abelian finite p-group of exponent p, where p is an odd prime. Then

Aut(G) is non-abelian.

The following two results are well known.

Lemma 2.4. Let A, B and C be finite abelian groups. Then Hom(A × B, C) ∼= Hom(A, C) ×

Hom(B, C) and Hom(A, B × C) ∼= Hom(A, B)×Hom(A, C).

Lemma 2.5. Let Cr and Cs be two cyclic groups of order r and s respectively. Then Hom(Cr,

Cs) ∼= Cd, where d is the greatest common divisor of r and s.

The following result follows from [1, Theorem 1].

Proposition 2.6. Let G be a purely non-abelian finite p-group. Then |Autcent(G)| = |Hom(G

/γ2(G),Z(G))|.

Let A be an abelian p-group and a ∈ A. For a positive integer n, pn is said to be the height of

a in A, denoted by ht(a), if a ∈ Apn

but a 6∈ Apn+1

. Let H be a p-group of class 2. We denote

the exponents of Z(H), γ2(H), H/γ2(H) by pa, pb, pc respectively and d = min(a, c). We define

R := {z ∈ Z(H) | |z| ≤ pd} and K := {x ∈ H | ht(xγ2(H)) ≥ pb}. Notice that K = Hpb

γ2(H).

Now we state the following important result of J. E. Adney and T. Yen [1, Theorem 4] (in our

notations).

Theorem 2.7. Let H be a purely non-abelian p-group of class 2, p odd, and let H/γ2(H) =

Πn
i=1 〈xiγ2(H)〉. Then Autcent(H) is abelian if and only if

(i) R = K, and

(ii) either d = b or d > b and R/γ2(H) =
〈

xpb

1 γ2(H)
〉

.
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Let G be a finite p-group of nilpotency class 2 generated by x1, x2, . . . , xd, where d is a positive

integer. Let exi
= xai1

1 xai2

2 · · ·xaid

d = ∏d
j=1x

aij

j , where xi ∈ G and aij are non-negative integers for

1 ≤ i, j ≤ d. Since the nilpotency class of G is 2, we have

(2.1) [xk, exi
] = [xk,

∏d
j=1

x
aij

j ] =
∏d

j=1
[xk, x

aij

j ] =
∏d

j=1
[xk, xj ]

aij

and

[exk
, exi

] = [
∏d

l=1
xakl

l ,
∏d

j=1
x
aij

j ] =
∏d

j=1

∏d
l=1

[xakl

l , x
aij

j ](2.2)

=
∏d

j=1

∏d

l=1
[xl, xj ]

aklaij .

Equations (2.1) and (2.2) will be used for our calculations without any further reference.

3. Groups G with Aut(G) abelian

In this section we construct a class of finite p-groups such that γ2(G) ≤ Z(G) < Φ(G) and

Aut(G) is abelian. Let n ≥ 4 be a positive integer and p be an odd prime. Consider the following

group:

G =
〈

x1, x2, x3, x4 | xpn

1 = xp4

2 = xp4

3 = xp2

4 = 1, [x1, x2] = xp2

2 ,(3.1)

[x1, x3] = xp2

2 , [x1, x4] = xp2

3 , [x2, x3] = xpn−2

1 , [x2, x4] = xp2

3 ,

[x3, x4] = xp2

2

〉

.

Throughout this section, G always denotes the group given in (3.1). It is easy to see that G

enjoys the properties given in the following lemma.

Lemma 3.1. The group G is a regular p-group of nilpotency class 2 having order pn+10 and

exponent pn. For n = 4, γ2(G) = Z(G) < Φ(G) and for n ≥ 5, γ2(G) < Z(G) < Φ(G).

Let exi
= xai1

1 xai2

2 xai3

3 xai4

4 = ∏4
j=1x

aij

j , where xi ∈ G and aij are non-negative integers for

1 ≤ i, j ≤ 4. Let α be an automorphism of G. Since the nilpotency class of G is 2 and γ2(G)

is generated by xpn−2

1 , xp2

2 , xp2

3 , we can write α(xi) = xiexi
= xi

∏4
j=1x

aij

j for some non-negative

integers aij for 1 ≤ i, j ≤ 4.

Proposition 3.2. Let G be the group defined in (3.1) and α be an automorphism of G such that

α(xi) = xiexi
= xi

∏4
j=1x

aij

j , where aij are some non-negative integers for 1 ≤ i, j ≤ 4. Then the
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following equations hold:

a31 ≡ 0 mod pn−2,(3.2)

−a32 + a13 + a13a44 ≡ 0 mod p2,(3.3)

−a33 + a44 + a11 + a11a44 + a12 + a12a44 ≡ 0 mod p2,(3.4)

a21 ≡ 0 mod pn−2,(3.5)

a44 − a22 + a33 + a33a44 ≡ 0 mod p2,(3.6)

a32 − a23 + a32a44 ≡ 0 mod p2,(3.7)

−a13 + a12a23 − a13a22 ≡ 0 mod p2,(3.8)

a23 + a11 + a11a22 + a11a23 + a13a24 − a14a23 ≡ 0 mod p2,(3.9)

−a23 + a24 + a11a24 − a14 + a12a24 − a14a22 ≡ 0 mod p2,(3.10)

a12 + a12a33 − a13a32 ≡ 0 mod p2,(3.11)

a32 + a33 + a11 − a22 − a14 + a11a32 + a11a33 + a13a34 − a14a33(3.12)

≡ 0 mod p2,

a34 + a11a34 + a12a34 − a14a32 − a23 ≡ 0 mod p2,(3.13)

a23 − a32 + a23a44 ≡ 0 mod p2,(3.14)

−a33 + a44 + a22 + a22a44 ≡ 0 mod p2,(3.15)

−a11 + a33 + a22 + a22a33 − a23a32 ≡ 0 mod p2.(3.16)

Proof. Let α be the automorphism of G such that α(xi) = xiexi
, 1 ≤ i ≤ 4 as defined above.

Since Gp2 = 〈xpn−2

1 , xp2

2 , xp2

3 , x4〉 is a characteristic subgroup of G, α(x4) ∈ Gp2 . Thus we get the

following set of equations:

a41 ≡ 0 mod pn−2,(3.17)

a4i ≡ 0 mod p2, for i = 2, 3.(3.18)

We prove equations (3.2) - (3.4) by comparing the powers of xi’s in α([x1, x4]) = α(xp2

3 ).

α([x1, x4]) = [α(x1), α(x4)] = [x1ex1
, x4ex4

]

= [x1, x4][x1, ex4
][ex1

, x4][ex1
, ex4

]

= [x1, x4]
∏4

j=1
[x1, xj ]

a4j
∏4

j=1
[x4, xj ]

−a1j
∏4

j=1

∏4
l=1

[xl, xj ]
a1la4j

= [x1, x2]
a42+a11a42−a12a41 [x1, x3]

a43+a11a43−a13a41

[x1, x4]
1+a44+a11+a11a44−a14a41 [x2, x3]

a12a43−a13a42

[x2, x4]
a12+a12a44−a14a42 [x3, x4]

a13+a13a44−a14a43

= x
pn−2(a12a43−a13a42)
1

x
p2(a42+a43+a13+a11a42−a12a41+a11a43−a13a41+a13a44−a14a43)
2

x
p2(1+a44+a11+a12+a11a44−a14a41+a12a44−a14a42)
3 .

On the other hand

α([x1, x4]) = α(xp2

3 ) = xp2

3 xp2a31

1 xp2a32

2 xp2a33

3 xp2a24

4 = xp2a31

1 xp2a32

2 x
p2(1+a33)
3 .
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Comparing the powers of x1 and using (3.18), we get a31 ≡ 0 mod pn−2. Comparing the powers

of x2 and x3, and using (3.17) - (3.18), we get

−a32 + a13 + a13a44 ≡ 0 mod p2,

−a33 + a44 + a11 + a11a44 + a12 + a12a44 ≡ 0 mod p2.

Hence equations (3.2) - (3.4) hold.

Equations (3.5) - (3.7) are obtained by comparing the powers of x1, x2 and x3 in α([x3, x4]) =

α(xp2

2 ) and using equations (3.2), (3.17) and (3.18). Equations (3.8) - (3.10) are obtained by

comparing the powers of x1, x2 and x3 in α([x1, x2]) = α(xp2

2 ) and using equation (3.5). Equations

(3.11) - (3.13) are obtained by comparing the powers of x1, x2 and x3 in α([x1, x3]) = α(xp2

2 ) and

using equations (3.2) and (3.5). Equations (3.14) - (3.15) are obtained by comparing the powers of

x2 and x3 in α([x2, x4]) = α(xp2

3 ) and using equations (3.5), (3.17) and (3.18). The last equation

(3.16) is obtained by comparing the powers of x1 in α([x2, x3]) = α(xpn−2

1 ).

Theorem 3.3. Let G be the group defined in (3.1). Then all automorphisms of G are central.

Proof. We start with the claim that 1 + a44 6≡ 0 mod p. For, let us assume the contrary, i.e., p

divides 1 + a44. Then

α(xp
4) = α(x4)

p = x
p(1+a44)
4 (xa41

1 xa42

2 xa43

3 )p ∈ Z(G),

since a4j ≡ 0 mod p2 for 1 ≤ j ≤ 3 by equations (3.17) and (3.18). But this is not possible as

xp
4 6∈ Z(G). This proves our claim. Subtracting (3.14) from (3.3), we get (1 + a44)(a13 − a23) ≡ 0

mod p2. Since p does not divide 1 + a44, we get

(3.19) a13 ≡ a23 mod p2.

By equations (3.8) and (3.19) we have

(3.20) a13(1 − a12 + a22) ≡ 0 mod p2.

Here we have three possibilities, namely (i) a13 ≡ 0 mod p2, (ii) a13 ≡ 0 mod p, but a13 6≡ 0

mod p2, (iii) a13 6≡ 0 mod p. We are going to show that cases (ii) and (iii) do not occur and in

the case (i) aij ≡ 0 mod p2, 1 ≤ i, j ≤ 4.

Case (i). Assume that a13 ≡ 0 mod p2. Equations (3.7) and (3.19), together with the fact

that p does not divide 1 + a44, gives a32 ≡ 0 mod p2. We claim that 1 + a33 6≡ 0 mod p.

Suppose p divides 1 + a33. Since a32 ≡ 0 mod p2 and a31 ≡ 0 mod pn−2 (equation (3.2)), we get

α(xp3

3 ) = xp3a31

1 xp3a32

2 x
p3(1+a33)
3 xp3a34

4 = 1, which is not possible. This proves our claim. So by

equation (3.11), we get a12 ≡ 0 mod p2.

Subtracting (3.15) from (3.4), we get (a11 − a22)(1 + a44) ≡ 0 mod p2. This implies that

a11−a22 ≡ 0 mod p2. Since ai3 ≡ 0 mod p2 for i = 1, 2, by equation (3.9) we get a11(1+a11) ≡ 0

mod p2. Thus p2 divides a11 or 1+ a11. We claim that p2 can not divide 1+ a11. For, suppose the

contrary, i. e., a11 ≡ −1 mod p2. Since n− 2 ≥ 2 and a12 ≡ a13 ≡ 0 mod p2, we get

α(x1)
pn−2

= x
pn−2(1+a11)
1 xpn−2a12

2 xpn−2a13

3 xpn−2a14

4 = 1.

This contradiction, to the fact that order of x1 is pn, proves our claim. Hence p2 divides a11. Since

a11 − a22 ≡ 0 mod p2, by equation (3.15), it follows that a33 ≡ a44 mod p2. Putting the values

a23, a11 and a22 in (3.16), we get a33 ≡ 0 mod p2. Thus a44 ≡ 0 mod p2. Putting values of a32,
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a33, a11, a22 and a13 in (3.12), we get a14 ≡ 0 mod p2. Putting values of a12, a14, a11 and a23 in

(3.13), we get a34 ≡ 0 mod p2. Putting above values in (3.10), we get a24 ≡ 0 mod p2. Hence

aij ≡ 0 mod p2 for 1 ≤ i, j ≤ 4.

Case (ii). Assume that a13 ≡ 0 mod p, but a13 6≡ 0 mod p2. Equation (3.20) implies that

(1 − a12 + a22) ≡ 0 mod p. Now consider all the equations (3.5)-(3.16) mod p. Repeating the

arguments of Case (i) after replacing p2 by p, we get the following facts: (a) a32 ≡ 0 mod p

(by (3.7)); (b) a12 ≡ 0 mod p (by (3.11)); (c) a11 − a22 ≡ 0 mod p (subtracting (3.15) from

(3.4)); (d) a11(1 + a11) ≡ 0 mod p (by (3.9)). We claim that a11 ≡ 0 mod p. For, suppose that

a11 + 1 ≡ 0 mod p. Since n − 1 ≥ 3 and a12 ≡ a13 ≡ 0 mod p, it follows that α(x1)
pn−1

=

x
pn−1(1+a11)
1 xpn−1a12

2 xpn−1a13

3 xpn−1a14

4 = 1, which is a contradiction. This proves that p can not

divide a11 + 1. Hence p divides a11, and therefore by fact (c), we have a22 ≡ 0 mod p. This gives

a contradiction to the fact that (1− a12 + a22) ≡ 0 mod p. Thus Case (ii) does not occur.

Case (iii). Finally assume that a13 6≡ 0 mod p. Thus (1−a12+a22) ≡ 0 mod p2, i.e., 1+a22 ≡ a12

mod p2 (we’ll use this information throughout the remaining proof without referring). Notice that

(α(x2x
−1
1 ))p

2

= x
−p2(1+a11)
1 . Since the order of (α(x2x

−1
1 ))p

2

is pn−2, p does not divide (1 + a11).

Putting the value of a32 from (3.14) into (3.7), we have a23 = a23(1 + a44)
2 mod p2. Since

a23 ≡ a13 mod p2 (equation (3.19)) and a13 6≡ 0 mod p, it follows that a23 6≡ 0 mod p. Hence

(1 + a44)
2 ≡ 1 mod p2. This gives a44(a44 + 2) ≡ 0 mod p2. Thus we have three cases (iii)(a)

a44 ≡ 0 mod p2, (iii)(b) a44 ≡ 0 mod p, but a44 6≡ 0 mod p2 and (iii)(c) a44 6≡ 0 mod p. We are

going to consider these cases one by one.

Case (iii)(a). Suppose that a44 ≡ 0 mod p2. Using this in (3.14) and (3.15), we get a32 ≡ a23

mod p2 and a22 ≡ a33 mod p2 respectively. Putting the value of a44 in (3.4), we have a12 + a11 ≡

a33 mod p2. Further, replacing a12 by 1+a22 and a22 by a33, we have 1+a11 ≡ 0 mod p2, which

is a contradiction.

Case (iii)(b). Suppose that a44 ≡ 0 mod p, but a44 6≡ 0 mod p2. Notice that by reading the

equations mod p, arguments of Case (iii)(a) show that 1 + a11 ≡ 0 mod p, which is again a

contradiction.

Case (iii)(c). Suppose that a44 6≡ 0 mod p. This implies that a44 ≡ −2 mod p2. Putting

this value of a44 in the difference of (3.6) and (3.4), we get a11 + a12 − a22 ≡ 0 mod p2. Since

1 + a22 ≡ a12 mod p2, this equation contradicts the fact that 1 + a11 6≡ 0 mod p.

Thus Case (iii) can not occur. This completes the proof of the theorem. �

Now we are ready to prove Theorem A stated in the introduction.

Proof of Theorem A. Let G be the group defined in (3.1). By Lemma 3.1, we have |G| = pn+10,

γ2(G) = Z(G) < Φ(G) for n = 4 and γ2(G) < Z(G) < Φ(G) for n ≥ 5. By Theorem 3.3, we have

Aut(G) = Autcent(G). Thus to complete the proof of the theorem, it is sufficient to prove that

Autcent(G) is an abelian group. Since Z(G) < Φ(G), G is purely non-abelian. The exponents of

Z(G), γ2(G) and G/γ2(G) are pn−2, p2 and pn−2 respectively. Thus we get

R = {z ∈ Z(G) | |z| ≤ pn−2} = Z(G)
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and

K = {x ∈ G | ht(xγ2(G)) ≥ p2} = Gp2

γ2(G) = Z(G).

This shows that R = K. Also R/γ2(G) = Z(G)/γ2(G) =
〈

xp2

1 γ2(G)
〉

. Thus all the conditions of

Theorem 2.7 are now satisfied. Hence Autcent(G) is abelian. That the order of Aut(G) is pn+20

can be easily proved by using Lemmas 2.4, 2.5, Proposition 2.6 and the structures of G/γ2(G) and

Z(G). This completes the proof of the theorem. �

4. Groups G with Aut(G) elementary abelian

In this section we construct p-groups with elementary abelian automorphism group. We start

with the following result, which provides some structural information of a group G for which

Aut(G) is elementary abelian.

Theorem 4.1. Let G be a finite p-group such that Aut(G) is elementary abelian, where p is an

odd prime. Then one of the following two conditions holds true:

(1) Z(G) = Φ(G) is elementary abelian;

(2) γ2(G) = Φ(G) is elementary abelian.

Moreover, the exponent of G is p2.

Proof. Since Aut(G) is elementary abelian, G/Z(G) is elementary abelian and it follows from a

result of Hopkins [11, Section 3] that G is purely non-abelian. It follows from Theorem 2.1 that

either Z(G) or G/γ2(G) is of exponent p. If the exponent of Z(G) is p, then Z(G) ≤ Φ(G). Indeed,

if Φ(G) < Z(G), then G has a non-trivial abelian direct factor, which is not possible as G is purely

non-abelian. Hence Z(G) = Φ(G) is elementary abelian. If the exponent of G/γ2(G) is p, then

obviously γ2(G) = Φ(G). Since the exponent of γ2(G) is equal to the exponent of G/Z(G), it

follows that γ2(G) = Φ(G) is elementary abelian. In any case the exponent of Φ(G) is p. Thus

the exponent of G is at most p2. That the exponent of G can not be p, follows from Theorem 2.3.

Hence the exponent of G is p2. This completes the proof of the theorem. �

Now we proceed to construct p-group G such that Φ(G) < Z(G), and Aut(G) and γ2(G) = Φ(G)

are elementary abelian. Let p be any prime, even or odd. Consider the group

G1 = 〈x1, x2, x3, x4, x5 | xp2

1 = xp2

2 = xp2

3 = xp2

4 = xp
5 = 1, [x1, x2] = xp

1,(4.1)

[x1, x3] = xp
3, [x1, x4] = 1, [x1, x5] = xp

1, [x2, x3] = xp
2, [x2, x4] = 1,

[x2, x5] = xp
4, [x3, x4] = 1, [x3, x5] = xp

4, [x4, x5] = 1〉.

It is easy to see the following properties of G1.

Lemma 4.2. The group G1 is a p-group having order p9, γ2(G1) = Φ(G1) < Z(G1), Φ(G1) is

elementary abelian and the exponent of Z(G1) is p2, where p is any prime. Moreover, if p is odd,

then G1 is regular.

As mentioned in the introduction, it can be checked by using GAP that for p = 2, Aut(G1) is

elementary abelian. So we assume that p is odd. For 1 ≤ i ≤ 5, let exi
= xai1

1 xai2

2 xai3

3 xai4

4 xai5

5 ,

where aij are non-negative integers for 1 ≤ i, j ≤ 5. Let α be an arbitrary automorphism of G1.
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Since the nilpotency class of G1 is 2 and γ2(G1) is generated by the set {xp
i | 1 ≤ i ≤ 4}, we can

write

(4.2) α(xi) = xi

5
∏

j=1

x
aij

j

for some non-negative integers aij for 1 ≤ i, j ≤ 5.

Lemma 4.3. Let α be the automorphism of G1 defined in (4.2). Then

(4.3) a4j ≡ 0 mod p for j = 1, 2, 3, 5.

Proof. Since x4 ∈ Z(G1), it follows that α(x4) = x1+a44

4 xa41

1 xa42

2 xa43

3 xa45

5 ∈ Z(G1). This is possible

only when a4j ≡ 0 mod p for j = 1, 2, 3, 5, which completes the proof of the lemma. �

We’ll make use of the following table in the proof of Theorem B, which is produced in the

following way. The equation in the kth row is obtained by applying α on the relation in kth row,

then comparing the powers of xi in the same row, and using preceding equations in the table and

equations (4.3). For example, equation in 5th row is obtained by applying α on [x1, x3] = xp
3, then

comparing the powers of x2 and using equations in 2nd and 3rd row.

No. equations relations xi’s

1 a5j ≡ 0 mod p, 1≤ j ≤ 4 xp
5 = 1 x1, x2, x3, x4

2 a12 ≡ 0 mod p [x1, x5] = xp
1 x2

3 a13 ≡ 0 mod p [x1, x5] = xp
1 x3

4 a14 ≡ 0 mod p [x1, x5] = xp
1 x4

5 a32 ≡ 0 mod p [x1, x3] = xp
3 x2

6 a55(1 + a11) ≡ 0 mod p [x1, x5] = xp
1 x1

7 a23(1 + a11) ≡ 0 mod p [x1, x2] = xp
1 x3

8 a21 + a21a55 ≡ 0 mod p [x2, x5] = xp
4 x1

9 a31 + a31a55 ≡ 0 mod p [x3, x5] = xp
4 x1

10 a35 + a11a35 − a15a31 − a31 ≡ 0 mod p [x1, x3] = xp
3 x1

11 a11(1 + a33) ≡ 0 mod p [x1, x3] = xp
3 x3

12 a33(1 + a22) ≡ 0 mod p [x2, x3] = xp
2 x2

13 a55 + a33 + a33a55 − a44 ≡ 0 mod p [x3, x5] = xp
4 x4

14 a55 + a22 + a22a55 + a23(1 + a55)− a44 ≡ 0 mod p [x2, x5] = xp
4 x4

15 (a22 + a25)(1 + a11)− a15a21 ≡ 0 mod p [x1, x2] = xp
1 x1

16 a35(1 + a23 + a22)− a25(1 + a33)− a24 ≡ 0 mod p [x2, x3] = xp
2 x4

17 −a15 − a15a22 − a15a23 ≡ 0 mod p [x1, x2] = xp
1 x4

18 −a15 − a15a33 − a34 ≡ 0 mod p [x1, x3] = xp
3 x4

Table 1. Table for the group G1

Now we are ready to prove Theorem B stated in the introduction. In the following proof, by

(k) we mean the equation in the kth row of Table 1.

Proof of Theorem B. It follows from Lemma 4.2 that G1 is of order p9, Φ(G1) < Z(G1) and

γ2(G1) = Φ(G1) is elementary abelian. It is easy to show that the order of Autcent(G1) is

p20. Since Aut(G1) is elementary abelian for p = 2, assume that p is odd. We now prove that
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all automorphisms of G1 are central. Let α be the automorphism of G1 defined in (4.2), i.e.,

α(xi) = xi

∏5
j=1 x

aij

i , where aij are non-negative integers for 1 ≤ i, j ≤ 5. Since G1/Z(G1) is

elementary abelian, it is sufficient to prove that aij ≡ 0 mod p for 1 ≤ i, j ≤ 5.

Since α(xp
1) = x

p(1+a11)
1

∏5
j=2 x

pa1j

j 6= 1, xp
5 = 1 and a1j ≡ 0 mod p for 2 ≤ j ≤ 4, it follows

that 1 + a11 is not divisible by p. Therefore (6) and (7) give a55 ≡ 0 mod p and a23 ≡ 0 mod p

respectively. Thus by (8) and (9) respectively, we get a21 ≡ 0 mod p and a31 ≡ 0 mod p. Using

the fact that a31 ≡ 0 mod p, (10) reduces to the equation a35(1 + a11) ≡ 0 mod p. Since 1 + a11

is not divisible by p, we get a35 ≡ 0 mod p. Observe that 1 + a33 is not divisible by p. For,

suppose p divides 1 + a33. Since a31, a32, a35 divisible by p and x4 ∈ Z(G1), it follows that

α(x3) ∈ Z(G1), which is not true. Using this fact, it follows from (11) that a11 ≡ 0 mod p. Using

above information, (13), (14) and (15) reduces, respectively, to the following equations.

a33 − a44 ≡ 0 mod p,(4.4)

a22 − a44 ≡ 0 mod p,(4.5)

a22 + a25 ≡ 0 mod p.(4.6)

Subtracting equation (4.5) from equation (4.4), we get a33 − a22 ≡ 0 mod p. Adding this to

equation (4.6) gives a33 + a25 ≡ 0 mod p. Using this fact after adding (12) to equation (4.6),

we get a22(1 + a33) ≡ 0 mod p. Since 1 + a33 is not divisible by p, a22 ≡ 0 mod p. Thus

equations (4.5) and (4.6) give a44 ≡ 0 mod p and a25 ≡ 0 mod p respectively. So a33 ≡ 0 mod p

from equation 4.4. Now (16) and (17) give a24 ≡ 0 mod p and a15 ≡ 0 mod p respectively.

Finally, from equation (18) we get a34 ≡ 0 mod p. Hence all aij
′s are divisible by p, which shows

that α is a central automorphism of G1. Since α was an arbitrary automorphism of G1, we get

Aut(G1) = Autcent(G1).

It now remains to prove that Aut(G1) is elementary abelian. Notice that G1 is purely non-

abelian. Since γ2(G1) = Φ(G1), the exponent of G1/γ2(G1) is p. That Aut(G1) = Autcent(G1) is

elementary abelian now follows from Theorem 2.1. This completes the proof of the theorem. �

Finally we proceed to construct a finite p-group G such that Aut(G) is elementary abelian,

γ2(G) < Φ(G) and Φ(G) = Z(G) is elementary abelian. Let p be any prime, even or odd. Define

the group

G2 = 〈x1, x2, x3, x4 | xp2

1 = xp2

2 = xp2

3 = xp2

4 = 1, [x1, x2] = 1,(4.7)

[x1, x3] = xp
4, [x1, x4] = xp

4, [x2, x3] = xp
1, [x2, x4] = xp

2, [x3, x4] = xp
4〉.

It is easy to prove the following lemma.

Lemma 4.4. The group G2 is a p-group of order p8, γ2(G2) < Φ(G2) and Z(G2) = Φ(G2) is

elementary abelian, where p is any prime. Moreover, if p is odd, then G2 is regular.

Again, as mentioned in the introduction, it can be checked by using GAP that for p = 2,

Aut(G2) is elementary abelian. So from now onwards, we assume that p is odd. For 1 ≤ i ≤ 4, let

exi
= xai1

1 xai2

2 xai3

3 xai4

4 , where aij are non-negative integers for 1 ≤ i, j ≤ 4. Let α be an arbitrary

automorphism of G2. Since the nilpotency class of G2 is 2 and γ2(G2) is generated by the set
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{xp
1, x

p
2, x

p
4}, we can write

(4.8) α(xi) = xi

4
∏

j=1

x
aij

j

for some non-negative integers aij for 1 ≤ i, j ≤ 4.

The following table, which will be used in the proof of Theorem C below, is produced in a

similar fashion as Table 1.

No. equations relations xi’s

1 a13 ≡ 0 mod p [x2, x3] = xp
1 x3

2 a23 ≡ 0 mod p [x2, x4] = xp
2 x3

3 a43 ≡ 0 mod p [x1, x3] = xp
4 x3

4 a41 ≡ 0 mod p [x1, x4] = xp
4 x1

5 a21 ≡ 0 mod p [x2, x4] = xp
2 x1

6 a24 ≡ 0 mod p [x2, x4] = xp
2 x4

7 a14 ≡ 0 mod p [x2, x3] = xp
1 x4

8 a44(1 + a22) ≡ 0 mod p [x2, x4] = xp
2 x2

9 a11 + a11a44 ≡ 0 mod p [x1, x4] = xp
4 x4

10 a22 + a22a33 + a33 − a11 ≡ 0 mod p [x2, x3] = xp
1 x1

11 −a42(1 + a33) ≡ 0 mod p [x3, x4] = xp
4 x1

12 a12 + a12a44 − a42 ≡ 0 mod p [x1, x4] = xp
4 x2

13 a32 + a32a44 − a34a42 − a42 ≡ 0 mod p [x3, x4] = xp
4 x2

14 a34(1 + a22)− a12 ≡ 0 mod p [x2, x3] = xp
1 x2

15 a11(1 + a33 + a34) + a33 + a34 − a44 ≡ 0 mod p [x1, x3] = xp
4 x4

16 a31 + a31a44 + a33 + a33a44 ≡ 0 mod p [x3, x4] = xp
4 x4

Table 2. Table for the group G2

Now we are ready to prove Theorem C stated in the introduction. By (k), in the following proof,

we mean the equation in the kth row of Table 2.

Proof of Theorem C. It follows from Lemma 4.4 that G2 is of order p8, γ2(G2) < Φ(G2) and

Z(G2) = Φ(G2) is elementary abelian. It is again easy to show that the order of Autcent(G2) is

p16. Since Aut(G2) is elementary abelian for p = 2, assume that p is odd. As in the proof of

Theorem B, to show that all automorphisms of G2 are central, it is sufficient to show that aij ≡ 0

mod p for 1 ≤ i, j ≤ 4.

Since a21, a23, a24 are divisible by p, it follows that (1 + a22) is not divisible by p. For, if p

divides (1 + a22), then α(x2) ∈ Z(G2), which is not possible. Using this fact, (8) gives a44 ≡ 0

mod p. Thus from (9) we get a11 ≡ 0 mod p. Now we observe from (10) that (1 + a33) is not

divisible by p. For, suppose, (1 + a33) is divisible by p, then using the fact that a11 ≡ 0 mod p,

(10) gives a33 ≡ 0 mod p, which is not possible. Thus (11) gives a42 ≡ 0 mod p. Now using that

a42 and a44 are divisible by p, (12) and (13) give a12 ≡ 0 mod p and a32 ≡ 0 mod p respectively.

Since a12 ≡ 0 mod p and (1+a22) is not divisible by p, (14) gives a34 ≡ 0 mod p. Using that a11,

a34 and a44 are divisible by p, (15) gives a33 ≡ 0 mod p. Now using that a33 and a44 are divisible

by p, equation (16) gives a31 ≡ 0 mod p. Since a11 and a33 are divisible by p, equation (10) gives

a22 ≡ 0 mod p. Hence aij ≡ 0 mod p for 1 ≤ i, j ≤ 4.
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Since Z(G2) is elementary abelian, Aut(G2) = Autcent(G2) is elementary abelian by Theorem

2.1. This completes the proof of the theorem. �

Acknowledgements. Authors thank Prof. Mike Newman for his useful comments and sugges-
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